1
|
Bertucci F, Guille A, Lerebours F, Ceccarelli M, Syed N, Adélaïde J, Finetti P, Ueno NT, Van Laere S, Viens P, De Nonneville A, Goncalves A, Birnbaum D, Callens C, Bedognetti D, Mamessier E. Whole-exome profiles of inflammatory breast cancer and pathological response to neoadjuvant chemotherapy. J Transl Med 2024; 22:969. [PMID: 39465437 PMCID: PMC11514970 DOI: 10.1186/s12967-024-05790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Neoadjuvant chemotherapy (NACT) became a standard treatment strategy for patients with inflammatory breast cancer (IBC) because of high disease aggressiveness. However, given the heterogeneity of IBC, no molecular feature reliably predicts the response to chemotherapy. Whole-exome sequencing (WES) of clinical tumor samples provides an opportunity to identify genomic alterations associated with chemosensitivity. METHODS We retrospectively applied WES to 44 untreated IBC primary tumor samples and matched normal DNA. The pathological response to NACT, assessed on operative specimen, distinguished the patients with versus without pathological complete response (pCR versus no-pCR respectively). We compared the mutational profiles, spectra and signatures, pathway mutations, copy number alterations (CNAs), HRD, and heterogeneity scores between pCR versus no-pCR patients. RESULTS The TMB, HRD, and mutational spectra were not different between the complete (N = 13) versus non-complete (N = 31) responders. The two most frequently mutated genes were TP53 and PIK3CA. They were more frequently mutated in the complete responders, but the difference was not significant. Only two genes, NLRP3 and SLC9B1, were significantly more frequently mutated in the complete responders (23% vs. 0%). By contrast, several biological pathways involved in protein translation, PI3K pathway, and signal transduction showed significantly higher mutation frequency in the patients with pCR. We observed a higher abundance of COSMIC signature 7 (due to ultraviolet light exposure) in tumors from complete responders. The comparison of CNAs of the 3808 genes included in the GISTIC regions between both patients' groups identified 234 genes as differentially altered. The CIN signatures were not differentially represented between the complete versus non-complete responders. Based on the H-index, the patients with heterogeneous tumors displayed a lower pCR rate (11%) than those with less heterogeneous tumors (35%). CONCLUSIONS This is the first study aiming at identifying correlations between the WES data of IBC samples and the achievement of pCR to NACT. Our results, obtained in this 44-sample series, suggest a few subtle genomic alterations associated with pathological response. Additional investigations are required in larger series.
Collapse
Affiliation(s)
- François Bertucci
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 232, Boulevard de Sainte-Marguerite, 13009, Marseille, France.
- Department of Medical Oncology, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France.
| | - Arnaud Guille
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 232, Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - Florence Lerebours
- Department of Medical Oncology, Institut Curie Saint-Cloud, Paris, France
| | - Michele Ceccarelli
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, USA
- Department of Public Health Sciences, University of Miami, Miami, USA
| | - Najeeb Syed
- University of Hawai'i Cancer Center, Honolulu, HI, USA
| | - José Adélaïde
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 232, Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - Pascal Finetti
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 232, Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - Naoto T Ueno
- University of Hawai'i Cancer Center, Honolulu, HI, USA
| | - Steven Van Laere
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Patrice Viens
- Department of Medical Oncology, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Alexandre De Nonneville
- Department of Medical Oncology, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Anthony Goncalves
- Department of Medical Oncology, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Daniel Birnbaum
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 232, Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - Céline Callens
- Department of Medical Oncology, Institut Curie Saint-Cloud, Paris, France
| | - Davide Bedognetti
- Tumor Biology and Immunology Laboratory, Research Branch, Sidra Medicine, Doha, Qatar
| | - Emilie Mamessier
- Predictive Oncology Laboratory, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 232, Boulevard de Sainte-Marguerite, 13009, Marseille, France
| |
Collapse
|
2
|
Sahraoui G, Rahoui N, Driss M, Mrad K. Inflammatory breast cancer: An overview about the histo-pathological aspect and diagnosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 384:47-61. [PMID: 38637099 DOI: 10.1016/bs.ircmb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Inflammatory Breast Cancer (IBC) is a rare and aggressive form of locally advanced breast cancer, classified as stage T4d according to the tumor-node-metastasis staging criteria. This subtype of breast cancer is known for its rapid progression and significantly lower survival rates compared to other forms of breast cancer. Despite its distinctive clinical features outlined by the World Health Organization, the histopathological characteristics of IBC remain not fully elucidated, presenting challenges in its diagnosis and treatment. Histologically, IBC tumors often exhibit a ductal phenotype, characterized by emboli composed of pleomorphic cells with a high nuclear grade. These emboli are predominantly found in the papillary and reticular dermis of the skin overlaying the breast, suggesting a primary involvement of the lymphatic vessels. The tumor microenvironment in IBC is a complex network involving various cells such as macrophages, monocytes, and predominantly T CD8+ lymphocytes, and elements including blood vessels and extracellular matrix molecules, which play a pivotal role in the aggressive nature of IBC. A significant aspect of IBC is the frequent loss of expression of hormone receptors like estrogen and progesterone receptors, a phenomenon that is still under active investigation. Moreover, the overexpression of ERBB2/HER2 and TP53 in IBC cases is a topic of ongoing debate, with studies indicating a higher prevalence in IBC compared to non-inflammatory breast cancer. This overview seeks to provide a comprehensive understanding of the histopathological features and diagnostic approaches to IBC, emphasizing the critical areas that require further research.
Collapse
Affiliation(s)
- Ghada Sahraoui
- Department of histopathology, Salah Azaiez Cancer Institute, Tunisia.
| | - Nabil Rahoui
- Department of Pathology and Laboratory Medicine, University of North Carolina Chapel Hill, United States
| | - Maha Driss
- Department of histopathology, Salah Azaiez Cancer Institute, Tunisia
| | - Karima Mrad
- Department of histopathology, Salah Azaiez Cancer Institute, Tunisia
| |
Collapse
|
3
|
Agri-Food By-Products in Cancer: New Targets and Strategies. Cancers (Basel) 2022; 14:cancers14225517. [PMID: 36428610 PMCID: PMC9688227 DOI: 10.3390/cancers14225517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The globalization and the changes in consumer lifestyles are forcing us to face a deep transformation in food demand and in the organization of the entire food production system. In this new era, the food-loss and food-waste security nexus is relevant in the global debate and avoiding unsustainable waste in agri-food systems as well as the supply chain is a big challenge. "Food waste" is useful for the recovery of its valuable components, thus it can assume the connotation of a "food by-product". Sustainable utilization of agri-food waste by-products provides a great opportunity. Increasing evidence shows that agri-food by-products are a source of different bioactive molecules that lower the inflammatory state and, hence, the aggressiveness of several proliferative diseases. This review aims to summarize the effects of agri-food by-products derivatives, already recognized as promising therapeutics in human diseases, including different cancer types, such as breast, prostate, and colorectal cancer. Here, we examine products modulating or interfering in the signaling mediated by the epidermal growth factor receptor.
Collapse
|
4
|
Bertucci F, Boudin L, Finetti P, Van Berckelaer C, Van Dam P, Dirix L, Viens P, Gonçalves A, Ueno NT, Van Laere S, Birnbaum D, Mamessier E. Immune landscape of inflammatory breast cancer suggests vulnerability to immune checkpoint inhibitors. Oncoimmunology 2021; 10:1929724. [PMID: 34104544 PMCID: PMC8158040 DOI: 10.1080/2162402x.2021.1929724] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background. Anti-PD1/PDL1 immune checkpoint inhibitors (ICIs) showed promising results in breast cancer, and exploration of additional actionable immune checkpoints is ongoing. Inflammatory breast cancer (IBC) is an aggressive form of disease, the immune tumor microenvironment (TME) of which is poorly known. We aimed at providing the first comprehensive immune portrait of IBCs. Methods. From the gene expression profiles of 137 IBC and 252 non-IBC clinical samples, we measured the fractions of 22 immune cell types, expression of signatures associated with tertiary lymphoid structures (TLS) and with the response to ICIs (T cell-inflamed signature: TIS) and of 18 genes coding for major actionable immune checkpoints. The IBC/non-IBC comparison was adjusted upon the clinicopathological variables. Results. The immune profiles of IBCs were heterogeneous. CIBERSORT analysis showed profiles rich in macrophages, CD8+ and CD4 + T-cells, with remarkable similarity with melanoma TME. The comparison with non-IBCs showed significant enrichment in M1 macrophages, γδ T-cells, and memory B-cells. IBCs showed higher expression of TLS and TIS signatures. The TIS signature displayed values in IBCs close to those observed in other cancers sensitive to ICIs. Two-thirds of actionable immune genes (HAVCR2/TIM3, CD27, CD70, CTLA4, ICOS, IDO1, LAG3, PDCD1, TNFRSF9, PVRIG, CD274/PDL1, and TIGIT) were overexpressed in IBCs as compared to normal breast and two-thirds were overexpressed in IBCs versus non-IBCs, with very frequent co-overexpression. For most of them, the overexpression was associated with better pathological response to chemotherapy. Conclusion. Our results suggest the potential higher vulnerability of IBC to ICIs. Clinical trials.
Collapse
Affiliation(s)
- François Bertucci
- Predictive Oncology Laboratory, "Equipe Labellisée Ligue Contre Le Cancer", Centre De Recherche En Cancérologie De Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, Marseille, France.,Department of Medical Oncology, CRCM, Institut Paoli-Calmettes, Marseille, France
| | - Laurys Boudin
- Predictive Oncology Laboratory, "Equipe Labellisée Ligue Contre Le Cancer", Centre De Recherche En Cancérologie De Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, Marseille, France
| | - Pascal Finetti
- Predictive Oncology Laboratory, "Equipe Labellisée Ligue Contre Le Cancer", Centre De Recherche En Cancérologie De Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, Marseille, France
| | - Christophe Van Berckelaer
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp Belgium
| | - Peter Van Dam
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp Belgium
| | - Luc Dirix
- Translational Cancer Research Unit, GZA Hospitals & CORE, MIPRO, University of Antwerp, Antwerp, Belgium.,Department of Oncological Research, Oncology Center, GZA Hospitals Sint-Augustinus, Antwerp, Belgium
| | - Patrice Viens
- Department of Medical Oncology, CRCM, Institut Paoli-Calmettes, Marseille, France
| | - Anthony Gonçalves
- Predictive Oncology Laboratory, "Equipe Labellisée Ligue Contre Le Cancer", Centre De Recherche En Cancérologie De Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, Marseille, France.,Department of Medical Oncology, CRCM, Institut Paoli-Calmettes, Marseille, France
| | - Naoto T Ueno
- Breast Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven Van Laere
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp Belgium.,Translational Cancer Research Unit, GZA Hospitals & CORE, MIPRO, University of Antwerp, Antwerp, Belgium
| | - Daniel Birnbaum
- Predictive Oncology Laboratory, "Equipe Labellisée Ligue Contre Le Cancer", Centre De Recherche En Cancérologie De Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, Marseille, France
| | - Emilie Mamessier
- Predictive Oncology Laboratory, "Equipe Labellisée Ligue Contre Le Cancer", Centre De Recherche En Cancérologie De Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille Université, Marseille, France
| |
Collapse
|
5
|
Decorin-mediated suppression of tumorigenesis, invasion, and metastasis in inflammatory breast cancer. Commun Biol 2021; 4:72. [PMID: 33452400 PMCID: PMC7811004 DOI: 10.1038/s42003-020-01590-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a clinically distinct and highly aggressive form of breast cancer with rapid onset and a strong propensity to metastasize. The molecular mechanisms underlying the aggressiveness and metastatic propensity of IBC are largely unknown. Herein, we report that decorin (DCN), a small leucine-rich extracellular matrix proteoglycan, is downregulated in tumors from patients with IBC. Overexpression of DCN in IBC cells markedly decreased migration, invasion, and cancer stem cells in vitro and inhibited tumor growth and metastasis in IBC xenograft mouse models. Mechanistically, DCN functioned as a suppressor of invasion and tumor growth in IBC by destabilizing E-cadherin and inhibiting EGFR/ERK signaling. DCN physically binds E-cadherin in IBC cells and accelerates its degradation through an autophagy-linked lysosomal pathway. We established that DCN inhibits tumorigenesis and metastasis in IBC cells by negatively regulating the E-cadherin/EGFR/ERK axis. Our findings offer a potential therapeutic strategy for IBC, and provide a novel mechanism for IBC pathobiology. Xiaoding Hu et al. find that expression of the proteoglycan decorin is decreased in patients with inflammatory breast cancer compared to normal breast tissue and some other types of breast cancer. They demonstrate that decorin acts as a tumor suppressor in cancer cells and human xenograft mouse models by destabilizing the E-cadherin-EGFR signaling axis, and their findings suggest potential therapeutic strategies for this aggressive breast cancer.
Collapse
|
6
|
Bertucci F, Rypens C, Finetti P, Guille A, Adélaïde J, Monneur A, Carbuccia N, Garnier S, Dirix P, Gonçalves A, Vermeulen P, Debeb BG, Wang X, Dirix L, Ueno NT, Viens P, Cristofanilli M, Chaffanet M, Birnbaum D, Van Laere S. NOTCH and DNA repair pathways are more frequently targeted by genomic alterations in inflammatory than in non-inflammatory breast cancers. Mol Oncol 2020; 14:504-519. [PMID: 31854063 PMCID: PMC7053236 DOI: 10.1002/1878-0261.12621] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/06/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Inflammatory breast cancer (IBC) is the most pro‐metastatic form of breast cancer. Better understanding of its pathophysiology and identification of actionable genetic alterations (AGAs) are crucial to improve systemic treatment. We aimed to define the DNA profiles of IBC vs noninflammatory breast cancer (non‐IBC) clinical samples in terms of copy number alterations (CNAs), mutations, and AGAs. We applied targeted next‐generation sequencing (tNGS) and array‐comparative genomic hybridization (aCGH) to 57 IBC and 50 non‐IBC samples and pooled these data with four public datasets profiled using NGS and aCGH, leading to a total of 101 IBC and 2351 non‐IBC untreated primary tumors. The respective percentages of each molecular subtype [hormone receptor‐positive (HR+)/HER2−, HER2+, and triple‐negative] were 68%, 15%, and 17% in non‐IBC vs 25%, 35%, and 40% in IBC. The comparisons were adjusted for both the molecular subtypes and the American Joint Committee on Cancer (AJCC) stage. The 10 most frequently altered genes in IBCs were TP53 (63%), HER2/ERBB2 (30%), MYC (27%), PIK3CA (21%), BRCA2 (14%), CCND1 (13%), GATA3 (13%), NOTCH1 (12%), FGFR1 (11%), and ARID1A (10%). The tumor mutational burden was higher in IBC than in non‐IBC. We identified 96 genes with an alteration frequency (p < 5% and q < 20%) different between IBC and non‐IBC, independently from the molecular subtypes and AJCC stage; 95 were more frequently altered in IBC, including TP53, genes involved in the DNA repair (BRCA2) and NOTCH pathways, and one (PIK3CA) was more frequently altered in non‐IBC. Ninety‐seven percent of IBCs displayed at least one AGA. This percentage was higher than in non‐IBC (87%), notably for drugs targeting DNA repair, NOTCH signaling, and CDK4/6, whose pathways were more frequently altered (DNA repair) or activated (NOTCH and CDK4/6) in IBC than in non‐IBC. The genomic landscape of IBC is different from that of non‐IBC. Enriched AGAs in IBC may explain its aggressiveness and provide clinically relevant targets.
Collapse
Affiliation(s)
- François Bertucci
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, France.,Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Charlotte Rypens
- Translational Cancer Research Unit and Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, GZA Hospitals Sint-Augustinus and University of Antwerp Wilrijk, Antwerp, Belgium
| | - Pascal Finetti
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, France
| | - Arnaud Guille
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, France
| | - José Adélaïde
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, France
| | - Audrey Monneur
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Nadine Carbuccia
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, France
| | - Séverine Garnier
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, France
| | - Piet Dirix
- Translational Cancer Research Unit and Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, GZA Hospitals Sint-Augustinus and University of Antwerp Wilrijk, Antwerp, Belgium
| | - Anthony Gonçalves
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, France.,Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Peter Vermeulen
- Translational Cancer Research Unit and Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, GZA Hospitals Sint-Augustinus and University of Antwerp Wilrijk, Antwerp, Belgium
| | - Bisrat G Debeb
- MD Anderson Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoping Wang
- MD Anderson Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luc Dirix
- Translational Cancer Research Unit and Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, GZA Hospitals Sint-Augustinus and University of Antwerp Wilrijk, Antwerp, Belgium
| | - Naoto T Ueno
- MD Anderson Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrice Viens
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Massimo Cristofanilli
- Division of Hematology and Oncology, Robert H Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Max Chaffanet
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, France
| | - Daniel Birnbaum
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, France
| | - Steven Van Laere
- Translational Cancer Research Unit and Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, GZA Hospitals Sint-Augustinus and University of Antwerp Wilrijk, Antwerp, Belgium
| |
Collapse
|
7
|
Espinoza-Sánchez NA, Győrffy B, Fuentes-Pananá EM, Götte M. Differential impact of classical and non-canonical NF-κB pathway-related gene expression on the survival of breast cancer patients. J Cancer 2019; 10:5191-5211. [PMID: 31602271 PMCID: PMC6775609 DOI: 10.7150/jca.34302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a well-known driver of carcinogenesis and cancer progression, often attributed to the tumor microenvironment. However, tumor cells themselves are capable of secreting a variety of inflammatory molecules, leading to the activation of specific signaling pathways that promote tumor progression. The NF-κB signaling pathway is one of the most important connections between inflammation and tumorigenesis. NF-κB is a superfamily of transcription factors that plays an important role in several types of hematological and solid tumors, including breast cancer. However, the role of the NF-κB pathway in the survival of breast cancer patients is poorly studied. In this study, we analyzed and related the expression of both canonical and alternative NF-κB pathways and selected target genes with the relapse-free and overall survival of breast cancer patients. We used the public database Kaplan-Meier plotter (KMplot) which includes gene expression data and survival information of 3951 breast cancer patients. We found that the expression of IKKα was associated with poor relapse-free survival in patients with ER-positive tumors. Moreover, the expression of IL-8 and MMP-1 was associated with poor relapse-free and overall survival. In contrast, expression of IKKβ, p50, and p65 from the canonical pathway, and NIK and RELB from the alternative pathway correlated with better relapse-free survival also when the patients were classified by their hormonal and nodal status. Our study suggests that the expression of genes of the canonical and alternative NF-κB pathways is ultimately critical for tumor persistence. Understanding the communication between both pathways would help to find better therapeutic and prophylactic targets to prevent breast cancer progression and relapse.
Collapse
Affiliation(s)
- Nancy Adriana Espinoza-Sánchez
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, C.P. 06720, Ciudad de México, México
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, and Semmelweis University 2nd Dept. of Pediatrics, Budapest, Hungary
| | - Ezequiel M. Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, C.P. 06720, Ciudad de México, México
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| |
Collapse
|
8
|
Bottero M, Cancelli A, Alì E, Ponti E, Lancia A, Santoni R, Ingrosso G. Post-operative radiotherapy in the management of metastatic inflammatory breast cancer. JOURNAL OF ONCOLOGICAL SCIENCES 2019. [DOI: 10.1016/j.jons.2019.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
9
|
Martín-Ruiz A, Peña L, González-Gil A, Díez-Córdova LT, Cáceres S, Illera JC. Effects of indole-3-carbinol on steroid hormone profile and tumor progression in a mice model of canine inflammatory mammarycancer. BMC Cancer 2018; 18:626. [PMID: 29866056 PMCID: PMC5987405 DOI: 10.1186/s12885-018-4518-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/18/2018] [Indexed: 11/20/2022] Open
Abstract
Background Indole-3-carbinol, derived from Cruciferous vegetables is an estrogen receptor antagonist considered a preventive agent that is naturally present in diet. There are no previous studies on its effects in human inflammatory breast cancer or canine inflammatory mammary cancer that is the most aggressive type of breast cancer. Methods The aim of this study was to analyze the effect of indole-3-carbinol on a SCID mice xenograft model of canine inflammatory mammary cancer, using equivalent human oral dose as a preventive therapy in humans for 3 weeks. Results Indole-3-carbinol treatment decreased tumor proliferation and increased apoptosis, although tumor embolization and liver metastasis were observed in some animals. There was a characteristic subpopulation of lipid-rich cells and increased contents of select steroid hormones in tumor homogenates and serum. Conclusions Our data reveal for the first time that the ingestion of indole-3-carbinol, as administered, diminishes proliferation and increases apoptosis of tumor cells in an experimental model of inflammatory breast cancer, although this effect could not be enough to avoid the appearance of tumor embolization and metastasis. Future clinical trials will be needed to clarify the usefulness of indole-3-carbinol in this cancer and to understand the molecular mechanisms involved.
Collapse
Affiliation(s)
- Asunción Martín-Ruiz
- Department of Animal Physiology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - Laura Peña
- Department of Animal Medicine, Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - Alfredo González-Gil
- Department of Animal Physiology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - Lucía Teresa Díez-Córdova
- Department of Animal Medicine, Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - Sara Cáceres
- Department of Animal Physiology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - Juan Carlos Illera
- Department of Animal Physiology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
10
|
An NFκB-dependent mechanism of tumor cell plasticity and lateral transmission of aggressive features. Oncotarget 2018; 9:26679-26700. [PMID: 29928478 PMCID: PMC6003573 DOI: 10.18632/oncotarget.25465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/07/2018] [Indexed: 01/06/2023] Open
Abstract
Breast cancer is a complex disease exhibiting extensive inter- and intra-tumor heterogeneity. Inflammation is a well-known driver of cancer progression, often attributed to immune cells infiltrating the tumor stroma. However, tumor cells themselves are capable to secrete a variety of inflammatory molecules, of which we understand very little about their role in intra-clonal communication. We recently reported the capacity of triple negative cell lines to induce a cancer stem cell (CSC)-like phenotype and invasion properties into luminal cells, a mechanism mediated by pro-inflammatory cytokines that up-regulated the CXCL12/CXCR4/CXCR7 chemokine signaling axis. We performed transcriptional array analyses of CSCs-associated genes and cancer-inflammatory cell crosstalk genes and built regulatory networks with the data collected. We found a specific molecular signature segregating with the induced-invasive/stemness phenotype. Regulatory network analysis pointed out to an NFκB transcriptional signature, active in aggressive triple negative cells and in induced-invasive/CSC-like luminal cells. In agreement, NFκB inhibition abolished the induction of the stemness/invasive features. These data support an NFκB dependent mechanism of intra-clonal communication responsible for tumor cell plasticity leading the acquisition of cancer aggressive features. Understanding the communication between different tumor clones would help to find better therapeutic and prophylactic targets to prevent BrC progression and relapse.
Collapse
|
11
|
Arora J, Sauer SJ, Tarpley M, Vermeulen P, Rypens C, Van Laere S, Williams KP, Devi GR, Dewhirst MW. Inflammatory breast cancer tumor emboli express high levels of anti-apoptotic proteins: use of a quantitative high content and high-throughput 3D IBC spheroid assay to identify targeting strategies. Oncotarget 2018; 8:25848-25863. [PMID: 28460441 PMCID: PMC5432221 DOI: 10.18632/oncotarget.15667] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 01/19/2017] [Indexed: 11/25/2022] Open
Abstract
Inflammatory breast cancer (IBC) is one of the most lethal breast cancer variants; with existing therapy, 5-yr survival rate is only 35%. Current barriers to successful treatment of IBC include frequent infiltration and the presence of tumor cell clusters, termed tumor emboli, within the breast parenchyma and lymphatics. Prior studies have identified the role of anti-apoptotic signaling, in particular hyperactivation of NFκB and its target genes, in IBC pathobiology and therapeutic resistance. The objectives of this study were to: (1) determine if IBC tumor emboli express anti-apoptotic proteins and (2) develop a high content, multiparametric assay to assess the morphology of the IBC 3D spheroids and to optimize a high throughput format to screen for compounds that can inhibit the formation of the IBC tumor clusters/embolic structures. Immunohistochemical analysis of IBC patient tumor samples with documented tumor emboli revealed high NFκB (p65) staining along with expression of XIAP, a potent anti-apoptotic protein known to interact with NFκB signaling in enhancing survival of malignant cells. Subsequently, the high content assay developed allowed for simultaneous imaging and morphometric analysis, including count and viability of spheroids derived from SUM149, rSUM149 and SUM190 cells and its application to evaluate XIAP and NFκB inhibitory agents. We demonstrate the efficacy of the off-patent drug disulfiram when chelated with copper, which we had previously reported to inhibit NFκB signaling, was highly effective in disrupting both IBC spheroids and emboli grown in vitro. Taken together, these results identify a high-throughput approach to target tumor spheroid formation for drug discovery. Finally, disulfiram is a safe and approved drug for management of alcohol abuse, warranting its evaluation for repurposing in IBC therapy.
Collapse
Affiliation(s)
- Jay Arora
- Duke Cancer Institute, Duke University, Durham, NC, USA.,Trinity College of Arts and Sciences, Duke University, Durham, NC, USA
| | - Scott J Sauer
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Michael Tarpley
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Peter Vermeulen
- Translational Cancer Research Unit, Oncology Center, General Hospital Sint Augustinus, Center for Oncological Research (CORE), University of Antwerp, Antwerp, Wilrijk, Belgium
| | - Charlotte Rypens
- Translational Cancer Research Unit, Oncology Center, General Hospital Sint Augustinus, Center for Oncological Research (CORE), University of Antwerp, Antwerp, Wilrijk, Belgium
| | - Steven Van Laere
- Translational Cancer Research Unit, Oncology Center, General Hospital Sint Augustinus, Center for Oncological Research (CORE), University of Antwerp, Antwerp, Wilrijk, Belgium
| | - Kevin P Williams
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Gayathri R Devi
- Duke Cancer Institute, Duke University, Durham, NC, USA.,Department of Surgery, Division of Surgical Sciences, Duke University, Durham, NC, USA
| | - Mark W Dewhirst
- Duke Cancer Institute, Duke University, Durham, NC, USA.,Department of Radiation Oncology and Imaging Program, Duke University, Durham, NC, USA
| |
Collapse
|
12
|
Manai M, Thomassin-Piana J, Gamoudi A, Finetti P, Lopez M, Eghozzi R, Ayadi S, Lamine OB, Manai M, Rahal K, Charafe-Jauffret E, Jacquemier J, Viens P, Birnbaum D, Boussen H, Chaffanet M, Bertucci F. MARCKS protein overexpression in inflammatory breast cancer. Oncotarget 2018; 8:6246-6257. [PMID: 28009981 PMCID: PMC5351628 DOI: 10.18632/oncotarget.14057] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/14/2016] [Indexed: 12/21/2022] Open
Abstract
Background Inflammatory breast cancer (IBC) is the most aggressive form of locally-advanced breast cancer. Identification of new therapeutic targets is crucial. We previously reported MARCKS mRNA overexpression in IBC in the largest transcriptomics study reported to date. Here, we compared MARCKS protein expression in IBC and non-IBC samples, and searched for correlations between protein expression and clinicopathological features. Results Tumor samples showed heterogeneity with respect to MARCKS staining: 18% were scored as MARCKS-positive (stained cells ≥ 1%) and 82% as MARCKS-negative. MARCKS expression was more frequent in IBC (36%) than in non-IBC (11%; p = 1.4E−09), independently from molecular subtypes and other clinicopathological variables. We found a positive correlation between protein and mRNA expression in the 148/502 samples previously analyzed for MARCKS mRNA expression. MARCKS protein expression was associated with other poor-prognosis features in the whole series of samples such as clinical axillary lymph node or metastatic extension, high pathological grade, ER-negativity, PR-negativity, HER2-positivity, and triple-negative and HER2+ statutes. In IBC, MARCKS expression was the sole tested variable associated with poor MFS. Materials and Methods We retrospectively analyzed MARCKS protein expression by immunohistochemistry in 502 tumors, including 133 IBC and 369 non-IBC, from Tunisian and French patients. All samples were pre-therapeutic clinical samples. We searched for correlations between MARCKS expression and clinicopathological features including the IBC versus non-IBC phenotype and metastasis-free survival (MFS). Conclusions MARCKS overexpression might in part explain the poor prognosis of IBC. As an oncogene associated with poor MFS, MARCKS might represent a new potential therapeutic target in IBC.
Collapse
Affiliation(s)
- Maroua Manai
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Marseille, France.,Département de Biologie, Unité de Biochimie et Biologie Moléculaire, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunisie.,Département d'Oncologie Médicale, Institut Salah Azaiez, Tunis, Tunisie.,Service d'Oncologie Médicale, Hôpital l'Ariana, Tunis, Tunisie
| | | | - Amor Gamoudi
- Département d'Oncologie Médicale, Institut Salah Azaiez, Tunis, Tunisie
| | - Pascal Finetti
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Marseille, France
| | - Marc Lopez
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Marseille, France
| | - Radhia Eghozzi
- Département d'Oncologie Médicale, Institut Salah Azaiez, Tunis, Tunisie
| | - Sinda Ayadi
- Département d'Oncologie Médicale, Institut Salah Azaiez, Tunis, Tunisie
| | - Olfa Ben Lamine
- Département d'Oncologie Médicale, Institut Salah Azaiez, Tunis, Tunisie
| | - Mohamed Manai
- Département de Biologie, Unité de Biochimie et Biologie Moléculaire, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunisie
| | - Khaled Rahal
- Département d'Oncologie Médicale, Institut Salah Azaiez, Tunis, Tunisie
| | - Emmanuelle Charafe-Jauffret
- Département de Bio-Pathologie, Institut Paoli-Calmettes, Marseille, France.,UFR de Médecine, Aix Marseille Université, Marseille, France
| | | | - Patrice Viens
- UFR de Médecine, Aix Marseille Université, Marseille, France.,Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| | - Daniel Birnbaum
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Marseille, France
| | - Hamouda Boussen
- Département de Biologie, Unité de Biochimie et Biologie Moléculaire, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunisie.,Service d'Oncologie Médicale, Hôpital l'Ariana, Tunis, Tunisie
| | - Max Chaffanet
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Marseille, France
| | - François Bertucci
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Marseille, France.,UFR de Médecine, Aix Marseille Université, Marseille, France.,Département d'Oncologie Médicale, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
13
|
Pharmacological targeting of GLI1 inhibits proliferation, tumor emboli formation and in vivo tumor growth of inflammatory breast cancer cells. Cancer Lett 2017; 411:136-149. [PMID: 28965853 DOI: 10.1016/j.canlet.2017.09.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 01/01/2023]
Abstract
Activation of the Hedgehog (Hh) pathway effector GLI1 is linked to tumorigenesis and invasiveness in a number of cancers, with targeting of GLI1 by small molecule antagonists shown to be effective. We profiled a collection of GLI antagonists possessing distinct mechanisms of action for efficacy in phenotypic models of inflammatory and non-inflammatory breast cancer (IBC and non-IBC) that we showed expressed varying levels of Hh pathway mediators. Compounds GANT61, HPI-1, and JK184 decreased cell proliferation, inhibited GLI1 mRNA expression and decreased the number of colonies formed in TN-IBC (SUM149) and TNBC (MDA-MB-231 and SUM159) cell lines. In addition, GANT61 and JK184 significantly down-regulated GLI1 targets that regulate cell cycle (cyclin D and E) and apoptosis (Bcl2). GANT61 reduced SUM149 spheroid growth and emboli formation, and in orthotopic SUM149 tumor models significantly decreased tumor growth. We successfully utilized phenotypic profiling to identify a subset of GLI1 antagonists that were prioritized for testing in in vivo models. Our results indicated that GLI1 activation in TN-IBC as in TNBC, plays a vital role in promoting cell proliferation, motility, tumor growth, and formation of tumor emboli.
Collapse
|
14
|
Wang X, Reyes ME, Zhang D, Funakoshi Y, Trape AP, Gong Y, Kogawa T, Eckhardt BL, Masuda H, Pirman DA, Yang P, Reuben JM, Woodward WA, Bartholomeusz C, Hortobagyi GN, Tripathy D, Ueno NT. EGFR signaling promotes inflammation and cancer stem-like activity in inflammatory breast cancer. Oncotarget 2017; 8:67904-67917. [PMID: 28978083 PMCID: PMC5620223 DOI: 10.18632/oncotarget.18958] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 06/17/2017] [Indexed: 12/17/2022] Open
Abstract
Inflammatory breast cancer (IBC) is the most lethal and aggressive type of breast cancer, with a strong proclivity to metastasize, and IBC-specific targeted therapies have not yet been developed. Epidermal growth factor receptor (EGFR) has emerged as an important therapeutic target in IBC. However, the mechanism behind the therapeutic effect of EGFR targeted therapy is not well defined. Here, we report that EGFR regulates the IBC cell population that expresses cancer stem-like cell (CSC) markers through COX-2, a key mediator of inflammation whose expression correlates with worse outcome in IBC. The COX-2 pathway promoted IBC cell migration and invasion and the CSC marker-bearing population in vitro, and the inhibition of this pathway reduced IBC tumor growth in vivo. Mechanistically, we identified Nodal, a member of the TGFβ superfamily, as a potential driver of COX-2-regulated invasive capacity and the CSC phenotype of IBC cells. Our data indicate that the EGFR pathway regulates the expression of COX-2, which in turn regulates the expression of Nodal and the activation of Nodal signaling. Together, our findings demonstrate a novel connection between the EGFR/COX-2/Nodal signaling axis and CSC regulation in IBC, which has potential implications for new combination approaches with EGFR targeted therapy for patients with IBC.
Collapse
Affiliation(s)
- Xiaoping Wang
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Monica E Reyes
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dongwei Zhang
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yohei Funakoshi
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Adriana P Trape
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yun Gong
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Takahiro Kogawa
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bedrich L Eckhardt
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hiroko Masuda
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David A Pirman
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peiying Yang
- Department of General Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - James M Reuben
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wendy A Woodward
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chandra Bartholomeusz
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gabriel N Hortobagyi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naoto T Ueno
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
15
|
Gonçalves A, Monneur A, Viens P, Bertucci F. The use of systemic therapies to prevent progression of inflammatory breast cancer: which targeted therapies to add on cytotoxic combinations? Expert Rev Anticancer Ther 2017; 17:593-606. [PMID: 28506194 DOI: 10.1080/14737140.2017.1330655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Inflammatory breast cancer is a rare but frequently fatal disease, essentially because of its high ability to develop distant metastases. Even though the prognosis of IBC was significantly improved by multimodal management, including the systematic use of cytotoxic-based induction, the prognosis remains largely dismal. Areas covered: This review presents the main achievements in the systemic treatment of IBC during the past 30 years. It focuses more specifically on recent results obtained with targeted therapies, including anti-HER2 and anti-angiogenic agents. Novel approaches under investigation are presented. Expert commentary: Current management of IBC is subtype-specific and the largest benefit has been achieved in HER2-positive disease. The identification of breakthrough therapeutic advances is eagerly awaited and will require the development of IBC-specific clinical trials. Future clinical investigations should not only aim to increase the pathological response rate but also to eradicate distant metastases, which ultimately lead to patient death.
Collapse
Affiliation(s)
- Anthony Gonçalves
- a Department of Medical Oncology, Institut Paoli-Calmettes, Aix Marseille Univ , CNRS U7258, INSERM U1068, CRCM , Marseille , France
| | - Audrey Monneur
- a Department of Medical Oncology, Institut Paoli-Calmettes, Aix Marseille Univ , CNRS U7258, INSERM U1068, CRCM , Marseille , France
| | - Patrice Viens
- a Department of Medical Oncology, Institut Paoli-Calmettes, Aix Marseille Univ , CNRS U7258, INSERM U1068, CRCM , Marseille , France
| | - François Bertucci
- a Department of Medical Oncology, Institut Paoli-Calmettes, Aix Marseille Univ , CNRS U7258, INSERM U1068, CRCM , Marseille , France
| |
Collapse
|
16
|
Bevacizumab plus neoadjuvant chemotherapy in patients with HER2-negative inflammatory breast cancer (BEVERLY-1): a multicentre, single-arm, phase 2 study. Lancet Oncol 2016; 17:600-11. [DOI: 10.1016/s1470-2045(16)00011-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/04/2016] [Accepted: 01/04/2016] [Indexed: 01/24/2023]
|
17
|
Bertucci F, Finetti P, Colpaert C, Mamessier E, Parizel M, Dirix L, Viens P, Birnbaum D, van Laere S. PDL1 expression in inflammatory breast cancer is frequent and predicts for the pathological response to chemotherapy. Oncotarget 2016; 6:13506-19. [PMID: 25940795 PMCID: PMC4537030 DOI: 10.18632/oncotarget.3642] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/23/2015] [Indexed: 12/31/2022] Open
Abstract
We retrospectively analyzed PDL1 mRNA expression in 306 breast cancer samples, including 112 samples of an aggressive form, inflammatory breast cancer (IBC). PDL1 expression was heterogeneous, but was higher in IBC than in non-IBC. Compared to normal breast samples, PDL1 was overexpressed in 38% of IBC. In IBC, PDL1 overexpression was associated with estrogen receptor-negative status, basal and ERBB2-enriched aggressive subtypes, and clinico-biological signs of anti-tumor T-cell cytotoxic response. PDL1 overexpression was associated with better pathological response to chemotherapy, independently of histo-clinical variables and predictive gene expression signatures. No correlation was found with metastasis-free and overall specific survivals. In conclusion, PDL1 overexpression in IBC correlated with better response to chemotherapy. This seemingly counterintuitive correlation between expression of an immunosuppressive molecule and improved therapeutic response may be resolved if PDL1 expression is viewed as a surrogate marker of a strong antitumor immune response among patients treated with immunogenic chemotherapy. In such patients, PDL1 inhibition could protect activated T-cells or reactivate inhibited T-cells and improve the therapeutic response, notably when associated with immunogenic chemotherapy.
Collapse
Affiliation(s)
- François Bertucci
- Département d'Oncologie Moléculaire, "Equipe Labellisée Ligue Contre le Cancer", Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Marseille, France.,Département d'Oncologie Médicale, CRCM, Institut Paoli-Calmettes, Marseille, France.,Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | - Pascal Finetti
- Département d'Oncologie Moléculaire, "Equipe Labellisée Ligue Contre le Cancer", Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Marseille, France
| | - Cécile Colpaert
- Department of Pathology, GZA Hospitals Sint-Augustinus, Antwerp, Belgium
| | - Emilie Mamessier
- Département d'Oncologie Moléculaire, "Equipe Labellisée Ligue Contre le Cancer", Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Marseille, France
| | - Maxime Parizel
- Department of Pathology, GZA Hospitals Sint-Augustinus, Antwerp, Belgium
| | - Luc Dirix
- Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Patrice Viens
- Département d'Oncologie Moléculaire, "Equipe Labellisée Ligue Contre le Cancer", Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Marseille, France.,Département d'Oncologie Médicale, CRCM, Institut Paoli-Calmettes, Marseille, France.,Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | - Daniel Birnbaum
- Département d'Oncologie Moléculaire, "Equipe Labellisée Ligue Contre le Cancer", Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Marseille, France
| | - Steven van Laere
- Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
18
|
Woodward WA. Inflammatory breast cancer: unique biological and therapeutic considerations. Lancet Oncol 2016; 16:e568-e576. [PMID: 26545845 DOI: 10.1016/s1470-2045(15)00146-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/29/2015] [Accepted: 07/06/2015] [Indexed: 12/29/2022]
Abstract
Through the concerted efforts of many patients, health-care providers, legislators, and other supporters, the past decade has seen the development of the first clinics dedicated to the care of patients with inflammatory breast cancer in the USA and other countries. Together with social networking, advocacy, and education, a few specialised centres have had substantial increases in patient numbers (in some cases ten times higher), which has further expanded the community of science and advocacy and increased the understanding of the disease process. Although inflammatory breast cancer is considered rare, constituting only 2-4% of breast cancer cases, poor prognosis means that patients with the disease account for roughly 10% of breast cancer mortality annually in the USA. I propose that the unique presentation of inflammatory breast cancer might require specific, identifiable changes in the breast parenchyma that occur before the tumour-initiating event. This would make the breast tissue itself a tumour-promoting medium that should be treated as a component of the pathology in multidisciplinary treatment and should be further studied for complementary targets to inhibit the pathobiology that is specific to inflammatory breast cancer.
Collapse
Affiliation(s)
- Wendy A Woodward
- Department of Radiation Oncology and MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
19
|
De Andrés PJ, Cáceres S, Clemente M, Pérez-Alenza MD, Illera JC, Peña L. Profile of Steroid Receptors and Increased Aromatase Immunoexpression in Canine Inflammatory Mammary Cancer as a Potential Therapeutic Target. Reprod Domest Anim 2016; 51:269-75. [PMID: 26899138 DOI: 10.1111/rda.12676] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/15/2016] [Indexed: 11/28/2022]
Abstract
Canine inflammatory mammary cancer (IMC) has been proposed as a model for the study of human inflammatory breast cancer (IBC). The aims of this study were to compare the immunohistochemical expression of aromatase (Arom) and several hormone receptors [estrogen receptor α (ERα), estrogen receptor β (ERβ), progesterone receptor (PR) and androgen receptor (AR)], in 21 IMC cases vs 19 non-IMC; and to study the possible effect of letrozole on canine IMC and human inflammatory breast cancer (IBC) in vitro using IPC-366 and SUM-149 cell lines. Significant elevations of the means of Arom Total Score (TS), ERβ TS and PR TS were found in the IMC group (p = 0.025, p = 0.038 and p = 0.037, respectively). Secondary IMC tumours expressed higher levels of Arom than primary IMC (p = 0.029). Non-IMC PR- tumours contained higher levels of Arom than non-IMC PR+ tumours (p = 0.007). After the addition of letrozole, the number of IMC and IBC cells dropped drastically. The overexpression of Arom found and the results obtained in vitro further support canine IMC as a model for the study of IBC and future approaches to the treatment of dogs with mammary cancer, and especially IMC, using Arom inhibitors.
Collapse
Affiliation(s)
- P J De Andrés
- Department of Animal Medicine Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - S Cáceres
- Department of Animal Physiology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - M Clemente
- Department of Animal Medicine Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - M D Pérez-Alenza
- Department of Animal Medicine Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - J C Illera
- Department of Animal Physiology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - L Peña
- Department of Animal Medicine Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
20
|
Remo A, Simeone I, Pancione M, Parcesepe P, Finetti P, Cerulo L, Bensmail H, Birnbaum D, Van Laere SJ, Colantuoni V, Bonetti F, Bertucci F, Manfrin E, Ceccarelli M. Systems biology analysis reveals NFAT5 as a novel biomarker and master regulator of inflammatory breast cancer. J Transl Med 2015; 13:138. [PMID: 25928084 PMCID: PMC4438533 DOI: 10.1186/s12967-015-0492-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 04/14/2015] [Indexed: 01/30/2023] Open
Abstract
Background Inflammatory breast cancer (IBC) is the most rare and aggressive variant of breast cancer (BC); however, only a limited number of specific gene signatures with low generalization abilities are available and few reliable biomarkers are helpful to improve IBC classification into a molecularly distinct phenotype. We applied a network-based strategy to gain insight into master regulators (MRs) linked to IBC pathogenesis. Methods In-silico modeling and Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) on IBC/non-IBC (nIBC) gene expression data (n = 197) was employed to identify novel master regulators connected to the IBC phenotype. Pathway enrichment analysis was used to characterize predicted targets of candidate genes. The expression pattern of the most significant MRs was then evaluated by immunohistochemistry (IHC) in two independent cohorts of IBCs (n = 39) and nIBCs (n = 82) and normal breast tissues (n = 15) spotted on tissue microarrays. The staining pattern of non-neoplastic mammary epithelial cells was used as a normal control. Results Using in-silico modeling of network-based strategy, we identified three top enriched MRs (NFAT5, CTNNB1 or β-catenin, and MGA) strongly linked to the IBC phenotype. By IHC assays, we found that IBC patients displayed a higher number of NFAT5-positive cases than nIBC (69.2% vs. 19.5%; p-value = 2.79 10-7). Accordingly, the majority of NFAT5-positive IBC samples revealed an aberrant nuclear expression in comparison with nIBC samples (70% vs. 12.5%; p-value = 0.000797). NFAT5 nuclear accumulation occurs regardless of WNT/β-catenin activated signaling in a substantial portion of IBCs, suggesting that NFAT5 pathway activation may have a relevant role in IBC pathogenesis. Accordingly, cytoplasmic NFAT5 and membranous β-catenin expression were preferentially linked to nIBC, accounting for the better prognosis of this phenotype. Conclusions We provide evidence that NFAT-signaling pathway activation could help to identify aggressive forms of BC and potentially be a guide to assignment of phenotype-specific therapeutic agents. The NFAT5 transcription factor might be developed into routine clinical practice as a putative biomarker of IBC phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0492-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea Remo
- Department of Pathology, Mater Salutis Hospital, Legnago, Italy.
| | - Ines Simeone
- Department of Science and Technology, University of Sannio, Benevento, Italy. .,Qatar Computing Research Institute (QCRI), Qatar Foundation, Doha, Qatar.
| | - Massimo Pancione
- Department of Science and Technology, University of Sannio, Benevento, Italy.
| | - Pietro Parcesepe
- Department of Pathology and Diagnosis, University of Verona, Verona, Italy.
| | - Pascal Finetti
- Department of Molecular Oncology, Institut Paoli-Calmettes, U1068 Inserm, Marseille, France.
| | - Luigi Cerulo
- Department of Science and Technology, University of Sannio, Benevento, Italy. .,Bioinformatics Laboratory, BIOGEM, Ariano Irpino, Avellino, Italy.
| | - Halima Bensmail
- Qatar Computing Research Institute (QCRI), Qatar Foundation, Doha, Qatar.
| | - Daniel Birnbaum
- Department of Molecular Oncology, Institut Paoli-Calmettes, U1068 Inserm, Marseille, France.
| | | | - Vittorio Colantuoni
- Department of Science and Technology, University of Sannio, Benevento, Italy.
| | - Franco Bonetti
- Department of Pathology and Diagnosis, University of Verona, Verona, Italy.
| | - François Bertucci
- Department of Molecular Oncology, Institut Paoli-Calmettes, U1068 Inserm, Marseille, France.
| | - Erminia Manfrin
- Department of Pathology and Diagnosis, University of Verona, Verona, Italy.
| | - Michele Ceccarelli
- Department of Science and Technology, University of Sannio, Benevento, Italy. .,Qatar Computing Research Institute (QCRI), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
21
|
Abstract
The poor prognosis of inflammatory breast cancer (IBC) is due to its strong metastatic potential. During the last three decades, the introduction of neoadjuvant chemotherapy (CT), and its improvement with successive additions of anthracyclines and then taxanes, allowed to double the survival. However, the 5-year survival still remains lower than 50%, with the pathological complete response (pCR) to neoadjuvant CT being a major prognostic factor. Since 1995, several innovative approaches have been evaluated. Initially, the trials of high-dose CT with hematopoietic stem cell transplantation have generated promising results, but ultimately failed to change standards of treatment, in particular because of its toxicity. More recently, a few targeted therapies, combined to conventional CT, have been assessed, due to the frequent overexpression of HER2 and EGFR and the important vascularization of IBC. Trastuzumab, a monoclonal antibody targeting HER2, has shown a clear advantage in terms of pCR and survival in studies dedicated to, HER2-positive locally advanced breast cancers, including IBC. Lapatinib, a dual tyrosine kinase inhibitor anti-HER2 and EGFR, has shown significant activity in two phase II studies dedicated to HER2-positive IBC. The interest of HER2-double blockade by the combination of trastuzumab-pertuzumab combined to docetaxel has been demonstrated in term of pCR in the NEOSPHERE study which also included HER2-positive IBC. Among the anti-angiogenic drugs tested in studies dedicated to IBC, bevacizumab has given the most interesting results in term of efficacy/toxicity ratio. In the Beverly 2 study HER2-positive IBC patients were treated by the combination chemotherapy, trastuzumab and bevacizumab: the rate of pCR was 64%, and the 3-year disease-free and overall survivals were 68% and 90%, respectively; the increase of endothelial cells circulating was inversely correlated to the probability of pCR. All those treatments have been extrapolated from standard breast cancers. Thus, a deep molecular knowledge of IBC appears to be critical in order to develop specific treatments effectively targeting its particular aggressiveness.
Collapse
|
22
|
Identifying the impact of inflammatory breast cancer on survival: a retrospective multi-center cohort study. Arch Gynecol Obstet 2015; 292:655-64. [DOI: 10.1007/s00404-015-3691-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 03/13/2015] [Indexed: 01/08/2023]
|
23
|
Debled M, MacGrogan G, Breton-Callu C, Ferron S, Hurtevent G, Fournier M, Bourdarias L, Bonnefoi H, Mauriac L, Tunon de Lara C. Surgery following neoadjuvant chemotherapy for HER2-positive locally advanced breast cancer. Time to reconsider the standard attitude. Eur J Cancer 2015; 51:697-704. [PMID: 25704790 DOI: 10.1016/j.ejca.2015.01.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 01/05/2015] [Accepted: 01/26/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND While the addition of targeted therapy to neoadjuvant chemotherapy (NACT) dramatically increases the rate of pathological complete response in HER2-positive breast cancer, no reduction in the rate of mastectomy has been observed in randomised studies. METHODS A retrospective single centre analysis of all patients treated with anti HER2-based NACT for T2-4 breast cancer, focusing on patients treated with mastectomy. RESULTS Among 165 patients treated between June 2005 and July 2012, surgery was performed immediately post-NACT in 152 cases (92%). Breast-conserving surgery could be performed for 108 of the patients (71%), with a 4-year local relapse-free survival of 97%. A mastectomy was performed in two cases following patients' wishes and in 37 cases based on pre-NACT findings (n = 18) or post-NACT outcomes (n = 19). For 21 out of the 37 cases, a good pathological response was observed, and multidisciplinary reanalysis suggests that breast-conserving surgery outright may have been sufficient for 12 patients. Finally, a salvage mastectomy based on post-lumpectomy pathological results was decided in five cases (11%). The 4-year metastasis-free survival was 84% for all patients operated on after NACT (n = 152). CONCLUSIONS Given the good efficacy of anti HER2-based NACT, breast-conserving surgery should be standard practice for most patients. Total mastectomy on the other hand should be restricted to a few patients, mainly those with positive margins on the lumpectomy specimen.
Collapse
Affiliation(s)
- Marc Debled
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France.
| | | | | | - Stéphane Ferron
- Department of Radiology, Institut Bergonié, Bordeaux, France
| | | | | | | | - Hervé Bonnefoi
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France
| | - Louis Mauriac
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France
| | | |
Collapse
|
24
|
Systems biology analysis of gene expression data and gene network reverse-engineering approaches reveal NFAT5 as a candidate biomarker in Inflammatory Breast Cancer. J Immunother Cancer 2015. [PMCID: PMC4547160 DOI: 10.1186/2051-1426-3-s1-p6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
25
|
Bertucci F, Finetti P, Vermeulen P, Van Dam P, Dirix L, Birnbaum D, Viens P, Van Laere S. Genomic profiling of inflammatory breast cancer: a review. Breast 2014; 23:538-45. [PMID: 24998451 DOI: 10.1016/j.breast.2014.06.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 06/02/2014] [Accepted: 06/08/2014] [Indexed: 01/04/2023] Open
Abstract
Inflammatory breast cancer (IBC) is a rare but aggressive form of breast cancer. Despite efforts in the past decade to delineate the molecular biology of IBC by applying high-throughput molecular profiling technologies to clinical samples, IBC remains insufficiently characterized. The reasons for that include limited sizes of the study population, heterogeneity with respect to the composition of the IBC and non-IBC control groups and technological differences across studies. In 2008, the World IBC Consortium was founded to foster collaboration between research groups focusing on IBC. One of the initial projects was to redefine the molecular profile of IBC using an unprecedented number of samples and search for gene signatures associated with survival and response to neo-adjuvant chemotherapy. Here, we provide an overview of all the molecular profiling studies that have been performed on IBC clinical samples to date.
Collapse
Affiliation(s)
- François Bertucci
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes and UMR1068 Inserm, Marseille, France; Département d'Oncologie Médicale, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes and UMR1068 Inserm, Marseille, France; Faculté de Médecine, Université de la Méditerranée, Marseille, France.
| | - Pascal Finetti
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes and UMR1068 Inserm, Marseille, France
| | - Peter Vermeulen
- Translational Cancer Research Unit, GZA Hospitals Sint-Augustinus, Wilrijk, Belgium; Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Peter Van Dam
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Luc Dirix
- Translational Cancer Research Unit, GZA Hospitals Sint-Augustinus, Wilrijk, Belgium; Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Daniel Birnbaum
- Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes and UMR1068 Inserm, Marseille, France
| | - Patrice Viens
- Département d'Oncologie Médicale, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes and UMR1068 Inserm, Marseille, France; Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | - Steven Van Laere
- Translational Cancer Research Unit, GZA Hospitals Sint-Augustinus, Wilrijk, Belgium; Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
26
|
Bertucci F, Ueno NT, Finetti P, Vermeulen P, Lucci A, Robertson FM, Marsan M, Iwamoto T, Krishnamurthy S, Masuda H, Van Dam P, Woodward WA, Cristofanilli M, Reuben JM, Dirix L, Viens P, Symmans WF, Birnbaum D, Van Laere SJ. Gene expression profiles of inflammatory breast cancer: correlation with response to neoadjuvant chemotherapy and metastasis-free survival. Ann Oncol 2013; 25:358-65. [PMID: 24299959 DOI: 10.1093/annonc/mdt496] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Inflammatory breast cancer (IBC) is an aggressive disease. To date, no molecular feature reliably predicts either the response to chemotherapy (CT) or the survival. Using DNA microarrays, we searched for multigene predictors. PATIENTS AND METHODS The World IBC Consortium generated whole-genome expression profiles of 137 IBC and 252 non-IBC (nIBC) samples. We searched for transcriptional profiles associated with pathological complete response (pCR) to neoadjuvant anthracycline-based CT and distant metastasis-free survival (DMFS) in respective subsets of 87 and 106 informative IBC samples. Correlations were investigated with predictive and prognostic gene expression signatures published in nIBC (nIBC-GES). Supervised analyses tested genes and activation signatures of 19 biological pathways and 234 transcription factors. RESULTS Three of five tested prognostic nIBC-GES and the two tested predictive nIBC-GES discriminated between IBC with and without pCR, as well as two interferon activation signatures. We identified a 107-gene signature enriched for immunity-related genes that distinguished between responders and nonresponders in IBC. Its robustness was demonstrated by external validation in three independent sets including two IBC sets and one nIBC set, with independent significant predictive value in IBC and nIBC validation sets in multivariate analysis. We found no robust signature associated with DMFS in patients with IBC, and neither of the tested prognostic GES, nor the molecular subtypes were informative, whereas they were in our nIBC series (220 stage I-III informative samples). CONCLUSION Despite the relatively small sample size, we show that response to neoadjuvant CT in IBC is, as in nIBC, associated with immunity-related processes, suggesting that similar mechanisms responsible for pCR exist. Analysis of a larger IBC series is warranted regarding the correlation of gene expression profiles and DMFS.
Collapse
|
27
|
Nokes BT, Cunliffe HE, Lafleur B, Mount DW, Livingston RB, Futscher BW, Lang JE. In Vitro Assessment of the Inflammatory Breast Cancer Cell Line SUM 149: Discovery of 2 Single Nucleotide Polymorphisms in the RNase L Gene. J Cancer 2013; 4:104-16. [PMID: 23386909 PMCID: PMC3563072 DOI: 10.7150/jca.5002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/12/2012] [Indexed: 01/04/2023] Open
Abstract
Background: Inflammatory breast cancer (IBC) is a rare, highly aggressive form of breast cancer. The mechanism of IBC carcinogenesis remains unknown. We sought to evaluate potential genetic risk factors for IBC and whether or not the IBC cell lines SUM149 and SUM190 demonstrated evidence of viral infection. Methods: We performed single nucleotide polymorphism (SNP) genotyping for 2 variants of the ribonuclease (RNase) L gene that have been correlated with the risk of prostate cancer due to a possible viral etiology. We evaluated dose-response to treatment with interferon-alpha (IFN-α); and assayed for evidence of the putative human mammary tumor virus (HMTV, which has been implicated in IBC) in SUM149 cells. A bioinformatic analysis was performed to evaluate expression of RNase L in IBC and non-IBC. Results: 2 of 2 IBC cell lines were homozygous for RNase L common missense variants 462 and 541; whereas 2 of 10 non-IBC cell lines were homozygous positive for the 462 variant (p= 0.09) and 0 of 10 non-IBC cell lines were homozygous positive for the 541 variant (p = 0.015). Our real-time polymerase chain reaction (RT-PCR) and Southern blot analysis for sequences of HMTV revealed no evidence of the putative viral genome. Conclusion: We discovered 2 SNPs in the RNase L gene that were homozygously present in IBC cell lines. The 462 variant was absent in non-IBC lines. Our discovery of these SNPs present in IBC cell lines suggests a possible biomarker for risk of IBC. We found no evidence of HMTV in SUM149 cells. A query of a panel of human IBC and non-IBC samples showed no difference in RNase L expression. Further studies of the RNase L 462 and 541 variants in IBC tissues are warranted to validate our in vitro findings.
Collapse
|
28
|
A randomized phase II study of lapatinib + pazopanib versus lapatinib in patients with HER2+ inflammatory breast cancer. Breast Cancer Res Treat 2012; 137:471-82. [PMID: 23239151 PMCID: PMC3539065 DOI: 10.1007/s10549-012-2369-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 11/30/2012] [Indexed: 01/04/2023]
Abstract
This multi-center Phase II study evaluated lapatinib, pazopanib, and the combination in patients with relapsed HER2+ inflammatory breast cancer. In Cohort 1, 76 patients were randomized 1:1 to receive lapatinib 1,500 mg + placebo or lapatinib 1,500 mg + pazopanib 800 mg (double-blind) once daily until disease progression, unacceptable toxicity, or death. Due to high-grade diarrhea observed with this dose combination in another study (VEG20007), Cohort 1 was closed. The protocol was amended such that an additional 88 patients (Cohort 2) were randomized in a 5:5:2 ratio to receive daily monotherapy lapatinib 1,500 mg, lapatinib 1,000 mg + pazopanib 400 mg, or monotherapy pazopanib 800 mg, respectively. The primary endpoint was overall response rate (ORR). Secondary endpoints included duration of response, progression-free survival (PFS), overall survival, and safety. In Cohort 1, ORR for the lapatinib (n = 38) and combination (n = 38) arms was 29 and 45 %, respectively; median PFS was 16.1 and 14.3 weeks, respectively. Grade ≥3 adverse events (AEs) were more frequent in the combination arm (71 %) than in the lapatinib arm (24 %). Dose reductions and interruptions due to AEs were also more frequent in the combination arm (45 and 53 %, respectively) than in the lapatinib monotherapy arm (0 and 11 %, respectively). In Cohort 2, ORR for patients treated with lapatinib (n = 36), lapatinib + pazopanib (n = 38), and pazopanib (n = 13) was 47, 58, and 31 %, respectively; median PFS was 16.0, 16.0, and 11.4 weeks, respectively. In the lapatinib, combination, and pazopanib therapy arms, grade ≥3 AEs were reported for 17, 50, and 46 % of patients, respectively, and the incidence of discontinuations due to AEs was 0, 24, and 23 %, respectively. The lapatinib-pazopanib combination was associated with a numerically higher ORR but no increase in PFS compared to lapatinib alone. The combination also had increased toxicity resulting in more dose reductions, modifications, and treatment delays. Activity with single-agent lapatinib was confirmed in this population.
Collapse
|
29
|
Vlahova L, Doerflinger Y, Houben R, Becker JC, Schrama D, Weiss C, Goebeler M, Helmbold P, Goerdt S, Peitsch WK. P-cadherin expression in Merkel cell carcinomas is associated with prolonged recurrence-free survival. Br J Dermatol 2012; 166:1043-52. [PMID: 22283194 DOI: 10.1111/j.1365-2133.2012.10853.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Merkel cell carcinoma (MCC) is a highly aggressive skin cancer, associated with advanced age, immunosuppression and Merkel cell polyomavirus (MCV) infections. As development and progression of cancer can be promoted by changes in cell adhesion proteins, we have previously analysed homo- and heterotypic cell-cell contacts of normal Merkel cells and MCCs and obtained indications for cadherin switching. OBJECTIVES To examine the prevalence and prognostic relevance of E-, N- and P-cadherin in MCCs. METHODS Paraffin-embedded MCC samples (n = 148) from 106 different patients were analysed by double-label immunostaining and immunofluorescence microscopy. MCV status was determined by real-time polymerase chain reaction. The cadherin repertoire and MCV status were correlated to clinical data, including tumour stage and recurrence-free survival. RESULTS Ninety-one per cent of all MCC were positive for N-cadherin whereas only 61·6% and 70·3% expressed E- and P-cadherin, respectively. P-cadherin was significantly more frequent in primary tumours than in lymph node metastases (81·9% vs. 40·9%, P = 0·0002). Patients with P-cadherin-positive primary tumours were in earlier tumour stages at initial diagnosis (P = 0·0046). Both in log-rank tests (P = 0·0474) and in multiple Cox regression analysis including age, sex, immunosuppression, stage at initial diagnosis and MCV status (hazard ratio 0·193, P = 0·0373), patients with P-cadherin-positive primary MCCs had significantly prolonged recurrence-free survival (mean 25·2 vs. 10·6 months; median 9·0 vs. 4·0 months). MCV DNA was detected in 78·2% of all MCC, more frequently in P-cadherin-positive MCC (P = 0·0008). CONCLUSION P-cadherin expression in MCCs predicts prolonged recurrence-free survival and may therefore indicate favourable prognosis.
Collapse
Affiliation(s)
- L Vlahova
- Department of Dermatology, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yamauchi H, Woodward WA, Valero V, Alvarez RH, Lucci A, Buchholz TA, Iwamoto T, Krishnamurthy S, Yang W, Reuben JM, Hortobágyi GN, Ueno NT. Inflammatory breast cancer: what we know and what we need to learn. Oncologist 2012; 17:891-9. [PMID: 22584436 DOI: 10.1634/theoncologist.2012-0039] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
PURPOSE We review the current status of multidisciplinary care for patients with inflammatory breast cancer (IBC) and discuss what further research is needed to advance the care of patients with this disease. DESIGN We performed a comprehensive review of the English-language literature on IBC through computerized literature searches. RESULTS Significant advances in imaging, including digital mammography, high-resolution ultrasonography with Doppler capabilities, magnetic resonance imaging, and positron emission tomography-computed tomography, have improved the diagnosis and staging of IBC. There are currently no established molecular criteria for distinguishing IBC from noninflammatory breast cancer. Such criteria would be helpful for the diagnosis and development of novel targeted therapies. Combinations of neoadjuvant systemic chemotherapy, surgery, and radiation therapy have led to an improved prognosis; however, the overall 5-year survival rate for patients with IBC remains very low (∼30%). Sentinel lymph node biopsy and skin-sparing mastectomy are not recommended for patients with IBC. CONCLUSION Optimal management of IBC requires close coordination among medical, surgical, and radiation oncologists, as well as radiologists and pathologists. There is a need to identify molecular changes that define the pathogenesis of IBC to enable eradication of IBC with the use of IBC-specific targeted therapies.
Collapse
Affiliation(s)
- Hideko Yamauchi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ohshiro K, Schwartz AM, Levine PH, Kumar R. Alternate estrogen receptors promote invasion of inflammatory breast cancer cells via non-genomic signaling. PLoS One 2012; 7:e30725. [PMID: 22295107 PMCID: PMC3266301 DOI: 10.1371/journal.pone.0030725] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/27/2011] [Indexed: 11/18/2022] Open
Abstract
Although Inflammatory Breast Cancer (IBC) is a rare and an aggressive type of locally advanced breast cancer with a generally worst prognosis, little work has been done in identifying the status of non-genomic signaling in the invasiveness of IBC. The present study was performed to explore the status of non-genomic signaling as affected by various estrogenic and anti-estrogenic agents in IBC cell lines SUM149 and SUM190. We have identified the presence of estrogen receptor α (ERα) variant, ERα36 in SUM149 and SUM190 cells. This variant as well as ERβ was present in a substantial concentration in IBC cells. The treatment with estradiol (E2), anti-estrogenic agents 4-hydroxytamoxifen and ICI 182780, ERβ specific ligand DPN and GPR30 agonist G1 led to a rapid activation of p-ERK1/2, suggesting the involvement of ERα36, ERβ and GPR30 in the non-genomic signaling pathway in these cells. We also found a substantial increase in the cell migration and invasiveness of SUM149 cells upon the treatment with these ligands. Both basal and ligand-induced migration and invasiveness of SUM149 cells were drastically reduced in the presence of MEK inhibitor U0126, implicating that the phosphorylation of ERK1/2 by MEK is involved in the observed motility and invasiveness of IBC cells. We also provide evidence for the upregulation of p-ERK1/2 through immunostaining in IBC patient samples. These findings suggest a role of non-genomic signaling through the activation of p-ERK1/2 in the hormonal dependence of IBC by a combination of estrogen receptors. These findings only explain the failure of traditional anti-estrogen therapies in ER-positive IBC which induces the non-genomic signaling, but also opens newer avenues for design of modified therapies targeting these estrogen receptors.
Collapse
Affiliation(s)
- Kazufumi Ohshiro
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, D.C., United States of America
| | - Arnold M. Schwartz
- Department of Pathology, The George Washington University Medical Center, Washington, D.C., United States of America
| | - Paul H. Levine
- Department of Epidemiology and Biostatistics, The George Washington University Medical Center, Washington, D.C., United States of America
| | - Rakesh Kumar
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
32
|
Hsu YH, Hsing CH, Li CF, Chan CH, Chang MC, Yan JJ, Chang MS. Anti-IL-20 monoclonal antibody suppresses breast cancer progression and bone osteolysis in murine models. THE JOURNAL OF IMMUNOLOGY 2012; 188:1981-91. [PMID: 22238453 DOI: 10.4049/jimmunol.1102843] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
IL-20 is a proinflammatory cytokine involved in rheumatoid arthritis, atherosclerosis, and stroke. However, little is known about its role in breast cancer. We explored the function of IL-20 in tumor growth and metastasis, as well as in clinical outcome. Tumor expression of IL-20 was assessed by immunohistochemical staining among 198 patients with invasive ductal carcinoma of the breast, using available clinical and survival data. IL-20 expression was associated with advanced tumor stage, greater tumor metastasis, and worse survival. Reverse transcription quantitative polymerase chain reaction showed that clinical breast tumor tissue expressed higher levels of IL-20 and its receptors than did nontumorous breast tissue. IL-20 was also highly expressed in breast cancer bone-metastasis tissue. In vitro, IL-20 upregulated matrix metalloproteinase-9, matrix metalloproteinase-12, cathepsin K, and cathepsin G, and enhanced proliferation and migration of breast cancer cells, which were inhibited by anti-IL-20 mAb 7E. In vivo, we generated murine models to evaluate the therapeutic potential of 7E, using luminescence intensity, radiological scans, and micro-computed tomography. 7E reduced tumor growth, suppressed bone colonization, diminished tumor-mediated osteolysis, and lessened bone density decrement in mice injected with breast cancer cells. In conclusion, our results suggest that IL-20 plays pivotal roles in the tumor progression of breast cancer. IL-20 expression in breast cancer tissue is associated with a poor clinical outcome. Anti-IL-20 mAb 7E suppressed bone colonization and decreased osteolytic bone lesions. Therefore, IL-20 may be a novel target in treating breast tumor-induced osteolysis.
Collapse
Affiliation(s)
- Yu-Hsiang Hsu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | | | | | | | | | | | | |
Collapse
|
33
|
Alexander S, Friedl P. Cancer invasion and resistance: interconnected processes of disease progression and therapy failure. Trends Mol Med 2012; 18:13-26. [DOI: 10.1016/j.molmed.2011.11.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 10/07/2011] [Accepted: 11/08/2011] [Indexed: 12/27/2022]
|
34
|
Bekhouche I, Finetti P, Adelaïde J, Ferrari A, Tarpin C, Charafe-Jauffret E, Charpin C, Houvenaeghel G, Jacquemier J, Bidaut G, Birnbaum D, Viens P, Chaffanet M, Bertucci F. High-resolution comparative genomic hybridization of inflammatory breast cancer and identification of candidate genes. PLoS One 2011; 6:e16950. [PMID: 21339811 PMCID: PMC3037286 DOI: 10.1371/journal.pone.0016950] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 01/18/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Inflammatory breast cancer (IBC) is an aggressive form of BC poorly defined at the molecular level. We compared the molecular portraits of 63 IBC and 134 non-IBC (nIBC) clinical samples. METHODOLOGY/FINDINGS Genomic imbalances of 49 IBCs and 124 nIBCs were determined using high-resolution array-comparative genomic hybridization, and mRNA expression profiles of 197 samples using whole-genome microarrays. Genomic profiles of IBCs were as heterogeneous as those of nIBCs, and globally relatively close. However, IBCs showed more frequent "complex" patterns and a higher percentage of genes with CNAs per sample. The number of altered regions was similar in both types, although some regions were altered more frequently and/or with higher amplitude in IBCs. Many genes were similarly altered in both types; however, more genes displayed recurrent amplifications in IBCs. The percentage of genes whose mRNA expression correlated with CNAs was similar in both types for the gained genes, but ∼7-fold lower in IBCs for the lost genes. Integrated analysis identified 24 potential candidate IBC-specific genes. Their combined expression accurately distinguished IBCs and nIBCS in an independent validation set, and retained an independent prognostic value in a series of 1,781 nIBCs, reinforcing the hypothesis for a link with IBC aggressiveness. Consistent with the hyperproliferative and invasive phenotype of IBC these genes are notably involved in protein translation, cell cycle, RNA processing and transcription, metabolism, and cell migration. CONCLUSIONS Our results suggest a higher genomic instability of IBC. We established the first repertory of DNA copy number alterations in this tumor, and provided a list of genes that may contribute to its aggressiveness and represent novel therapeutic targets.
Collapse
Affiliation(s)
- Ismahane Bekhouche
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
| | - Pascal Finetti
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
| | - José Adelaïde
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
| | - Anthony Ferrari
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
| | - Carole Tarpin
- Department of Medical Oncology, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Emmanuelle Charafe-Jauffret
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
- Université de la Méditerranée, Marseille, France
- Department of BioPathology, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Colette Charpin
- Université de la Méditerranée, Marseille, France
- Department of Pathology, Hôpital Nord, Marseille, France
| | | | - Jocelyne Jacquemier
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
- Department of BioPathology, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Ghislain Bidaut
- Bioinformatics, Marseille Cancer Research Center (CRCM), Marseille, France
| | - Daniel Birnbaum
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
| | - Patrice Viens
- Department of Medical Oncology, Institut Paoli-Calmettes (IPC), Marseille, France
- Université de la Méditerranée, Marseille, France
| | - Max Chaffanet
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
| | - François Bertucci
- Marseille Cancer Research Center (CRCM), UMR891 Inserm, Institut Paoli-Calmettes (IPC), Department of Molecular Oncology, Marseille, France
- Department of Medical Oncology, Institut Paoli-Calmettes (IPC), Marseille, France
- Université de la Méditerranée, Marseille, France
- * E-mail:
| |
Collapse
|
35
|
Hwang JS, Yoo HJ, Song HJ, Kim KK, Chun YJ, Matsui T, Kim HB. Inflammation-related signaling pathways implicating TGFβ are revealed in the expression profiling of MCF7 cell treated with fermented soybean, chungkookjang. Nutr Cancer 2011; 63:645-52. [PMID: 21547849 DOI: 10.1080/01635581.2011.551987] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chungkookjang is a Korean fermented soybean containing microorganisms, proteinase, and diverse bioactive compounds, including a high concentration of isoflavones and peptides. Growth of breast cancer MCF7 cells decreased dependent on the concentration of fermented soybean extracts. The effect of fermented soybean on cellular gene expression was determined in a systematic manner comprehensively. DNA microarray analysis was performed using 25,804 probes. Ninety one genes whose expression levels were significantly changed were selected. TGFβI and Smad3 were upregulated. Downregulation of inflammation-related CSF2, CSF2RA, and CSF3 was found. Differential expression of chemokines CCL2, CCL3, CCL3L3, CXCL1, and CXCL2 were observed. Network analysis identified ERβ in the network. Based on the experimental results, taking fermented soybean might be helpful for preventing breast cancer by a mechanism activating TGFβ pathway and depressing inflammation.
Collapse
Affiliation(s)
- Jae Sung Hwang
- Department of Biotechnology, The Research Institute for Basic Sciences, Hoseo University, Asan, Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
Robertson FM, Bondy M, Yang W, Yamauchi H, Wiggins S, Kamrudin S, Krishnamurthy S, Le-Petross H, Bidaut L, Player AN, Barsky SH, Woodward WA, Buchholz T, Lucci A, Ueno NT, Cristofanilli M. Inflammatory breast cancer: the disease, the biology, the treatment. CA Cancer J Clin 2010; 60:351-75. [PMID: 20959401 DOI: 10.3322/caac.20082] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Inflammatory breast cancer (IBC) is a rare and aggressive form of invasive breast cancer accounting for 2.5% of all breast cancer cases. It is characterized by rapid progression, local and distant metastases, younger age of onset, and lower overall survival compared with other breast cancers. Historically, IBC is a lethal disease with less than a 5% survival rate beyond 5 years when treated with surgery or radiation therapy. Because of its rarity, IBC is often misdiagnosed as mastitis or generalized dermatitis. This review examines IBC's unique clinical presentation, pathology, epidemiology, imaging, and biology and details current multidisciplinary management of the disease, which comprises systemic therapy, surgery, and radiation therapy.
Collapse
Affiliation(s)
- Fredika M Robertson
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Nitric oxide is a pleiotropic ancestral molecule, which elicits beneficial effect in many physiological settings but is also tenaciously expressed in numerous pathological conditions, particularly breast tumors. Nitric oxide is particularly harmful in adipogenic milieu of the breast, where it initiates and promotes tumorigenesis. Epidemiological studies have associated populations at a greater risk for developing breast cancer, predominantly estrogen receptor positive tumors, to express specific polymorphic forms of endothelial nitric oxide synthase, that produce sustained low levels of nitric oxide. Low sustained nitric oxide generates oxidative stress and inflammatory conditions at susceptible sites in the heterogeneous microenvironment of the breast, where it promotes cancer related events in specific cell types. Inflammatory conditions also stimulate inducible nitric oxide synthase expression, which dependent on the microenvironment, could promote or inhibit mammary tumors. In this review we re-examine the mechanisms by which nitric oxide promotes initiation and progression of breast cancer and address some of the controversies in the field.
Collapse
Affiliation(s)
- Shehla Pervin
- Division of Endocrinology and Metabolism at Charles Drew University of Medicine and Science, Los Angeles, California 90059, USA.
| | | | | |
Collapse
|
38
|
Metastasis of Canine Inflammatory versus Non-Inflammatory Mammary Tumours. J Comp Pathol 2010; 143:157-63. [DOI: 10.1016/j.jcpa.2010.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 01/27/2010] [Accepted: 02/23/2010] [Indexed: 11/23/2022]
|
39
|
Viens P, Tarpin C, Roche H, Bertucci F. Systemic therapy of inflammatory breast cancer from high-dose chemotherapy to targeted therapies: the French experience. Cancer 2010; 116:2829-36. [PMID: 20503415 DOI: 10.1002/cncr.25168] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Aggressiveness of inflammatory breast cancer (IBC) is related to its metastatic potential. The introduction of primary chemotherapy in the multimodality treatment has dramatically changed the prognosis. However, survival remains poor. Since 1995, innovative systemic therapies have been assessed in France in multicentric clinical trials, initially centered on high-dose chemotherapy (HDC) with hematopoietic stem cell transplantation (HSCT), and, more recently, on targeted therapies. METHODS The authors present the rationale and first results of these French studies specifically dedicated to nonmetastastic IBC. RESULTS More than 380 patients have been included in 5 trials. The first 3 trials enrolled 329 women and concerned HDC (PEGASE 02, 05, 07). PEGASE 02 and PEGASE 05 showed a high pathological complete response rate (30%) after primary sequential HDC, and suggested that more than 4 cycles does not seem to provide any benefit. PEGASE 07 tested adjuvant maintenance chemotherapy after neoadjuvant HDC. Analysis is ongoing. The 2 other trials currently underway combine targeted therapies with conventional-dose chemotherapy in ERBB2-negative (Beverly 1 trial; bevacizumab) and ERBB2-positive (Beverly 2; bevacizumab and trastuzumab) IBC. CONCLUSIONS HDC with HSCT remains experimental with high pCR rates and which likely benefits to subgroups of patients that remain to be identified. Targeted therapies, such as anti-ERBB2 and antiangiogenic drugs, are being tested, and should improve survival as demonstrated in non-IBC. With emerging targeted drugs, there is hope that a cure becomes an achievable goal for more patients. Because of the rarity and the heterogeneity of disease, well-designed large-scale collaborative studies are mandatory.
Collapse
Affiliation(s)
- Patrice Viens
- Department of Medical Oncology, Paoli-Calmettes Institute, Marseille Cancer Research Center, UMR891 Inserm, IFR137, Marseille, France
| | | | | | | |
Collapse
|
40
|
Clemente M, Pérez-Alenza MD, Illera JC, Peña L. Histological, Immunohistological, and Ultrastructural Description of Vasculogenic Mimicry in Canine Mammary Cancer. Vet Pathol 2009; 47:265-74. [DOI: 10.1177/0300985809353167] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Canine inflammatory mammary cancer (IMC) and human inflammatory breast cancer (IBC) are the most aggressive and lethal type of mammary cancer in female dogs and in women. The generation of microvascular channels by malignant tumor cells (endothelial-like cells [ELCs]) without endothelial cell participation (vasculogenic mimicry) has been reported in human breast cancer, including IBC, and is considered a new type of tumor angiogenesis. The aim of this study was to investigate the presence of ELCs in highly malignant canine mammary tumors (IMC and non-IMC) by histology, inmunohistochemistry (pancytokeratin, cytokeratin 14, vimentin, actin, desmin, vWF, CD31, and CD34), and electron microscopy. This retrospective study included 21 female dogs with diagnoses of IMC and 20 animals with metastatic grade III noninflammatory malignant mammary tumors (MMT). IMC tumors (33.33%) and MMT (5%) showed ELCs forming structures similar to small capillaries. The histological, immunohistochemical (positive to AE1/AE3 and cytokeratin 14, mostly negative to endothelial markers), and ultrastructural characteristics of these cells indicated vasculogenic mimicry. The higher frequency of this phenomenon in inflammatory versus noninflammatory canine mammary cancer is in agreement with previous studies in experimental and spontaneous human IBC, and it could be in relation with the extremely high lymphangiogenic capacity and metastatic lymphangiotropism characteristics of inflammatory breast cancer.
Collapse
Affiliation(s)
- M. Clemente
- Department of Animal Medicine, Surgery, and Pathology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - M. D. Pérez-Alenza
- Department of Animal Medicine, Surgery, and Pathology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - J. C. Illera
- Department of Animal Physiology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| | - L. Peña
- Department of Animal Medicine, Surgery, and Pathology, Veterinary Medicine School, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
41
|
Arias-Pulido H, Royce M, Gong Y, Joste N, Lomo L, Lee SJ, Chaher N, Verschraegen C, Lara J, Prossnitz ER, Cristofanilli M. GPR30 and estrogen receptor expression: new insights into hormone dependence of inflammatory breast cancer. Breast Cancer Res Treat 2009; 123:51-8. [PMID: 19902352 DOI: 10.1007/s10549-009-0631-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 10/31/2009] [Indexed: 11/24/2022]
Abstract
GPR30 is a novel G protein-coupled estrogen receptor (ER) associated with metastases in breast cancer (BC) and poor survival in endometrial and ovarian tumors. The association of GPR30 expression with inflammatory breast cancer (IBC), an aggressive and commonly hormone-independent form of BC, has not been studied. GPR30, ER, progesterone receptor (PR), epidermal growth factor receptor (EGFR), and HER-2 expression were assessed by immunohistochemistry (and FISH for HER-2) in 88 primary IBCs. GPR30 expression was correlated with patient overall survival (OS), disease-free survival (DFS), pathologic variables, and other biomarkers. GPR30 expression was found in 69% of IBC cases. ER, PR, HER-2, and EGFR were found in 43, 35, 39, and 34% of IBC cases, respectively. GPR30 expression correlated inversely with ER expression (P = 0.02). Co-expression of ER and GPR30 was found in 24% of IBC samples; 19% expressed only ER and 46% expressed only GPR30. Univariate analysis showed no association between GPR30 expression and OS or DFS. However, co-expression of ER and GPR30 was associated with improved OS (P < 0.03) and marginally with DFS (P < 0.06); the absence of both ER and GPR30 was associated with worse OS and DFS (P = 0.03 for both). Multivariate analysis identified ER as an independent prognostic factor of OS (P = 0.008) and DFS (P = 0.02). The majority of IBC tumors are GPR30-positive, suggesting that estrogen signaling may be active in ER-negative IBC patients. These findings suggest potential new therapeutic targets for IBC such as novel endocrine agents or direct modulation of GPR30.
Collapse
Affiliation(s)
- Hugo Arias-Pulido
- Translational Therapeutics Laboratory, The University of New Mexico Cancer Center, Albuquerque, NM, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Thapaliya P, Karlin NJ. An update on inflammatory breast cancer. Oncol Rev 2009. [DOI: 10.1007/s12156-009-0010-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|