1
|
Garbayo E, El Moukhtari SH, Rodríguez-Nogales C, Agirre X, Rodriguez-Madoz JR, Rodriguez-Marquez P, Prósper F, Couvreur P, Blanco-Prieto MJ. RNA-loaded nanoparticles for the treatment of hematological cancers. Adv Drug Deliv Rev 2024; 214:115448. [PMID: 39303823 DOI: 10.1016/j.addr.2024.115448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/07/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
Hematological cancers encompass a diverse group of malignancies affecting the blood, bone marrow, lymph nodes, and spleen. These disorders present unique challenges due to their complex etiology and varied clinical manifestations. Despite significant advancements in understanding and treating hematological malignancies, innovative therapeutic approaches are continually sought to enhance patient outcomes. This review highlights the application of RNA nanoparticles (RNA-NPs) in the treatment of hematological cancers. We delve into detailed discussions on in vitro and preclinical studies involving RNA-NPs for adult patients, as well as the application of RNA-NPs in pediatric hematological cancer. The review also addresses ongoing clinical trials involving RNA-NPs and explores the emerging field of CAR-T therapy engineered by RNA-NPs. Finally, we discuss the challenges still faced in translating RNA-NP research to clinics.
Collapse
Affiliation(s)
- Elisa Garbayo
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain
| | - Souhaila H El Moukhtari
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Carlos Rodríguez-Nogales
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain
| | - Xabier Agirre
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Juan R Rodriguez-Madoz
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Paula Rodriguez-Marquez
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Felipe Prósper
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain; Departmento de Hematología and CCUN, Clínica Universidad de Navarra, University of Navarra, Avenida Pío XII 36, 31008 Pamplona, Spain
| | - Patrick Couvreur
- Institut Galien Paris-Sud, UMR CNRS 8612, Université Paris-Saclay, Orsay Cedex, France.
| | - María J Blanco-Prieto
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain.
| |
Collapse
|
2
|
Liu Y, Wu H, Zhou G, Zhang D, Yang Q, Li Y, Yang X, Sun J. Role of M6a Methylation in Myocardial Ischemia-Reperfusion Injury and Doxorubicin-Induced Cardiotoxicity. Cardiovasc Toxicol 2024; 24:918-928. [PMID: 39026038 DOI: 10.1007/s12012-024-09898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Cardiovascular disease remains the leading cause of death worldwide, with acute myocardial infarction and anticancer drug-induced cardiotoxicity being the significant factors. The most effective treatment for acute myocardial infarction is rapid restoration of coronary blood flow by thrombolytic therapy or percutaneous coronary intervention. However, myocardial ischemia-reperfusion injury (MI/RI) after reperfusion therapy is common in acute myocardial infarction, thus affecting the prognosis of patients with acute myocardial infarction. There is no effective treatment for MI/RI. Anthracyclines such as Doxorubicin (DOX) have limited clinical use due to their cardiotoxicity, and the mechanism of DOX-induced cardiac injury is complex and not yet fully understood. N6-methyladenosine (m6A) plays a crucial role in many biological processes. Emerging evidence suggests that m6A methylation plays a critical regulatory role in MI/RI and DOX-induced cardiotoxicity (DIC), suggesting that m6A may serve as a novel biomarker and therapeutic target for MI/RI and DIC. M6A methylation may mediate the pathophysiological processes of MI/RI and DIC by regulating cellular autophagy, apoptosis, oxidative stress, and inflammatory response. In this paper, we first focus on the relationship between m6A methylation and MI/RI, then further elucidate that m6A methylation may mediate the pathophysiological process of MI/RI through the regulation of cellular autophagy, apoptosis, oxidative stress, and inflammatory response. Finally, briefly outline the roles played by m6A in DIC, which will provide a new methodology and direction for the research and treatment of MI/RI and DIC.
Collapse
Affiliation(s)
- Yanfang Liu
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Hui Wu
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei, China.
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China.
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China.
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China.
| | - Gang Zhou
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Dong Zhang
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Qingzhuo Yang
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yi Li
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Xiaoting Yang
- Institute of Cardiovascular Diseases, China Three Gorges University, Hubei, China
- Department of Cardiology, Yichang Central People's Hospital, Yichang, 443003, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Jianfeng Sun
- Department of Vascular Surgery, The First College of Medical Science, Yichang Central People's Hospital, China Three Gorges University, Hubei, 443000, China
| |
Collapse
|
3
|
Lambert M, Jambon S, Bouhlel MA, Depauw S, Vrevin J, Blanck S, Marot G, Figeac M, Preudhomme C, Quesnel B, Boykin DW, David‐Cordonnier M. Induction of AML cell differentiation using HOXA9/DNA binding inhibitors as a potential therapeutic option for HOXA9-dependent AML. Hemasphere 2024; 8:e77. [PMID: 38716146 PMCID: PMC11072194 DOI: 10.1002/hem3.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/15/2024] [Accepted: 04/06/2024] [Indexed: 06/06/2024] Open
Abstract
The mainstay of acute myeloid leukemia (AML) treatment still relies on traditional chemotherapy, with a survival rate of approximately 30% for patients under 65 years of age and as low as 5% for those beyond. This unfavorable prognosis primarily stems from frequent relapses, resistance to chemotherapy, and limited approved targeted therapies for specific AML subtypes. Around 70% of all AML cases show overexpression of the transcription factor HOXA9, which is associated with a poor prognosis, increased chemoresistance, and higher relapse rates. However, direct targeting of HOXA9 in a clinical setting has not been achieved yet. The dysregulation caused by the leukemic HOXA9 transcription factor primarily results from its binding activity to DNA, leading to differentiation blockade. Our previous investigations have identified two HOXA9/DNA binding competitors, namely DB1055 and DB818. We assessed their antileukemic effects in comparison to HOXA9 knockdown or cytarabine treatment. Using human AML cell models, DB1055 and DB818 induced in vitro cell growth reduction, death, differentiation, and common transcriptomic deregulation but did not impact human CD34+ bone marrow cells. Furthermore, DB1055 and DB818 exhibited potent antileukemic activities in a human THP-1 AML in vivo model, leading to the differentiation of monocytes into macrophages. In vitro assays also demonstrated the efficacy of DB1055 and DB818 against AML blasts from patients, with DB1055 successfully reducing leukemia burden in patient-derived xenografts in NSG immunodeficient mice. Our findings indicate that inhibiting HOXA9/DNA interaction using DNA ligands may offer a novel differentiation therapy for the future treatment of AML patients dependent on HOXA9.
Collapse
Affiliation(s)
- Mélanie Lambert
- Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, UMR9020‐U1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to TherapiesLilleFrance
- Université Sorbonne Paris NordBobignyFrance
| | - Samy Jambon
- Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, UMR9020‐U1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to TherapiesLilleFrance
| | - Mohamed A. Bouhlel
- Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, UMR9020‐U1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to TherapiesLilleFrance
| | - Sabine Depauw
- Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, UMR9020‐U1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to TherapiesLilleFrance
| | - Julie Vrevin
- Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, UMR9020‐U1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to TherapiesLilleFrance
| | - Samuel Blanck
- Univ. Lille, CHU Lille, ULR 2694—METRICSLilleFrance
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41—UAR 2014—PLBS, BililleLilleFrance
| | - Guillemette Marot
- Univ. Lille, CHU Lille, ULR 2694—METRICSLilleFrance
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41—UAR 2014—PLBS, BililleLilleFrance
- Inria, MODAL: Models for Data Analysis and LearningLilleFrance
| | - Martin Figeac
- Plateau de Génomique Fonctionnelle et Structurale, CHU Lille, Univ. Lille, FranceLilleFrance
| | - Claude Preudhomme
- Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, UMR9020‐U1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to TherapiesLilleFrance
| | - Bruno Quesnel
- Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, UMR9020‐U1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to TherapiesLilleFrance
| | - David W. Boykin
- Department of ChemistryGeorgia State UniversityAtlantaGeorgiaUSA
| | - Marie‐Hélène David‐Cordonnier
- Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, UMR9020‐U1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to TherapiesLilleFrance
| |
Collapse
|
4
|
Liu HM, Zhou Y, Chen HX, Wu JW, Ji SK, Shen L, Wang SP, Liu HM, Liu Y, Dai XJ, Zheng YC. LSD1 in drug discovery: From biological function to clinical application. Med Res Rev 2024; 44:833-866. [PMID: 38014919 DOI: 10.1002/med.22000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/18/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) is a flavin adenine dinucleotide (FAD) dependent monoamine oxidase (MAO) that erases the mono-, and dimethylation of histone 3 lysine 4 (H3K4), resulting in the suppression of target gene transcriptions. Besides, it can also demethylate some nonhistone substrates to regulate their biological functions. As reported, LSD1 is widely upregulated and plays a key role in several kinds of cancers, pharmacological or genetic ablation of LSD1 in cancer cells suppresses cell aggressiveness by several distinct mechanisms. Therefore, numerous LSD1 inhibitors, including covalent and noncovalent, have been developed and several of them have entered clinical trials. Herein, we systemically reviewed and discussed the biological function of LSD1 in tumors, lymphocytes as well as LSD1-targeting inhibitors in clinical trials, hoping to benefit the field of LSD1 and its inhibitors.
Collapse
Affiliation(s)
- Hui-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Zhou
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - He-Xiang Chen
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiang-Wan Wu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shi-Kun Ji
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Liang Shen
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shao-Peng Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Liu
- Department of Pharmacy, Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xing-Jie Dai
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
He S, Li Y, Wang L, Li Y, Xu L, Cai D, Zhou J, Yu L. DNA methylation landscape reveals GNAS as a decitabine-responsive marker in patients with acute myeloid leukemia. Neoplasia 2024; 49:100965. [PMID: 38245923 PMCID: PMC10830847 DOI: 10.1016/j.neo.2024.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND The demethylation agent decitabine (DAC) is a pivotal non-intensive alternative treatment for acute myeloid leukemia (AML). However, patient responses to DAC are highly variable, and predictive biomarkers are warranted. Herein, the DNA methylation landscape of patients treated with a DAC-based combination regimen was compared with that of patients treated with standard chemotherapy to develop a molecular approach for predicting clinical response to DAC. METHODS Twenty-five non-M3 AML patients were enrolled and subjected to DNA methylation sequencing and profiling to identify differentially methylated regions (DMRs) and genes of interest. Moreover, the effects of a DAC-based regimen on apoptosis and gene expression were explored using Kasumi-1 and K562 cells. RESULTS Overall, we identified 541 DMRs that were specifically responsive to DAC, among which 172 DMRs showed hypomethylation patterns upon treatment and were aligned with the promoter regions of 182 genes. In particular, GNAS was identified as a critical DAC-responsive gene, with in vitro GNAS downregulation leading to reduced cell apoptosis induced by DAC and cytarabine combo treatment. CONCLUSIONS We found that GNAS is a DAC-sensitive gene in AML and may serve as a prognostic biomarker to assess the responsiveness of patients with AML to DAC-based therapy.
Collapse
Affiliation(s)
- Shujiao He
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Xueyuan Ave 1098, Nanshan District, Shenzhen 518000, China
| | - Yan Li
- Department of Hematology, Peking Third Hospital, 49 North Garden Road, Beijing 100191, China; Department of Haematology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Lei Wang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Xueyuan Ave 1098, Nanshan District, Shenzhen 518000, China
| | - Yisheng Li
- Shenzhen Haoshi Biotechnology Co., Ltd, 155 Hong Tian Rd, Baoan District, Shenzhen 518125, China; Shenzhen University-Haoshi Cell Therapy Institute, 155 Hong Tian Rd, Baoan District, Shenzhen 518125, China
| | - Lu Xu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Xueyuan Ave 1098, Nanshan District, Shenzhen 518000, China
| | - Diya Cai
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Xueyuan Ave 1098, Nanshan District, Shenzhen 518000, China
| | - Jingfeng Zhou
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Xueyuan Ave 1098, Nanshan District, Shenzhen 518000, China.
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Xueyuan Ave 1098, Nanshan District, Shenzhen 518000, China.
| |
Collapse
|
6
|
Chin L, Wong CYG, Gill H. Targeting and Monitoring Acute Myeloid Leukaemia with Nucleophosmin-1 ( NPM1) Mutation. Int J Mol Sci 2023; 24:3161. [PMID: 36834572 PMCID: PMC9958584 DOI: 10.3390/ijms24043161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Mutations in NPM1, also known as nucleophosmin-1, B23, NO38, or numatrin, are seen in approximately one-third of patients with acute myeloid leukaemia (AML). A plethora of treatment strategies have been studied to determine the best possible approach to curing NPM1-mutated AML. Here, we introduce the structure and function of NPM1 and describe the application of minimal residual disease (MRD) monitoring using molecular methods by means of quantitative polymerase chain reaction (qPCR), droplet digital PCR (ddPCR), next-generation sequencing (NGS), and cytometry by time of flight (CyTOF) to target NPM1-mutated AML. Current drugs, now regarded as the standard of care for AML, as well as potential drugs still under development, will also be explored. This review will focus on the role of targeting aberrant NPM1 pathways such as BCL-2 and SYK; as well as epigenetic regulators (RNA polymerase), DNA intercalators (topoisomerase II), menin inhibitors, and hypomethylating agents. Aside from medication, the effects of stress on AML presentation have been reported, and some possible mechanisms outlined. Moreover, targeted strategies will be briefly discussed, not only for the prevention of abnormal trafficking and localisation of cytoplasmic NPM1 but also for the elimination of mutant NPM1 proteins. Lastly, the advancement of immunotherapy such as targeting CD33, CD123, and PD-1 will be mentioned.
Collapse
Affiliation(s)
| | | | - Harinder Gill
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
7
|
Li Z, Shi W, Lu X, Lu H, Cao X, Tang L, Yan H, Zhong Z, You Y, Xia L, Hu Y, Wang H. Decitabine-Intensified Modified Busulfan/Cyclophosphamide Conditioning Regimen Improves Survival in Acute Myeloid Leukemia Patients Undergoing Related Donor Hematopoietic Stem Cell Transplantation: A Propensity Score Matched Analysis. Front Oncol 2022; 12:844937. [PMID: 35371981 PMCID: PMC8966032 DOI: 10.3389/fonc.2022.844937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
To identify the benefit of decitabine (Dec)-intensified myeloablative conditioning on the outcomes of patients with acute myeloid leukemia (AML) after related donor hematopoietic stem cell transplantation (HSCT), we performed a retrospective matched-pair study from a pool of 156 patients to evaluate Dec [20 mg/m2/day intravenously (i.v.) on days -11 to -7]-intensified modified busulfan/cyclophosphamide (mBuCy) conditioning regimen vs. mBuCy regimen in 92 AML patients, with 46 patients in each cohort. The cumulative incidence of grade II-IV acute graft-versus-host disease (aGVHD) was lower in the Dec group (15.2% ± 0.3% vs. 32.6% ± 0.5%, P = 0.033). Compared with mBuCy group (15.5% ± 0.3%), a significantly higher proportion of limited chronic GVHD (cGVHD) in Dec group (35% ± 0.6%) was observed (P = 0.025). Dec-intensified mBuCy conditioning was associated with better 2-year overall survival (OS) and GVHD-free relapse-free survival (GRFS) (81% ± 6.2% vs. 59.4% ± 7.5%, P = 0.03; 58.7% ± 8.1% vs. 40.9% ± 7.3%, P = 0.042; respectively). Our results also elucidated that the Dec group had better 2-year OS and lower 2-year cumulative incidence of relapse (CIR) in patients acquiring haploidentical HSCT than that of the mBuCy group (84.8% ± 7.1% vs. 58.2% ± 10.3%, P = 0.047; 17.9% ± 0.8% vs. 40.0% ± 1.0%, P = 0.036; respectively), which did not increase the treatment-related mortality and regimen-associated toxicities. Dec-intensified myeloablative regimen and high-risk stratification were the variables associated with OS, leukemia-free survival (LFS), and GRFS in multivariate analysis. In high-risk patients, no differences were found in CIR, OS, LFS, and GRFS between the two groups. These data indicated that Dec-intensified mBuCy conditioning regimen was associated with better survival than mBuCy regimen in AML patients, especially in patients undergoing haploidentical HSCT.
Collapse
Affiliation(s)
- Ziying Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Shi
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Lu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Lu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiena Cao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Yan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaodong Zhong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong You
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huafang Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Zhang X, Wang X, Wu T, Yin W, Yan J, Sun Y, Zhao D. Therapeutic potential of targeting LSD1/ KDM1A in cancers. Pharmacol Res 2021; 175:105958. [PMID: 34718134 DOI: 10.1016/j.phrs.2021.105958] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/21/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
LSD1 was the first histone demethylase identified by Professor Shi Yang and his team members in 2004. LSD1 employs FAD as its cofactor, which catalyzes the demethylation of H3K4 and H3K9. It is aberrantly overexpressed in different types of cancers and is associated with the growth, invasion, and metastasis of cancer cells. The knockout or inhibition of LSD1 could effectively suppress tumor development, and thus, it has become an attractive molecular target for cancer therapy. Moreover, many LSD1 inhibitors have been developed in preclinical and clinical trials to treat solid tumors and hematological malignancy. This study made an extensive review of the research obtained from the literature retrieval of electronic databases, such as PubMed, Web of Science, RCSB PDB, ClinicalTrials.gov, and EU clinical trials register. This review summarizes recent studies on the advances of LSD1 inhibitors in the literature, covering January 2015 to June 2021. It focuses on the function of LSD1 in tumor cells, summarizes the crystal structures of homo sapiens LSD1, reviews the structural characteristics of LSD1 inhibitors, compares the screening methods of LSD1 inhibitors, and proposes guidelines for the future exploitation of LSD1 inhibitors.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, P. R. China
| | - Xinran Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District, Beijing 102488, China
| | - Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, P. R. China
| | - Wenbo Yin
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, P. R. China
| | - Jiangkun Yan
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, P. R. China
| | - Yixiang Sun
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, P. R. China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, P. R. China.
| |
Collapse
|
9
|
Goel H, Rahul E, Gupta I, Chopra A, Ranjan A, Gupta AK, Meena JP, Viswanathan GK, Bakhshi S, Misra A, Hussain S, Kumar R, Singh A, Rath GK, Sharma A, Mittan S, Tanwar P. Molecular and genomic landscapes in secondary & therapy related acute myeloid leukemia. AMERICAN JOURNAL OF BLOOD RESEARCH 2021; 11:472-497. [PMID: 34824881 PMCID: PMC8610791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Acute myeloid leukemia (AML) is a complex, aggressive myeloid neoplasm characterized by frequent somatic mutations that influence different functional categories' genes, resulting in maturational arrest and clonal expansion. AML can arise de novo (dn-AML) or can be secondary AML (s-AML) refers to a leukemic process which may arise from an antecedent hematologic disorder (AHD-AML), mostly from a myelodysplastic syndrome (MDS) or myeloproliferative neoplasm (MPN) or can be the result of an antecedent cytotoxic chemotherapy or radiation therapy (therapy-related AML, t-AML). Clinical and biological features in secondary and therapy-related AML are distinct from de novo AML. Secondary and therapy-related AML occurs mainly in the elderly population and responds worse to therapy with higher relapse rates due to resistance to cytotoxic chemotherapy. Over the last decade, advances in molecular genetics have disclosed the sub-clonal architecture of secondary and therapy-related AML. Recent investigations have revealed that cytogenetic abnormalities and underlying genetic aberrations (mutations) are likely to be significant factors dictating prognosis and critical impacts on treatment outcome. Secondary and therapy-related AML have a poorer outcome with adverse cytogenetic abnormalities and higher recurrences of unfavorable mutations compared to de novo AML. In this review, we present an overview of the clinical features of secondary and therapy-related AML and address the function of genetic mutations implicated in the pathogenesis of secondary leukemia. Detailed knowledge of the pathogenetic mechanisms gives an overview of new prognostic markers, including targetable mutations that will presumably lead to the designing and developing novel molecular targeted therapies for secondary and therapy-related AML. Despite significant advances in knowing the genetic aspect of secondary and therapy-related AML, its influence on the disease's pathophysiology, standard treatment prospects have not significantly evolved during the past three decades. Thus, we conclude this review by summarizing the modern and developing treatment strategies in secondary and therapy-related acute myeloid leukemia.
Collapse
Affiliation(s)
- Harsh Goel
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital All India Institute of Medical SciencesNew Delhi 110029, India
| | - Ekta Rahul
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital All India Institute of Medical SciencesNew Delhi 110029, India
| | - Ishan Gupta
- All India Institute of Medical SciencesNew Delhi 110029, India
| | - Anita Chopra
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital All India Institute of Medical SciencesNew Delhi 110029, India
| | - Amar Ranjan
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital All India Institute of Medical SciencesNew Delhi 110029, India
| | - Aditya Kumar Gupta
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences New DelhiNew Delhi 110029, India
| | - Jagdish Prasad Meena
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences New DelhiNew Delhi 110029, India
| | - Ganesh Kumar Viswanathan
- Department of Hematology, All India Institute of Medical Sciences New DelhiNew Delhi 110029, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr.B.R.A. Institute Rotary Cancer Hospital All India Institute of Medical Sciences New DelhiNew Delhi 110029, India
| | - Aroonima Misra
- National Institute of Pathology, ICMRNew Delhi 110029, India
| | - Showket Hussain
- Division Of Molecular Oncology, National Institute of Cancer Prevention & Research I-7, Sector-39Noida 201301, India
| | - Ritesh Kumar
- Department of Radiation Oncology, Rudgers Cancer Institute of New JerseyNJ 07103, United States
| | - Archana Singh
- Department of Pathology, College of Medical Sciences, Rajasthan University of Health SciencesJaipur 302033, India
| | - GK Rath
- Department of Radiotherapy, Dr.B.R.A. Institute Rotary Cancer Hospital All India Institute of Medical Sciences New DelhiNew Delhi 110029, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences New DelhiNew Delhi 110029, India
| | - Sandeep Mittan
- Department of Cardiology, Ichan School of Medicine, Mount Sinai Hospital1468 Madison Avenue, New York 10028, United States
| | - Pranay Tanwar
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital All India Institute of Medical SciencesNew Delhi 110029, India
| |
Collapse
|
10
|
Romine KA, Nechiporuk T, Bottomly D, Jeng S, McWeeney SK, Kaempf A, Corces MR, Majeti R, Tyner JW. Monocytic differentiation and AHR signaling as Primary Nodes of BET Inhibitor Response in Acute Myeloid Leukemia. Blood Cancer Discov 2021; 2:518-531. [PMID: 34568834 DOI: 10.1158/2643-3230.bcd-21-0012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
To understand mechanisms of response to BET inhibitors (BETi), we mined the Beat AML functional genomic dataset and performed genome-wide CRISPR screens on BETi- sensitive and BETi- resistant AML cells. Both strategies revealed regulators of monocytic differentiation, SPI1, JUNB, FOS, and aryl-hydrocarbon receptor signaling (AHR/ARNT), as determinants of BETi response. AHR activation synergized with BETi while inhibition antagonized BETi-mediated cytotoxicity. Consistent with BETi sensitivity dependence on monocytic differentiation, ex vivo sensitivity to BETi in primary AML patient samples correlated with higher expression of monocytic markers CSF1R, LILRs, and VCAN. In addition, HL-60 cell line differentiation enhanced its sensitivity to BETi. Further, screens to rescue BETi sensitivity identified BCL2 and CDK6 as druggable vulnerabilities. Finally, monocytic AML patient samples refractory to venetoclax ex vivo were significantly more sensitive to combined BETi + venetoclax. Together, our work highlights mechanisms that could predict BETi response and identifies combination strategies to overcome resistance.
Collapse
Affiliation(s)
- Kyle A Romine
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Tamilla Nechiporuk
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Daniel Bottomly
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Portland, OR, USA
| | - Sophia Jeng
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Oregon Clinical and Translational Research Institute, Portland, OR, USA
| | - Shannon K McWeeney
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Portland, OR, USA.,Oregon Clinical and Translational Research Institute, Portland, OR, USA
| | - Andy Kaempf
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Biostatistics Shared Resource, Portland, OR, USA
| | - M Ryan Corces
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.,Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey W Tyner
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
11
|
Fang DD, Tang Q, Kong Y, Rong T, Wang Q, Li N, Fang X, Gu J, Xiong D, Yin Y, Deng J, Yang D, Zhai Y. MDM2 inhibitor APG-115 exerts potent antitumor activity and synergizes with standard-of-care agents in preclinical acute myeloid leukemia models. Cell Death Discov 2021; 7:90. [PMID: 33941774 PMCID: PMC8093284 DOI: 10.1038/s41420-021-00465-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/28/2021] [Accepted: 03/21/2021] [Indexed: 12/31/2022] Open
Abstract
Acute myeloid leukemia (AML) is a clinically and genetically heterogeneous clonal disease associated with unmet medical needs. Paralleling the pathology of other cancers, AML tumorigenesis and propagation can be ascribed to dysregulated cellular processes, including apoptosis. This function and others are regulated by tumor suppressor P53, which plays a pivotal role in leukemogenesis. Opposing P53-mediated activities is the mouse double minute 2 homolog (MDM2), which promotes P53 degradation. Because the TP53 mutation rate is low, and MDM2 frequently overexpressed, in patients with leukemia, targeting the MDM2-P53 axis to restore P53 function has emerged as an attractive AML treatment strategy. APG-115 is a potent MDM2 inhibitor under clinical development for patients with solid tumors. In cellular cultures and animal models of AML, we demonstrate that APG-115 exerted substantial antileukemic activity, as either a single agent or when combined with standard-of-care (SOC) hypomethylating agents azacitidine (AZA) and decitabine (DAC), or the DNA-damaging agent cytarabine (Ara-C). By activating the P53/P21 pathway, APG-115 exhibited potent antiproliferative and apoptogenic activities, and induced cell cycle arrest, in TP53 wild-type AML lines. In vivo, APG-115 significantly reduced tumor burden and prolonged survival. Combinations of APG-115 with SOC treatments elicited synergistic antileukemic activity. To explain these effects, we propose that APG-115 and SOC agents augment AML cell killing by complementarily activating the P53/P21 pathway and upregulating DNA damage. These findings and the emerging mechanism of action afford a sound scientific rationale to evaluate APG-115 (with or without SOC therapies) in patients with AML.
Collapse
Affiliation(s)
- Douglas D Fang
- Ascentage Pharma (Suzhou) Co., Ltd., 218 Xinghu Street, Suzhou, Jiangsu Province, China
| | - Qiuqiong Tang
- Ascentage Pharma (Suzhou) Co., Ltd., 218 Xinghu Street, Suzhou, Jiangsu Province, China
| | - Yanhui Kong
- Ascentage Pharma (Suzhou) Co., Ltd., 218 Xinghu Street, Suzhou, Jiangsu Province, China
| | - Tao Rong
- Ascentage Pharma (Suzhou) Co., Ltd., 218 Xinghu Street, Suzhou, Jiangsu Province, China
| | - Qixin Wang
- Ascentage Pharma (Suzhou) Co., Ltd., 218 Xinghu Street, Suzhou, Jiangsu Province, China
| | - Na Li
- Ascentage Pharma (Suzhou) Co., Ltd., 218 Xinghu Street, Suzhou, Jiangsu Province, China
| | - Xu Fang
- Ascentage Pharma (Suzhou) Co., Ltd., 218 Xinghu Street, Suzhou, Jiangsu Province, China
| | - Jiaxing Gu
- Ascentage Pharma (Suzhou) Co., Ltd., 218 Xinghu Street, Suzhou, Jiangsu Province, China
| | - Dengkun Xiong
- Ascentage Pharma (Suzhou) Co., Ltd., 218 Xinghu Street, Suzhou, Jiangsu Province, China
| | - Yan Yin
- Ascentage Pharma (Suzhou) Co., Ltd., 218 Xinghu Street, Suzhou, Jiangsu Province, China
| | - Jing Deng
- Ascentage Pharma (Suzhou) Co., Ltd., 218 Xinghu Street, Suzhou, Jiangsu Province, China
| | - Dajun Yang
- Ascentage Pharma (Suzhou) Co., Ltd., 218 Xinghu Street, Suzhou, Jiangsu Province, China.
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Yifan Zhai
- Ascentage Pharma (Suzhou) Co., Ltd., 218 Xinghu Street, Suzhou, Jiangsu Province, China.
| |
Collapse
|
12
|
Lee E, Koh Y, Hong J, Eom HS, Yoon SS. Recent Clinical Update of Acute Myeloid Leukemia: Focus on Epigenetic Therapies. J Korean Med Sci 2021; 36:e85. [PMID: 33821592 PMCID: PMC8021975 DOI: 10.3346/jkms.2021.36.e85] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 01/20/2021] [Indexed: 01/05/2023] Open
Abstract
Acute myeloid leukemia (AML) is a complicated disease characterized by genetic heterogeneity and simultaneous alterations in multiple genes. For decades, its only curative method has been intensive induction chemotherapy with or without allogeneic hematopoietic stem cell transplantation, and this approach cannot be applied to elderly patients, who make up more than 50% of AML patients. Recent advances in genomics facilitated the elucidation of various mutations related to AML, and the most frequent mutations were discovered in epigenetic regulators. Alterations to epigenetic modifications that are essential for normal cell biology, including DNA methylation and histone acetylation, have been identified. As epigenetic dysregulation is an important carcinogenic mechanism and some epigenetic changes are reversible, these epigenetic alterations have become targets for novel drug development against AML. This review summarizes the recent advances in epigenetic therapies for AML and discusses future research directions.
Collapse
Affiliation(s)
- Eunyoung Lee
- Department of Internal Medicine, Center for Hematologic Malignancy, National Cancer Center, Goyang, Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Junshik Hong
- Department of Internal Medicine, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyeon Seok Eom
- Department of Internal Medicine, Center for Hematologic Malignancy, National Cancer Center, Goyang, Korea
| | - Sung Soo Yoon
- Department of Internal Medicine, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
13
|
Vasconcelos FC, de Souza PS, Hancio T, de Faria FCC, Maia RC. Update on drug transporter proteins in acute myeloid leukemia: Pathological implication and clinical setting. Crit Rev Oncol Hematol 2021; 160:103281. [PMID: 33667660 DOI: 10.1016/j.critrevonc.2021.103281] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 12/11/2020] [Accepted: 02/27/2021] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common hematological neoplasia causing death worldwide. The long-term overall survival is unsatisfactory due to many factors including older age, genetic heterogeneity and molecular characteristics comprising additional mutations, and resistance to chemotherapeutic drugs. The expression of ABCB1/P-glycoprotein, ABCC1/MRP1, ABCG2/BCRP and LRP transporter proteins is considered the major reason for multidrug resistance (MDR) in AML, however conflicting data have been reported. Here, we review the main issues about drug transporter proteins in AML clinical scenario, and highlight the clinicopathological significance of MDR phenotype associated with ABCB1 polymorphisms and FLT3 mutation.
Collapse
Affiliation(s)
- Flavia Cunha Vasconcelos
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - Paloma Silva de Souza
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil; Laboratório de Produtos Bioativos, Polo Novo Cavaleiros/IMCT, Campus Professor Aloisio Teixeira (UFRJ/Macaé), Universidade Federal do Rio de Janeiro (UFRJ), Macaé, RJ, Brazil
| | - Thaís Hancio
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação Stricto Sensu em Oncologia, INCA, RJ, Brazil
| | - Fernanda Costas Casal de Faria
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - Raquel Ciuvalschi Maia
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
14
|
Chen YS, Ouyang XP, Yu XH, Novák P, Zhou L, He PP, Yin K. N6-Adenosine Methylation (m 6A) RNA Modification: an Emerging Role in Cardiovascular Diseases. J Cardiovasc Transl Res 2021; 14:857-872. [PMID: 33630241 DOI: 10.1007/s12265-021-10108-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/15/2021] [Indexed: 12/27/2022]
Abstract
N6-methyladenosine (m6A) is the most abundant and prevalent epigenetic modification of mRNA in mammals. This dynamic modification is regulated by m6A methyltransferases and demethylases, which control the fate of target mRNAs through influencing splicing, translation and decay. Recent studies suggest that m6A modification plays an important role in the progress of cardiac remodeling and cardiomyocyte contractile function. However, the exact roles of m6A in cardiovascular diseases (CVDs) have not been fully explained. In this review, we summarize the current roles of the m6A methylation in the progress of CVDs, such as cardiac remodeling, heart failure, atherosclerosis (AS), and congenital heart disease. Furthermore, we seek to explore the potential risk mechanisms of m6A in CVDs, including obesity, inflammation, adipogenesis, insulin resistance (IR), hypertension, and type 2 diabetes mellitus (T2DM), which may provide novel therapeutic targets for the treatment of CVDs.
Collapse
Affiliation(s)
- Ye-Shi Chen
- School of Nursing, University of South China, Hengyang, Hunan, 421001, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541100, China
| | - Xin-Ping Ouyang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, The Neuroscience Institute, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 460106, Hainan, China
| | - Petr Novák
- Guangxi Key Laboratory of Diabetic Systems Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541100, China
| | - Le Zhou
- Guangxi Key Laboratory of Diabetic Systems Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541100, China
| | - Ping-Ping He
- School of Nursing, University of South China, Hengyang, Hunan, 421001, China.
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China.
| | - Kai Yin
- Guangxi Key Laboratory of Diabetic Systems Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541100, China.
| |
Collapse
|
15
|
Chen NC, Borthakur G, Pemmaraju N. Bromodomain and extra-terminal (BET) inhibitors in treating myeloid neoplasms. Leuk Lymphoma 2020; 62:528-537. [DOI: 10.1080/10428194.2020.1842399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Natalie Cheng Chen
- Department of Internal Medicine, The University of Texas School of Health Sciences at Houston, Houston, TX, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
16
|
Yu X, Li H, Zhu M, Hu P, Liu X, Qing Y, Wang X, Wang H, Wang Z, Xu J, Tan R, Guo Q, Hui H. Involvement of p53 Acetylation in Growth Suppression of Cutaneous T-Cell Lymphomas Induced by HDAC Inhibition. J Invest Dermatol 2020; 140:2009-2022.e4. [PMID: 32119867 DOI: 10.1016/j.jid.2019.12.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/09/2019] [Accepted: 12/19/2019] [Indexed: 01/05/2023]
Abstract
Cutaneous T-cell lymphomas (CTCLs) represent a rare form of non-Hodgkin lymphomas characterized by an accumulation of malignant CD4+ T cells in the skin. TP53 genetic alteration is one of the most prevalent genetic abnormalities in CTCLs. Therefore, it is a promising target for innovative therapeutic approaches. We found that p53 could physically interact with histone deacetylase (HDAC) 1 and HDAC8, and was subsequently deacetylated to lose its function in CTCL cells, and the p53 downstream apoptosis-associated genes were repressed. Thus, the anti-CTCL activity displayed by HDAC inhibitors depends on p53 status. However, recent studies have reported that HDAC inhibitors could induce a wide variety of drug-resistant characteristics in cancer cells by regulating ATP-binding cassette transporters. Moreover, we discovered that Baicalein, a natural product, exhibited an inhibitory effect on HDAC1 and HDAC8. Though the inhibition of HDAC1 was mild, Baicalein could induce the degradation of HDAC1 through the ubiquitin proteasome pathway, thereby markedly upregulating the acetylation of histone H3 without promoting ATP-binding cassette transporter gene expression. In terms of the mechanism, Baicalein showed better growth inhibition than traditional HDAC inhibitors in CTCLs. This study indicates a special mechanism of HDAC1 and HDAC8 and p53 in T-cell lymphoma cells and identifies a potential and safe natural HDAC inhibitor for the treatment of CTCLs.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Hui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Mengyuan Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Po Hu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Xiao Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Yingjie Qing
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Xiangyuan Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Hongzheng Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Zhanyu Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Jingyan Xu
- Department of Hematology, The Affiliated DrumTower Hospital of Nanjing University Medical School, Nanjing, China
| | - Renxiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.
| | - Hui Hui
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
17
|
Tan Y, Fu Y, Liu C, Sun J, Liu S, Lin H, Liu Q, Yang Y, Li Y, Su L, Gao S. Minimal residual disease may be an early prognostic indicator for newly diagnosed acute myeloid leukemia patients induced by decitabine-based chemotherapy. ACTA ACUST UNITED AC 2019; 24:552-558. [PMID: 31315553 DOI: 10.1080/16078454.2019.1642552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objectives: To analyze the efficacy and safety of decitabine combined with low/reduced-dose chemotherapy in newly diagnosed acute myeloid leukemia (AML) patients unfit for intensive therapy and to investigate the early prognostic indicators for these patients. Methods: The eligible patients treated with decitabine-based chemotherapy were retrospectively analyzed. Responses and long-term survival were calculated and their correlation with clinical characteristics was analyzed. Minimal residual disease (MRD) detected by flow cytometry (FCM) after the induction therapy was measured, and the association with prognosis was explored. Results: Fifty-five newly diagnosed AML patients were enrolled. The overall response rate (ORR) was 80.0%, with a complete remission (CR) rate of 63.64% and partial remission (PR) rate of 16.36%. Grade 4 hematological toxicity was common, and the incidence of infections was 83.64%, with 18.18% of patients suffered from severe infections. No serious bleeding or non-hematological adverse events occurred. Treatment-related mortality was 3.64%. The median overall survival (OS) and disease-free survival (DFS) were 17.0 (13.7-20.3) months and 17.0 (10.2-23.8) months, respectively. Multivariate analysis showed that an advanced age (≥ 60 years) and higher MRD (≥ 1.34%) after induction therapy were adverse prognostic factors for patients who had achieved CR. Conclusions: Decitabine-based chemotherapy may be a suitable therapeutic alternative for newly diagnosed AML patients who are unfit for intensive chemotherapy. An advanced age (≥ 60 years) and higher MRD (≥ 1.34%) were considered adverse prognostic factors.
Collapse
Affiliation(s)
- Yehui Tan
- a Department of Hematology , The First Hospital of Jilin University , Changchun , People's Republic of China
| | - Yu Fu
- a Department of Hematology , The First Hospital of Jilin University , Changchun , People's Republic of China
| | - Chunshui Liu
- a Department of Hematology , The First Hospital of Jilin University , Changchun , People's Republic of China
| | - Jingnan Sun
- a Department of Hematology , The First Hospital of Jilin University , Changchun , People's Republic of China
| | - Shanshan Liu
- a Department of Hematology , The First Hospital of Jilin University , Changchun , People's Republic of China
| | - Hai Lin
- a Department of Hematology , The First Hospital of Jilin University , Changchun , People's Republic of China
| | - Qiuju Liu
- a Department of Hematology , The First Hospital of Jilin University , Changchun , People's Republic of China
| | - Yanping Yang
- a Department of Hematology , The First Hospital of Jilin University , Changchun , People's Republic of China
| | - Yuying Li
- a Department of Hematology , The First Hospital of Jilin University , Changchun , People's Republic of China
| | - Long Su
- a Department of Hematology , The First Hospital of Jilin University , Changchun , People's Republic of China
| | - Sujun Gao
- a Department of Hematology , The First Hospital of Jilin University , Changchun , People's Republic of China
| |
Collapse
|
18
|
Wang QY, Li Y, Liang ZY, Yin Y, Liu W, Wang Q, Dong YJ, Sun YH, Xu WL, Ren HY. Decitabine-Containing Conditioning Regimen for Allogeneic Hematopoietic Stem Cell Transplantation in Patients with Intermediate- and High-Risk Myelodysplastic Syndrome/Acute Myeloid Leukemia: Potential Decrease in the Incidence of Acute Graft versus Host Disease. Cancer Manag Res 2019; 11:10195-10203. [PMID: 31824191 PMCID: PMC6900353 DOI: 10.2147/cmar.s229768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/21/2019] [Indexed: 01/08/2023] Open
Abstract
Purpose To evaluate the role of Decitabine in the allo-HSCT conditioning regimen for intermediate- and high-risk patients with MDS or AML. Patients and methods Retrospective analysis of data pertaining to 76 intermediate- and high-risk patients with MDS or AML who underwent allo-HSCT between December 2005 and June 2018 at the Peking University First Hospital. Forty patients received Decitabine-containing conditioning regimen before transplantation, while thirty-six patients received regimen without Decitabine. Results Over a median follow-up of 40 months (range, 1 to 155), the cumulative incidence of grade II to IV acute graft versus host disease was 12.4% [95% confidence interval (CI) 4.9–30.9%] in the Decitabine group and 41.5% (95% CI 28.1–61.2%) in the non-Decitabine group (P=0.005). On multivariate analysis, Decitabine-containing conditioning regimen was found to protect against grade II to IV aGVHD (HR=0.279, 95% CI 0.102–0.765, P=0.013). Incidence of respiratory infection in the Decitabine and non-Decitabine groups was 22.5% and 52.78%, respectively (P=0.012). No significant between-group difference was observed with respect to 3-year OS, DFS, or RR (P=0.980, 0.959, and 0.573, respectively), while the median relapse time was longer in the Decitabine group [7 months (range, 2–12) versus 3 months (range, 2–4), P=0.171]. Decitabine-containing conditioning showed a tendency for lower relapse rate among higher risk patients, as assessed by IPSS R; however, the between-group difference was not statistically significant (P=0.085). Conclusion Inclusion of Decitabine in the conditioning regimen for allo-HSCT in intermediate- and high-risk patients may lower the incidence of aGVHD and respiratory infections, and contribute to longer median relapse time.
Collapse
Affiliation(s)
- Qing Ya Wang
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Yuan Li
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Ze Yin Liang
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Yue Yin
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Wei Liu
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Qian Wang
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Yu Jun Dong
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Yu Hua Sun
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Wei Lin Xu
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Han Yun Ren
- Department of Hematology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| |
Collapse
|
19
|
Narimani M, Sharifi M, Jalili A. Knockout Of BIRC5 Gene By CRISPR/Cas9 Induces Apoptosis And Inhibits Cell Proliferation In Leukemic Cell Lines, HL60 And KG1. Blood Lymphat Cancer 2019; 9:53-61. [PMID: 31819702 PMCID: PMC6885567 DOI: 10.2147/blctt.s230383] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/02/2019] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Human Baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5) which encodes survivin exhibits multiple biological activities, such as cell proliferation and apoptosis. Survivin is overexpressed in numerous malignant diseases including acute myeloid leukemia (AML). Recent studies have shown that the CRISPR/Cas9 nuclease-mediated gene-editing systems are suitable approach's for editing or knocking out various genes including oncogenes. METHODS AND MATERIALS We used CRISPR-Cas9 to knockout the BIRC5 in the human leukemic cell line, HL60, and KG1, and these cell lines were transfected with either the Cas9- and three sgRNAs expressing plasmids or negative control (scramble) using Lipofectamine 3000. The efficacy of the transfection was determined by quantitative reverse transcription-polymerase chain (RT-qPCR) and surveyor mutation assays. Cell proliferation and apoptosis were measured by MTT assay and flow cytometry, respectively. RESULTS We have successfully knocked out the BIRC5 gene in these leukemic cells and observed that the BIRC5-knocked out cells by CRISPR/Cas9 showed a significant decrease (30 folds) of survivin at mRNA levels. Moreover, cell death and apoptosis were significantly induced in BIRC5-CRISPR/Cas9-transfected cells compared to the scramble vector. CONCLUSION We demonstrated for the first time that targeting BIRC5 by CRISPR/Cas9 technology is a suitable approach for the induction of apoptosis in leukemic cells. However, further studies targeting this gene in primary leukemic cells are required.
Collapse
Affiliation(s)
- Manizheh Narimani
- Cancer and Immunology Research Center, Institute of Research for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Jalili
- Cancer and Immunology Research Center, Institute of Research for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
20
|
Qin Y, Kuang P, Zeng Q, Wu Y, Liu T. Hypomethylating agents for patients with myelodysplastic syndromes prior to hematopoietic stem cell transplantation: a systematic review and meta-analysis. Ann Hematol 2019; 98:2523-2531. [DOI: 10.1007/s00277-019-03811-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022]
|
21
|
Hypomethylating agents in the treatment of acute myeloid leukemia: A guide to optimal use. Crit Rev Oncol Hematol 2019; 140:1-7. [PMID: 31153036 DOI: 10.1016/j.critrevonc.2019.05.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/21/2022] Open
Abstract
The hypomethylating agents (HMAs), decitabine and azacitidine, are valuable treatment options in acute myeloid leukemia patients who are not eligible for intensive chemotherapy. Both agents are generally well tolerated, and complications most commonly relate to myelosuppression. Antibiotic / antifungal use, regular monitoring, and proactive patient education are important to minimize these events, and reduce the need for dose delay. Responses to HMAs are often not evident for up to 6 cycles, and there is currently no validated clinical marker for predicting response. Hence, treatment should be continued for at least 4-6 cycles to ensure that patients have sufficient opportunity to respond. Delivery of insufficient numbers of cycles is a key reason for HMA failure, and premature discontinuation must be avoided. Genetic factors offer potential for better predicting responders to HMAs in future, but require further study.
Collapse
|
22
|
Bewersdorf JP, Shallis R, Stahl M, Zeidan AM. Epigenetic therapy combinations in acute myeloid leukemia: what are the options? Ther Adv Hematol 2019; 10:2040620718816698. [PMID: 30719265 PMCID: PMC6348528 DOI: 10.1177/2040620718816698] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/08/2018] [Indexed: 01/01/2023] Open
Abstract
Epigenetics refers to the regulation of gene expression mainly by changes in DNA methylation and modifications of histone proteins without altering the actual DNA sequence. While epigenetic modifications are essential for normal cell differentiation, several driver mutations in leukemic pathogenesis have been identified in genes that affect epigenetic processes, such as DNA methylation and histone acetylation. Several therapeutic options to target epigenetic alterations in acute myeloid leukemia (AML) have been successfully tested in preclinical studies and various drugs have already been approved for use in clinical practice. Among these already approved therapeutics are hypomethylating agents (azacitidine and decitabine) and isocitrate dehydrogenase inhibitors (ivosidenib, enasidenib). Other agents such as bromodomain-containing epigenetic reader proteins and histone methylation (e.g. DOT1L) inhibitors are currently in advanced clinical testing. As several epigenetic therapies have only limited efficacy when used as single agents, combination therapies that target AML pathogenesis at different levels and exploit synergistic mechanisms are also in clinical trials. Combinations of either epigenetic therapies with conventional chemotherapy, different forms of epigenetic therapies, or epigenetic therapies with immunotherapy are showing promising early results. In this review we summarize the underlying pathophysiology and rationale for epigenetically-based combination therapies, review current preclinical and clinical data and discuss the future directions of epigenetic therapy combinations in AML.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA
| | - Rory Shallis
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA
| | - Maximilian Stahl
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, 333 Cedar Street, PO Box 208028, New Haven, CT 06520-8055, USA
| |
Collapse
|
23
|
Yang GJ, Lei PM, Wong SY, Ma DL, Leung CH. Pharmacological Inhibition of LSD1 for Cancer Treatment. Molecules 2018; 23:E3194. [PMID: 30518104 PMCID: PMC6320820 DOI: 10.3390/molecules23123194] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Lysine-specific demethylase 1A (LSD1, also named KDM1A) is a demethylase that can remove methyl groups from histones H3K4me1/2 and H3K9me1/2. It is aberrantly expressed in many cancers, where it impedes differentiation and contributes to cancer cell proliferation, cell metastasis and invasiveness, and is associated with inferior prognosis. Pharmacological inhibition of LSD1 has been reported to significantly attenuate tumor progression in vitro and in vivo in a range of solid tumors and acute myeloid leukemia. This review will present the structural aspects of LSD1, its role in carcinogenesis, a comparison of currently available approaches for screening LSD1 inhibitors, a classification of LSD1 inhibitors, and its potential as a drug target in cancer therapy.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Pui-Man Lei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Suk-Yu Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
24
|
Heudobler D, Rechenmacher M, Lüke F, Vogelhuber M, Klobuch S, Thomas S, Pukrop T, Hackl C, Herr W, Ghibelli L, Gerner C, Reichle A. Clinical Efficacy of a Novel Therapeutic Principle, Anakoinosis. Front Pharmacol 2018; 9:1357. [PMID: 30546308 PMCID: PMC6279883 DOI: 10.3389/fphar.2018.01357] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022] Open
Abstract
Classic tumor therapy, consisting of cytotoxic agents and/or targeted therapy, has not overcome therapeutic limitations like poor risk genetic parameters, genetic heterogeneity at different metastatic sites or the problem of undruggable targets. Here we summarize data and trials principally following a completely different treatment concept tackling systems biologic processes: the principle of communicative reprogramming of tumor tissues, i.e., anakoinosis (ancient greek for communication), aims at establishing novel communicative behavior of tumor tissue, the hosting organ and organism via re-modeling gene expression, thus recovering differentiation, and apoptosis competence leading to cancer control - in contrast to an immediate, "poisoning" with maximal tolerable doses of targeted or cytotoxic therapies. Therefore, we introduce the term "Master modulators" for drugs or drug combinations promoting evolutionary processes or regulating homeostatic pathways. These "master modulators" comprise a broad diversity of drugs, characterized by the capacity for reprogramming tumor tissues, i.e., transcriptional modulators, metronomic low-dose chemotherapy, epigenetically modifying agents, protein binding pro-anakoinotic drugs, such as COX-2 inhibitors, IMiDs etc., or for example differentiation inducing therapies. Data on 97 anakoinosis inducing schedules indicate a favorable toxicity profile: The combined administration of master modulators, frequently (with poor or no monoactivity) may even induce continuous complete remission in refractory metastatic neoplasia, irrespectively of the tumor type. That means recessive components of the tumor, successively developing during tumor ontogenesis, are accessible by regulatory active drug combinations in a therapeutically meaningful way. Drug selection is now dependent on situative systems characteristics, to less extent histology dependent. To sum up, anakoinosis represents a new substantive therapy principle besides novel targeted therapies.
Collapse
Affiliation(s)
- Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Michael Rechenmacher
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Martin Vogelhuber
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Klobuch
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Simone Thomas
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Christina Hackl
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Lina Ghibelli
- Department Biology, Universita' di Roma Tor Vergata, Rome, Italy
| | - Christopher Gerner
- Faculty Chemistry, Institut for Analytical Chemistry, University Vienna, Vienna, Austria
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
25
|
Shallis RM, Ahmad R, Zeidan AM. The genetic and molecular pathogenesis of myelodysplastic syndromes. Eur J Haematol 2018; 101:260-271. [PMID: 29742289 DOI: 10.1111/ejh.13092] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2018] [Indexed: 12/14/2022]
Abstract
Myelodysplastic syndromes (MDS) comprise a diverse group of clonal and malignant myeloid disorders characterized by ineffective hematopoiesis, resultant peripheral cytopenias, and a meaningful increased risk of progression to acute myeloid leukemia. A wide array of recurring genetic mutations involved in RNA splicing, histone manipulation, DNA methylation, transcription factors, kinase signaling, DNA repair, cohesin proteins, and other signal transduction elements has been identified as important substrates for the development of MDS. Cytogenetic abnormalities, namely those characterized by loss of genetic material (including 5q- and 7q-), have also been strongly implicated and may influence the clonal architecture which predicts such mutations and may provoke an inflammatory bone marrow microenvironment as the substrate for clonal expansion. Other aspects of the molecular pathogenesis of MDS continue to be further elucidated, predicated upon advances in gene expression profiling and the development of new, and improved high-throughput techniques. More accurate understanding of the genetic and molecular basis for the development of MDS directly provides additional opportunity for treatment, which to date remains limited. In this comprehensive review, we examine the current understanding of the molecular pathogenesis and pathophysiology of MDS, as well as review future prospects which may enhance this understanding, treatment strategies, and hopefully outcomes.
Collapse
Affiliation(s)
- Rory M Shallis
- Division of Hematology/Medical Oncology, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Rami Ahmad
- Division of Hematology/Medical Oncology, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Amer M Zeidan
- Division of Hematology/Medical Oncology, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA.,Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, CT, USA
| |
Collapse
|
26
|
Lamba JK, Cao X, Raimondi SC, Rafiee R, Downing JR, Lei S, Gruber T, Ribeiro RC, Rubnitz JE, Pounds SB. Integrated epigenetic and genetic analysis identifies markers of prognostic significance in pediatric acute myeloid leukemia. Oncotarget 2018; 9:26711-26723. [PMID: 29928480 PMCID: PMC6003565 DOI: 10.18632/oncotarget.25475] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/10/2018] [Indexed: 12/30/2022] Open
Abstract
Acute myeloid leukemia (AML) may be an epigenetically-driven malignancy because it harbors fewer genomic mutations than other cancers. In recent studies of AML in adults, DNA methylation patterns associate with clinical risk groups and prognosis. However, thorough evaluations of methylation in pediatric AML have not been done. Therefore, we performed an integrated analysis (IA) of the methylome and transcriptome with clinical outcome in 151 pediatric patients from the multi-center AML02 clinical trial discovery cohort. Intriguingly, reduced methylation and increased expression of DNMT3B was associated with worse clinical outcomes (IA p ≤ 10−5; q ≤ 0.002). In particular, greater DNMT3B expression associated with worse minimal residual disease (MRD; p < 10−5; q = 0.01), a greater rate of relapse or resistant disease (RR) (p = 0.00006; q = 0.06), and event-free survival (EFS; p = 0.00003; q = 0.04). Also, greater DNMT3B expression associated with greater genome-wide methylation burden (GWMB; R = 0.39; p = 10−6) and greater GWMB associated with worse clinical outcomes (IA p < 10−5). In an independent validation cohort of 132 similarly treated AAML0531 clinical trial patients, greater DNMT3B expression associated with greater GWMB, worse MRD, worse RR, and worse EFS (all p < 0.03); also, greater GWMB associated with worse MRD (p = 0.004) and EFS (p = 0.037). These results indicate that DNMT3B and GWMB may have a central role in the development and prognosis of pediatric AML.
Collapse
Affiliation(s)
- Jatinder K Lamba
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, University of Florida, Gainesville, FL, USA
| | - Xueyuan Cao
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Susana C Raimondi
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Roya Rafiee
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, University of Florida, Gainesville, FL, USA
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shi Lei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tanja Gruber
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Raul C Ribeiro
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffrey E Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley B Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
27
|
Abstract
Acute myeloid leukemia (AML) is one of the best studied malignancies, and significant progress has been made in understanding the clinical implications of its disease biology. Unfortunately, drug development has not kept pace, as the '7+3' induction regimen remains the standard of care for patients fit for intensive therapy 40 years after its first use. Temporal improvements in overall survival were mostly confined to younger patients and driven by improvements in supportive care and use of hematopoietic stem cell transplantation. Multiple forms of novel therapy are currently in clinical trials and are attempting to bring bench discoveries to the bedside to benefit patients. These novel therapies include improved chemotherapeutic agents, targeted molecular inhibitors, cell cycle regulators, pro-apoptotic agents, epigenetic modifiers, and metabolic therapies. Immunotherapies in the form of vaccines; naked, conjugated and bispecific monoclonal antibodies; cell-based therapy; and immune checkpoint inhibitors are also being evaluated in an effort to replicate the success seen in other malignancies. Herein, we review the scientific basis of these novel therapeutic approaches, summarize the currently available evidence, and look into the future of AML therapy by highlighting key clinical studies and the challenges the field continues to face.
Collapse
|
28
|
Mutation of the DNMT3A and IDH1/2 genes in Iranian acute myeloid leukemia patients with normal karyotype (CN-AML): association with other gene mutation and clinical and laboratory characteristics. J Hematop 2018. [DOI: 10.1007/s12308-018-0320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
29
|
Abstract
Acute leukemias are hematologic malignancies with aggressive behavior especially in adult population. With the introduction of new gene expression and sequencing technologies there have been advances in the knowledge of the genetic landscape of acute leukemias. A more detailed analysis allows for the identification of additional alterations in epigenetic regulators that have a profound impact in cellular biology without changes in DNA sequence. These epigenetic alterations disturb the physiological balance between gene activation and gene repression and contribute to aberrant gene expression, contributing significantly to the leukemic pathogenesis and maintenance. We review epigenetic changes in acute leukemia in relation to what is known about their mechanism of action, their prognostic role and their potential use as therapeutic targets, with important implications for precision medicine.
Collapse
|
30
|
Histone demethylase LSD1 regulates hematopoietic stem cells homeostasis and protects from death by endotoxic shock. Proc Natl Acad Sci U S A 2017; 115:E244-E252. [PMID: 29263096 DOI: 10.1073/pnas.1718759114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hematopoietic stem cells (HSCs) maintain a quiescent state during homeostasis, but with acute infection, they exit the quiescent state to increase the output of immune cells, the so-called "emergency hematopoiesis." However, HSCs' response to severe infection during septic shock and the pathological impact remain poorly elucidated. Here, we report that the histone demethylase KDM1A/LSD1, serving as a critical regulator of mammalian hematopoiesis, is a negative regulator of the response to inflammation in HSCs during endotoxic shock typically observed during acute bacterial or viral infection. Inflammation-induced LSD1 deficiency results in an acute expansion of a pathological population of hyperproliferative and hyperinflammatory myeloid progenitors, resulting in a septic shock phenotype and acute death. Unexpectedly, in vivo administration of bacterial lipopolysaccharide (LPS) to wild-type mice results in acute suppression of LSD1 in HSCs with a septic shock phenotype that resembles that observed following induced deletion of LSD1 The suppression of LSD1 in HSCs is caused, at least in large part, by a cohort of inflammation-induced microRNAs. Significantly, reconstitution of mice with bone marrow progenitor cells expressing inhibitors of these inflammation-induced microRNAs blocked the suppression of LSD1 in vivo following acute LPS administration and prevented mortality from endotoxic shock. Our results indicate that LSD1 activators or miRNA antagonists could serve as a therapeutic approach for life-threatening septic shock characterized by dysfunction of HSCs.
Collapse
|
31
|
Effects of Decitabine on the proliferation of K562 cells and the expression of DR4 gene. Saudi J Biol Sci 2017; 25:242-247. [PMID: 29472772 PMCID: PMC5816003 DOI: 10.1016/j.sjbs.2017.11.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/09/2017] [Accepted: 11/12/2017] [Indexed: 12/26/2022] Open
Abstract
Objective To investigate the role of DR4 gene in the occurrence, development and prognosis of acute myeloid leukemia (AML), find a new regulatory gene of Decitabine for the treatment of AML, namely DR4 gene, and explore the molecular mechanism of AML in the treatment of AML. Methods The methylation level and the mRNA expression level of DR4 gene promoters of bone marrow mononuclear cells in 122 patients with newly diagnosed AML and 24 patients with iron deficiency anemia (IDA) were detected using Methylation specific PCR (MS-PCR) and Q-RT-PCR, respectively, and a correlation analysis of them was conducted. The effects of Decitabine on the proliferation of K562 cells were detected using CCK-8 assay. Then, the effects of Decitabine on the methylation level and the mRNA expression level of DR4 genes of K562 cells treated with Decitabine were detected using MS-PCR and Q-RT-PCR, respectively. The effects of Decitabine on the cell cycle and apoptosis of K562 cells were detected using flow cytometry. Results Compared with the control group, the methylation level (P = .002) of DR4 genes of bone marrow mononuclear cells in patients with newly diagnosed AML was high. The methylation level (P = .01) of DR4 genes of bone marrow mononuclear cells in patients of the positive group of enlargement of liver, spleen and lymph node was lower than that of the negative group, and the methylation level (P = .006) of DR4 genes in patients of the high risk group of clinical stage was lower than that of the low risk group, and the methylation level (P = .03) of DR4 genes in patients of the group where patients did not achieve complete remission (CR1) after a course of induction chemotherapy was lower than that of the group where patients achieved complete remission (CR1) after a course of induction chemotherapy. There was a significant negative correlation (P < .01) between the methylation level and the mRNA expression level of DR4 genes of bone marrow mononuclear cells in 122 patients with newly diagnosed AML. After the K562 cells were treated with Decitabine for 48 h, the methylation level of DR4 gene promoters gradually decreased, while the mRNA expression level of DR4 genes gradually increased, both of which showed a concentration-dependent relationship. After the K562 cells were treated with 5 µmol/L Decitabine for 48 h, the K562 cells in G0/G1 phase and G2/M phase increased significantly, and the K562 cells in S phase decreased significantly. Conclusion DR4 gene played an important role in the occurrence and development of AML. Decitabine can effectively inhibit the proliferation of K562 cells, which probably partly because it can terminate the methylation effect of DR4 gene promoters and restore the mRNA expression of DR4 genes.
Collapse
|
32
|
Hosseini A, Minucci S. A comprehensive review of lysine-specific demethylase 1 and its roles in cancer. Epigenomics 2017; 9:1123-1142. [PMID: 28699367 DOI: 10.2217/epi-2017-0022] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Histone methylation plays a key role in the regulation of chromatin structure, and its dynamics regulates important cellular processes. The investigation of the role of alterations in histone methylation in cancer has led to the identification of histone methyltransferases and demethylases as promising novel targets for therapy. Lysine-specific demethylase 1(LSD1, also known as KDM1A) is the first discovered histone lysine demethylase, with the ability to demethylase H3K4me1/2 and H3K9me1/2 at target loci in a context-dependent manner. LSD1 regulates the balance between self-renewal and differentiation of stem cells, and is highly expressed in various cancers, playing an important role in differentiation and self-renewal of tumor cells. In this review, we summarize recent studies about the LSD1, its role in normal and tumor cells, and the potential use of small molecule LSD1 inhibitors in therapy.
Collapse
Affiliation(s)
- Amir Hosseini
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.,Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
33
|
Zhao H, Xu L, Yang Y, Shao J, Chen P, Dong X, Gu L, Li D. Successful Management of Decitabine prior to Full-Dose Idarubicin and Cytarabine in the Treatment of Refractory/Recurrent Acute Myeloid Leukemia. Acta Haematol 2017; 137:195-200. [PMID: 28445872 DOI: 10.1159/000464013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/09/2017] [Indexed: 12/27/2022]
Abstract
AIMS To investigate the safety and efficacy of the triple therapy of decitabine, idarubicin, and cytarabine in the treatment of refractory or recurrent acute myeloid leukemia (R/R AML). METHODS We conducted a single-center retrospective study in which decitabine treatment was administered prior to full-dose idarubicin and cytarabine (D-IA) for 21 R/R AML patients. RESULTS After 1 cycle of D-IA, 10/21 (47.6%) patients experienced a complete remission (CR) and 2/21 (9.5%) showed a partial response. There was a 1-month response rate (RR) in 12/21 patients (57.14%); these patients achieved CR after 2 cycles of D-IA. Five of these 12 (40%) patients then received sequential allogeneic stem cell transplantation. At the last follow-up date, 9/21 (42.8%) patients had survived, and 7/21 (33.3%) were in continuous CR. Hematological toxicity and infections were the most prominent toxicities of this regimen. Other toxicities included nausea, vomiting, bleeding, and liver enzyme abnormalities. No mortalities were recorded due to treatment-related toxicity during remission. CONCLUSIONS The combination was well tolerated, and the RR was encouraging. Our study suggests that D-IA may offer a novel and potentially effective treatment regimen for R/R AML patients.
Collapse
Affiliation(s)
- Hongyu Zhao
- Department of Hematology, Jinan Central Hospital, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang FJ, Li JJ, Xie HT, Zeng YY, Liu J, Zhang J. [Effects of decitabine on proliferation capacity and TFPI-2 expression in leukemia K562 cells]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2017; 38:340-343. [PMID: 28468099 PMCID: PMC7342715 DOI: 10.3760/cma.j.issn.0253-2727.2017.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Indexed: 11/23/2022]
|
35
|
Stahl M, Zeidan AM. Management of lower-risk myelodysplastic syndromes without del5q: current approach and future trends. Expert Rev Hematol 2017; 10:345-364. [PMID: 28277851 DOI: 10.1080/17474086.2017.1297704] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Myelodysplastic syndromes (MDS) are characterized by progressive bone marrow failure manifesting as blood cytopenia and a variable risk of progression into acute myeloid leukemia. MDS is heterogeneous in biology and clinical behavior. MDS are generally divided into lower-risk (LR) and higher-risk (HR) MDS. Goals of care in HR-MDS focus on changing the natural history of the disease, whereas in LR-MDS symptom control and quality of life are the main goals. Areas covered: We review the epidemiology, tools of risk assessment, and the available therapeutic modalities for LR-MDS. We discuss the use of erythropoiesis stimulating agents (ESAs), immunosuppressive therapy (IST), lenalidomide and the hypomethylating agents (HMAs). We also discuss the predictors of response, combination treatment modalities, and management of iron overload. Lastly, we overview the most promising investigational agents for LR-MDS. Expert commentary: It remains unclear how to best incorporate a wealth of new genetic and epigenetic prognostic markers into risk assessment tools especially for LR-MDS patients. Only a subset of patients respond to current treatment modalities and most responders eventually lose their response. Once standard therapeutic options fail, management becomes more challenging. Combination-based approaches have been largely unsuccessful. Among the most promising investigational are the TPO agonists, TGF- β pathway inhibitors, telomerase inhibitors, and the splicing modifiers.
Collapse
Affiliation(s)
- Maximilian Stahl
- a Section of Hematology, Department of Internal Medicine, Section of Hematology, Yale University and the Yale Comprehensive Cancer Center , Yale University School of Medicine , New Haven , CT , USA
| | - Amer M Zeidan
- a Section of Hematology, Department of Internal Medicine, Section of Hematology, Yale University and the Yale Comprehensive Cancer Center , Yale University School of Medicine , New Haven , CT , USA
| |
Collapse
|
36
|
Momparler RL, Côté S, Momparler LF, Idaghdour Y. Inhibition of DNA and Histone Methylation by 5-Aza-2'-Deoxycytidine (Decitabine) and 3-Deazaneplanocin-A on Antineoplastic Action and Gene Expression in Myeloid Leukemic Cells. Front Oncol 2017; 7:19. [PMID: 28261562 PMCID: PMC5309231 DOI: 10.3389/fonc.2017.00019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/31/2017] [Indexed: 12/26/2022] Open
Abstract
Epigenetic alterations play an important role in the development of acute myeloid leukemia (AML) by silencing of genes that suppress leukemogenesis and differentiation. One of the key epigenetic changes in AML is gene silencing by DNA methylation. The importance of this alteration is illustrated by the induction of remissions in AML by 5-aza-2′-deoxycytidine (5-AZA-CdR, decitabine), a potent inhibitor of DNA methylation. However, most patients induced into remission by 5-AZA-CdR will relapse, suggesting that a second agent should be sought to increase the efficacy of this epigenetic therapy. An interesting candidate for this purpose is 3-deazaneplanocin A (DZNep). This analog inhibits EZH2, a histone methyltransferase that trimethylates lysine 27 histone H3 (H3K27me3), a marker for gene silencing. This second epigenetic silencing mechanism also plays an important role in leukemogenesis as shown in preclinical studies where DZNep exhibits potent inhibition of colony formation by AML cells. We reported previously that 5-AZA-CdR in combination with DZNep exhibits a synergistic antineoplastic action against human HL-60 AML cells and the synergistic activation of several tumor suppressor genes. In this report, we showed that this combination also induced a synergistic activation of apoptosis in HL-60 cells. The synergistic antineoplastic action of 5-AZA-CdR plus DZNep was also observed on a second human myeloid leukemia cell line, AML-3. In addition, 5-AZA-CdR in combination with the specific inhibitors of EZH2, GSK-126, or GSK-343, also exhibited a synergistic antineoplastic action on both HL-60 and AML-3. The combined action of 5-AZA-CdR and DZNep on global gene expression in HL-60 cells was investigated in greater depth using RNA sequencing analysis. We observed that this combination of epigenetic agents exhibited a synergistic activation of hundreds of genes. The synergistic activation of so many genes that suppress malignancy by 5-AZA-CdR plus DZNep suggests that epigenetic gene silencing by DNA and histone methylation plays a major role in leukemogenesis. Targeting DNA and histone methylation is a promising approach that merits clinical investigation for the treatment of AML.
Collapse
Affiliation(s)
- Richard L Momparler
- Département de Pharmacologie, Université de Montréal, Montreal, QC, Canada; Centre de recherche, Service d'hématologie/oncologie, CHU-Saint-Justine, Montréal, QC, Canada
| | - Sylvie Côté
- Centre de recherche, Service d'hématologie/oncologie, CHU-Saint-Justine , Montréal, QC , Canada
| | - Louise F Momparler
- Centre de recherche, Service d'hématologie/oncologie, CHU-Saint-Justine , Montréal, QC , Canada
| | - Youssef Idaghdour
- Department of Biology, New York University Abu Dhabi , Abu Dhabi , United Arab Emirates
| |
Collapse
|
37
|
Sirirat T, Chuncharunee S, Nipaluk P, Siriboonpiputtana T, Chareonsirisuthigul T, Limsuwannachot N, Rerkamnuaychoke B. Mutation Analysis of Isocitrate Dehydrogenase (IDH1/2) and DNA Methyltransferase 3A (DNMT3A) in Thai Patients with Newly Diagnosed Acute Myeloid Leukemia. Asian Pac J Cancer Prev 2017; 18:413-420. [PMID: 28345823 PMCID: PMC5454736 DOI: 10.22034/apjcp.2017.18.2.413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Acute myeloid leukemia (AML) is a clonal hematopoietic stem/progenitor cell disorder which features several genetic mutations. Recurrent genetic alterations identified in AML are recognized as causes of the disease, finding application as diagnostic, prognostic and monitoring markers, with potential use as targets for cancer therapy. Here, we performed a pyrosequencing technique to investigate common mutations of IDH1, IDH2 and DNMT3A in 81 newly diagnosed AML patients. The prevalences of IDH1, IDH2 and DNMT3A mutations were 6.2%, 18.5%, and 7.4%, respectively. In addition, exclusive mutations in IDH1 codon 132 (R132H, R132C, R132G and R132S) were identified in all IDH1-mutated cases indicating that these are strongly associated with AML. Interestingly, higher median blast cell counts were significantly associated with IDH1/2 and DNMT3A mutations. In summary, we could establish a routine robust pyrosequencing method to detect common mutations in IDH1/2 and DNMT3A and demonstrate the frequency of those mutations in adult Thai AML patients.
Collapse
Affiliation(s)
- Tanasan Sirirat
- Doctoral Program in Clinical Pathology, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University. Bangkok, 10400, Thailand.
| | | | | | | | | | | | | |
Collapse
|
38
|
Swerev TM, Wirth T, Ushmorov A. Activation of oncogenic pathways in classical Hodgkin lymphoma by decitabine: A rationale for combination with small molecular weight inhibitors. Int J Oncol 2016; 50:555-566. [DOI: 10.3892/ijo.2016.3827] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/12/2016] [Indexed: 11/06/2022] Open
|
39
|
Martinez-Quetglas I, Pinyol R, Dauch D, Torrecilla S, Tovar V, Moeini A, Alsinet C, Portela A, Rodriguez-Carunchio L, Solé M, Lujambio A, Villanueva A, Thung S, Esteller M, Zender L, Llovet JM. IGF2 Is Up-regulated by Epigenetic Mechanisms in Hepatocellular Carcinomas and Is an Actionable Oncogene Product in Experimental Models. Gastroenterology 2016; 151:1192-1205. [PMID: 27614046 DOI: 10.1053/j.gastro.2016.09.001] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/23/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Effective treatments are urgently needed for hepatocellular carcinoma (HCC), which is usually diagnosed at advanced stages. Signaling via the insulin-like growth factor (IGF) pathway is aberrantly activated in HCC by IGF2 overexpression. We aimed to elucidate the mechanism of IGF2 overexpression and its oncogenic activities and evaluate the anti-tumor effects of reducing IGF2 signaling. METHODS We obtained 228 HCC samples from patients who underwent liver resection, 168 paired non-tumor adjacent cirrhotic liver samples, and 10 non-tumor liver tissues from patients undergoing resection for hepatic hemangioma. We analyzed gene expression, microRNA, and DNA methylation profiles for all samples, focusing on genes in the IGF signaling pathway. IGF2 was expressed in SNU449 and PLC5 HCC cells and knocked down with small hairpin RNAs in Hep3B and Huh7 cell lines. We analyzed these cells for proliferation, apoptosis, migration, and colony formation. We performed studies in mice engineered to express Myc and Akt1 in liver, which develop liver tumors, with or without hepatic expression of Igf2. Mice with xenograft tumors grown from HCC cells were given a monoclonal antibody against IGF1 and IGF2 (xentuzumab), along with sorafenib; tumor growth was measured and tissues were analyzed by immunohistochemistry and immunoblots. RESULTS Levels of IGF2 messenger RNA and protein were increased >20-fold in 15% of human HCC tissues compared with non-tumor liver tissues. Methylation at the fetal promoters of IGF2 was reduced in the HCC samples and cell lines that overexpressed IGF2, compared with those that did not overexpress this gene, and non-tumor tissues. Tumors that overexpressed IGF2 had gene expression patterns significantly associated with hepatic progenitor cell features, stellate cell activation, NOTCH signaling, and an aggressive phenotype (P < .0001). In mice engineered to express Myc and Akt1 in liver, co-expression of Igf2 accelerated formation of liver tumors, compared to mice with livers expressing only Myc and Akt1, and shortened survival times (P = .02). The antibody xentuzumab blocked phosphorylation of IGF1 receptor in HCC cell lines and reduced their proliferation and colony formation. In mice with xenograft tumors, injection of xentuzumab, with or without sorafenib, slowed tumor growth and increased survival times compared to vehicle or sorafenib alone. Xentuzumab inhibited phosphorylation of IGF1 receptor and AKT and reduced decreased tumor vascularization compared with vehicle. CONCLUSIONS A large proportion of HCC samples were found to overexpress IGF2, via demethylation of its fetal promoter. Overexpression of IGF2 accelerates formation of liver tumors in mice with hepatic expression of MYC and AKT1, via activation of IGF1 receptor signaling. An antibody against IGF1 and IGF2 slows growth of xenograft tumors and increases survival of these mice.
Collapse
Affiliation(s)
- Iris Martinez-Quetglas
- Liver Cancer Translational Research Laboratory, Barcelona Clinic Liver Cancer Group, Liver Unit, IDIBAPS-Hospital Clínic de Barcelona, CIBERehd Universitat de Barcelona, Catalonia, Spain
| | - Roser Pinyol
- Liver Cancer Translational Research Laboratory, Barcelona Clinic Liver Cancer Group, Liver Unit, IDIBAPS-Hospital Clínic de Barcelona, CIBERehd Universitat de Barcelona, Catalonia, Spain
| | - Daniel Dauch
- Division of Translational Gastrointestinal Oncology, Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | - Sara Torrecilla
- Liver Cancer Translational Research Laboratory, Barcelona Clinic Liver Cancer Group, Liver Unit, IDIBAPS-Hospital Clínic de Barcelona, CIBERehd Universitat de Barcelona, Catalonia, Spain
| | - Victoria Tovar
- Liver Cancer Translational Research Laboratory, Barcelona Clinic Liver Cancer Group, Liver Unit, IDIBAPS-Hospital Clínic de Barcelona, CIBERehd Universitat de Barcelona, Catalonia, Spain
| | - Agrin Moeini
- Liver Cancer Translational Research Laboratory, Barcelona Clinic Liver Cancer Group, Liver Unit, IDIBAPS-Hospital Clínic de Barcelona, CIBERehd Universitat de Barcelona, Catalonia, Spain
| | - Clara Alsinet
- Liver Cancer Translational Research Laboratory, Barcelona Clinic Liver Cancer Group, Liver Unit, IDIBAPS-Hospital Clínic de Barcelona, CIBERehd Universitat de Barcelona, Catalonia, Spain
| | - Anna Portela
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Catalonia, Spain
| | - Leonardo Rodriguez-Carunchio
- Liver Cancer Translational Research Laboratory, Barcelona Clinic Liver Cancer Group, Liver Unit, IDIBAPS-Hospital Clínic de Barcelona, CIBERehd Universitat de Barcelona, Catalonia, Spain
| | - Manel Solé
- Liver Cancer Translational Research Laboratory, Barcelona Clinic Liver Cancer Group, Liver Unit, IDIBAPS-Hospital Clínic de Barcelona, CIBERehd Universitat de Barcelona, Catalonia, Spain
| | - Amaia Lujambio
- Liver Cancer Program, Division of Liver Diseases and Pathology Department, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Oncological Sciences Department, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Augusto Villanueva
- Liver Cancer Program, Division of Liver Diseases and Pathology Department, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Swan Thung
- Liver Cancer Program, Division of Liver Diseases and Pathology Department, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Manel Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
| | - Lars Zender
- Division of Translational Gastrointestinal Oncology, Department of Internal Medicine I, University of Tübingen, Tübingen, Germany; Translational Gastrointestinal Oncology Group within the German Center for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany
| | - Josep M Llovet
- Liver Cancer Translational Research Laboratory, Barcelona Clinic Liver Cancer Group, Liver Unit, IDIBAPS-Hospital Clínic de Barcelona, CIBERehd Universitat de Barcelona, Catalonia, Spain; Liver Cancer Program, Division of Liver Diseases and Pathology Department, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain.
| |
Collapse
|
40
|
Lee JY, Kong G. Roles and epigenetic regulation of epithelial-mesenchymal transition and its transcription factors in cancer initiation and progression. Cell Mol Life Sci 2016; 73:4643-4660. [PMID: 27460000 PMCID: PMC11108467 DOI: 10.1007/s00018-016-2313-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 02/07/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is a crucial developmental process by which epithelial cells undergo a mesenchymal phenotypic change. During EMT, epigenetic mechanisms including DNA methylation and histone modifications are involved in the regulation of EMT-related genes. The epigenetic gene silencing of the epithelial marker E-cadherin has been well characterized. In particular, three major transcriptional repressors of E-cadherin, Snail, ZEB, and Twist families, also known as EMT-inducing transcription factors (EMT-TFs), play a crucial role in this process by cooperating with multiple epigenetic modifiers. Furthermore, recent studies have identified the novel epigenetic modifiers that control the expression of EMT-TFs, and these modifiers have emerged as critical regulators of cancer development and as novel therapeutic targets for human cancer. In this review, the diverse functions of EMT-TFs in cancer progression, the cooperative mechanisms of EMT-TFs with epigenetic modifiers, and epigenetic regulatory roles for the expression of EMT-TFs will be discussed.
Collapse
Affiliation(s)
- Jeong-Yeon Lee
- Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul, Republic of Korea
| | - Gu Kong
- Department of Pathology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
41
|
Welch JS, Petti AA, Miller CA, Fronick CC, O'Laughlin M, Fulton RS, Wilson RK, Baty JD, Duncavage EJ, Tandon B, Lee YS, Wartman LD, Uy GL, Ghobadi A, Tomasson MH, Pusic I, Romee R, Fehniger TA, Stockerl-Goldstein KE, Vij R, Oh ST, Abboud CN, Cashen AF, Schroeder MA, Jacoby MA, Heath SE, Luber K, Janke MR, Hantel A, Khan N, Sukhanova MJ, Knoebel RW, Stock W, Graubert TA, Walter MJ, Westervelt P, Link DC, DiPersio JF, Ley TJ. TP53 and Decitabine in Acute Myeloid Leukemia and Myelodysplastic Syndromes. N Engl J Med 2016; 375:2023-2036. [PMID: 27959731 PMCID: PMC5217532 DOI: 10.1056/nejmoa1605949] [Citation(s) in RCA: 640] [Impact Index Per Article: 71.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The molecular determinants of clinical responses to decitabine therapy in patients with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS) are unclear. METHODS We enrolled 84 adult patients with AML or MDS in a single-institution trial of decitabine to identify somatic mutations and their relationships to clinical responses. Decitabine was administered at a dose of 20 mg per square meter of body-surface area per day for 10 consecutive days in monthly cycles. We performed enhanced exome or gene-panel sequencing in 67 of these patients and serial sequencing at multiple time points to evaluate patterns of mutation clearance in 54 patients. An extension cohort included 32 additional patients who received decitabine in different protocols. RESULTS Of the 116 patients, 53 (46%) had bone marrow blast clearance (<5% blasts). Response rates were higher among patients with an unfavorable-risk cytogenetic profile than among patients with an intermediate-risk or favorable-risk cytogenetic profile (29 of 43 patients [67%] vs. 24 of 71 patients [34%], P<0.001) and among patients with TP53 mutations than among patients with wild-type TP53 (21 of 21 [100%] vs. 32 of 78 [41%], P<0.001). Previous studies have consistently shown that patients with an unfavorable-risk cytogenetic profile and TP53 mutations who receive conventional chemotherapy have poor outcomes. However, in this study of 10-day courses of decitabine, neither of these risk factors was associated with a lower rate of overall survival than the rate of survival among study patients with intermediate-risk cytogenetic profiles. CONCLUSIONS Patients with AML and MDS who had cytogenetic abnormalities associated with unfavorable risk, TP53 mutations, or both had favorable clinical responses and robust (but incomplete) mutation clearance after receiving serial 10-day courses of decitabine. Although these responses were not durable, they resulted in rates of overall survival that were similar to those among patients with AML who had an intermediate-risk cytogenetic profile and who also received serial 10-day courses of decitabine. (Funded by the National Cancer Institute and others; ClinicalTrials.gov number, NCT01687400 .).
Collapse
MESH Headings
- 5-Methylcytosine/analysis
- Adult
- Aged
- Aged, 80 and over
- Antimetabolites, Antineoplastic/administration & dosage
- Antimetabolites, Antineoplastic/adverse effects
- Azacitidine/administration & dosage
- Azacitidine/adverse effects
- Azacitidine/analogs & derivatives
- Biomarkers, Tumor/analysis
- Bone Marrow/chemistry
- Bone Marrow/pathology
- Decitabine
- Exome
- Female
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Male
- Middle Aged
- Mutation
- Myelodysplastic Syndromes/drug therapy
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/mortality
- Prospective Studies
- Risk Factors
- Survival Rate
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- John S Welch
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Allegra A Petti
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Christopher A Miller
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Catrina C Fronick
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Michelle O'Laughlin
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Robert S Fulton
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Richard K Wilson
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Jack D Baty
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Eric J Duncavage
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Bevan Tandon
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Yi-Shan Lee
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Lukas D Wartman
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Geoffrey L Uy
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Armin Ghobadi
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Michael H Tomasson
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Iskra Pusic
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Rizwan Romee
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Todd A Fehniger
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Keith E Stockerl-Goldstein
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Ravi Vij
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Stephen T Oh
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Camille N Abboud
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Amanda F Cashen
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Mark A Schroeder
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Meagan A Jacoby
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Sharon E Heath
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Kierstin Luber
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Megan R Janke
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Andrew Hantel
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Niloufer Khan
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Madina J Sukhanova
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Randall W Knoebel
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Wendy Stock
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Timothy A Graubert
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Matthew J Walter
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Peter Westervelt
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Daniel C Link
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - John F DiPersio
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| | - Timothy J Ley
- the Department of Internal Medicine, Division of Oncology (J.S.W., L.D.W., G.L.U., A.G., M.H.T., I.P., R.R., T.A.F., K.E.S.-G., R.V., S.T.O., C.N.A., A.F.C., M.A.S., M.A.J., S.E.H., K.L., M.R.J., M.J.W., P.W., D.C.L., J.F.D., T.J.L.), and the Division of Biostatistics (J.D.B.), and the Department of Pathology and Immunology (E.J.D., B.T., Y.-S.L.), Washington University School of Medicine, and McDonnell Genome Institute, Washington University in St. Louis (A.A.P., C.A.M., C.C.F., M.O., R.S.F., R.K.W., L.D.W., T.J.L.) - both in St. Louis; the Departments of Internal Medicine (A.H., N.K., M.J.S., W.S.) and Pharmacy (R.W.K.), University of Chicago, Chicago; and the Department of Internal Medicine (T.A.G.), Massachusetts General Hospital, Boston
| |
Collapse
|
42
|
Abstract
For several decades, we have known that epigenetic regulation is disrupted in cancer. Recently, an increasing body of data suggests epigenetics might be an intersection of current cancer research trends: next generation sequencing, immunology, metabolomics, and cell aging. The new emphasis on epigenetics is also related to the increasing production of drugs capable of interfering with epigenetic mechanisms and able to trigger clinical responses in even advanced phase patients. In this review, we will use myeloid malignancies as proof of concept examples of how epigenetic mechanisms can trigger or promote oncogenesis. We will also show how epigenetic mechanisms are related to genetic aberrations, and how they affect other systems, like immune response. Finally, we will show how we can try to influence the fate of cancer cells with epigenetic therapy.
Collapse
Affiliation(s)
- Maximilian Stahl
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Nathan Kohrman
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Steven D. Gore
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Tae Kon Kim
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Amer M. Zeidan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Thomas Prebet
- Department of Internal Medicine, Section of Hematology, Yale Cancer Center at Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
43
|
Reddy H, Duffy A, Holtzman NG, Emadi A. The role of β-elimination for the clinical activity of hypomethylating agents and cyclophosphamide analogues. AMERICAN JOURNAL OF CANCER THERAPY AND PHARMACOLOGY 2016; 3:1-8. [PMID: 30406218 PMCID: PMC6217992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A beta-elimination reaction generally involves the cleavage of a sigma (σ) bond at the position beta (β) to a pair of electrons that departs a molecule via a nucleophilic leaving group, subsequently leading to the formation of a new pi (π) bond. We describe the importance of β-elimination reactions in the mechanisms of action of two classes of chemotherapeutic agents. First, we evaluate the chemical steps resulting in formation of 5-methyl-cytosine and its disassociation from DNA methytransferase (DNMT) by β-elimination reaction. When carbon 5 (C5) of cytosine is substituted with a nitrogen atom (N) in 5-aza-cytosine analogues, the critical β-elimination reaction cannot proceed, which results in the permanent attachment of 5-aza-cytosine to DNMT. The net outcome is entrapment of the DNMT by 5-aza-cytosine analogues and its eventual degradation, leading to DNA hypomethylation. Second, we analyze the critical role of β-elimination reaction in the activation of cyclophosphamide and ifosfamide. The incapability of undergoing β-elimination results in reduction of the cytotoxic activity of these agents. It appears that the conversion of aldehyde group, in aldophosphamide metabolites of cyclophosphamide and ifosfamide, to carboxyl group by aldehyde dehydrogenase makes the protons on the carbon atom attached to carboxyl group not acidic enough that can be removed under physiologic conditions via initiation of the critical β-elimination reaction. This ultimately culminates in selective cytotoxic effect of these agents against lymphocytes but not hematopoietic and other stem cells with high aldehyde dehydrogenase content.
Collapse
Affiliation(s)
- Haritha Reddy
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD
| | - Alison Duffy
- University of Maryland School of Pharmacy, Baltimore, MD
| | - Noa G. Holtzman
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD
| | - Ashkan Emadi
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD
| |
Collapse
|
44
|
Prada-Arismendy J, Arroyave JC, Röthlisberger S. Molecular biomarkers in acute myeloid leukemia. Blood Rev 2016; 31:63-76. [PMID: 27639498 DOI: 10.1016/j.blre.2016.08.005] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022]
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults. The pathophysiology of this disease is just beginning to be understood at the cellular and molecular level, and currently cytogenetic markers are the most important for risk stratification and treatment of AML patients. However, with the advent of new technologies, the detection of other molecular markers such as point mutations and characterization of epigenetic and proteomic profiles, have begun to play an important role in how the disease is approached. Recent evidence shows that the identification of new AML biomarkers contributes to a better understanding of the molecular basis of the disease, is significantly useful in screening, diagnosis, prognosis and monitoring of AML, as well as the possibility of predicting each individual's response to treatment. This review summarizes the most relevant molecular (genetic, epigenetic, and protein) biomarkers associated with acute myeloid leukemia and discusses their clinical importance in terms of risk prediction, diagnosis and prognosis.
Collapse
MESH Headings
- Biomarkers, Tumor
- DNA Methylation
- Disease Susceptibility
- Epigenesis, Genetic
- Genetic Variation
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Mutation
- Prognosis
Collapse
Affiliation(s)
- Jeanette Prada-Arismendy
- Grupo de Investigación e Innovación Biomédica, Instituto Tecnológico Metropolitano, Medellín, Colombia.
| | - Johanna C Arroyave
- Grupo de Investigación e Innovación Biomédica, Instituto Tecnológico Metropolitano, Medellín, Colombia
| | - Sarah Röthlisberger
- Grupo de Investigación e Innovación Biomédica, Instituto Tecnológico Metropolitano, Medellín, Colombia
| |
Collapse
|
45
|
Zeidan AM, Stahl M, Komrokji R. Emerging biological therapies for the treatment of myelodysplastic syndromes. Expert Opin Emerg Drugs 2016; 21:283-300. [DOI: 10.1080/14728214.2016.1220534] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
46
|
Lazarini M, Machado-Neto JA, Duarte ADSS, Pericole FV, Vieira KP, Niemann FS, Alvarez M, Traina F, Saad STO. BNIP3L in myelodysplastic syndromes and acute myeloid leukemia: impact on disease outcome and cellular response to decitabine. Haematologica 2016; 101:e445-e448. [PMID: 27443286 DOI: 10.3324/haematol.2016.142521] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Mariana Lazarini
- Hematology and Blood Transfusion Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil .,Department of Biological Sciences, Federal University of São Paulo, Diadema, Brazil
| | - João Agostinho Machado-Neto
- Hematology and Blood Transfusion Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| | - Adriana da Silva Santos Duarte
- Hematology and Blood Transfusion Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| | - Fernando Vieira Pericole
- Hematology and Blood Transfusion Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| | - Karla Priscila Vieira
- Hematology and Blood Transfusion Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| | - Fernanda S Niemann
- Hematology and Blood Transfusion Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| | - Marisa Alvarez
- Hematology and Blood Transfusion Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| | - Fabiola Traina
- Hematology and Blood Transfusion Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil.,Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Blood Transfusion Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| |
Collapse
|
47
|
Brockmeyer P, Hemmerlein B. Epigenetic modification suppresses proliferation, migration and invasion of urothelial cancer cell lines. Oncol Lett 2016; 12:1693-1700. [PMID: 27602104 PMCID: PMC4998357 DOI: 10.3892/ol.2016.4877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 05/23/2016] [Indexed: 12/12/2022] Open
Abstract
Epigenetic approaches offer additional therapeutic options, including apoptosis induction, modification of cell cycle regulating proteins and the re-expression of pharmaceutical targets, such as hormone receptors. The present study analyzed the effect of the epigenetic modifiers 5-aza-2′-deoxycytidine and Trichostatin A on the proliferative, migratory and invasive behavior of four urinary bladder cancer cell lines (RT-4, RT-112, VMCUB-1 and T-24), and the expression of various matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs). Cell proliferation, migration and invasion assays revealed that treatment with the two epigenetic modifiers resulted in proliferation inhibition in all cell lines, and migration and invasion inhibition in RT-4, RT-112 and T-24 cell lines. Quantitative polymerase chain reaction demonstrated that the mRNA expression of a broad selection of MMPs and their TIMPs was induced in all cell lines, and MMP-14 mRNA expression was suppressed in all cell lines, with the exception of RT-4. In conclusion, epigenetic modifications suppressed the motility and invasiveness of three out of four urothelial cancer cell lines. The inhibitory effect on cell motility appears to be crucial for reduced invasive properties. However, even a broad spectrum of mRNA analysis does not sufficiently explain the loss of invasiveness, as it does not allow for functional conclusions. Further complex urothelial tumour models should be applied to investigate whether epigenetic therapeutic approaches may be an option in urothelial cancer.
Collapse
Affiliation(s)
- Phillipp Brockmeyer
- Department of Oral and Maxillofacial Surgery, University Medical Centre Göttingen, Göttingen D-37075, Germany
| | - Bernhard Hemmerlein
- Department of Pathology, University Medical Centre Göttingen, Göttingen D-37075, Germany; Department of Pathology, Helios Klinikum Krefeld, Krefeld D-47805, Germany
| |
Collapse
|
48
|
Hou HA, Tien HF. Mutations in epigenetic modifiers in acute myeloid leukemia and their clinical utility. Expert Rev Hematol 2016; 9:447-69. [DOI: 10.1586/17474086.2016.1144469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
49
|
Zhang LY, Yuan YQ, Zhou DM, Wang ZY, Ju SG, Sun Y, Li J, Fu JX. Impact of Global and Gene-Specific DNA Methylation in de Novo or Relapsed Acute Myeloid Leukemia Patients Treated with Decitabine. Asian Pac J Cancer Prev 2016; 17:431-7. [DOI: 10.7314/apjcp.2016.17.1.431] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
50
|
Han Y, Wang X, Wang B, Jiang G. The progress of angiogenic factors in the development of leukemias. Intractable Rare Dis Res 2016; 5:6-16. [PMID: 26989643 PMCID: PMC4761589 DOI: 10.5582/irdr.2015.01048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Angiogenic factors have been demonstrated to play important roles in modulating angiogenesis of solid tumors. Recently, accumulating studies extensively indicated that some angiogenic factors widely exist in malignant cells of hematologic malignancy, which regulated the expression of a number of genes that were involved in abnormal proliferation, differentiation and apoptosis of these cells. With deep research of angiogenic factors, its expression, function and regulatory mechanism were gradually elucidated, and some of them were related to the development and prognosis of leukemia, or provide more possible strategies for treatment of patients with leukemia. Herein, we summarize the progress in study of some important angiogenic factors and hematological malignancies.
Collapse
Affiliation(s)
- Yang Han
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- School of Medicine and Life Sciences, Ji'nan University, Ji'nan, Shandong, China
| | - Xidi Wang
- Laboratory Department, People's Hospital of Zhangqiu City, Zhangqiu, Shandong, China
| | - Bingping Wang
- Department of Hematology, Shengli Oilfield Central Hospital, Dongying, China
| | - Guosheng Jiang
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- Address correspondence to: Dr. Guosheng Jiang, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, NO.18877 of Jingshi Road, Ji'nan, Shandong, China. E-mail:
| |
Collapse
|