1
|
Spanjaart AM, Ljungman P, Tridello G, Schwartz J, Martinez-Cibrián N, Barba P, Kwon M, Lopez-Corral L, Martinez-Lopez J, Ferra C, Di Blasi R, Ghesquieres H, Mutsaers P, Calkoen F, Jak M, van Doesum J, Vermaat JSP, van der Poel M, Maertens J, Gambella M, Metafuni E, Ciceri F, Saccardi R, Nicholson E, Tholouli E, Matthew C, Potter V, Bloor A, Besley C, Roddie C, Wilson K, Nagler A, Campos A, Petersen SL, Folber F, Bader P, Finke J, Kroger N, Knelange N, de La Camara R, Kersten MJ, Mielke S. Improved outcome of COVID-19 over time in patients treated with CAR T-cell therapy: Update of the European COVID-19 multicenter study on behalf of the European Society for Blood and Marrow Transplantation (EBMT) Infectious Diseases Working Party (IDWP) and the European Hematology Association (EHA) Lymphoma Group. Leukemia 2024; 38:1985-1991. [PMID: 39043963 PMCID: PMC11347385 DOI: 10.1038/s41375-024-02336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024]
Abstract
COVID-19 has been associated with high mortality in patients treated with Chimeric Antigen Receptor (CAR) T-cell therapy for hematologic malignancies. Here, we investigated whether the outcome has improved over time with the primary objective of assessing COVID-19-attributable mortality in the Omicron period of 2022 compared to previous years. Data for this multicenter study were collected using the MED-A and COVID-19 report forms developed by the EBMT. One-hundred-eighty patients were included in the analysis, 39 diagnosed in 2020, 35 in 2021 and 106 in 2022. The median age was 58.9 years (min-max: 5.2-78.4). There was a successive decrease in COVID-19-related mortality over time (2020: 43.6%, 2021: 22.9%, 2022: 7.5%) and in multivariate analysis year of infection was the strongest predictor of survival (p = 0.0001). Comparing 2022 with 2020-2021, significantly fewer patients had lower respiratory symptoms (21.7% vs 37.8%, p = 0.01), needed oxygen support (25.5% vs 43.2%, p = 0.01), or were admitted to ICU (5.7% vs 33.8%, p = 0.0001). Although COVID-19-related mortality has decreased over time, CAR T-cell recipients remain at higher risk for complications than the general population. Consequently, vigilant monitoring for COVID-19 in patients undergoing B-cell-targeting CAR T-cell treatment is continuously recommended ensuring optimal prevention of infection and advanced state-of-the art treatment when needed.
Collapse
Affiliation(s)
- Anne Mea Spanjaart
- Department of Hematology, Amsterdam UMC location University of Amsterdam, Cancer Center Amsterdam and LYMMCARE, Amsterdam, The Netherlands
| | - Per Ljungman
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Gloria Tridello
- European Society for Blood and Marrow Transplantation (EBMT) Data Office, Department of Medical Statistics & Bioinformatics, Leiden, Netherlands
| | - Juana Schwartz
- European Society for Blood and Marrow Transplantation (EBMT) Leiden Study Unit, European Society for Blood and Marrow Transplantation (EBMT) Data Office, Leiden, Netherlands
| | | | - Pere Barba
- Department of Hematology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Mi Kwon
- Department of Hematology, Hospital G. Universitario Gregorio Marañon, Institute of Health Research Gregorio Marañon, Madrid, Spain
| | - Lucia Lopez-Corral
- Department of Hematology, Hospital Universitario de Salamanca and IBSAL, Salamanca, Spain
| | - Joaquin Martinez-Lopez
- Department of Hematology, Hospital Univ. 12 de Octubre, Complutense University, CNIO, Madrid, Spain
| | - Christelle Ferra
- Clinical Hematology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Josep Carreras Research Institute, Barcelona, Spain
| | - Roberta Di Blasi
- Department of Hematology, Assistance Publique Hôpitaux de Paris-Hopital Saint-Louis, Paris, France
| | - Hervé Ghesquieres
- Department of Hematology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Pim Mutsaers
- Department of Hematology, Erasmus MC Cancer Center, Rotterdam, the Netherlands
| | - Friso Calkoen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Margot Jak
- Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jaap van Doesum
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joost S P Vermaat
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Marjolein van der Poel
- Department of Hematology, Department of Internal Medicine, Division of Hematology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Johan Maertens
- Deptartment of Hematology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Massimiliano Gambella
- Department of Hematology and Cellular Therapy, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Elisabetta Metafuni
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Fabio Ciceri
- Hematology and BMT Unit IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Riccardo Saccardi
- Cell Therapy and Transfusion Medicine Unit Azienda Ospedaliero Universitaria Careggi, Firenze, Italy
| | - Emma Nicholson
- Department of Haematology, The Royal Marsden Hospital, London, United Kingdom
| | - Eleni Tholouli
- Department of Clinical Haematology, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Collin Matthew
- Adult HSCT unit, Northern Centre for Bone Marrow Transplantation, Newcastle Tyne, UK
| | - Victoria Potter
- King's College Hospital NHS Foundation Trust, Department of Haematological Medicine, Denmark Hill, London, UK
| | - Adrian Bloor
- Adult Leukaemia and Bone Marrow Transplant Unit, Christie NHS Foundation Trust Hospital, University of Manchester, Manchester, UK
| | - Caroline Besley
- Department of Haematology, University Hospitals Bristol and Weston NHSFT, Bristol, UK
| | - Claire Roddie
- Department of Haematology, University College London Hospital, London, UK
| | - Keith Wilson
- Blood and Bone Marrow Transplantation Department, University Hospital of Cardiff, Cardiff, UK
| | - Arnon Nagler
- Chaim Sheba Medical Center, Tel Aviv University, Tel Hashomer, Israel
| | - Antonio Campos
- Celular Therapy Department, Instituto Portugués de Oncologia do Porto, Francisco Gentil, E.P.E, Porto, Portugal
| | - Soeren Lykke Petersen
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Frantisek Folber
- Department of internal Medicine, Hematology and Oncology, Masaryk University Hospital Brno, Brno, Czech Republic
| | - Peter Bader
- Department for Children and Adolescents, Division for Stem Cell Transplantation and Immunology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Jurgen Finke
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Nicolaus Kroger
- Department of Stem cell Transplantation, University Hospital Eppendorf, Hamburg, Germany
| | - Nina Knelange
- European Society for Blood and Marrow Transplantation (EBMT) Leiden Study Unit, European Society for Blood and Marrow Transplantation (EBMT) Data Office, Leiden, Netherlands
| | - Rafael de La Camara
- Department of Hematology, Hospital Universitario de La Princesa, Madrid, Spain
| | - Marie José Kersten
- Department of Hematology, Amsterdam UMC location University of Amsterdam, Cancer Center Amsterdam and LYMMCARE, Amsterdam, The Netherlands
| | - Stephan Mielke
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Department of Laboratory Medicine, Karolinska Institutet and University Hospital, Karolinska Comprehensive Cancer Center, Karolinska ATMP Center, Stockholm, Sweden.
- Cellular Therapy and immunobiology working party (CTIWP) of EBMT, .
| |
Collapse
|
2
|
Kusunoki H, Ohkusa M, Iida R, Saito A, Kawahara M, Ekawa K, Kato N, Motone M, Shimizu H. Increase in antibody titer and change over time associated with severe acute respiratory syndrome coronavirus 2 infection after mRNA vaccination: Consideration of the significance of additional vaccination. Clin Case Rep 2024; 12:e8953. [PMID: 38808194 PMCID: PMC11130231 DOI: 10.1002/ccr3.8953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024] Open
Abstract
Key Clinical Message Most Japanese patients naturally infected with COVID-19 were infected after mRNA vaccination, and many maintained high antibody titers due to hybrid immunity. The significance of additional vaccination in hybrid-immunized cases is highly questionable. Abstract Spontaneous infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) after mRNA vaccination causes a marked increase in antibody titer because of the combined effect of vaccine and infection ("hybrid immunity"). In this study, we discuss the significance of the mRNA vaccine booster inoculation that has been repeatedly performed in Japan. We describe the temporal trends of antibody titers in cases in which antibody titers were markedly increased by hybrid immunization. The antibody titer increased with hybrid immunization and tended to decrease with time. However, several cases maintained high antibody titers for approximately 1 year after coronavirus disease 2019 (COVID-19) diagnosis, even without booster vaccination. Most Japanese patients naturally infected with COVID-19 were infected after mRNA vaccination, and many maintained high antibody titers due to hybrid immunity. The significance of additional vaccination in hybrid-immunized cases is highly questionable regarding cost-effectiveness and risk-benefit.
Collapse
Affiliation(s)
- Hiroshi Kusunoki
- Department of Internal MedicineOsaka Dental UniversityHirakataJapan
| | - Michiko Ohkusa
- Department of Laboratory MedicineOsaka Dental University HospitalOsakaJapan
| | - Rie Iida
- Department of Laboratory MedicineOsaka Dental University HospitalOsakaJapan
| | - Ayumi Saito
- Department of Laboratory MedicineOsaka Dental University HospitalOsakaJapan
| | - Mikio Kawahara
- Department of Laboratory MedicineOsaka Dental University HospitalOsakaJapan
| | - Kazumi Ekawa
- Department of Internal MedicineOsaka Dental UniversityHirakataJapan
- Department of Environmental and Preventive MedicineHyogo Medical UniversityNishinomiyaJapan
| | - Nozomi Kato
- Department of Internal MedicineOsaka Dental UniversityHirakataJapan
| | - Masaharu Motone
- Department of Internal MedicineOsaka Dental UniversityHirakataJapan
- Faculty of Health SciencesOsaka Dental UniversityHirakataJapan
| | - Hideo Shimizu
- Department of Internal MedicineOsaka Dental UniversityHirakataJapan
| |
Collapse
|
3
|
Saito M, Mori A, Ishio T, Kobayashi M, Tsukamoto S, Kajikawa S, Yokoyama E, Kanaya M, Izumiyama K, Muraki H, Morioka M, Kondo T. Initial Efficacy of the COVID-19 mRNA Vaccine Booster and Subsequent Breakthrough Omicron Variant Infection in Patients with B-Cell Non-Hodgkin's Lymphoma: A Single-Center Cohort Study. Viruses 2024; 16:328. [PMID: 38543695 PMCID: PMC10974858 DOI: 10.3390/v16030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 05/23/2024] Open
Abstract
It has been suggested that the effect of coronavirus disease 2019 (COVID-19) booster vaccination in patients with B-cell non-Hodgkin's lymphoma (B-NHL) is inferior to that in healthy individuals. However, differences according to histological subtype or treatment status are unclear. In addition, there has been less research on patients who subsequently develop breakthrough infections. We investigated the effects of the first COVID-19 booster vaccination for patients with B-NHL and the clinical features of breakthrough infections in the Omicron variant era. In this study, B-NHL was classified into two histological subtypes: aggressive lymphoma and indolent lymphoma. Next, patients were subdivided according to treatment with anticancer drugs at the start of the first vaccination. We also examined the clinical characteristics and outcomes of patients who had breakthrough infections after a booster vaccination. The booster effect of the COVID-19 mRNA vaccine in patients with B-NHL varied considerably depending on treatment status at the initial vaccination. In the patient group at more than 1 year after the last anticancer drug treatment, regardless of the histological subtype, the booster effect was comparable to that in the healthy control group. In contrast, the booster effect was significantly poorer in the other patient groups. However, of the 213 patients who received the booster vaccine, 22 patients (10.3%) were infected with COVID-19, and 18 patients (81.8%) had mild disease; these cases included the patients who remained seronegative. Thus, we believe that booster vaccinations may help in reducing the severity of Omicron variant COVID-19 infection in patients with B-NHL.
Collapse
Affiliation(s)
- Makoto Saito
- Blood Disorders Center, Aiiku Hospital, Sapporo 064-0804, Hokkaido, Japan
| | - Akio Mori
- Blood Disorders Center, Aiiku Hospital, Sapporo 064-0804, Hokkaido, Japan
| | - Takashi Ishio
- Blood Disorders Center, Aiiku Hospital, Sapporo 064-0804, Hokkaido, Japan
| | - Mirei Kobayashi
- Blood Disorders Center, Aiiku Hospital, Sapporo 064-0804, Hokkaido, Japan
| | - Shihori Tsukamoto
- Blood Disorders Center, Aiiku Hospital, Sapporo 064-0804, Hokkaido, Japan
| | - Sayaka Kajikawa
- Blood Disorders Center, Aiiku Hospital, Sapporo 064-0804, Hokkaido, Japan
| | - Emi Yokoyama
- Blood Disorders Center, Aiiku Hospital, Sapporo 064-0804, Hokkaido, Japan
| | - Minoru Kanaya
- Blood Disorders Center, Aiiku Hospital, Sapporo 064-0804, Hokkaido, Japan
| | - Koh Izumiyama
- Blood Disorders Center, Aiiku Hospital, Sapporo 064-0804, Hokkaido, Japan
| | - Haruna Muraki
- Division of Laboratory, Aiiku Hospital, Sapporo 064-0804, Hokkaido, Japan
| | - Masanobu Morioka
- Blood Disorders Center, Aiiku Hospital, Sapporo 064-0804, Hokkaido, Japan
| | - Takeshi Kondo
- Blood Disorders Center, Aiiku Hospital, Sapporo 064-0804, Hokkaido, Japan
| |
Collapse
|
4
|
Kakavandi S, Hajikhani B, Azizi P, Aziziyan F, Nabi-Afjadi M, Farani MR, Zalpoor H, Azarian M, Saadi MI, Gharesi-Fard B, Terpos E, Zare I, Motamedifar M. COVID-19 in patients with anemia and haematological malignancies: risk factors, clinical guidelines, and emerging therapeutic approaches. Cell Commun Signal 2024; 22:126. [PMID: 38360719 PMCID: PMC10868124 DOI: 10.1186/s12964-023-01316-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/13/2023] [Indexed: 02/17/2024] Open
Abstract
Extensive research in countries with high sociodemographic indices (SDIs) to date has shown that coronavirus disease 2019 (COVID-19) may be directly associated with more severe outcomes among patients living with haematological disorders and malignancies (HDMs). Because individuals with moderate to severe immunodeficiency are likely to undergo persistent infections, shed virus particles for prolonged periods, and lack an inflammatory or abortive phase, this represents an overall risk of morbidity and mortality from COVID-19. In cases suffering from HDMs, further investigation is needed to achieve a better understanding of triviruses and a group of related variants in patients with anemia and HDMs, as well as their treatment through vaccines, drugs, and other methods. Against this background, the present study aimed to delineate the relationship between HDMs and the novel COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Besides, effective treatment options for HDM cases were further explored to address this epidemic and its variants. Therefore, learning about how COVID-19 manifests in these patients, along with exploiting the most appropriate treatments, may lead to the development of treatment and care strategies by clinicians and researchers to help patients recover faster. Video Abstract.
Collapse
Affiliation(s)
- Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Paniz Azizi
- Psychological and Brain Science Departments, Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Hamidreza Zalpoor
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Maryam Azarian
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | | | | | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd., Shiraz, 7178795844, Iran.
| | - Mohammad Motamedifar
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Hofsink Q, Haggenburg S, Lissenberg-Witte BI, Broers AEC, van Doesum JA, van Binnendijk RS, den Hartog G, Bhoekhan MS, Haverkate NJE, van Meerloo J, Burger JA, Bouhuijs JH, Smits GP, Wouters D, van Leeuwen EMM, Bontkes HJ, Kootstra NA, Vogels-Nooijen S, Rots N, van Beek J, Heemskerk MHM, Groen K, van Meerten T, Mutsaers PGNJ, van Gils MJ, Goorhuis A, Rutten CE, Hazenberg MD, Nijhof IS. Fourth mRNA COVID-19 vaccination in immunocompromised patients with haematological malignancies (COBRA KAI): a cohort study. EClinicalMedicine 2023; 61:102040. [PMID: 37337616 PMCID: PMC10270678 DOI: 10.1016/j.eclinm.2023.102040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/21/2023] Open
Abstract
Background Patients with haematological malignancies have impaired antibody responses to SARS-CoV-2 vaccination. We aimed to investigate whether a fourth mRNA COVID-19 vaccination improved antibody quantity and quality. Methods In this cohort study, conducted at 5 sites in the Netherlands, we compared antibody concentrations 28 days after 4 mRNA vaccinations (3-dose primary series plus 1 booster vaccination) in SARS-CoV-2 naive, immunocompromised patients with haematological malignancies to those obtained by age-matched, healthy individuals who had received the standard primary 2-dose mRNA vaccination schedule followed by a first booster mRNA vaccination. Prior to and 4 weeks after each vaccination, peripheral blood samples and data on demographic parameters and medical history were collected. Concentrations of antibodies that bind spike 1 (S1) and nucleocapsid (N) protein of SARS-CoV-2 were quantified in binding antibody units (BAU) per mL according to the WHO International Standard for COVID-19 serological tests. Seroconversion was defined as an S1 IgG concentration >10 BAU/mL and a previous SARS-CoV-2 infection as N IgG >14.3 BAU/mL. Antibody neutralising activity was tested using lentiviral-based pseudoviruses expressing spike protein of SARS-CoV-2 wild-type (D614G), Omicron BA.1, and Omicron BA.4/5 variants. This study is registered with EudraCT, number 2021-001072-41. Findings Between March 24, 2021 and May 4, 2021, 723 patients with haematological diseases were enrolled, of which 414 fulfilled the inclusion criteria for the current analysis. Although S1 IgG concentrations in patients significantly improved after the fourth dose, they remained significantly lower compared to those obtained by 58 age-matched healthy individuals after their first booster (third) vaccination. The rise in neutralising antibody concentration was most prominent in patients with a recovering B cell compartment, although potent responses were also observed in patients with persistent immunodeficiencies. 19% of patients never seroconverted, despite 4 vaccinations. Patients who received their first 2 vaccinations when they were B cell depleted and the third and fourth vaccination during B cell recovery demonstrated similar antibody induction dynamics as patients with normal B cell numbers during the first 2 vaccinations. However, the neutralising capacity of these antibodies was significantly better than that of patients with normal B cell numbers after two vaccinations. Interpretation A fourth mRNA COVID-19 vaccination improved S1 IgG concentrations in the majority of patients with a haematological malignancy. Vaccination during B cell depletion may pave the way for better quality of antibody responses after B cell reconstitution. Funding The Netherlands Organisation for Health Research and Development and Amsterdam UMC.
Collapse
Affiliation(s)
- Quincy Hofsink
- Department of Haematology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
| | - Sabine Haggenburg
- Department of Haematology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
| | - Birgit I Lissenberg-Witte
- Department of Epidemiology and Data Science, Amsterdam UMC Location Vrije Universiteit, Amsterdam, Netherlands
| | - Annoek E C Broers
- Department of Haematology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Jaap A van Doesum
- Department of Haematology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Rob S van Binnendijk
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Gerco den Hartog
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, Netherlands
- Laboratory of Medical Immunology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Michel S Bhoekhan
- Department of Haematology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
| | - Nienke J E Haverkate
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Johan van Meerloo
- Department of Haematology, Amsterdam UMC Location Vrije Universiteit, Amsterdam, Netherlands
- Cancer Centre Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Judith A Burger
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Joey H Bouhuijs
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Gaby P Smits
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Dorine Wouters
- Central Diagnostic Laboratory, Amsterdam UMC, Amsterdam, Netherlands
| | - Ester M M van Leeuwen
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Hetty J Bontkes
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
- Department of Clinical Chemistry, Laboratory Medical Immunology, Amsterdam UMC, Amsterdam, Netherlands
| | - Neeltje A Kootstra
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | | | - Nynke Rots
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Josine van Beek
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | | | - Kazimierz Groen
- Department of Haematology, Amsterdam UMC Location Vrije Universiteit, Amsterdam, Netherlands
| | - Tom van Meerten
- Department of Haematology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Pim G N J Mutsaers
- Department of Haematology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Marit J van Gils
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Abraham Goorhuis
- Department of Infectious Diseases, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Caroline E Rutten
- Department of Haematology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Mette D Hazenberg
- Department of Haematology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
- Cancer Centre Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
- Department of Haematopoiesis, Sanquin Research, Amsterdam, Netherlands
| | - Inger S Nijhof
- Department of Haematology, Amsterdam UMC Location Vrije Universiteit, Amsterdam, Netherlands
- Department of Internal Medicine-Haematology, St. Antonius Hospital, Nieuwegein, Netherlands
| |
Collapse
|
6
|
Schmidt KLJ, Dautzenberg NMM, Hoogerbrugge PM, Lindemans CA, Nierkens S, Smits G, Van Binnendijk RS, Bont LJ, Tissing WJE. Immune Response following BNT162b2 mRNA COVID-19 Vaccination in Pediatric Cancer Patients. Cancers (Basel) 2023; 15:cancers15092562. [PMID: 37174028 PMCID: PMC10177402 DOI: 10.3390/cancers15092562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
COVID-19 vaccinations are recommended for children with cancer but data on their vaccination response is scarce. This study assesses the antibody and T-cell response following a 2- or 3-dose vaccination with BNT162b2 mRNA COVID-19 vaccine in children (5-17 years) with cancer. For the antibody response, participants with a serum concentration of anti-SARS-CoV-2 spike 1 antibodies of >300 binding antibody units per milliliter were classified as good responders. For the T-cell response, categorization was based on spike S1 specific interferon-gamma release with good responders having >200 milli-international units per milliliter. The patients were categorized as being treated with chemo/immunotherapy for less than 6 weeks (Tx < 6 weeks) or more than 6 weeks (Tx > 6 weeks) before the first immunization event. In 46 patients given a 2-dose vaccination series, the percentage of good antibody and good T-cell responders was 39.3% and 73.7% in patients with Tx < 6 weeks and 94.4% and 100% in patients with Tx > 6 weeks, respectively. An additional 3rd vaccination in 16 patients with Tx < 6 weeks, increased the percentage of good antibody responders to 70% with no change in T-cell response. A 3-dose vaccination series effectively boosted antibody levels and is of value for patients undergoing active cancer treatment.
Collapse
Affiliation(s)
- K L Juliëtte Schmidt
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Noël M M Dautzenberg
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Peter M Hoogerbrugge
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Caroline A Lindemans
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Gaby Smits
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Rob S Van Binnendijk
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Louis J Bont
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Wim J E Tissing
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
- Department of Pediatric Oncology and Hematology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
7
|
Wiestner A. Beyond SARS-CoV2, the role of viruses in the pathogenesis of hematologic malignancies. Semin Hematol 2022; 59:175-176. [PMID: 36805884 PMCID: PMC9800017 DOI: 10.1053/j.seminhematol.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|