1
|
Wang D, Zhao R, Duan HX, Zhang MM, He L, Ye X, Wei DN, Wu CJ. Research progress regarding potential effects of traditional Chinese medicine on postoperative intestinal obstruction. J Pharm Pharmacol 2021; 73:1007-1022. [PMID: 33861338 DOI: 10.1093/jpp/rgaa054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/10/2020] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Postoperative intestinal obstruction is a common postoperative complication with typical symptoms of abdominal pain, vomiting, abdominal distension and constipation. The principal aim of this paper is to provide a full-scale review on the categories and characteristics of postoperative intestinal obstruction, pathophysiology, effects and detailed mechanisms of compounds and monomers from traditional Chinese medicine for treating postoperative intestinal obstruction. Moreover, the possible development and perspectives for future research are also analyzed. METHODS Literature regarding postoperative intestinal obstruction as well as the anti-pio effect of aqueous extracts and monomers from traditional Chinese medicine in the last 20 years was summarized. KEY FINDINGS To date, approximately 30 compounds and 25 monomers isolated from traditional Chinese medicine including terpenes, alkaloids, polysaccharides, flavonoids, phenylpropanoids and quinones, have exerted significant antipio effect. This paper reviews the effective doses, models, detailed mechanisms, and composition of these traditional Chinese medicine compounds, as well as the structure of these monomers. Moreover, challenges existed in the current investigation and further perspectives were discussed as well, hoping to provide a reference for future clinical treatment of postoperative intestinal obstruction and the development of new drugs. CONCLUSIONS Above all, the convincing evidence from modern pharmacology studies powerfully supported the great potential of traditional Chinese medicine in the management of postoperative intestinal obstruction. Regrettably, less attention was currently paid on the mechanisms of traditional Chinese medicine compounds and monomers with antipio effect. Consequently, future study should focus on monomer-mechanism and structure-function relationship.
Collapse
Affiliation(s)
- Dan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hu-Xinyue Duan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meng-Meng Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xun Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Da-Neng Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chun-Jie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Wells CI, O'Grady G, Bissett IP. Colonic Electromechanical Abnormalities Underlying Post-operative Ileus: A Systematic and Critical Review. J Neurogastroenterol Motil 2019; 25:36-47. [PMID: 30504526 PMCID: PMC6326204 DOI: 10.5056/jnm18030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/20/2018] [Accepted: 07/21/2018] [Indexed: 12/25/2022] Open
Abstract
Post-operative ileus (POI) is an inevitable consequence of major abdominal surgery, and may be prolonged in up to 30% of patients. Ileus is commonly presumed to result from paralysis of the GI tract, though there is little direct evidence to support this view. The aim of this review is to systematically search and critically review the literature investigating post-operative colonic electrical and mechanical activity. MEDLINE and Embase databases were systematically searched for articles investigating post-operative colonic motor or electrical activity in human patients. Nineteen original articles investigating post-operative colonic motor or electrical activity were identified. Most studies have used low-resolution techniques, with intermittent recordings of colonic motility. Numerous studies have shown that colonic electrical and motor activity does not cease routinely following surgery, but is of abnormal character for 3–6 days following laparotomy. One recent high-resolution manometry study identified hyperactive cyclic motor patterns occurring in the distal colon on the first post-operative day. Low-resolution studies have shown colonic slow waves are not inhibited by surgery, and are present even in the immediate post-operative period. Recovery of normal motility appears to occur in a proximal to distal direction and is temporally correlated with the clinical return of bowel function. No studies have investigated motility specifically in prolonged POI. Future studies should use high-resolution techniques to accurately characterise abnormalities in electrical and mechanical function underlying POI, and correlate these changes with clinical recovery of bowel function.
Collapse
Affiliation(s)
- Cameron I Wells
- Department of Surgery, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Gregory O'Grady
- Department of Surgery, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand.,Department of Surgery, Auckland District Health Board, Auckland, New Zealand.,Auckland Bioengineering Institute, The University of Auckland, New Zealand
| | - Ian P Bissett
- Department of Surgery, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand.,Department of Surgery, Auckland District Health Board, Auckland, New Zealand
| |
Collapse
|
3
|
Penfold JA, Wells CI, Du P, Bissett IP, O'Grady G. Electrical Stimulation and Recovery of Gastrointestinal Function Following Surgery: A Systematic Review. Neuromodulation 2018; 22:669-679. [PMID: 30451336 DOI: 10.1111/ner.12878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/27/2018] [Accepted: 09/16/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Postoperative ileus occurs in approximately 5-15% of patients following major abdominal surgery, and poses a substantial clinical and economic burden. Electrical stimulation has been proposed as a means to aid postoperative gastrointestinal (GI) recovery, but no methods have entered routine clinical practice. A systematic review was undertaken to assess electrical stimulation techniques and to evaluate their clinical efficacy in order to identify promising areas for future research. MATERIALS AND METHODS Literature was searched using MEDLINE, EMBASE, Google Scholar and by assessing relevant clinical trial databases. Studies investigating the use of electrical stimulation for postoperative GI recovery were included, regardless of methods used or outcomes measured. A critical review was constructed encompassing all included studies and evaluating and synthesizing stimulation techniques, protocols, and clinical outcomes. RESULTS A broad range of neuromodulation strategies and protocols were identified and assessed. Improved postoperative GI recovery following electrical stimulation was reported by 55% of studies (10/18), most commonly those assessing transcutaneous electrical nerve stimulation and electroacupuncture therapy (7/10). Several studies reported shorter time to first flatus and stool, shorter duration of hospital stay, and reduced postoperative pain. However, inconsistent reporting and limitations in trial design were common, compromising a definitive determination of electrical stimulation efficacy. CONCLUSIONS Electrical stimulation appears to be a promising methodology to aid postoperative GI recovery, but greater attention to mechanisms of action and clinical trial quality is necessary for progress. Future research should also aim to apply validated and standardized gut recovery outcomes and consistent neuromodulation methodologies.
Collapse
Affiliation(s)
- James A Penfold
- Faculty of Medical and Health Sciences, Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - Cameron I Wells
- Faculty of Medical and Health Sciences, Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Ian P Bissett
- Faculty of Medical and Health Sciences, Department of Surgery, The University of Auckland, Auckland, New Zealand.,Department of Surgery, Auckland District Health Board, Auckland, New Zealand
| | - Gregory O'Grady
- Faculty of Medical and Health Sciences, Department of Surgery, The University of Auckland, Auckland, New Zealand.,Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.,Department of Surgery, Auckland District Health Board, Auckland, New Zealand
| |
Collapse
|
4
|
Affiliation(s)
- Jackie D Wood
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
5
|
The opioid component of delayed gastrointestinal recovery after bowel resection. J Gastrointest Surg 2011; 15:1259-68. [PMID: 21494914 DOI: 10.1007/s11605-011-1500-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/23/2011] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Patients undergoing bowel resection or other major abdominal surgery experience a period of delayed gastrointestinal recovery associated with increased postoperative morbidity and longer hospital length of stay. Symptoms include nausea, vomiting, abdominal distension, bloating, pain, intolerance to solid or liquid food, and inability to pass stool or gas. The exact cause of delayed gastrointestinal recovery is not known, but several factors appear to play a central role, namely the neurogenic, hormonal, and inflammatory responses to surgery and the response to exogenous opioid analgesics and endogenous opioids. DISCUSSION Stimulation of opioid receptors localized to neurons of the enteric nervous system inhibits coordinated gastrointestinal motility and fluid absorption, thereby contributing to delayed gastrointestinal recovery and its associated symptoms. Given the central role of opioid analgesics in delayed gastrointestinal recovery, a range of opioid-sparing techniques and pharmacologic agents, including opioid receptor antagonists, have been developed to facilitate faster restoration of gastrointestinal function after bowel resection when used as part of a multimodal accelerated care pathway. This review discusses the etiology of opioid-induced gastrointestinal dysfunction as well as clinical approaches that have been evaluated in controlled clinical trials to reduce the opioid component of delayed gastrointestinal recovery.
Collapse
|
6
|
Sun X, Wang X, Wang GD, Xia Y, Liu S, Qu M, Needleman BJ, Mikami DJ, Melvin WS, Bohn LM, Ueno R, Wood JD. Lubiprostone reverses the inhibitory action of morphine on mucosal secretion in human small intestine. Dig Dis Sci 2011; 56:330-8. [PMID: 21181441 PMCID: PMC4757489 DOI: 10.1007/s10620-010-1515-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 11/22/2010] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND AIMS Treatments with morphine or opioid agonists cause constipation. Lubiprostone is approved for treatment of adult idiopathic constipation and constipation-predominant IBS in adult women. We tested whether lubiprostone can reverse morphine-suppression of mucosal secretion in human intestine and explored the mechanism of action. METHODS Fresh segments of jejunum discarded during Roux-En-Y gastric bypass surgeries were used. Changes in short-circuit current (ΔIsc) were recorded in Ussing flux chambers as a marker for electrogenic chloride secretion during pharmacological interactions between morphine, prostaglandin receptor antagonists, chloride channel blockers and lubiprostone. RESULTS Morphine suppressed basal Isc. Lubiprostone reversed morphine suppression of basal Isc. Lubiprostone, applied to the mucosa in concentrations ranging from 3 nM to 30 μM, evoked increases in Isc in concentration-dependent manner when applied to the mucosal side of muscle-stripped preparations. Blockade of enteric nerves did not change stimulation of Isc by lubiprostone. Removal of chloride or application of bumetanide or NPPB suppressed or abolished responses to lubiprostone. Antagonists acting at CFTR channels and prostaglandin EP(4) receptors, but not at E(1), EP(1-3) receptors, partially suppressed stimulation of Isc by lubiprostone. CONCLUSIONS Antisecretory action of morphine results from suppression of excitability of secretomotor neurons in the enteric nervous system. Lubiprostone, which does not affect enteric neurons directly, bypasses the action of morphine by directly opening mucosal chloride channels.
Collapse
Affiliation(s)
- Xiaohong Sun
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| | - Xiyu Wang
- Department of Anesthesiology, The Ohio State University College of Medicine, Columbus, OH, USA,
| | - Guo-Du Wang
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA,
| | - Yun Xia
- Department of Anesthesiology, The Ohio State University College of Medicine, Columbus, OH, USA,
| | - Sumei Liu
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| | - Meihua Qu
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA,
| | - Bradley J. Needleman
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA,
| | - Dean J. Mikami
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA,
| | - W. Scott Melvin
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA,
| | - Laura M. Bohn
- Department of Pharmacology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ryuji Ueno
- Sucampo Pharmaceuticals, Inc., Bethesda, MD, USA,
| | - Jackie D. Wood
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Fei G, Raehal K, Liu S, Qu MH, Sun X, Wang GD, Wang XY, Xia Y, Schmid CL, Bohn LM, Wood JD. Lubiprostone reverses the inhibitory action of morphine on intestinal secretion in guinea pig and mouse. J Pharmacol Exp Ther 2010; 334:333-40. [PMID: 20406855 PMCID: PMC2912047 DOI: 10.1124/jpet.110.166116] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 04/15/2010] [Indexed: 12/12/2022] Open
Abstract
Lubiprostone activates ClC-2 chloride channels in epithelia. It is approved for treatment of chronic idiopathic constipation in adults and constipation-predominate irritable bowel syndrome in women. We tested a hypothesis that lubiprostone can reverse the constipating action of morphine and investigated the mechanism of action. Short-circuit current (Isc) was recorded in Ussing chambers as a marker for chloride secretion during pharmacological interactions between morphine and lubiprostone. Measurements of fecal wet weight were used to obtain information on morphine-lubiprostone interactions in conscious mice. Morphine decreased basal Isc, with an IC(50) of 96.1 nM. The action of dimethylphenylpiperazinium (DMPP), a nicotinic receptor agonist that stimulates neurogenic Isc, was suppressed by morphine. Lubiprostone applied after pretreatment with morphine reversed morphine suppression of both basal Isc and DMPP-evoked chloride secretion. Electrical field stimulation (EFS) of submucosal neurons evoked biphasic increases in Isc. Morphine abolished the first phase and marginally suppressed the second phase. Lubiprostone reversed, in concentration-dependent manner, the action of morphine on the first and second phases of the EFS-evoked responses. Subcutaneous lubiprostone increased fecal wet weight and numbers of pellets expelled. Morphine significantly reduced fecal wet weight and number of pellets. Injection of lubiprostone, 30-min after morphine, reversed morphine-induced suppression of fecal wet weight. We conclude that inhibitory action of morphine on chloride secretion reflects suppression of excitability of cholinergic secretomotor neurons in the enteric nervous system. Lubiprostone, which does not directly affect enteric neurons, bypasses the neurogenic constipating effects of morphine by directly opening chloride channels in the mucosal epithelium.
Collapse
Affiliation(s)
- Guijun Fei
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210-1218, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wood MJ, Hyman NH, Mawe GM. The effects of daikenchuto (DKT) on propulsive motility in the colon. J Surg Res 2009; 164:84-90. [PMID: 19631346 DOI: 10.1016/j.jss.2009.03.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Revised: 03/03/2009] [Accepted: 03/24/2009] [Indexed: 11/17/2022]
Abstract
BACKGROUND The purpose of this study is to examine the use of daikenchuto (DKT), a traditional Japanese medicine, as a potential treatment for opiate-induced slowing of intestinal transit in an isolated guinea pig colon model of motility. METHODS Isolated segments of distal guinea pig colon were mounted in a perfusion chamber and imaged with a digital video camera interfaced with a computer. Fecal pellets were inserted into the oral end of the colonic segment and the rates of propulsive motility over a 3 to 4 cm segment of colon were determined in the presence and absence of test compounds. In addition, intracellular recordings were obtained from intact circular muscle, and the responsiveness of inhibitory and excitatory junction potentials to DKT was evaluated. RESULTS The addition of D-Ala2, N-Me-Phe4, Gly-ol5 (DAMGO), a selective μ-receptor agonist, caused a concentration dependent decrease in colon motility. Naloxone did not affect basal activity, but partially restored motility in the DAMGO treated preparations. DKT (1 × 10(-4)-3 × 10(-4)g/mL) also reversed the inhibitory effect of DAMGO treated colon in a concentration dependent manner. At higher concentrations (1 × 10(-3)-3 × 10(-3)g/mL), however, this effect was lost. Motility slowed even further when naloxone and DKT were combined with noticeable disruptions in spatiotemporal patterns. Interestingly, when added alone, DKT resulted in reverse peristalsis of the pellet. In electrophysiologic studies DKT inhibited both excitatory and inhibitory junction potentials. CONCLUSIONS DKT appears to be as effective as naloxone in restoring motility in DAMGO treated colon. These two agents, however, do not appear to have an additive effect. When used on untreated colon segments, DKT appears to cause disruptions in the intrinsic reflex circuit of the gut resulting in a disruption of neuromuscular communication.
Collapse
Affiliation(s)
- Michael J Wood
- Department of Surgery, University of Vermont College of Medicine, Burlington, Vermont 05401, USA.
| | | | | |
Collapse
|