1
|
Park SH. Potential of ginsenoside Rg1 to treat aplastic anemia via mitogen activated protein kinase pathway in cyclophosphamide-induced myelosuppression mouse model. World J Stem Cells 2024; 16:900-905. [DOI: 10.4252/wjsc.v16.i11.900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/12/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024] Open
Abstract
Aplastic anemia (AA) is a rare but serious condition in which the bone marrow fails to produce sufficient new blood cells, leading to fatigue, increased susceptibility to infection, and uncontrolled bleeding. In this editorial, we review and comment on an article by Wang et al published in 2024. This study aimed to evaluate the potential therapeutic benefits of ginsenoside Rg1 in AA, focusing on its protective effects and uncovering the underlying mechanisms. Cyclophosphamide (CTX) administration caused substantial damage to the structural integrity of the bone marrow and decreased the number of hematopoietic stem cells, thereby establishing an AA model. Compared with the AA group, ginsenoside Rg1 alleviated the effects of CTX by reducing apoptosis and inflammatory factors. Mechanistically, treatment with ginsenoside Rg1 significantly mitigated myelosuppression in mice by inhibiting the mitogen activated protein kinase signaling pathway. Thus, this study indicates that ginsenoside Rg1 could be effective in treating AA by reducing myelosuppression, primarily through its influence on the mitogen activated protein kinase signaling pathway. We expect that our review and comments will provide valuable insights for the scientific community related to this research and enhance the overall clarity of this article.
Collapse
Affiliation(s)
- See-Hyoung Park
- Biological and Chemical Engineering, Hongik University, Sejong 30016, South Korea
| |
Collapse
|
2
|
Rodríguez-Sevilla M, Valverde-Muñoz K, García-Hernández C, Sanabria-Castro A, Echeverri-McCandless A, Rojas-Chaves S. Aplastic Anemia: Demographic and Clinical Characteristics in Costa Rica. Cureus 2024; 16:e73403. [PMID: 39664132 PMCID: PMC11633852 DOI: 10.7759/cureus.73403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2024] [Indexed: 12/13/2024] Open
Abstract
Background Aplastic anemia (AA) is a rare and heterogeneous hematological disorder defined as pancytopenia with hypocellular bone marrow in the absence of abnormal infiltration or medullary fibrosis. Various causes of AA have been identified, such as autoimmune factors, bone marrow injuries, viral infections, and genetic disorders. The symptoms of AA are directly linked to pancytopenia and the most common are fatigue, recurrent infections, and bleeding problems. The treatment of AA varies according to the severity of the disease and includes immunosuppressive therapies and bone marrow transplantation. This study aims to identify the most relevant social, clinical, and demographic characteristics of patients with AA in Costa Rica. Methodology A retrospective, observational study was conducted in Costa Rica by reviewing the medical records of patients diagnosed with AA in the main hospitals of the Costa Rican Social Security Health Fund (CCSS, by its acronym in Spanish). A total of 109 patients who were evaluated between 2016 and 2018 were identified. Sociodemographic, clinical, and treatment information was collected for these patients in a database that was analyzed using statistical programs such as SPSS Statistics (version 24) and GraphPad Prism (version 8). Results Most patients were male (56%) with an average age of 32 years. Patients were classified according to the severity of the disease, and a higher mortality at 60 months was observed in those with very severe AA and in patients over 65 years old. The most commonly used first-line treatment was the combination of rabbit antithymocyte globulin (ATG) and cyclosporine (42.9%). Patients who required a greater number of blood transfusions had a more severe disease. Further, 46 patients requiring a second line of treatment were identified, and the most common treatment in this group was the combination of ATG with eltrombopag in 19.6% of the patients. The study results present the sociodemographic and clinical characteristics of patients with AA in Costa Rica. The lack of identification of a common external factor that may influence the development of the disease is highlighted. Treatment with rabbit ATG and cyclosporine demonstrated a good response in patients. The availability and cost of treatments are important considerations, especially in developing countries. Conclusions The study highlights significant progress in the understanding and treatment of AA in the Costa Rican context. The results support the efficacy of the combination of antibodies and cyclosporine as a therapeutic option. The importance of adapting treatments to the characteristics of the local population is emphasized, along with the need for further research to improve long-term outcomes.
Collapse
Affiliation(s)
- María Rodríguez-Sevilla
- Hematology Department, Hospital San Juan de Dios, Costa Rican Social Security Health Fund (CCSS), San José, CRI
| | - Kathia Valverde-Muñoz
- Hematology Department, Hospital Nacional de Niños, Costa Rican Social Security Health Fund (CCSS), San José, CRI
| | - Claudia García-Hernández
- Hematology Department, Hospital México, Costa Rican Social Security Health Fund (CCSS), San José, CRI
| | - Alfredo Sanabria-Castro
- Research Unit, Hospital San Juan de Dios, Costa Rican Social Security Health Fund (CCSS), San José, CRI
- Pharmacology Department, Pharmacy School, Universidad de Costa Rica, San José, CRI
| | - Ann Echeverri-McCandless
- Research Unit, Hospital San Juan de Dios, Costa Rican Social Security Health Fund (CCSS), San José, CRI
| | - Sebastián Rojas-Chaves
- Research Unit, Hospital San Juan de Dios, Costa Rican Social Security Health Fund (CCSS), San José, CRI
| |
Collapse
|
3
|
Durán E, Sepúlveda M, Romero-Hasler P, Valdés F, Villamizar Sarmiento MG, Soto-Bustamante E, Neira-Carrillo A, Neira V, Ignacio Covarrubias J, Oyarzun-Ampuero F, Burgess DJ, Valenzuela C. Parenteral iron nutrition: Iron dextran-poloxamer thermosensitive hydrogel for prolonged intramuscular iron supplementation. Int J Pharm 2024; 663:124559. [PMID: 39122197 DOI: 10.1016/j.ijpharm.2024.124559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
The objective of this study was to evaluate the potential of novel poloxamer thermosensitive hydrogels (PTHs) formulations for prolonged release of iron dextran particles (IDP) for intramuscular (IM) injection. The thermosensitive behaviour helps to avoid hepcidin overexpression and toxicity by releasing IDPs without iron accumulation in injection or deposit sites. We hypothesized that novel PTH formulation would prolong iron liberation compared to the commercial iron dextran formulation (FEDEX). PTHs loaded with IDPs were developed with increasing iron content (0.1, 0.2 and 0.4 g of iron/g of poloxamer) and characterized as a prolonged release IM iron supplement. The PTHs had a biocompatible pH for IM injection (6.4) and thermosensitive viscosity, increasing from ∼50 (4 °C) to ∼3000 mPa.s (37 °C). PTHs were successfully injected in the sol state (at 4 °C) into pork meat at 37 °C, transitioning to the gel state in situ (in ∼60-190 s). Structural characterization indicated that there were no PTH-IDP chemical interactions, suggesting that IDP entrapment in PTHs was physical upon gelation. In vitro release studies revealed that iron release from PTH (0.4 g of iron/g of poloxamer) reached 100 % by day 10, whereas 100 % release from FEDEX was complete in 4 h. This novel iron PTH formulation achieved a 60 times long iron release compared to the commercial product. In conclusion, the reported strategy shows adequate IDP entrapment/release properties for prolonged iron release following ex vivo IM injection using biocompatible materials. These results provide a strong basis for future preclinical evaluation to elucidate aspects such as drug release, local irritation, biocompatibility, and efficacy.
Collapse
Affiliation(s)
- Emerson Durán
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Ejercito Libertador 146, Santiago 8370003, Chile; Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11.735, La Pintana, Santiago, Chile; Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur Universidad de Chile, Santa Rosa 11.315, La Pintana, Santiago CP: 8820808, Chile
| | - Marcela Sepúlveda
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11.735, La Pintana, Santiago, Chile
| | - Patricio Romero-Hasler
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1.007, Independencia, Santiago, Chile
| | - Fabrizzio Valdés
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11.735, La Pintana, Santiago, Chile
| | - María Gabriela Villamizar Sarmiento
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile
| | - Eduardo Soto-Bustamante
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1.007, Independencia, Santiago, Chile
| | - Andrónico Neira-Carrillo
- Laboratorios de Materiales Bio-relacionados (CIMAT) y Síntesis y Caracterización de Polímeros Funcionalizados y Biomoléculas (POLYFORMS), Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11.735, La Pintana, Santiago, Chile
| | - Víctor Neira
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11.735, La Pintana, Santiago, Chile
| | - José Ignacio Covarrubias
- Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11.315, La Pintana, Santiago, Chile
| | - Felipe Oyarzun-Ampuero
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile
| | - Diane J Burgess
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Carolina Valenzuela
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11.735, La Pintana, Santiago, Chile.
| |
Collapse
|
4
|
Moenga MN, Mogwasi R, Okemwa EK, Olale KO. Determination of Essential Minerals in the Indigenous Vegetables Solanum nigrum (Stout Shade) and Gynandropsis gynandra (Spider Plant) from Two Agroecological Zones in Kisii County, Kenya. Biol Trace Elem Res 2024:10.1007/s12011-024-04312-3. [PMID: 39023736 DOI: 10.1007/s12011-024-04312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Vegetables are good sources of essential mineral elements that promote good health and immunity. Information on the nutritional contents of indigenous vegetables is scarce. Therefore, this study sought to ascertain the concentrations of magnesium, manganese, chrome, zinc, copper, and iron in Solanum nigrum and Gynandropsis gynandra indigenous vegetables from two agroecological zones (upper midland and lower highland) of Kisii County, Kenya, using inductively coupled plasma optical emission spectroscopy (ICP‒OES). For Gnandropsis gynandra, the most abundant erythrocytic synthesis element was Fe (1856.67 ± 15.28 mg/kg DW) for plants harvested from Nyanchwa (UM), and the least was Cu (8.90 ± 0.44 mg/kg DW) in plants harvested from Kari (LH). In addition, Mg was the hypoglycemic element with the highest concentration (5975.00 ± 10.00 mg/kg DW), and Cr lowest (3.16 ± 0.45 mg/kg DW) in samples harvested from Matongo (UM). For Solanum nigrum, the most erythrocytic synthesis element was Fe (1280.00 ± 10.00 mg/kg DW for samples collected from Kiamabundu (UM), and the least was Cu (9.08 ± 0.15 mg/kg DW) in the samples from Nyanchwa (UM), whereas Mg in samples from Nyabioto (UM) was the hypoglycemic element with the highest concentration (4920.00 ± 10.00 mg/kg DW) and Cr in samples from Mariba (LH had the lowest concentration) (3.95 ± 1.63 mg/kg DW). The concentrations of elements in the two indigenous vegetables from the UM agroecological zone were slightly greater than those in the LH agroecological zone. Nonetheless, the variations observed were not statistically significant (P < 0.05). Enzymatically bio accessed concentrations of iron, zinc, chromium, magnesium, manganese, and copper were higher than those obtained aquatically. The indigenous vegetable bio avails substantial amounts of iron and copper to enable them be used in the management pernicious anaemia; on the other hand, the substantial bio availed levels of zinc, manganese, magnesium, and chromium enables the vegetable to be used in the management of diabetes.
Collapse
Affiliation(s)
- Mercilline N Moenga
- Department of Chemistry, School of Pure and Applied Sciences, Kisii University, P.O. Box 408-40200, Kisii, Kenya
| | - Richard Mogwasi
- Department of Chemistry, School of Pure and Applied Sciences, Kisii University, P.O. Box 408-40200, Kisii, Kenya.
| | - Evans K Okemwa
- Department of Chemistry, School of Pure and Applied Sciences, Kisii University, P.O. Box 408-40200, Kisii, Kenya
| | - Kennedy O Olale
- Department of Chemistry, School of Pure and Applied Sciences, Kisii University, P.O. Box 408-40200, Kisii, Kenya
| |
Collapse
|
5
|
Scheinberg P. Progress in medical therapy in aplastic anemia: why it took so long? Int J Hematol 2024; 119:248-254. [PMID: 38403842 DOI: 10.1007/s12185-024-03713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/27/2023] [Accepted: 01/15/2024] [Indexed: 02/27/2024]
Abstract
The treatment of aplastic anemia (AA) has significantly advanced in the last 50 years, evolving from a fatal condition to one where survival rates now exceed 80-85%. Hematopoietic stem cell transplantation (HSCT) and immunosuppressive therapy (IST) have become the primary treatments, with the latter widely adopted due to factors like the scarcity of compatible donors, patient age, comorbidities, and limited HSCT access. A therapy breakthrough was the introduction of antithymocyte globulin (ATG), with its effectiveness further boosted by cyclosporine. However, it took years to achieve another major milestone in management. Initially, treatments aimed to intensify immunosuppression following the success of the ATG-cyclosporine combination, but these methods fell short of expectations. A major turning point was combining immunosuppression with stem cell stimulation, surpassing the efficacy of IST alone. Earlier, growth factors had shown limited success in AA treatment, but thrombopoietin receptor agonists represented a significant advancement. Initially applied alone as salvage, these were later combined with IST, forming the most effective current regimen for medically managing SAA. Horse ATG is the preferred formulation combined with cyclosporine and eltrombopag. This progress in AA treatment offers improved outcomes for patients afflicted with this once-lethal disease.
Collapse
Affiliation(s)
- Phillip Scheinberg
- Division of Hematology, Hospital A Beneficência Portuguesa, Rua Martiniano de Carvalho, 951, São Paulo, SP, 01321-001, Brazil.
| |
Collapse
|
6
|
Durán E, Neira-Carrillo A, Oyarzun-Ampuero F, Valenzuela C. Thermosensitive Chitosan Hydrogels: A Potential Strategy for Prolonged Iron Dextran Parenteral Supplementation. Polymers (Basel) 2023; 16:139. [PMID: 38201804 PMCID: PMC10780544 DOI: 10.3390/polym16010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Iron deficiency anemia (IDA) presents a global health challenge, impacting crucial development stages in humans and other mammals. Pigs, having physiological and metabolic similarities with humans, are a valuable model for studying and preventing anemia. Commonly, a commercial iron dextran formulation (CIDF) with iron dextran particles (IDPs) is intramuscularly administered for IDA prevention in pigs, yet its rapid metabolism limits preventive efficacy. This study aimed to develop and evaluate chitosan thermosensitive hydrogels (CTHs) as a novel parenteral iron supplementation strategy, promoting IDPs' prolonged release and mitigating their rapid metabolism. These CTHs, loaded with IDPs (0.1, 0.2, and 0.4 g of theoretical iron/g of chitosan), were characterized for IM iron supplementation. Exhibiting thermosensitivity, these formulations facilitated IM injection at ~4 °C, and its significant increasing viscosity at 25-37 °C physically entrapped the IDPs within the chitosan's hydrophobic gel without chemical bonding. In vitro studies showed CIDF released all the iron in 6 h, while CTH0.4 had a 40% release in 72 h, mainly through Fickian diffusion. The controlled release of CTHs was attributed to the physical entrapment of IDPs within the CTHs' gel, which acts as a diffusion barrier. CTHs would be an effective hydrogel prototype for prolonged-release parenteral iron supplementation.
Collapse
Affiliation(s)
- Emerson Durán
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11.735, La Pintana 8820808, Santiago, Chile;
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur Universidad de Chile, Santa Rosa 11.315, La Pintana 8820808, Santiago, Chile
| | - Andrónico Neira-Carrillo
- Laboratorios de Materiales Bio-Relacionados (CIMAT) y Síntesis y Caracterización de Polímeros Funcionalizados y Biomoléculas (POLYFORMS), Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11.735, La Pintana 8820808, Santiago, Chile;
| | - Felipe Oyarzun-Ampuero
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia 8380494, Santiago, Chile
| | - Carolina Valenzuela
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11.735, La Pintana 8820808, Santiago, Chile;
| |
Collapse
|
7
|
Ding S, Zhang T, Liu Z, Cui Y, Liu C, Fu R. The effectiveness of a novel treatment of TIM-3(-) NK cells infusion in murine models of immune-mediated bone marrow failure. J Clin Lab Anal 2023; 37:e24944. [PMID: 37539556 PMCID: PMC10492454 DOI: 10.1002/jcla.24944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/23/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND T-cell immunoglobulin and mucin-containing domain (TIM)-3 exerts its inhibitory effect on NK cells and participates in the immune pathogenesis of SAA. In this study, we aimed to explore a novel treatment method of TIM-3(+) NK or TIM-3(-) NK cell infusion in combination with immunosuppressive therapy for bone marrow failure (BMF)/aplastic anemia (AA) mice. METHODS BMF/AA mouse model was constructed. The TIM-3 expression and functional molecules on TIM-3(+) and TIM-3(-) NK cells of the BMF group, total body irradiation (TBI) group, and normal control (NC) group mice were detected by flow cytometry. After treatment, the general condition, whole blood cell and bone marrow cell (BMC) count, and immune condition of mice from each group were compared. RESULTS TIM-3 expression in the peripheral blood NK cells of BMF mice was significantly lower than that of the TBI and NC group mice. TIM-3(-) NK cells expressed more NKG2D receptors than TIM-3(+) NK cells. The levels of P-Akt and PI3K in TIM-3(-) NK cells were higher than those in TIM-3(+) NK cells. On the 17th day after BMF induction, the weight, peripheral whole blood cell count, and BMC count of BMF mice decreased significantly compared with that of the NC group mice. The therapeutic effect in the TIM-3(-) NK cell treatment group was better than that in the TIM-3(+) NK cell treatment and CsA treatment groups. Concurrently, the ratio of CD4+ T and CD8+ T cells of BMF mice was significantly lower than that of the NC group mice. The therapeutic effect in CsA + TIM-3(-) NK group was more significant than that of the CsA treatment and the CsA + TIM-3(+) NK groups. CONCLUSIONS In this study, we found that the general condition, peripheral whole blood cell and BMC count, and immune status of BMF mice improved significantly after CsA + TIM-3(-) NK cell treatment. These results may provide further insights into the immune pathogenesis of SAA and novel therapeutic ideas for improving SAA treatment.
Collapse
Affiliation(s)
- Shaoxue Ding
- Department of HematologyTianjin Medical University General HospitalTianjinChina
| | - Tian Zhang
- Department of HematologyTianjin Medical University General HospitalTianjinChina
| | - Zixuan Liu
- Department of HematologyTianjin Medical University General HospitalTianjinChina
| | - Yi Cui
- Department of HematologyTianjin Medical University General HospitalTianjinChina
| | - Chunyan Liu
- Department of HematologyTianjin Medical University General HospitalTianjinChina
| | - Rong Fu
- Department of HematologyTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
8
|
Gurnari C, Visconte V. From bone marrow failure syndromes to VEXAS: Disentangling clonal hematopoiesis, immune system, and molecular drivers. Leuk Res 2023; 127:107038. [PMID: 36841022 DOI: 10.1016/j.leukres.2023.107038] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
Clonal hematopoiesis (CH) is a result of the selective expansion of hematopoietic stem and progenitor cells (HSPCs) carrying somatic mutations originating from a primary HSC. The advent of modern genomic technologies has helped recognizing that CH is common in elderly healthy subjects as a result of the aging bone marrow (BM). CH in healthy subjects without abnormalities in blood counts is known as CH of indeterminate potential. CH is also seen in BM failure (BMF) disorders. Whether CH alarms for the risk to develop malignant evolution in BMF or creates an adaptation to selective pressure is a matter of controversy. As such, a continuum might exist from pre-malignant to malignant hematopoietic diseases. This review summarizes how somatic mutations and immune derangement in HSCs shape disease evolution and describes the complexity of disorders such as VEXAS as the prototypic tetrad of somatic mutations, morphologic features, inflammatory pathways and immune overshooting. In such a view, we interconnect the axis aging and immune-hematopoietic system, which all convey important clues for the risk to develop malignancies.
Collapse
Affiliation(s)
- Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
9
|
Le Floc'h A, Nagashima K, Birchard D, Scott G, Ben LH, Ajithdoss D, Gayvert K, Romero Hernandez A, Herbin O, Tay A, Farrales P, Korgaonkar CK, Pan H, Shah S, Kamat V, Chatterjee I, Popke J, Oyejide A, Lim WK, Kim JH, Huang T, Franklin M, Olson W, Norton T, Perlee L, Yancopoulos GD, Murphy AJ, Sleeman MA, Orengo JM. Blocking common γ chain cytokine signaling ameliorates T cell-mediated pathogenesis in disease models. Sci Transl Med 2023; 15:eabo0205. [PMID: 36630481 DOI: 10.1126/scitranslmed.abo0205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The common γ chain (γc; IL-2RG) is a subunit of the interleukin (IL) receptors for the γc cytokines IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. The lack of appropriate neutralizing antibodies recognizing IL-2RG has made it difficult to thoroughly interrogate the role of γc cytokines in inflammatory and autoimmune disease settings. Here, we generated a γc cytokine receptor antibody, REGN7257, to determine whether γc cytokines might be targeted for T cell-mediated disease prevention and treatment. Biochemical, structural, and in vitro analysis showed that REGN7257 binds with high affinity to IL-2RG and potently blocks signaling of all γc cytokines. In nonhuman primates, REGN7257 efficiently suppressed T cells without affecting granulocytes, platelets, or red blood cells. Using REGN7257, we showed that γc cytokines drive T cell-mediated disease in mouse models of graft-versus-host disease (GVHD) and multiple sclerosis by affecting multiple aspects of the pathogenic response. We found that our xenogeneic GVHD mouse model recapitulates hallmarks of acute and chronic GVHD, with T cell expansion/infiltration into tissues and liver fibrosis, as well as hallmarks of immune aplastic anemia, with bone marrow aplasia and peripheral cytopenia. Our findings indicate that γc cytokines contribute to GVHD and aplastic anemia pathology by promoting these characteristic features. By demonstrating that broad inhibition of γc cytokine signaling with REGN7257 protects from immune-mediated disorders, our data provide evidence of γc cytokines as key drivers of pathogenic T cell responses, offering a potential strategy for the management of T cell-mediated diseases.
Collapse
Affiliation(s)
- Audrey Le Floc'h
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Kirsten Nagashima
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Dylan Birchard
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - George Scott
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Li-Hong Ben
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Dharani Ajithdoss
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Kaitlyn Gayvert
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | | | - Olivier Herbin
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Amanda Tay
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Pamela Farrales
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | | | - Hao Pan
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Sweta Shah
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Vishal Kamat
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Ishita Chatterjee
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jon Popke
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Adelekan Oyejide
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Wei Keat Lim
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jee H Kim
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Tammy Huang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Matthew Franklin
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - William Olson
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Thomas Norton
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Lorah Perlee
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - George D Yancopoulos
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Andrew J Murphy
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Matthew A Sleeman
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jamie M Orengo
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| |
Collapse
|
10
|
Sánchez‐Lanzas R, Kalampalika F, Ganuza M. Diversity in the bone marrow niche: Classic and novel strategies to uncover niche composition. Br J Haematol 2022; 199:647-664. [PMID: 35837798 PMCID: PMC9796334 DOI: 10.1111/bjh.18355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 01/01/2023]
Abstract
Our view on the role and composition of the bone marrow (BM) has dramatically changed over time from a simple nutrient for the bone to a highly complex multicellular tissue that sustains haematopoiesis. Among these cells, multipotent haematopoietic stem cells (HSCs), which are predominantly quiescent, possess unique self-renewal capacity and multilineage differentiation potential and replenish all blood lineages to maintain lifelong haematopoiesis. Adult HSCs reside in specialised BM niches, which support their functions. Much effort has been put into deciphering HSC niches due to their potential clinical relevance. Multiple cell types have been implicated as HSC-niche components including sinusoidal endothelium, perivascular stromal cells, macrophages, megakaryocytes, osteoblasts and sympathetic nerves. In this review we provide a historical perspective on how technical advances, from genetic mouse models to imaging and high-throughput sequencing techniques, are unveiling the plethora of molecular cues and cellular components that shape the niche and regulate HSC functions.
Collapse
Affiliation(s)
- Raúl Sánchez‐Lanzas
- Centre for Haemato‐Oncology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Foteini Kalampalika
- Centre for Haemato‐Oncology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Miguel Ganuza
- Centre for Haemato‐Oncology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| |
Collapse
|
11
|
McReynolds LJ, Rafati M, Wang Y, Ballew BJ, Kim J, Williams VV, Zhou W, Hendricks RM, Dagnall C, Freedman ND, Carter B, Strollo S, Hicks B, Zhu B, Jones K, Paczesny S, Marsh SGE, Spellman SR, He M, Wang T, Lee SJ, Savage SA, Gadalla SM. Genetic testing in severe aplastic anemia is required for optimal hematopoietic cell transplant outcomes. Blood 2022; 140:909-921. [PMID: 35776903 PMCID: PMC9412004 DOI: 10.1182/blood.2022016508] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/17/2022] [Indexed: 11/20/2022] Open
Abstract
Patients with severe aplastic anemia (SAA) can have an unrecognized inherited bone marrow failure syndrome (IBMFS) because of phenotypic heterogeneity. We curated germline genetic variants in 104 IBMFS-associated genes from exome sequencing performed on 732 patients who underwent hematopoietic cell transplant (HCT) between 1989 and 2015 for acquired SAA. Patients with pathogenic or likely pathogenic (P/LP) variants fitting known disease zygosity patterns were deemed unrecognized IBMFS. Carriers were defined as patients with a single P/LP variant in an autosomal recessive gene or females with an X-linked recessive P/LP variant. Cox proportional hazard models were used for survival analysis with follow-up until 2017. We identified 113 P/LP single-nucleotide variants or small insertions/deletions and 10 copy number variants across 42 genes in 121 patients. Ninety-one patients had 105 in silico predicted deleterious variants of uncertain significance (dVUS). Forty-eight patients (6.6%) had an unrecognized IBMFS (33% adults), and 73 (10%) were carriers. No survival difference between dVUS and acquired SAA was noted. Compared with acquired SAA (no P/LP variants), patients with unrecognized IBMFS, but not carriers, had worse survival after HCT (IBMFS hazard ratio [HR], 2.13; 95% confidence interval[CI], 1.40-3.24; P = .0004; carriers HR, 0.96; 95% CI, 0.62-1.50; P = .86). Results were similar in analyses restricted to patients receiving reduced-intensity conditioning (n = 448; HR IBMFS = 2.39; P = .01). The excess mortality risk in unrecognized IBMFS attributed to death from organ failure (HR = 4.88; P < .0001). Genetic testing should be part of the diagnostic evaluation for all patients with SAA to tailor therapeutic regimens. Carriers of a pathogenic variant in an IBMFS gene can follow HCT regimens for acquired SAA.
Collapse
Affiliation(s)
| | | | | | - Bari J Ballew
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | | | | | - Weiyin Zhou
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | | | - Casey Dagnall
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Neal D Freedman
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Brian Carter
- Department of Population Science, American Cancer Society, Atlanta, GA
| | - Sara Strollo
- Department of Population Science, American Cancer Society, Atlanta, GA
| | - Belynda Hicks
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Bin Zhu
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Steven G E Marsh
- Anthony Nolan Research Institute and University College London Cancer Institute, London, United Kingdom
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program, Minneapolis, MN
| | - Meilun He
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program, Minneapolis, MN
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research and
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI; and
| | - Stephanie J Lee
- Center for International Blood and Marrow Transplant Research and
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | | |
Collapse
|
12
|
Patel BA, Townsley DM, Scheinberg P. Immunosuppressive therapy in severe aplastic anemia. Semin Hematol 2022; 59:21-29. [DOI: 10.1053/j.seminhematol.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/11/2022]
|
13
|
Scheinberg P. Acquired severe aplastic anaemia: how medical therapy evolved in the 20th and 21st centuries. Br J Haematol 2021; 194:954-969. [PMID: 33855695 DOI: 10.1111/bjh.17403] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/16/2021] [Indexed: 11/28/2022]
Abstract
The progress in aplastic anaemia (AA) management is one of success. Once an obscure entity resulting in death in most affected can now be successfully treated with either haematopoietic stem cell transplantation (HSCT) or immunosuppressive therapy (IST). The mechanisms that underly the diminution of haematopoietic stem cells (HSCs) are now better elucidated, and include genetics and immunological alterations. Advances in supportive care with better antimicrobials, safer blood products and iron chelation have greatly impacted AA outcomes. Working somewhat 'mysteriously', anti-thymocyte globulin (ATG) forms the base for both HSCT and IST protocols. Efforts to augment immunosuppression potency have not, unfortunately, led to better outcomes. Stimulating HSCs, an often-sought approach, has not been effective historically. The thrombopoietin receptor agonists (Tpo-RA) have been effective in stimulating early HSCs in AA despite the high endogenous Tpo levels. Dosing, timing and best combinations with Tpo-RAs are being defined to improve HSCs expansion in AA with minimal added toxicity. The more comprehensive access and advances in HSCT and IST protocols are likely to benefit AA patients worldwide. The focus of this review will be on the medical treatment advances in AA.
Collapse
Affiliation(s)
- Phillip Scheinberg
- Division of Haematology, Hospital A Beneficência Portuguesa, São Paulo, Brazil
| |
Collapse
|
14
|
Cotoraci C, Ciceu A, Sasu A, Hermenean A. Natural Antioxidants in Anemia Treatment. Int J Mol Sci 2021; 22:ijms22041883. [PMID: 33668657 PMCID: PMC7918704 DOI: 10.3390/ijms22041883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 01/03/2023] Open
Abstract
Anemia, characterized by a decrease of the hemoglobin level in the blood and a reduction in carrying capacity of oxygen, is a major public health problem which affects people of all ages. The methods used to treat anemia are blood transfusion and oral administration of iron-based supplements, but these treatments are associated with a number of side effects, such as nausea, vomiting, constipation, and stomach pain, which limit its long-term use. In addition, oral iron supplements are poorly absorbed in the intestinal tract, due to overexpression of hepcidin, a peptide hormone that plays a central role in iron homeostasis. In this review, we conducted an analysis of the literature on biologically active compounds and plant extracts used in the treatment of various types of anemia. The purpose of this review is to provide up-to-date information on the use of these compounds and plant extracts, in order to explore their therapeutic potential. The advantage of using them is that they are available from natural resources and can be used as main, alternative, or adjuvant therapies in many diseases, such as various types of anemia.
Collapse
Affiliation(s)
- Coralia Cotoraci
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania;
- Correspondence:
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania; (A.C.); (A.H.)
| | - Alciona Sasu
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania;
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania; (A.C.); (A.H.)
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| |
Collapse
|
15
|
Van Antwerp E, Koenig ZA, McCarthy R. Modern Medical Miracle: Matched Unrelated Donor Hematopoietic Stem Cell Transplant After Aplastic Anemia. Cureus 2021; 13:e13050. [PMID: 33680594 PMCID: PMC7925059 DOI: 10.7759/cureus.13050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Aplastic anemia is a hematological disease with deadly complications related to pancytopenia if not treated in a timely manner. First-line treatment consists of immunosuppressive therapy or matched sibling donor (MSD) hematopoietic stem cell transplant. Step up treatment involves a matched unrelated donor (MUD) hematopoietic stem cell transplant (HSCT) alongside immunosuppressant conditioning. However, recent research suggests that there is improved success of MUD HSCT for severe aplastic anemia compared to immunosuppressive therapy. We present a case of an 18-year-old who was diagnosed with severe aplastic anemia who received numerous immunosuppressive therapy regimens prior to obtaining a MUD HSCT. Over a year after bone marrow transplant, the patient is doing well with no signs of rejection. This case creates an argument for the use of upfront MUD HSCT as a curative treatment for acquired aplastic anemia rather than initial treatment with immunosuppressive agents.
Collapse
Affiliation(s)
- Emily Van Antwerp
- Department of Medicine, West Virginia School of Osteopathic Medicine, Lewisburg, USA
| | | | - Ryan McCarthy
- Internal Medicine, West Virginia University, Martinsburg, USA
| |
Collapse
|
16
|
Nazarenko A, Zaiko O, Korotkevich O, Konovalova T, Osintseva L. Correlation of the iron level in the bristles of Kemerovo pigs with macro- and essential microelements. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213606032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Correlation data analysis of the iron content with macro- and essential microelements, as well as on the group of chemical elements interrelated with the Fe level in pig bristles are presented. The studies were carried out of the Kemerovo region on six-month-old pigs of the Kemerovo breed. Chemical analysis of swine bristle samples was carried out using atomic absorption spectrometry. The data were processed using of the program R. Only positive relationships were established between the iron content and the chemical elements of the bristle, as well as the group of chemical elements associated with the Fe level in the bristle. Most of the connections are explained by comparing the data obtained with the research of other scientists on the topic.
Collapse
|
17
|
Ni Q, Pan C, Guo Q, Wang P, Sun G, Xiao S, Dai S. Success of 125I-Seed Treatment in Vulvar Squamous-Cell Carcinoma with Aplastic Anemia: A Case Report. Onco Targets Ther 2020; 13:12561-12566. [PMID: 33324074 PMCID: PMC7733133 DOI: 10.2147/ott.s283006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Vulvar squamous-cell carcinoma (SCC) is a rare disease that occurs mainly in postmenopausal women. Chemo/radiotherapy with or without surgery is the most important modality for treatment of advanced vulvar cancer. A case of vulvar SCC with aplastic anemia was treated using 125I seeds in our department, because surgery and chemotherapy were not possible due to low platelets, leaving radiotherapy as the lone therapeutic option. 125I seeds present an alternative option for treatment of patients with vulvar SCC and local relapse with lymph-node metastasis following previous radiotherapy.
Collapse
Affiliation(s)
- Qingtao Ni
- Department of Oncology, Jiangsu Taizhou People's Hospital, Taizhou 225300, People's Republic of China
| | - Chi Pan
- Department of General Surgery, Jiangsu Taizhou People's Hospital, Taizhou 225300, People's Republic of China
| | - Qing Guo
- Department of Oncology, Jiangsu Taizhou People's Hospital, Taizhou 225300, People's Republic of China
| | - Peng Wang
- Department of Oncology, Jiangsu Taizhou People's Hospital, Taizhou 225300, People's Republic of China
| | - Guangzhi Sun
- Department of Oncology, Jiangsu Taizhou People's Hospital, Taizhou 225300, People's Republic of China
| | - Shujun Xiao
- Department of General Practice, Jiangsu Taizhou People's Hospital, Taizhou 225300, People's Republic of China
| | - Shengbin Dai
- Department of Oncology, Jiangsu Taizhou People's Hospital, Taizhou 225300, People's Republic of China
| |
Collapse
|
18
|
Zhao XC, Sun XY, Ju B, Meng FJ, Zhao HG. Acquired aplastic anemia: Is bystander insult to autologous hematopoiesis driven by immune surveillance against malignant cells? World J Stem Cells 2020; 12:1429-1438. [PMID: 33312408 PMCID: PMC7705466 DOI: 10.4252/wjsc.v12.i11.1429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
We previously reported a serendipitous finding from a patient with refractory severe aplastic anemia who had gotten an unexpected hematological response to treatment with gut-cleansing preparations (GCPs). This patient experienced three recurrences over the ensuing one year of intermittent GCP treatments, with each recurrence occurring 7-8 wk from a GCP. After his third recurrence, he was prescribed successive treatment with rifampicin, berberine, and monthly administered GCP for 4 mo, and he developed an erythroid proliferative neoplasma and an overwhelming enteropathy, and eventually died of septic shock. Laboratory investigations had validated the resolution of myelosuppression and the appearance of malignant clonal hematopoiesis. From the treatment process and laboratory investigations, it is reasonably inferred that the engagement of gut inflammation is critically required in sustaining the overall pathophysiology of acquired aplastic anemia probably by creating a chronic inflammatory state. Incorporation of rifampicin, berberine, and monthly GCP into cyclosporine can enhance the immunosuppressive effect. In a subgroup of acquired aplastic anemia patients whose pathogenesis is associated with genotoxic exposure, the suppressed normal hematopoiesis may result from the bystander insult that is mediated by the soluble inflammatory cytokines generated in response to the immunogenic products of damaged hematopoietic cells in the context of chronic inflammatory state and may offer a protective antineoplastic mechanism against malignant proliferation.
Collapse
Affiliation(s)
- Xi-Chen Zhao
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Xiao-Yun Sun
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Bo Ju
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Fan-Jun Meng
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Hong-Guo Zhao
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| |
Collapse
|
19
|
Furlong E, Carter T. Aplastic anaemia: Current concepts in diagnosis and management. J Paediatr Child Health 2020; 56:1023-1028. [PMID: 32619069 DOI: 10.1111/jpc.14996] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 05/21/2020] [Indexed: 12/26/2022]
Abstract
Aplastic anaemia is a rare, previously fatal condition with a significantly improved survival rate owing to advances in understanding of the pathophysiology and improved treatment strategies including haematopoietic stem cell transplantation. Although a rare condition, aplastic anaemia continues to present a high burden for affected patients, their families and the health system due to the prolonged course of disease often associated with high morbidity and the uncertainty regarding clinical outcome. Modern molecular and genetic techniques including next-generation sequencing have contributed to a better understanding of this heterogeneous group of conditions, albeit at a cost of increased complexity of clinical decision-making regarding prognosis and choice of treatment for individual patients. Here we present a concise and comprehensive review of aplastic anaemia and closely related conditions based on extensive literature review and long-standing clinical experience. The review takes the reader across the complex pathophysiology consisting of three main causative mechanisms of bone marrow destruction resulting in aplastic anaemia: direct injury, immune mediated and bone marrow failure related including inherited and clonal disorders. A comprehensive diagnostic algorithm is presented and an up-to-date therapeutic approach to acquired immune aplastic anaemia, the most represented type of aplastic anaemia, is described. Overall, the aim of the review is to provide paediatricians with an update of this rare, heterogeneous and continuously evolving condition.
Collapse
Affiliation(s)
- Eliska Furlong
- Department of Paediatric and Adolescent Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Tina Carter
- Department of Paediatric and Adolescent Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, Western Australia, Australia.,Division of Paediatrics, School of Medicine, University of Western Australia, Perth, Western Australia, Australia.,Paediatric and Adolescent Haematology Service, PathWest Laboratory Medicine WA, Perth, Western Australia, Australia
| |
Collapse
|
20
|
Brzeźniakiewicz-Janus K, Rupa-Matysek J, Gil L. Acquired Aplastic Anemia as a Clonal Disorder of Hematopoietic Stem Cells. Stem Cell Rev Rep 2020; 16:472-481. [PMID: 32270433 PMCID: PMC7253510 DOI: 10.1007/s12015-020-09971-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aplastic anemia is rare disorder presenting with bone marrow failure syndrome due to autoimmune destruction of early hematopoietic stem cells (HSCs) and stem cell progenitors. Recent advances in newer genomic sequencing and other molecular techniques have contributed to a better understanding of the pathogenesis of aplastic anemia with respect to the inflammaging, somatic mutations, cytogenetic abnormalities and defective telomerase functions of HSCs. These have been summarized in this review and may be helpful in differentiating aplastic anemia from hypocellular myelodysplastic syndrome. Furthermore, responses to immunosuppressive therapy and outcomes may be determined by molecular pathogenesis of HSCs autoimmune destruction, as well as treatment personalization in the future.
Collapse
Affiliation(s)
- Katarzyna Brzeźniakiewicz-Janus
- Department of Hematology, Multi-Specialist Hospital Gorzów Wielkopolski, Faculty of Medicine and Health Science, University of Zielona Góra, Gorzów Wielkopolski, Poland.
| | - Joanna Rupa-Matysek
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | - Lidia Gil
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
21
|
Bastola S, Kc O, Khanal S, Halalau A. Hepatitis-associated aplastic anemia from workout supplement: Rare but potentially fatal entity. SAGE Open Med Case Rep 2020; 8:2050313X20901937. [PMID: 32030129 PMCID: PMC6977214 DOI: 10.1177/2050313x20901937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 12/31/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis-associated aplastic anemia (HAAA) is a rare clinical syndrome characterized by bone marrow failure 1–3 months after development of hepatitis. Untreated, hepatitis-associated aplastic anemia has poor outcome and the mainstay of treatment remains either bone marrow transplant or immunosuppressive therapy. A previously healthy 21-year-old man presented with a 1-week history of right upper quadrant pain and jaundice. Admission labs revealed mixed hyperbilirubinemia and elevated transaminases ranging in 2000s IU/dl. Extensive workup for etiologies of acute hepatitis including viruses, autoimmune, toxins etc. were negative. He admitted to taking “Dust V2,” a workout supplement, for 4 months prior to the presentation. His liver function tests started to improve after conservative treatment. Two months after his discharge, he was found to have severe pancytopenia on routine labs. Bone marrow biopsy revealed hypocellular marrow consistent with aplastic anemia. Extensive workup for etiologies of aplastic anemia were negative. On literature review, none of the components of the supplement were found to cause aplastic anemia. A diagnosis of hepatitis-associated aplastic anemia was made as there was a lag time before development of anemia. His counts failed to improve despite treatment with filgrastim and he was referred for hematopoietic cell transplant.
Collapse
Affiliation(s)
- Sanjog Bastola
- Department of Internal Medicine, William Beaumont Hospital, Royal Oak, MI, USA.,Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Ojbindra Kc
- Department of Internal Medicine, William Beaumont Hospital, Royal Oak, MI, USA.,Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Sumesh Khanal
- Department of Internal Medicine, William Beaumont Hospital, Royal Oak, MI, USA
| | - Alexandra Halalau
- Department of Internal Medicine, William Beaumont Hospital, Royal Oak, MI, USA.,Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| |
Collapse
|
22
|
Activity of eltrombopag in severe aplastic anemia. Blood Adv 2019; 2:3054-3062. [PMID: 30425070 DOI: 10.1182/bloodadvances.2018020248] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/24/2018] [Indexed: 12/22/2022] Open
Abstract
Since the approval of horse antithymocyte globulin (ATG) decades ago, there was a long hiatus in therapies with activity in severe aplastic anemia (SAA). This scenario changed in 2014 when eltrombopag, a thrombopoietin receptor agonist, was approved for SAA after an insufficient response to initial immunosuppressive therapy (IST). The basis for this approval was the observation of single-agent activity of eltrombopag in this patient population, where 40% to 50% recovered blood counts at times involving >1 lineage. The achievement of transfusion independence confirmed the clinical benefit of this approach. Increase in marrow cellularity and CD34+ cells suggested a recovery to a more functioning bone marrow. Further in its development, eltrombopag was associated with standard horse ATG plus cyclosporine in first line, producing increases in overall (at about 90%) and complete response rates (at about 40%) and leading to transfusion independence and excellent survival. Interestingly, best results were observed when all drugs were started simultaneously. The cumulative incidence of clonal cytogenetic abnormalities to date has compared favorably with the vast experience with IST alone in SAA. Longer follow-up will help in define these long-term risks. In this review, the development of eltrombopag in SAA will be discussed.
Collapse
|
23
|
Yin X, Yang J, Liu Y, Zhang J, Xin C, Zhao H, Wang W, Shi X, Cui Z, Li G, Zhao C, Liu X. Altered expression of leptin and leptin receptor in the development of immune-mediated aplastic anemia in mice. Exp Ther Med 2019; 18:1047-1056. [PMID: 31316601 PMCID: PMC6601404 DOI: 10.3892/etm.2019.7660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 04/12/2019] [Indexed: 12/24/2022] Open
Abstract
The current study aimed to explore the levels of leptin (LEP) and LEP receptor (LEP-R) on the progression of aplastic anemia (AA) with bone marrow fat conversion. An AA model was developed by infusing C57BL/6 lymph node cells into BALB/c mice. At 0, 3, 6, 9, 12, 15 and 18 days after modeling, routine blood counts, bone marrow biopsy slides, lymphocyte subsets (CD4+ and CD8+ T cells) and cytokine levels [including interleukin (IL)-2, IL-4, IL-5 and interferon-γ] were assessed. LEP and LEP-R levels in peripheral blood serum, mesenchymal stem cells (MSCs) and bone marrow were also analyzed by enzyme-linked immunosorbent assay, polymerase chain reaction and immunohistochemistry. The relevance of LEP, LEP-R and other factors was analyzed by Pearson's correlation analysis. Peripheral pancytopenia (reduced count of white blood cells, red blood cells, hemoglobin and platelets), abnormal immune factor levels and histological changes in bone marrow sections were detected in the AA model mice, suggesting that these mice mimicked the pathological changes commonly observed in AA. In addition, following the establishment of AA, the LEP level was gradually increased and the LEP-R level was reduced in the mice over time (P<0.05). The expression of adipogenic genes, including CCAAT/enhancer-binding protein (C/EBP)α, C/EBPβ and peroxisome proliferator-activated receptor γ, was markedly increased, while the expression of the osteogenic gene runt-related transcription factor 2 was reduced compared with the levels in the control group (P<0.05). Taken together, damage to LEP-R may lead to dysregulation of LEP and the enhancement of MSCs to differentiate into adipocytes, resulting in excessive fat in bone marrow of AA patients.
Collapse
Affiliation(s)
- Xiangcong Yin
- Hematology Diagnosis Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jie Yang
- Hematology Diagnosis Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yuhua Liu
- Department of Medicine, Qingzhou Traditional Chinese Medicine Hospital, Weifang, Shandong 262500, P.R. China
| | - Jian Zhang
- Department of Hematology, Rizhao People's Hospital, Rizhao, Shandong 276800, P.R. China
| | - Chunlei Xin
- Department of Hematology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Hongguo Zhao
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wei Wang
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xue Shi
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Zhongguang Cui
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Guanglun Li
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Chunting Zhao
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xiaodan Liu
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
24
|
Cyclin-Dependent Kinase 4/6 Inhibitor (Palbociclib) Induced Aplastic Anemia in a Patient with Metastatic Breast Cancer. Case Rep Hematol 2018; 2018:9249506. [PMID: 30647983 PMCID: PMC6311830 DOI: 10.1155/2018/9249506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/12/2018] [Accepted: 11/27/2018] [Indexed: 11/21/2022] Open
Abstract
Breast cancer is the most common cancer diagnosed in women worldwide. Over the years, breast cancer treatment has undergone revolutionary changes especially for women with hormone receptor positive metastatic disease. As a result, women are living longer with their disease, particularly in developed countries. The use of cyclin-dependent kinase (CDK) 4/6 inhibitors with antiestrogen therapy is a relatively new therapeutic option which has been shown to improve progression-free survival. Hematologic adverse events, most frequently neutropenia, are well-known side effects of CDK 4/6 inhibitors. However, to our knowledge, aplastic anemia has never been reported. We report a case of aplastic anemia in a patient with metastatic breast cancer treated with palbociclib after multiple prior lines of therapy.
Collapse
|
25
|
Medinger M, Drexler B, Lengerke C, Passweg J. Pathogenesis of Acquired Aplastic Anemia and the Role of the Bone Marrow Microenvironment. Front Oncol 2018; 8:587. [PMID: 30568919 PMCID: PMC6290278 DOI: 10.3389/fonc.2018.00587] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/22/2018] [Indexed: 12/18/2022] Open
Abstract
Aplastic anemia (AA) is characterized by bone marrow (BM) hypocellularity, resulting in peripheral cytopenias. An antigen-driven and likely auto-immune dysregulated T-cell homeostasis results in hematopoietic stem cell injury, which ultimately leads to the pathogenesis of the acquired form of this disease. Auto-immune and inflammatory processes further influence the disease course as well as response rate to therapy, mainly consisting of intensive immunosuppressive therapy and allogeneic hematopoietic cell transplantation. Bone marrow hematopoietic stem and progenitor cells are strongly regulated by the crosstalk with the surrounding microenvironment and its components like mesenchymal stromal cells, also consistently altered in AA. Whether latter is a contributing cause or rather consequence of the disease remains an open question. Overall, niche disruption may contribute to disease progression, sustain pancytopenia and promote clonal evolution. Here we review the existing knowledge on BM microenvironmental changes in acquired AA and discuss their relevance for the pathogenesis and therapy.
Collapse
Affiliation(s)
- Michael Medinger
- Division of Internal Medicine, Department of Medicine, University Hospital Basel, Basel, Switzerland.,Division of Hematology, Department of Medicine, University Hospital Basel, Basel, Switzerland
| | - Beatrice Drexler
- Division of Hematology, Department of Medicine, University Hospital Basel, Basel, Switzerland
| | - Claudia Lengerke
- Division of Hematology, Department of Medicine, University Hospital Basel, Basel, Switzerland
| | - Jakob Passweg
- Division of Hematology, Department of Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
26
|
Scheinberg P. Activity of eltrombopag in severe aplastic anemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:450-456. [PMID: 30504345 PMCID: PMC6245975 DOI: 10.1182/asheducation-2018.1.450] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Since the approval of horse antithymocyte globulin (ATG) decades ago, there was a long hiatus in therapies with activity in severe aplastic anemia (SAA). This scenario changed in 2014 when eltrombopag, a thrombopoietin receptor agonist, was approved for SAA after an insufficient response to initial immunosuppressive therapy (IST). The basis for this approval was the observation of single-agent activity of eltrombopag in this patient population, where 40% to 50% recovered blood counts at times involving >1 lineage. The achievement of transfusion independence confirmed the clinical benefit of this approach. Increase in marrow cellularity and CD34+ cells suggested a recovery to a more functioning bone marrow. Further in its development, eltrombopag was associated with standard horse ATG plus cyclosporine in first line, producing increases in overall (at about 90%) and complete response rates (at about 40%) and leading to transfusion independence and excellent survival. Interestingly, best results were observed when all drugs were started simultaneously. The cumulative incidence of clonal cytogenetic abnormalities to date has compared favorably with the vast experience with IST alone in SAA. Longer follow-up will help in define these long-term risks. In this review, the development of eltrombopag in SAA will be discussed.
Collapse
Affiliation(s)
- Phillip Scheinberg
- Division of Hematology, Hospital A Beneficência Portuguesa, Sao Paulo, Brazil
| |
Collapse
|
27
|
Luzzatto L, Risitano AM. Advances in understanding the pathogenesis of acquired aplastic anaemia. Br J Haematol 2018; 182:758-776. [DOI: 10.1111/bjh.15443] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lucio Luzzatto
- Muhimbili University of Health and Allied Sciences; Dar-es-Salaam Tanzania
| | - Antonio M. Risitano
- Department of Clinical Medicine and Surgery; Federico II University; Naples Italy
| |
Collapse
|
28
|
Hartman ES, Brindley EC, Papoin J, Ciciotte SL, Zhao Y, Peters LL, Blanc L. Increased Reactive Oxygen Species and Cell Cycle Defects Contribute to Anemia in the RASA3 Mutant Mouse Model s cat. Front Physiol 2018; 9:689. [PMID: 29922180 PMCID: PMC5996270 DOI: 10.3389/fphys.2018.00689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/17/2018] [Indexed: 01/17/2023] Open
Abstract
RASA3 is a Ras GTPase activating protein that plays a critical role in blood formation. The autosomal recessive mouse model scat (severe combined anemia and thrombocytopenia) carries a missense mutation in Rasa3. Homozygotes present with a phenotype characteristic of bone marrow failure that is accompanied by alternating episodes of crisis and remission. The mechanism leading to impaired erythropoiesis and peripheral cell destruction as evidenced by membrane fragmentation in scat is unclear, although we previously reported that the mislocalization of RASA3 to the cytosol of reticulocytes and mature red cells plays a role in the disease. In this study, we further characterized the bone marrow failure in scat and found that RASA3 plays a central role in cell cycle progression and maintenance of reactive oxygen species (ROS) levels during terminal erythroid differentiation, without inducing apoptosis of the precursors. In scat mice undergoing crises, there is a consistent pattern of an increased proportion of cells in the G0/G1 phase at the basophilic and polychromatophilic stages of erythroid differentiation, suggesting that RASA3 is involved in the G1 checkpoint. However, this increase in G1 is transient, and either resolves or becomes indiscernible by the orthochromatic stage. In addition, while ROS levels are normal early in erythropoiesis, there is accumulation of superoxide levels at the reticulocyte stage (DHE increased 40% in scat; p = 0.02) even though mitochondria, a potential source for ROS, are eliminated normally. Surprisingly, apoptosis is significantly decreased in the scat bone marrow at the proerythroblastic (15.3%; p = 0.004), polychromatophilic (8.5%; p = 0.01), and orthochromatic (4.2%; p = 0.02) stages. Together, these data indicate that ROS accumulation at the reticulocyte stage, without apoptosis, contributes to the membrane fragmentation observed in scat. Finally, the cell cycle defect and increased levels of ROS suggest that scat is a model of bone marrow failure with characteristics of aplastic anemia.
Collapse
Affiliation(s)
- Emily S Hartman
- Laboratory of Developmental Erythropoiesis, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Elena C Brindley
- Laboratory of Developmental Erythropoiesis, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Julien Papoin
- Laboratory of Developmental Erythropoiesis, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | | | - Yue Zhao
- The Jackson Laboratory, Bar Harbor, ME, United States
| | | | - Lionel Blanc
- Laboratory of Developmental Erythropoiesis, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States.,Department of Molecular Medicine and Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
29
|
Scheinberg P. Recent Advances and Long-Term Results of Medical Treatment of Acquired Aplastic Anemia: Are Patients Cured? Hematol Oncol Clin North Am 2018; 32:609-618. [PMID: 30047414 DOI: 10.1016/j.hoc.2018.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Horse antithymocyte globulin plus cyclosporine remains standard immunosuppressive therapy in severe aplastic anemia, with hematologic response rates of 60% to 70%. In those refractory to this regimen, a second course of therapy with rabbit antithymocyte globulin plus cyclosporine or alemtuzumab produces responses in 30% to 40%. Eltrombopag, a thrombopoietin receptor agonist, showed activity as a single agent in those refractory to initial immunosuppression with hematologic response rates of 40% to 50%. When combined with immunosuppression as frontline therapy, eltrombopag increased the rate of overall and complete response rates. Longer follow-up is needed to better define these outcomes.
Collapse
Affiliation(s)
- Phillip Scheinberg
- Division of Hematology, Hospital A Beneficência Portuguesa, Rua Martiniano de Carvalho, 951, São Paulo 01321-001, Brazil.
| |
Collapse
|
30
|
McCabe A, Smith JNP, Costello A, Maloney J, Katikaneni D, MacNamara KC. Hematopoietic stem cell loss and hematopoietic failure in severe aplastic anemia is driven by macrophages and aberrant podoplanin expression. Haematologica 2018; 103:1451-1461. [PMID: 29773597 PMCID: PMC6119154 DOI: 10.3324/haematol.2018.189449] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
Abstract
Severe aplastic anemia (SAA) results from profound hematopoietic stem cell loss. T cells and interferon gamma (IFNγ) have long been associated with SAA, yet the underlying mechanisms driving hematopoietic stem cell loss remain unknown. Using a mouse model of SAA, we demonstrate that IFNγ-dependent hematopoietic stem cell loss required macrophages. IFNγ was necessary for bone marrow macrophage persistence, despite loss of other myeloid cells and hematopoietic stem cells. Depleting macrophages or abrogating IFNγ signaling specifically in macrophages did not impair T-cell activation or IFNγ production in the bone marrow but rescued hematopoietic stem cells and reduced mortality. Thus, macrophages are not required for induction of IFNγ in SAA and rather act as sensors of IFNγ. Macrophage depletion rescued thrombocytopenia, increased bone marrow megakaryocytes, preserved platelet-primed stem cells, and increased the platelet-repopulating capacity of transplanted hematopoietic stem cells. In addition to the hematopoietic effects, SAA induced loss of non-hematopoietic stromal populations, including podoplanin-positive stromal cells. However, a subset of podoplanin-positive macrophages was increased during disease, and blockade of podoplanin in mice was sufficient to rescue disease. Our data further our understanding of disease pathogenesis, demonstrating a novel role for macrophages as sensors of IFNγ, thus illustrating an important role for the microenvironment in the pathogenesis of SAA.
Collapse
Affiliation(s)
- Amanda McCabe
- Department for Immunology and Microbial Disease, Albany Medical College, NY, USA
| | - Julianne N P Smith
- Department for Immunology and Microbial Disease, Albany Medical College, NY, USA
| | - Angelica Costello
- Department for Immunology and Microbial Disease, Albany Medical College, NY, USA
| | - Jackson Maloney
- Department for Immunology and Microbial Disease, Albany Medical College, NY, USA
| | - Divya Katikaneni
- Department for Immunology and Microbial Disease, Albany Medical College, NY, USA
| | | |
Collapse
|
31
|
|
32
|
Mesenchymal Stem Cell Benefits Observed in Bone Marrow Failure and Acquired Aplastic Anemia. Stem Cells Int 2017; 2017:8076529. [PMID: 29333168 PMCID: PMC5733198 DOI: 10.1155/2017/8076529] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/15/2017] [Accepted: 09/10/2017] [Indexed: 12/16/2022] Open
Abstract
Acquired aplastic anemia (AA) is a type of bone marrow failure (BMF) syndrome characterized by partial or total bone marrow (BM) destruction resulting in peripheral blood (PB) pancytopenia, which is the reduction in the number of red blood cells (RBC) and white blood cells (WBC), as well as platelets (PLT). The first-line treatment option of AA is given by hematopoietic stem cell (HSCs) transplant and/or immunosuppressive (IS) drug administration. Some patients did not respond to the treatment and remain pancytopenic following IS drugs. The studies are in progress to test the efficacy of adoptive cellular therapies as mesenchymal stem cells (MSCs), which confer low immunogenicity and are reliable allogeneic transplants in refractory severe aplastic anemia (SAA) cases. Moreover, bone marrow stromal cells (BMSC) constitute an essential component of the hematopoietic niche, responsible for stimulating and enhancing the proliferation of HSCs by secreting regulatory molecules and cytokines, providing stimulus to natural BM microenvironment for hematopoiesis. This review summarizes scientific evidences of the hematopoiesis improvements after MSC transplant, observed in acquired AA/BMF animal models as well as in patients with acquired AA. Additionally, we discuss the direct and indirect contribution of MSCs to the pathogenesis of acquired AA.
Collapse
|
33
|
Weston WW, Jurecic V, Jurecic R. Rapamycin targets several pathophysiological features of immune-mediated bone marrow failure in murine models. Haematologica 2017; 102:1627-1628. [PMID: 28965088 DOI: 10.3324/haematol.2017.175497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Wendy W Weston
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, FL.,Cell Therapy Institute, College of Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Vesna Jurecic
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, FL
| | - Roland Jurecic
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, FL
| |
Collapse
|
34
|
Somatic HLA Mutations Expose the Role of Class I-Mediated Autoimmunity in Aplastic Anemia and its Clonal Complications. Blood Adv 2017; 1:1900-1910. [PMID: 28971166 DOI: 10.1182/bloodadvances.2017010918] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acquired aplastic anemia (aAA) is an acquired deficiency of early hematopoietic cells, characterized by inadequate blood production, and a predisposition to myelodysplastic syndrome (MDS) and leukemia. Although its exact pathogenesis is unknown, aAA is thought to be driven by Human Leukocyte Antigen (HLA)-restricted T cell immunity, with earlier studies favoring HLA class II-mediated pathways. Using whole exome sequencing (WES), we recently identified two aAA patients with somatic mutations in HLA class I genes. We hypothesized that HLA class I mutations are pathognomonic for autoimmunity in aAA, but were previously underappreciated because the Major Histocompatibility Complex (MHC) region is notoriously difficult to analyze by WES. Using a combination of targeted deep sequencing of HLA class I genes and single nucleotide polymorphism array (SNP-A) genotyping we screened 66 aAA patients for somatic HLA class I loss. We found somatic HLA loss in eleven patients (17%), with thirteen loss-of-function mutations in HLA-A*33:03, HLA-A*68:01, HLA-B*14:02 and HLA-B*40:02 alleles. Three patients had more than one mutation targeting the same HLA allele. Interestingly, HLA-B*14:02 and HLA-B*40:02 were significantly overrepresented in aAA patients, compared to ethnicity-matched controls. Patients who inherited the targeted HLA alleles, regardless of HLA mutation status, had a more severe disease course with more frequent clonal complications as assessed by WES, SNP-A, and metaphase cytogenetics, and more frequent secondary MDS. The finding of recurrent HLA class I mutations provides compelling evidence for a predominant HLA class I-driven autoimmunity in aAA, and establishes a novel link between aAA patients' immunogenetics and clonal evolution.
Collapse
|
35
|
Abstract
Hypoproliferative anemia results from the inability of bone marrow to produce adequate numbers of red blood cells. The list of conditions that cause hypoproliferative anemia is long, starting from common etiologies as iron deficiency to rarer diagnoses of constitutional bone marrow failure syndromes. There is no perfect diagnostic algorithm, and clinical data may not always clearly distinguish "normal" from "abnormal", yet it is important for practicing clinicians to recognize each condition so that treatment can be initiated promptly. This review describes diagnostic approaches to hypoproliferative anemia, with particular emphasis on bone marrow failure syndromes.
Collapse
Affiliation(s)
- Kazusa Ishii
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
36
|
Wang Y, Yan T, Ma L, Liu B. Effects of the Total Saponins fromDioscorea nipponicaon Immunoregulation in Aplastic Anemia Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:289-303. [PMID: 25787297 DOI: 10.1142/s0192415x15500196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dioscorea nipponica Makino, a popular folk medicine, exerts anti-inflammation properties. The present study investigated the therapeutic effect of the total saponins from Dioscorea nipponica Makino (TSDN) on aplastic anemia (AA) and possible immune regulation mechanisms. Using a mouse model of AA, three different doses of TSDN were orally administrated for 14 consecutive days. We first demonstrated that TSDN was found to be effective in alleviating pancytopenia with a hypocellular bone marrow as compared with AA model group. Moreover, gastrogavage administration of a medium dose of TSDN was found to dramatically increase the percentage of CD4+cells in bone marrow nucleated cells (BMNC) and restore the CD4+/CD8+ratio. The pro-inflammatory cytokine concentrations of IL-2 and IFN-γ were significantly decreased, and anti-inflammatory cytokine IL-4 was significantly increased in culture supernatant of BMNC. Further investigations showed that TSDN obviously inhibited Fas–FasL-induced BMNC apoptosis as well as effectively suppressed intracellular apoptosis protein of caspase-3 and -8 expressions. Taken together, these findings suggested that TSDN could alleviate AA by elevating the CD4+/CD8+T-cell ratio, inhibiting inflammatory Th1-cytokines, and exerting anti-apoptosis effects.
Collapse
Affiliation(s)
- Yuliang Wang
- Department of Clinical Laboratory Medicine, Tianjin First Central Hospital, Key Laboratory for Critical Care Medicine of the Ministry of Health, Tianjin 300192, China
| | - Tiangai Yan
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lin Ma
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Baoshan Liu
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
37
|
CXCR4 expression on pathogenic T cells facilitates their bone marrow infiltration in a mouse model of aplastic anemia. Blood 2015; 125:2087-94. [PMID: 25647836 DOI: 10.1182/blood-2014-08-594796] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aplastic anemia (AA) is a disease characterized by T-cell-mediated destruction of bone marrow (BM) hematopoietic stem and progenitor cells. Physiologically, T cells migrate to the BM in response to chemokines, such as SDF-1α, the ligand for CXCR4. However, how T cells traffic to the BM in AA is poorly understood. CXCR4 is aberrantly expressed in immune-mediated diseases and its regulation by nuclear factor-κB (NF-κB) in cancer models is well documented. In this study, we show that CXCR4 is highly expressed on BM-infiltrating CD4(+) and CD8(+) T cells in a mouse model of AA. Inhibiting CXCR4 in AA mice, using CXCR4(-/-) splenocytes or AMD3100, significantly reduced BM infiltration of T cells. We also report that NF-κB occupancy at the CXCR4 promoter is enhanced in BM-infiltrating CD8(+) T cells of AA mice. Moreover, inhibiting NF-κB signaling in AA mice using Bay11 or dehydroxymethylepoxyquinomicin, or transferring p50(-/-) splenocytes, decreased CXCR4 expression on CD8(+) T cells, significantly reduced BM infiltration of T cells, and strongly attenuated disease symptoms. Remarkably, therapeutic administration of Bay11 significantly extended survival of AA mice. Overall, we demonstrate that CXCR4 mediates migration of pathogenic T cells to the BM in AA mice, and inhibiting NF-κB signaling may represent a novel therapeutic approach to treating AA.
Collapse
|
38
|
Chatterjee R, Chattopadhyay S, Sanyal S, Daw S, Law S. Pathophysiological Scenario of Hematopoietic Disorders: A Comparative Study of Aplastic Anemia, Myelodysplastic Syndrome and Leukemia in Experimental Animals. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s12595-014-0132-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
OCH ameliorates bone marrow failure in mice via downregulation of T-bet expression. J Immunol Res 2014; 2014:928743. [PMID: 25254224 PMCID: PMC4164259 DOI: 10.1155/2014/928743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/16/2014] [Accepted: 08/04/2014] [Indexed: 12/12/2022] Open
Abstract
The aim of this study is to evaluate the immune mechanism of OCH in the treatment of AA (also named bone marrow failure, BMF) induced in mice. OCH at a dose of 400 μg/kg was injected intraperitoneally (I.P.) prior to the induction of BMF. Our study showed that the incidence of BMF was 100% in BMF group and 13% in OCH treatment group. Significant higher level of IL-4 and lower level of IFN-γ were observed in OCH group than that in BMF group (P < 0.05) as well as untreated group over BMF (P < 0.05). However, there was no significant difference between OCH and untreated group. Compared with untreated, the expression level of T-bet in OCH and BMF was all significantly higher. However, T-bet expression level was lower in OCH than in BMF. In addition, OCH treatment increased NKT cell fractions of bone marrow and the colonies of CFU-GM. In conclusion, treatment of OCH prior to the induction of BMF could prevent the incidence of BMF possibly through downregulating T-bet expression leading to the transition of immune response from Th1 to Th2, suggesting OCH might be a new therapeutic approach in the treatment of BMF or AA.
Collapse
|
40
|
Tzankov A, Medinger M. Aplastic anemia: possible associations with lymphoproliferative neoplasms. Int J Lab Hematol 2014; 36:382-7. [DOI: 10.1111/ijlh.12224] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/28/2014] [Indexed: 01/20/2023]
Affiliation(s)
- A. Tzankov
- Pathology; University Hospital Basel; Basel Switzerland
| | - M. Medinger
- Hematology; University Hospital Basel; Basel Switzerland
| |
Collapse
|
41
|
Young NS. Current concepts in the pathophysiology and treatment of aplastic anemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2013; 2013:76-81. [PMID: 24319166 PMCID: PMC6610029 DOI: 10.1182/asheducation-2013.1.76] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Historically viewed in isolation as an odd, rare, and invariably fatal blood disease, aplastic anemia is now of substantial interest for its immune pathophysiology, its relationship to constitutional BM failure syndromes and leukemia, and the success of both stem cell transplantation and immunosuppressive therapies in dramatically improving survival of patients. Once relegated to a few presentations in the red cell and anemia sessions of the ASH, the Society now sponsors multiple simultaneous sessions and plenary and scientific committee presentations on these topics. This update emphasizes developments in our understanding of immune mechanisms and hematopoietic stem cell biology and new clinical approaches to stem cell stimulation as a therapy, alone and in combination with conventional suppression of the aberrant immune system.
Collapse
Affiliation(s)
- Neal S. Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|