1
|
Tabet M, Custer C, Khan IR, Sanford E, Sharma J, Choe R, Singh S, Sirsi D, Olson DM, Morriss MC, Raman L, Busch DR. Neuromonitoring of Pediatric and Adult Extracorporeal Membrane Oxygenation Patients: The Importance of Continuous Bedside Tools in Driving Neuroprotective Clinical Care. ASAIO J 2024; 70:167-176. [PMID: 38051987 DOI: 10.1097/mat.0000000000002107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is a form of temporary cardiopulmonary bypass for patients with acute respiratory or cardiac failure refractory to conventional therapy. Its usage has become increasingly widespread and while reported survival after ECMO has increased in the past 25 years, the incidence of neurological injury has not declined, leading to the pressing question of how to improve time-to-detection and diagnosis of neurological injury. The neurological status of patients on ECMO is clinically difficult to evaluate due to multiple factors including illness, sedation, and pharmacological paralysis. Thus, increasing attention has been focused on developing tools and techniques to measure and monitor the brain of ECMO patients to identify dynamic risk factors and monitor patients' neurophysiological state as a function in time. Such tools may guide neuroprotective interventions and thus prevent or mitigate brain injury. Current means to continuously monitor and prevent neurological injury in ECMO patients are rather limited; most techniques provide indirect or postinsult recognition of irreversible brain injury. This review will explore the indications, advantages, and disadvantages of standard-of-care, emerging, and investigational technologies for neurological monitoring on ECMO, focusing on bedside techniques that provide continuous assessment of neurological health.
Collapse
Affiliation(s)
- Margherita Tabet
- From the Department of Anesthesiology and Pain Management, The University of Texas Southwestern medical center/Children's Medical Center, Dallas, Texas
| | - Chasity Custer
- Division of Pediatric Critical Care Medicine, UT Southwestern Medical Center/Children's Medical Center, Dallas, Texas
| | - Imad R Khan
- Department of Neurology, University of Rochester Medical Center, Rochester, New York
| | - Ethan Sanford
- From the Department of Anesthesiology and Pain Management, The University of Texas Southwestern medical center/Children's Medical Center, Dallas, Texas
- Division of Pediatric Critical Care Medicine, UT Southwestern Medical Center/Children's Medical Center, Dallas, Texas
| | - Jayesh Sharma
- From the Department of Anesthesiology and Pain Management, The University of Texas Southwestern medical center/Children's Medical Center, Dallas, Texas
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York
| | - Sumit Singh
- Department of Radiology, UT Southwestern Medical Center/Children's Medical Center, Dallas, Texas
| | - Deepa Sirsi
- Division of Pediatric Neurology, UT Southwestern Medical Center/Children's Medical Center, Dallas, Texas
| | - DaiWai M Olson
- Department of Neurology, UT Southwestern Medical Center, Dallas, Texas
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas
| | - Michael Craig Morriss
- Department of Radiology, UT Southwestern Medical Center/Children's Medical Center, Dallas, Texas
| | - Lakshmi Raman
- Department of Pediatrics, The University of Texas Southwestern medical center
| | - David R Busch
- From the Department of Anesthesiology and Pain Management, The University of Texas Southwestern medical center/Children's Medical Center, Dallas, Texas
- Department of Neurology, UT Southwestern Medical Center, Dallas, Texas
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
2
|
Jarry S, Couture EJ, Beaubien-Souligny W, Fernandes A, Fortier A, Ben-Ali W, Desjardins G, Huard K, Mailhot T, Denault AY. Clinical relevance of transcranial Doppler in a cardiac surgery setting: embolic load predicts difficult separation from cardiopulmonary bypass. J Cardiothorac Surg 2024; 19:90. [PMID: 38347542 PMCID: PMC10863099 DOI: 10.1186/s13019-024-02591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND During cardiac surgery, transcranial Doppler (TCD) represents a non-invasive modality that allows measurement of red blood cell flow velocities in the cerebral arteries. TCD can also be used to detect and monitor embolic material in the cerebral circulation. Detection of microemboli is reported as a high intensity transient signal (HITS). The importance of cerebral microemboli during cardiac surgery has been linked to the increased incidence of postoperative renal failure, right ventricular dysfunction, and hemodynamic instability. The objective of this study is to determine whether the embolic load is associated with hemodynamic instability during cardiopulmonary bypass (CPB) separation and postoperative complications. METHODS A retrospective single-centre cohort study of 354 patients undergoing cardiac surgery between December 2015 and March 2020 was conducted. Patients were divided in tertiles, where 117 patients had a low quantity of embolic material (LEM), 119 patients have a medium quantity of microemboli (MEM) and 118 patients who have a high quantity of embolic material (HEM). The primary endpoint was a difficult CPB separation. Multivariate logistic regression was used to determine the potential association between a difficult CPB separation and the number of embolic materials. RESULTS Patients who had a difficult CPB separation had more HITS compared to patients who had a successful CPB separation (p < 0.001). In the multivariate analysis, patients with MEM decreased their odds of having a difficult CPB weaning compared to patients in the HEM group (OR = 0.253, CI 0.111-0.593; p = 0.001). In the postoperative period patients in the HEM group have a higher Time of Persistent Organ Dysfunction (TPOD), a longer stay in the ICU, a longer duration under vasopressor drugs and a higher mortality rate compared to those in the MEM and LEM groups. CONCLUSION The result of this study suggests that a high quantity of cerebral embolic material increases the odds of having a difficult CPB separation. Also, it seems to be associated to more complex surgery, a longer CPB time, a higher TPOD and a longer stay in the ICU. Six out of eight patients who died in this cohort were in the HEM group.
Collapse
Affiliation(s)
- Stéphanie Jarry
- Department of Anesthesiology, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, QC, H1T 1C8, Canada
| | - Etienne J Couture
- Department of Anesthesiology and Department of Medicine, Division of Intensive Care Medicine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC, Canada
| | | | - Armindo Fernandes
- Perfusion Service, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| | - Annik Fortier
- Montreal Health Innovations Coordinating Center, Montreal Heart Institute, Montreal, QC, Canada
| | - Walid Ben-Ali
- Department of Surgery and Department of Cardiology, Montreal Heart Institute, Montreal, QC, Canada
| | - Georges Desjardins
- Department of Anesthesiology, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, QC, H1T 1C8, Canada
| | - Karel Huard
- Université de Montréal, Montreal, QC, Canada
| | - Tanya Mailhot
- Research Center, Montreal Heart Institute, and Faculty of Nursing, Université de Montréal, Montreal, QC, Canada
| | - André Y Denault
- Department of Anesthesiology, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, QC, H1T 1C8, Canada.
| |
Collapse
|
3
|
Lovett ME, MacDonald JM, Mir M, Ghosh S, O'Brien NF, LaRovere KL. Noninvasive Neuromonitoring Modalities in Children Part I: Pupillometry, Near-Infrared Spectroscopy, and Transcranial Doppler Ultrasonography. Neurocrit Care 2024; 40:130-146. [PMID: 37160846 DOI: 10.1007/s12028-023-01730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 04/03/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND Noninvasive neuromonitoring in critically ill children includes multiple modalities that all intend to improve our understanding of acute and ongoing brain injury. METHODS In this article, we review basic methods and devices, applications in clinical care and research, and explore potential future directions for three noninvasive neuromonitoring modalities in the pediatric intensive care unit: automated pupillometry, near-infrared spectroscopy, and transcranial Doppler ultrasonography. RESULTS All three technologies are noninvasive, portable, and easily repeatable to allow for serial measurements and trending of data over time. However, a paucity of high-quality data supporting the clinical utility of any of these technologies in critically ill children is currently a major limitation to their widespread application in the pediatric intensive care unit. CONCLUSIONS Future prospective multicenter work addressing major knowledge gaps is necessary to advance the field of pediatric noninvasive neuromonitoring.
Collapse
Affiliation(s)
- Marlina E Lovett
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Jennifer M MacDonald
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Marina Mir
- Division of Pediatric Critical Care, Montreal Children's Hospital and McGill University, Montreal, Canada
| | - Suman Ghosh
- Department of Neurology, State University of New York Downstate College of Medicine, Brooklyn, NY, USA
| | - Nicole F O'Brien
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Kerri L LaRovere
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Yasa B, Kersin SG, Cetinkaya M, Ozek E, Bilgen H. Regional pulmonary oxygen saturations in late preterm and term infants with respiratory distress at birth. Pediatr Pulmonol 2024. [PMID: 38179879 DOI: 10.1002/ppul.26849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/23/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Measurement of regional pulmonary oxygen saturation by near-infrared spectroscopy is a novel monitorization method. This study aimed to determine the early regional pulmonary oxygen saturations in neonates with respiratory distress. METHODS This observational study was conducted at the delivery room in infants above 35 weeks of gestation who developed respiratory distress immediately after birth. Preductal oxygen saturation (Covidien Nellcor®) and regional oxygen saturations of both apical (raSO2 ) and basal regions (rbSO2 ) of right lung were measured (Covidien INVOS®) within the first 15 min of life and compared to those of healthy neonates. RESULTS Of the 165 infants included to the study, 15 were late preterm and 55 developed respiratory distress. Infants with respiratory distress had significantly lower gestational age and birth weight. Regional pulmonary oxygenations at both apex and basal lung areas were positively correlated with SpO2 in all infants. The rbSO2 was significantly lower than raSO2 until 10th minute of life regardless of respiratory distress. The fractionized tissue oxygen extraction of both apical and basal lung areas was significantly higher in infants with respiratory distress until 5th minute of life. CONCLUSION This study is one of the pioneer studies evaluating the early pulmonary oxygenation values of infants with respiratory distress. Oxygenation of apical lung regions are better than basal areas. Higher fractionized tissue oxygen extraction showed the impaired pulmonary perfusion in infants with respiratory distress.
Collapse
Affiliation(s)
- Beril Yasa
- Department of Pediatrics, Division of Neonatology, Istanbul Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Sinem Gülcan Kersin
- Department of Pediatrics, Division of Neonatology, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Merih Cetinkaya
- Department of Pediatrics, Division of Neonatology, Istanbul Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Eren Ozek
- Department of Pediatrics, Division of Neonatology, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Hulya Bilgen
- Department of Pediatrics, Division of Neonatology, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
5
|
Bergmann T, Froese L, Gomez A, Sainbhi AS, Vakitbilir N, Islam A, Stein K, Marquez I, Amenta F, Park K, Ibrahim Y, Zeiler FA. Evaluation of Morlet Wavelet Analysis for Artifact Detection in Low-Frequency Commercial Near-Infrared Spectroscopy Systems. Bioengineering (Basel) 2023; 11:33. [PMID: 38247909 PMCID: PMC11154537 DOI: 10.3390/bioengineering11010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Regional cerebral oxygen saturation (rSO2), a method of cerebral tissue oxygenation measurement, is recorded using non-invasive near-infrared Spectroscopy (NIRS) devices. A major limitation is that recorded signals often contain artifacts. Manually removing these artifacts is both resource and time consuming. The objective was to evaluate the applicability of using wavelet analysis as an automated method for simple signal loss artifact clearance of rSO2 signals obtained from commercially available devices. A retrospective observational study using existing populations (healthy control (HC), elective spinal surgery patients (SP), and traumatic brain injury patients (TBI)) was conducted. Arterial blood pressure (ABP) and rSO2 data were collected in all patients. Wavelet analysis was determined to be successful in removing simple signal loss artifacts using wavelet coefficients and coherence to detect signal loss artifacts in rSO2 signals. The removal success rates in HC, SP, and TBI populations were 100%, 99.8%, and 99.7%, respectively (though it had limited precision in determining the exact point in time). Thus, wavelet analysis may prove to be useful in a layered approach NIRS signal artifact tool utilizing higher-frequency data; however, future work is needed.
Collapse
Affiliation(s)
- Tobias Bergmann
- Biosystems Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (I.M.); (F.A.)
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.S.); (Y.I.)
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada;
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.S.); (Y.I.)
| | - Nuray Vakitbilir
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.S.); (Y.I.)
| | - Abrar Islam
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.S.); (Y.I.)
| | - Kevin Stein
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.S.); (Y.I.)
- Undergraduate Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada;
| | - Izzy Marquez
- Biosystems Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (I.M.); (F.A.)
| | - Fiorella Amenta
- Biosystems Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (I.M.); (F.A.)
| | - Kevin Park
- Undergraduate Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada;
| | - Younis Ibrahim
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.S.); (Y.I.)
| | - Frederick A. Zeiler
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (L.F.); (A.S.S.); (N.V.); (A.I.); (K.S.); (Y.I.)
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada;
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
6
|
Theodorakopoulou MP, Dipla K, Zafeiridis A, Faitatzidou D, Koutlas A, Doumas M, Papagianni A, Sarafidis P. Cerebral oxygenation during exercise deteriorates with advancing chronic kidney disease. Nephrol Dial Transplant 2023; 38:2379-2388. [PMID: 37096390 DOI: 10.1093/ndt/gfad076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Cognitive impairment and exercise intolerance are common in chronic kidney disease (CKD). Cerebral perfusion and oxygenation play a major role in both cognitive function and exercise execution. This study aimed to examine cerebral oxygenation during a mild physical stress in patients at different CKD stages and controls without CKD. METHODS Ninety participants (18 per CKD stage 2, 3a, 3b and 4 and 18 controls) underwent a 3-min intermittent handgrip exercise at 35% of their maximal voluntary contraction. During exercise, cerebral oxygenation [oxyhaemoglobin (O2Hb), deoxyhaemoglobin (HHb) and total haemoglobin (tHb)] was assessed by near-infrared spectroscopy. Indices of microvascular (muscle hyperaemic response) and macrovascular function (carotid intima-media thickness and pulse wave velocity (PWV)) and cognitive and physical activity status were also evaluated. RESULTS No differences in age, sex and body mass index were detected among groups. The mini-mental state examination score was significantly reduced with advancing CKD stages (controls: 29.2 ± 1.2, stage 2: 28.7 ± 1.0, stage 3a: 27.8 ± 1.9, stage 3b: 28.0 ± 1.8, stage 4: 27.6 ± 1.5; P = .019). Similar trends were observed for physical activity levels and handgrip strength. The average response in cerebral oxygenation (O2Hb) during exercise was lower with advancing CKD stages (controls: 2.50 ± 1.54, stage 2: 1.30 ± 1.05, stage 3a: 1.24 ± 0.93, stage 3b: 1.11 ± 0.89, stage 4: 0.97 ± 0.80 μmol/l; P < .001). The average tHb response (index of regional blood volume) showed a similar decreasing trend (P = .003); no differences in HHb among groups were detected. In univariate linear analysis, older age, lower estimated glomerular filtration rate (eGFR), Hb, microvascular hyperaemic response and increased PWV were associated with poor O2Hb response during exercise. In the multiple model, eGFR was the only parameter independently associated with the O2Hb response. CONCLUSIONS Brain activation during a mild physical task appears to decrease with advancing CKD as suggested by the smaller increase in cerebral oxygenation. This may contribute to impaired cognitive function and reduced exercise tolerance with advancing CKD.
Collapse
Affiliation(s)
- Marieta P Theodorakopoulou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantina Dipla
- Exercise Physiology and Biochemistry Laboratory, Department of Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Andreas Zafeiridis
- Exercise Physiology and Biochemistry Laboratory, Department of Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Danai Faitatzidou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aggelos Koutlas
- Exercise Physiology and Biochemistry Laboratory, Department of Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Michael Doumas
- Second Propedeutic Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aikaterini Papagianni
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
7
|
Jarry S, Couture EJ, Falih J, Lebon JS, Ayoub C, Rochon A, Rousseau-Saine N, Denault A. New Development in Brain Monitoring for Cardiac Surgery. Can J Cardiol 2023; 39:229-232. [PMID: 36410594 DOI: 10.1016/j.cjca.2022.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Stéphanie Jarry
- Department of Anaesthesiology, Montréal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Etienne J Couture
- Division of Intensive Care Medicine, Department of Anaesthesiology and Department of Medicine, Institut Universitaire de Cardiologie, et de Pneumologie, de Québec, Québec, Québec, Canada
| | - Jawad Falih
- Department of Anaesthesiology, Montréal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Jean-Sébastien Lebon
- Department of Anaesthesiology, Montréal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Christian Ayoub
- Department of Anaesthesiology, Montréal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Antoine Rochon
- Department of Anaesthesiology, Montréal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Nicolas Rousseau-Saine
- Department of Anaesthesiology, Montréal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - André Denault
- Department of Anaesthesiology, Montréal Heart Institute, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
8
|
Couture EJ, Laferrière-Langlois P, Denault A. New Developments in Continuous Hemodynamic Monitoring of the Critically Ill Patient. Can J Cardiol 2023; 39:432-443. [PMID: 36669685 DOI: 10.1016/j.cjca.2023.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Hemodynamic monitoring is a cornerstone in the assessment of patients with circulatory shock. Timely recognition of hemodynamic compromise and proper optimisation is essential to ensure adequate tissue perfusion and maintain renal, hepatic, abdominal, and cerebral functions. Hemodynamic monitoring has significantly evolved since the first inception of the pulmonary artery catheter more than 50 years ago. Bedside echocardiography, when combined with noninvasive and minimally invasive technologies, provides tools to monitor and quantify the cardiac output to promptly react and improve hemodynamic management in an acute care setting. Commonly used technologies include noninvasive pulse-wave analysis, pulse-wave transit time, thoracic bioimpedance and bioreactance, esophageal Doppler, minimally invasive pulse-wave analysis, transpulmonary thermodilution, and pulmonary artery catheter. These monitoring strategies are reviewed here, along with detailed analysis of their operating mode, particularities, and limitations. The use of artificial intelligence to enhance performance and effectiveness of hemodynamic monitoring is reviewed to apprehend future possibilities.
Collapse
Affiliation(s)
- Etienne J Couture
- Departments of Anaesthesiology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada.
| | - Pascal Laferrière-Langlois
- Department of Anaesthesiology and Pain Medicine, Maisonneuve-Rosemont Hospital, Université de Montréal, Montréal, Québec, Canada
| | - André Denault
- Department of Anaesthesiology, Montréal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
9
|
Variane GFT, Pietrobom RFR, Noh CY, Van Meurs KP, Chock VY. Newer indications for neuromonitoring in critically ill neonates. Front Pediatr 2023; 11:1111347. [PMID: 37187586 PMCID: PMC10175818 DOI: 10.3389/fped.2023.1111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Continuous neuromonitoring in the neonatal intensive care unit allows for bedside assessment of brain oxygenation and perfusion as well as cerebral function and seizure identification. Near-infrared spectroscopy (NIRS) reflects the balance between oxygen delivery and consumption, and use of multisite monitoring of regional oxygenation provides organ-specific assessment of perfusion. With understanding of the underlying principles of NIRS as well as the physiologic factors which impact oxygenation and perfusion of the brain, kidneys and bowel, changes in neonatal physiology can be more easily recognized by bedside providers, allowing for appropriate, targeted interventions. Amplitude-integrated electroencephalography (aEEG) allows continuous bedside evaluation of cerebral background activity patterns indicative of the level of cerebral function as well as identification of seizure activity. Normal background patterns are reassuring while abnormal background patterns indicate abnormal brain function. Combining brain monitoring information together with continuous vital sign monitoring (blood pressure, pulse oximetry, heart rate and temperature) at the bedside may be described as multi-modality monitoring and facilitates understanding of physiology. We describe 10 cases in critically ill neonates that demonstrate how comprehensive multimodal monitoring provided greater recognition of the hemodynamic status and its impact on cerebral oxygenation and cerebral function thereby informing treatment decisions. We anticipate that there are numerous other uses of NIRS as well as NIRS in conjunction with aEEG which are yet to be reported.
Collapse
Affiliation(s)
- Gabriel F. T. Variane
- Division of Neonatology, Department of Pediatrics, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil
- Clinical Research Department, Protecting Brains and Saving Futures Organization, São Paulo, Brazil
- Correspondence: Gabriel Variane
| | - Rafaela F. R. Pietrobom
- Division of Neonatology, Department of Pediatrics, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil
- Clinical Research Department, Protecting Brains and Saving Futures Organization, São Paulo, Brazil
| | - Caroline Y. Noh
- Division of Neonatal and Developmental Medicine, Stanford University School of Medicine and Packard Children's Hospital Stanford, Palo Alto, CA, United States
| | - Krisa P. Van Meurs
- Division of Neonatal and Developmental Medicine, Stanford University School of Medicine and Packard Children's Hospital Stanford, Palo Alto, CA, United States
| | - Valerie Y. Chock
- Division of Neonatal and Developmental Medicine, Stanford University School of Medicine and Packard Children's Hospital Stanford, Palo Alto, CA, United States
| |
Collapse
|
10
|
Calderone A, Jarry S, Couture EJ, Brassard P, Beaubien-Souligny W, Momeni M, Liszkowski M, Lamarche Y, Shaaban-Ali M, Matta B, Rochon A, Lebon JS, Ayoub C, Martins MR, Courbe A, Deschamps A, Denault AY. Early Detection and Correction of Cerebral Desaturation With Noninvasive Oxy-Hemoglobin, Deoxy-Hemoglobin, and Total Hemoglobin in Cardiac Surgery: A Case Series. Anesth Analg 2022; 135:1304-1314. [PMID: 36097147 DOI: 10.1213/ane.0000000000006155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Regional cerebral oxygen saturation (rS o2 ) obtained from near-infrared spectroscopy (NIRS) provides valuable information during cardiac surgery. The rS o2 is calculated from the proportion of oxygenated to total hemoglobin in the cerebral vasculature. Root O3 cerebral oximetry (Masimo) allows for individual identification of changes in total (ΔcHbi), oxygenated (Δ o2 Hbi), and deoxygenated (ΔHHbi) hemoglobin spectral absorptions. Variations in these parameters from baseline help identify the underlying mechanisms of cerebral desaturation. This case series represents the first preliminary description of Δ o2 Hbi, ΔHHbi, and ΔcHbi variations in 10 cardiac surgical settings. Hemoglobin spectral absorption changes can be classified according to 3 distinct variations of cerebral desaturation. Reduced cerebral oxygen content or increased cerebral metabolism without major blood flow changes is reflected by decreased Δ o2 Hbi, unchanged ΔcHbi, and increased ΔHHbi Reduced cerebral arterial blood flow is suggested by decreased Δ o2 Hbi and ΔcHbi, with variable ΔHHbi. Finally, acute cerebral congestion may be suspected with increased ΔHHbi and ΔcHbi with unchanged Δ o2 Hbi. Cerebral desaturation can also result from mixed mechanisms reflected by variable combination of those 3 patterns. Normal cerebral saturation can occur, where reduced cerebral oxygen content such as anemia is balanced by a reduction in cerebral oxygen consumption such as during hypothermia. A summative algorithm using rS o2 , Δ o2 Hbi, ΔHHbi, and ΔcHbi is proposed. Further explorations involving more patients should be performed to establish the potential role and limitations of monitoring hemoglobin spectral absorption signals.
Collapse
Affiliation(s)
- Alexander Calderone
- From the Department of Anesthesiology, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Stéphanie Jarry
- From the Department of Anesthesiology, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Etienne J Couture
- Departments of †Anesthesiology.,Medicine, Division of Intensive Care Medicine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Quebec, Canada.,Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Quebec, Quebec, Canada
| | - Patrice Brassard
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec, Université Laval, Quebec, Quebec, Canada.,Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec, Quebec, Canada
| | - William Beaubien-Souligny
- Department of Medicine, Division of Nephrology, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Mona Momeni
- Department of Acute Medicine, Cardiothoracic and Vascular Anesthesia Section, Cliniques Universitaires Saint-Luc, UC Louvain, Brussels, Belgium
| | - Mark Liszkowski
- Department of Medicine, Cardiology Division, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada.,Critical Care Division, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Yoan Lamarche
- Critical Care Division, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada.,Department of Cardiac Surgery, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Mohamed Shaaban-Ali
- Critical Care Division, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Basil Matta
- Neurosciences Critical Care Unit, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Antoine Rochon
- From the Department of Anesthesiology, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Sébastien Lebon
- From the Department of Anesthesiology, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Christian Ayoub
- From the Department of Anesthesiology, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Maria Rosal Martins
- From the Department of Anesthesiology, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Athanase Courbe
- From the Department of Anesthesiology, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Alain Deschamps
- From the Department of Anesthesiology, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - André Y Denault
- From the Department of Anesthesiology, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada.,Critical Care Division, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Souberbielle Q, Jacobs Sariyar A, Momeni M. Effect of combined use of cerebral oximetry and electroencephalogram monitoring on the incidence of perioperative neurocognitive disorders in adult cardiac and non-cardiac surgery: A systematic review of randomized and non-randomized trials. ACTA ANAESTHESIOLOGICA BELGICA 2022. [DOI: 10.56126/73.4.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Background: There is insufficient evidence to recommend using either intraoperative cerebral oximetry or (processed) electroencephalogram (EEG) alone for preventing perioperative neurocognitive disorders (PNDs).
Objective: To evaluate the effectiveness of combined use of cerebral oximetry and electroencephalogram-guided anesthesia on the incidence of PNDs in adult patients undergoing cardiac and non-cardiac interventions.
Methods: A PICOS - based systematic review of English articles using Pubmed and Embase (from inception to August 2022) was performed. There were no exclusion criteria regarding the type of the study. Abstract proceedings and new study protocols or ongoing studies were not included. Review articles were analyzed in search of eligible references. All possible terms that were illustrative of PNDs were used.
Results: Among the 63 full manuscripts that were analyzed in detail, 15 met the inclusion criteria. We found 2 retrospective, 8 prospective observational and 5 randomized controlled trials of which 1 did not evaluate the use of neuromonitoring in the randomization process. The definition and the methods used to diagnose PNDs were very heterogeneous. Only 8 studies used an algorithm to avoid/treat cerebral oxygen desaturation and/or to treat EEG abnormalities. Overall, there was a tendency towards less PNDs in studies where such an algorithm was used.
Conclusions: Our results suggest that integrating information obtained from cerebral oximetry and an EEG monitor may reduce the incidence of PNDs whenever an adapted algorithm is used to improve brain function.
Collapse
|
12
|
Ju JW, Yoo SJ, Park D, Bae J, Lee S, Nam K, Cho YJ, Lee HC, Jeon Y. Association between intraoperative plantar regional oxygen saturation and acute kidney injury after cardiac surgery. J Clin Monit Comput 2022; 37:525-540. [PMID: 36319881 DOI: 10.1007/s10877-022-00917-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/09/2022] [Indexed: 11/05/2022]
Abstract
Acute kidney injury (AKI) is one of the most common complications after cardiac surgery, associated with increased mortality and morbidity. Near-infrared spectroscopy (NIRS) continuously measures regional oxygen saturation(rSO2) in real-time. This exploratory retrospective study aimed to investigate the association between intraoperative plantar rSO2 and postoperative AKI in cardiac surgery patients. Between August 2019 and March 2021, 394 patients were included. Plantar and cerebral rSO2 were monitored using NIRS intraoperatively. The primary outcome was AKI within 7 postoperative days. The nonlinear association between plantar rSO2, cerebral rSO2, and mean arterial blood pressure (MBP) and AKI was assessed, and plantar rSO2<45% was related to an increased risk of AKI. Multivariable logistic regression analyses revealed that longer duration and higher area under the curve below plantar rSO2<45% and MBP<65 mmHg were more likely to be associated with increased odds of AKI. In additional multivariable regression analyses, association between plantar rSO2<45% and AKI was still maintained after adjusting the duration or AUC of MBP<65 mmHg as a covariate. Cerebral rSO2 levels were not associated with AKI. Independent of MAP, intraoperative plantar rSO2 was associated with AKI after cardiac surgery. However, intraoperative cerebral rSO2 was not associated with AKI. Intraoperative plantar rSO2 monitoring may be helpful in preventing AKI.
Collapse
|
13
|
Novak M, Penhaker M, Raska P, Pleva L, Schmidt M. Extremity compartment syndrome: A review with a focus on non-invasive methods of diagnosis. Front Bioeng Biotechnol 2022; 10:801586. [PMID: 35923576 PMCID: PMC9340208 DOI: 10.3389/fbioe.2022.801586] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
The article deals with an overview of acute extremity compartment syndrome with a focus on the option of non-invasive detection of the syndrome. Acute extremity compartment syndrome (ECS) is an urgent complication that occurs most often in fractures or high-energy injuries. There is still no reliable method for detecting ECS. The only objective measurement method used in clinical practice is an invasive measurement of intramuscular pressure (IMP). The purpose of this paper is to summarize the current state of research into non-invasive measurement methods that could allow simple and reliable continuous monitoring of patients at risk of developing ECS. Clinical trials are currently underway to verify the suitability of the most studied method, near-infrared spectroscopy (NIRS), which is a method for measuring the local oxygenation of muscle compartments. Less explored methods include the use of ultrasound, ultrasound elastography, bioimpedance measurements, and quantitative tissue hardness measurements. Finding a suitable method for continuous non-invasive monitoring of the syndrome would greatly improve the quality of care for patients at risk. ECS must be diagnosed quickly and accurately to prevent irreversible tissue damage that can occur within hours of syndrome onset and may even warrant amputation if neglected.
Collapse
Affiliation(s)
- Martin Novak
- Trauma Surgery Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Marek Penhaker
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB—Technical University of Ostrava, Ostrava, Czechia
| | - Pavel Raska
- Department of Occupational and Process Safety, Faculty of Safety Engineering, VSB—Technical University of Ostrava, Ostrava, Czechia
| | - Leopold Pleva
- Trauma Surgery Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Martin Schmidt
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB—Technical University of Ostrava, Ostrava, Czechia
| |
Collapse
|
14
|
Gülcan Kersin S, Yaşa B, Çetinkaya M, Ilgın C, Özek E, Bilgen H. Regional pulmonary oxygen saturations immediately after birth. Early Hum Dev 2022; 166:105552. [PMID: 35144135 DOI: 10.1016/j.earlhumdev.2022.105552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Partial oxygen saturation (SpO2) increases within minutes during transition from the intrauterine to extrauterine life. This study aims to determine the postnatal course of pulmonary regional oxygen saturation (rSO2) measured by Near-Infrared Spectroscopy (NIRS). METHODS We conducted an observational study at the delivery room in infants above 35 weeks of gestation who did not need resuscitation and did not develop respiratory distress. Preductal pulse oximetry (Covidien NellcorTM) and right pulmonary apex oxygen saturation (raSO2) and basal oxygen saturation (rbSO2) (Covidien INVOSTM) were measured, starting from the postnatal third minute of life, until the 15th minute. The correlations between SpO2 and pulmonary rSO2 were analyzed. RESULTS Of the 110 infants included in the study, 87 were term and 23 were late preterms. The gestational age and birth weight were 38.5 ± 1.36 weeks and 3285 ± 508 g, respectively. Median (5th-95th percentile) raSO2 and rbSO2 were 79% (58-95%) and 78% (46-95%) at the third minute, respectively. The rSO2 values measured from both sides increased and reached a steady-state around postnatal 9 min, similar to SpO2 values. The pulmonary NIRS values were significantly higher for babies born by C-Section compared to babies born by vaginal delivery (p < 0.05). CONCLUSION We found that rSO2 measurements increased within minutes in the postnatal period in late preterm and term babies without respiratory distress and reached a plateau at the postnatal 9th minute. The normal values obtained from this preliminary study may be used to predict the prognosis of cases with respiratory distress.
Collapse
Affiliation(s)
- Sinem Gülcan Kersin
- Marmara University Pendik Training and Research Hospital, Department of pediatrics, Division of neonatology, Istanbul, Turkey.
| | - Beril Yaşa
- Health Sciences University, Basaksehir Cam and Sakura City Hospital, Department of Neonatology, Istanbul, Turkey
| | - Merih Çetinkaya
- Health Sciences University, Basaksehir Cam and Sakura City Hospital, Department of Neonatology, Istanbul, Turkey
| | - Can Ilgın
- Marmara University School of Medicine, Department of Public Health, Istanbul, Turkey
| | - Eren Özek
- Marmara University Pendik Training and Research Hospital, Department of pediatrics, Division of neonatology, Istanbul, Turkey
| | - Hülya Bilgen
- Marmara University Pendik Training and Research Hospital, Department of pediatrics, Division of neonatology, Istanbul, Turkey
| |
Collapse
|
15
|
Zhong W, Ji Z, Sun C. A Review of Monitoring Methods for Cerebral Blood Oxygen Saturation. Healthcare (Basel) 2021; 9:healthcare9091104. [PMID: 34574878 PMCID: PMC8466732 DOI: 10.3390/healthcare9091104] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/13/2021] [Accepted: 07/31/2021] [Indexed: 01/02/2023] Open
Abstract
In recent years, cerebral blood oxygen saturation has become a key indicator during the perioperative period. Cerebral blood oxygen saturation monitoring is conducive to the early diagnosis and treatment of cerebral ischemia and hypoxia. The present study discusses the three most extensively used clinical methods for cerebral blood oxygen saturation monitoring from different aspects: working principles, relevant parameters, current situations of research, commonly used equipment, and relative advantages of different methods. Furthermore, through comprehensive comparisons of the methods, we find that near-infrared spectroscopy (NIRS) technology has significant potentials and broad applications prospects in terms of cerebral oxygen saturation monitoring. Despite the current NIRS technology, the only bedside non-invasive cerebral oxygen saturation monitoring technology, still has many defects, it is more in line with the future development trend in the field of medical and health, and will become the main method gradually.
Collapse
Affiliation(s)
- Wentao Zhong
- College of Bioengineering, Chongqing University, Chongqing 400044, China; (W.Z.); (C.S.)
| | - Zhong Ji
- College of Bioengineering, Chongqing University, Chongqing 400044, China; (W.Z.); (C.S.)
- Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Chongqing 400044, China
- Correspondence:
| | - Changlong Sun
- College of Bioengineering, Chongqing University, Chongqing 400044, China; (W.Z.); (C.S.)
| |
Collapse
|
16
|
Milne B, Gilbey T, Gautel L, Kunst G. Neuromonitoring and Neurocognitive Outcomes in Cardiac Surgery: A Narrative Review. J Cardiothorac Vasc Anesth 2021; 36:2098-2113. [PMID: 34420812 DOI: 10.1053/j.jvca.2021.07.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/28/2021] [Accepted: 07/15/2021] [Indexed: 12/30/2022]
Abstract
Neurocognitive dysfunction after cardiac surgery can present with diverse clinical phenotypes, which include postoperative delirium, postoperative cognitive dysfunction, and stroke, and it presents a significant healthcare burden for both patients and providers. Neurologic monitoring during cardiac surgery includes several modalities assessing cerebral perfusion and oxygenation (near-infrared spectroscopy, transcranial Doppler and jugular venous bulb saturation monitoring) and those that measure cerebral function (processed and unprocessed electroencephalogram), reflecting an absence of a single, definitive neuromonitor. This narrative review briefly describes the technologic basis of these neuromonitoring modalities, before exploring their use in clinical practice, both as tools to predict neurocognitive dysfunction, and with a bundle of interventions designed to optimize cerebral oxygen supply, with the aim of reducing postoperative delirium and cognitive dysfunction following cardiac surgery.
Collapse
Affiliation(s)
- Benjamin Milne
- Department of Anaesthetics and Pain Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - Thomas Gilbey
- Department of Anaesthetics and Pain Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - Livia Gautel
- Department of Anaesthetics and Pain Medicine, King's College Hospital NHS Foundation Trust, London, UK; School of Biological Sciences in Edinburgh, University of Edinburgh, Edinburgh, UK; School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Gudrun Kunst
- Department of Anaesthetics and Pain Medicine, King's College Hospital NHS Foundation Trust, London, UK; School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, UK.
| |
Collapse
|
17
|
Badenes R, Bogossian EG, Chisbert V, Robba C, Oddo M, Taccone FS, Matta BF. The role of non-invasive brain oximetry in adult critically ill patients without primary brain injury. Minerva Anestesiol 2021; 87:1226-1238. [PMID: 33938677 DOI: 10.23736/s0375-9393.21.15333-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A primary objective in intensive care and perioperative settings is to promote an adequate supply and delivery of oxygen to tissues and organs, particularly to the brain. Cerebral near infrared spectroscopy (NIRS) is a non-invasive, continuous monitoring technique, that can be used to assess cerebral oxygenation. Using NIRS to monitor cerebral oximetry is not new, and has been in widespread use in neonates and cardiac surgery for decades. In addition, it has become common to see NIRS being used in adult and pediatric cardiac surgery, acute neurological diseases, neurosurgical procedures, vascular surgery, severe trauma and other acute medical diseases. Furthermore, recent evidence suggests a role for NIRS in the perioperative settings; detecting and preventing episodes of cerebral desaturation aiming to reduce the development of post-operative delirium. NIRS is not without its limitations; these include the risk of extra-cranial contamination, spatial limitations and skin blood flow/volume changes, as well being a measure of localized blood oxygenation underneath the sensor. However, NIRS is a non-invasive technique and can, therefore, be used in those patients without indications or justification for invasive brain monitoring; non-neurosurgical procedures such as liver transplantation, major orthopedic surgery and critically illness where the brain is at risk. The aim of this manuscript was to discuss the physical principles of NIRS and to report the current evidence regarding its use in critically ill patients without primary non-anoxic brain injury.
Collapse
Affiliation(s)
- Rafael Badenes
- Department of Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari de Valencia, University of Valencia, Valencia, Spain - .,Department of Surgery, School of Medicine, University of Valencia, Valencia, Spain - .,INCLIVA Health Research Institute, Valencia, Spain -
| | - Elisa G Bogossian
- Department of Intensive Care Medicine, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Vicente Chisbert
- INCLIVA Health Research Institute, Valencia, Spain.,Escuela de Doctorado, Universidad Católica de Valencia, Valencia, Spain
| | - Chiara Robba
- Anaesthesia and Intensive Care, IRCSS S. Martino Hospital, Genoa, Italy
| | - Mauro Oddo
- Department of Intensive Care Medicine, Faculty of Biology and Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University Hospital, Lausanne, Switzerland
| | - Fabio S Taccone
- Department of Intensive Care Medicine, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Basil F Matta
- Trauma and NeuroCritical Care Unit, Cambridge University Hospital, Cambridge, UK
| |
Collapse
|
18
|
A proposed algorithm for combining transcranial Doppler ultrasound monitoring with cerebral and somatic oximetry: a case report. Can J Anaesth 2020; 68:130-136. [PMID: 33063295 DOI: 10.1007/s12630-020-01832-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/11/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022] Open
Abstract
PURPOSE Transcranial Doppler (TCD) ultrasound is a non-invasive monitor of cerebral blood velocity that can be used intraoperatively. The purpose of this report is to describe how different patterns seen on TCD can help identify the cause of cerebral desaturation when near-infrared spectroscopy (NIRS) oximetry is used concomitantly. CLINICAL FEATURES A 69-yr-old male patient undergoing coronary revascularisation and aortic valve replacement developed perioperative complications that were detected using a combination of transtemporal TCD of the middle cerebral artery along with cerebral and somatic NIRS. Initial brain desaturation was secondary to hypocapnia during which TCD-derived blood velocity and somatic NIRS values remained unchanged. After the procedure, a second episode of brain desaturation occurred secondary to a technical issue with the aortic valve prosthesis requiring a return to cardiopulmonary bypass (CPB); there were no high-intensity transient signals (HITS) on TCD. Brain desaturation occurred a third time following the second attempt to separate from CPB at which time TCD detected a significant amount of HITS suggesting air emboli that were associated with acute right ventricular dysfunction; there was also a reduction in somatic NIRS. CONCLUSIONS Combining TCD with cerebral NIRS allows for the rapid identification of three different mechanisms of brain desaturation. An algorithm is proposed to help identify the origin of NIRS cerebral desaturation. Prospective clinical trials are needed to investigate potential benefits of multimodal brain monitoring and its impact on short and/or long-term clinical outcomes.
Collapse
|