1
|
Torres AD, King RE, Uberoi A, Buehler D, Yoshida S, Ward-Shaw E, Lambert PF. Deficiency in Ever2 does not increase susceptibility of mice to pathogenesis by the mouse papillomavirus, MmuPV1. J Virol 2024; 98:e0017424. [PMID: 38869286 PMCID: PMC11265430 DOI: 10.1128/jvi.00174-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024] Open
Abstract
Epidermodysplasia verruciformis (EV) is a rare genetic skin disorder that is characterized by the development of papillomavirus-induced skin lesions that can progress to squamous cell carcinoma (SCC). Certain high-risk, cutaneous β-genus human papillomaviruses (β-HPVs), in particular HPV5 and HPV8, are associated with inducing EV in individuals who have a homozygous mutation in one of three genes tied to this disease: EVER1, EVER2, or CIB1. EVER1 and EVER2 are also known as TMC6 and TMC8, respectively. Little is known about the biochemical activities of EVER gene products or their roles in facilitating EV in conjunction with β-HPV infection. To investigate the potential effect of EVER genes on papillomavirus infection, we pursued in vivo infection studies by infecting Ever2-null mice with mouse papillomavirus (MmuPV1). MmuPV1 shares characteristics with β-HPVs including similar genome organization, shared molecular activities of their early, E6 and E7, oncoproteins, the lack of a viral E5 gene, and the capacity to cause skin lesions that can progress to SCC. MmuPV1 infections were conducted both in the presence and absence of UVB irradiation, which is known to increase the risk of MmuPV1-induced pathogenesis. Infection with MmuPV1 induced skin lesions in both wild-type and Ever2-null mice with and without UVB. Many lesions in both genotypes progressed to malignancy, and the disease severity did not differ between Ever2-null and wild-type mice. However, somewhat surprisingly, lesion growth and viral transcription was decreased, and lesion regression was increased in Ever2-null mice compared with wild-type mice. These studies demonstrate that Ever2-null mice infected with MmuPV1 do not exhibit the same phenotype as human EV patients infected with β-HPVs.IMPORTANCEHumans with homozygous mutations in the EVER2 gene develop epidermodysplasia verruciformis (EV), a disease characterized by predisposition to persistent β-genus human papillomavirus (β-HPV) skin infections, which can progress to skin cancer. To investigate how EVER2 confers protection from papillomaviruses, we infected the skin of homozygous Ever2-null mice with mouse papillomavirus MmuPV1. Like in humans with EV, infected Ever2-null mice developed skin lesions that could progress to cancer. Unlike in humans with EV, lesions in these Ever2-null mice grew more slowly and regressed more frequently than in wild-type mice. MmuPV1 transcription was higher in wild-type mice than in Ever2-null mice, indicating that mouse EVER2 does not confer protection from papillomaviruses. These findings suggest that there are functional differences between MmuPV1 and β-HPVs and/or between mouse and human EVER2.
Collapse
Affiliation(s)
- Alexandra D. Torres
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Renee E. King
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Aayushi Uberoi
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Darya Buehler
- Department of Pathology and Laboratory Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Satoshi Yoshida
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ella Ward-Shaw
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Al-leimon A, Al-leimon O, Abdulhaq B, Al-salieby F, Jaber AR, Saadeh M, Jaber AR, Aziziye O, Dardas LA. From awareness to action: Unveiling knowledge, attitudes and testing strategies to enhance human papillomavirus vaccination uptake in Jordan. J Virus Erad 2024; 10:100380. [PMID: 39040683 PMCID: PMC11261058 DOI: 10.1016/j.jve.2024.100380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024] Open
Abstract
Purpose Vaccination against HPV plays a crucial role in preventing cervical cancer and related health issues. This study aimed to (1) assess knowledge, awareness, intentions, and attitudes regarding HPV and vaccination among Jordanian parents, and (2) evaluate the efficacy of two intervention strategies in promoting knowledge, awareness, and attitudes towards HPV vaccinations. Methods In study one, a web-based survey was used to collect data from Jordanian parents. In study two, participants were allocated into three groups: video-based intervention, lecture-based intervention, and a control group. Pre-post tests were conducted to evaluate the efficacy of the intervention strategies in promoting knowledge, awareness, and attitudes toward HPV vaccination among Jordanian parents. Results A total of 572 participants took part in the survey. Knowledge levels about HPV and its vaccine were generally low. Intentions regarding HPV vaccination were uncertain for the majority of participants, with 92 % reported as not receiving any guidance from medical professionals about administering the HPV vaccine to themselves or their children. Only 22 % agreed that their children might get infected with HPV at any time in their lives. The pilot randomized clinical trial revealed an improvement in knowledge, awareness, and attitudes towards HPV vaccination in both intervention groups compared to the control group with large effect sizes (eta squared between 0.29 and 0.68). Conclusions Findings highlight the need for increased knowledge and awareness regarding HPV and vaccination. It also supported the potential effectiveness of basic educational efforts in significantly improving knowledge, awareness, and attitudes towards the HPV vaccine.
Collapse
Affiliation(s)
- Ahmad Al-leimon
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Obada Al-leimon
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Bayan Abdulhaq
- School for International Training, Brattleboro, VT, 05302, USA
| | - Fadi Al-salieby
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | | | - Mohammed Saadeh
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | | | - Omer Aziziye
- School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | | |
Collapse
|
3
|
Neagu N, Dianzani C, Venuti A, Bonin S, Voidăzan S, Zalaudek I, Conforti C. The role of HPV in keratinocyte skin cancer development: A systematic review. J Eur Acad Dermatol Venereol 2023; 37:40-46. [PMID: 36000380 DOI: 10.1111/jdv.18548] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022]
Abstract
Keratinocyte skin cancers are the most frequent malignancy, accounting for approximately 30% of all cancers. Although beta genus HPV are the main etiologic agents for squamous cell carcinoma development in patients with epidermodysplasia verruciformis and organ transplant recipients, their role in non-melanoma skin cancer (NMSC) progression in the general population remains controversial. The aim of our review is to summarize current scientific data and to systematically analyse evidence regarding the role of HPV in keratinocyte skin cancers. A total of 2284 patients were included, of which 724 with actinic keratoses, 290 with Bowen's disease, 949 with cutaneous squamous cell carcinomas and 321 with keratoacanthomas. In the case of actinic keratoses, the majority were positive for beta (n = 372, 58.49%) and gamma HPV (n = 256, 40.25%) and only a few (n = 6, 0.94%) were positive for alpha subtypes. Similarly, most of the cutaneous squamous cell carcinomas were positive for beta (n = 248, 55.98%) and gamma HPV (n = 172, 33.82%) and 23 cases (2.42%) were positive for alpha subtypes. Bowen's disease lesions were mostly positive for beta (n = 43, 55.84%) and alpha HPV (n = 30, 38.96%), in contrast to the gamma genus (n = 4, 5.19%). Keratoacanthomas showed a high distribution among beta genus (n = 79, 50.31%) and an equal proportion between alpha (n = 39, 24.84%) and gamma (n = 39, 24.84%) genera. Studies published so far identifying HPV in keratinocyte skin cancers reflect the difference in detection methods rather than a type-specific tendency towards either actinic keratoses, Bowen's disease, squamous cell carcinoma or keratoacanthoma. On the other hand, recent evidence regarding the role of HPV vaccination in patients with non-melanoma skin cancer brings into perspective the idea of a beta-HPV vaccine or a combined alpha and beta-HPV vaccine that could be used as an adjuvant treatment measure in patients with recalcitrant non-melanoma skin cancer.
Collapse
Affiliation(s)
- Nicoleta Neagu
- Dermatology Clinic, Mureș County Hospital, Târgu Mureș, Romania.,Epidemiology Department, University of Medicine, Pharmacy, Science and Technology 'George Emil Palade' of Târgu Mureş, Târgu Mureș, Romania
| | - Caterina Dianzani
- Plastic and Reconstructive Surgery Unit, Campus Bio-Medico University of Rome, Rome, Italy
| | - Aldo Venuti
- HPV-Unit, Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Serena Bonin
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Septimiu Voidăzan
- Epidemiology Department, University of Medicine, Pharmacy, Science and Technology 'George Emil Palade' of Târgu Mureş, Târgu Mureș, Romania
| | - Iris Zalaudek
- Dermatology Clinic, Maggiore Hospital of Trieste, Trieste, Italy
| | - Claudio Conforti
- Dermatology Clinic, Maggiore Hospital of Trieste, Trieste, Italy
| |
Collapse
|
4
|
Malik S, Sah R, Muhammad K, Waheed Y. Tracking HPV Infection, Associated Cancer Development, and Recent Treatment Efforts-A Comprehensive Review. Vaccines (Basel) 2023; 11:102. [PMID: 36679945 PMCID: PMC9860736 DOI: 10.3390/vaccines11010102] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Human papillomaviruses (HPVs) are high-risk causative factors for HPV infection. This infection does not come alone; it is often seen with co-infection with other viruses and acts as a causative agent for several malignancies. The major purpose of this comprehensive study was to highlight some recent advances in biotechnology associated with HPV infection, including understanding its host interactions and cancerous progression. A systematic research strategy was used to gather data from recent, and the most advanced published electronic sources. The compiled data explain the recent understanding of biology, host-viral interaction cycles, co-infection with other viral diseases, and cellular transformation toward malignancies associated with HPV. In recent years, some vaccination protocols have been introduced in the form of live attenuated, subunit, and DNA-based vaccines. Moreover, some strategies of nanotechnology are being employed to synthesize drugs and vaccines with a whole new approach of plant-based products. The data are immense for the proposed research question, yet the need is to implement modern follow-up screening and modern therapeutics at the clinical level and to conduct wide-scale public awareness to lessen the HPV-related disease burden.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi 46000, Pakistan
| | - Ranjit Sah
- Department of Microbiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu 44600, Nepal
| | - Khalid Muhammad
- Department of Biology, College of Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
5
|
Olczak P, Wong M, Tsai HL, Wang H, Kirnbauer R, Griffith AJ, Lambert PF, Roden R. Vaccination with human alphapapillomavirus-derived L2 multimer protects against human betapapillomavirus challenge, including in epidermodysplasia verruciformis model mice. Virology 2022; 575:63-73. [PMID: 36070626 PMCID: PMC9710205 DOI: 10.1016/j.virol.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Human alphapapillomaviruses (αHPV) infect genital mucosa, and a high-risk subset is a necessary cause of cervical cancer. Licensed L1 virus-like particle (VLP) vaccines offer immunity against the nine most common αHPV associated with cervical cancer and genital warts. However, vaccination with an αHPV L2-based multimer vaccine, α11-88x5, protected mice and rabbits from vaginal and skin challenge with diverse αHPV types. While generally clinically inapparent, human betapapillomaviruses (βHPV) are possibly associated with cutaneous squamous cell carcinoma (CSCC) in epidermodysplasia verruciformis (EV) and immunocompromised patients. Here we show that α11-88x5 vaccination protected wild type and EV model mice against HPV5 challenge. Passive transfer of antiserum conferred protection independently of Fc receptors (FcR) or Gr-1+ phagocytes. Antisera demonstrated robust antibody titers against ten βHPV by L1/L2 VLP ELISA and neutralized and protected against challenge by 3 additional βHPV (HPV49/76/96). Thus, unlike the licensed vaccines, α11-88x5 vaccination elicits broad immunity against αHPV and βHPV.
Collapse
Affiliation(s)
- Pola Olczak
- Department of Pathology, Johns Hopkins University, 1550 Orleans St, Baltimore, MD, 21287, United States
| | - Margaret Wong
- Department of Pathology, Johns Hopkins University, 1550 Orleans St, Baltimore, MD, 21287, United States
| | - Hua-Ling Tsai
- Department of Biostatistics, Johns Hopkins University, 550 N Broadway, Baltimore, MD, 21205, United States
| | - Hao Wang
- Department of Biostatistics, Johns Hopkins University, 550 N Broadway, Baltimore, MD, 21205, United States
| | - Reinhard Kirnbauer
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Andrew J Griffith
- Department of Otolaryngology Head-Neck Surgery, College of Medicine-Memphis, University of Tennessee Health Sciences Center, 910 Madison Ave, Memphis, TN, 38163, United States
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, United States
| | - Richard Roden
- Department of Pathology, Johns Hopkins University, 1550 Orleans St, Baltimore, MD, 21287, United States.
| |
Collapse
|
6
|
Olczak P, Matsui K, Wong M, Alvarez J, Lambert P, Christensen ND, Hu J, Huber B, Kirnbauer R, Wang JW, Roden RBS. RG2-VLP: a Vaccine Designed to Broadly Protect against Anogenital and Skin Human Papillomaviruses Causing Human Cancer. J Virol 2022; 96:e0056622. [PMID: 35703545 PMCID: PMC9278150 DOI: 10.1128/jvi.00566-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/20/2022] [Indexed: 12/20/2022] Open
Abstract
The family of human papillomaviruses (HPV) includes over 400 genotypes. Genus α genotypes generally infect the anogenital mucosa, and a subset of these HPV are a necessary, but not sufficient, cause of cervical cancer. Of the 13 high-risk (HR) and 11 intermediate-risk (IR) HPV associated with cervical cancer, genotypes 16 and 18 cause 50% and 20% of cases, respectively, whereas HPV16 dominates in other anogenital and oropharyngeal cancers. A plethora of βHPVs are associated with cutaneous squamous cell carcinoma (CSCC), especially in sun-exposed skin sites of epidermodysplasia verruciformis (EV), AIDS, and immunosuppressed patients. Licensed L1 virus-like particle (VLP) vaccines, such as Gardasil 9, target a subset of αHPV but no βHPV. To comprehensively target both α- and βHPVs, we developed a two-component VLP vaccine, RG2-VLP, in which L2 protective epitopes derived from a conserved αHPV epitope (amino acids 17 to 36 of HPV16 L2) and a consensus βHPV sequence in the same region are displayed within the DE loop of HPV16 and HPV18 L1 VLP, respectively. Unlike vaccination with Gardasil 9, vaccination of wild-type and EV model mice (Tmc6Δ/Δ or Tmc8Δ/Δ) with RG2-VLP induced robust L2-specific antibody titers and protected against β-type HPV5. RG2-VLP protected rabbits against 17 αHPV, including those not covered by Gardasil 9. HPV16- and HPV18-specific neutralizing antibody responses were similar between RG2-VLP- and Gardasil 9-vaccinated animals. However, only transfer of RG2-VLP antiserum effectively protected naive mice from challenge with all βHPVs tested. Taken together, these observations suggest RG2-VLP's potential as a broad-spectrum vaccine to prevent αHPV-driven anogenital, oropharyngeal, and βHPV-associated cutaneous cancers. IMPORTANCE Licensed preventive HPV vaccines are composed of VLPs derived by expression of major capsid protein L1. They confer protection generally restricted to infection by the αHPVs targeted by the up-to-9-valent vaccine, and their associated anogenital cancers and genital warts, but do not target βHPV that are associated with CSCC in EV and immunocompromised patients. We describe the development of a two-antigen vaccine protective in animal models against known oncogenic αHPVs as well as diverse βHPVs by incorporation into HPV16 and HPV18 L1 VLP of 20-amino-acid conserved protective epitopes derived from minor capsid protein L2.
Collapse
Affiliation(s)
- Pola Olczak
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Margaret Wong
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jade Alvarez
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Paul Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Neil D. Christensen
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, USA
- Department of Pathology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, USA
| | - Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, USA
- Department of Pathology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, USA
| | - Bettina Huber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Reinhard Kirnbauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
7
|
Mastoraki A, Schizas D, Ntella V, Roka A, Vailas M, Papanikolaou IS, Vassiliu P, Papaconstantinou I. Clinical evidence, diagnostic approach and challenging therapeutic modalities for malignant melanoma of the anorectum. ANZ J Surg 2020; 91:276-281. [PMID: 33369807 DOI: 10.1111/ans.16497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022]
Abstract
Primary anorectal malignant melanoma (ARMM) is a rare, aggressive tumour that accounts for approximately 1.2% of all melanomas. This rare entity represents less than 5% of anorectal malignant tumours and 0.05-1% of all malignant colorectal neoplasms. The incidence increases with age while there is a higher prevalence in Caucasians. ARMM is often asymptomatic or presents with no disease-specific evidence so that it can mimic other rectal disorders, malignant or benign. Colonoscopy is obligatory as a diagnosing mean for ARMM. Furthermore, endoscopic ultrasonography, computed tomography and magnetic resonance imaging can be utilized for the evaluation of tumour infiltration and lymph node metastases. Moreover, diagnostic establishment of ARMM requires an undeniable demonstration of essential melanocytic features in histology and immunohistochemistry. Even though the standard of treatment remains surgical resection, the choice between wide local excision and abdomino-perineal resection is still controversial. Recently, there have been recommendations regarding new techniques which could be utilized for the surgical treatment of ARMM. Newer treatments that have been proposed such as immune-checkpoint inhibitors and targeted therapies need further validation. A multicenter study would allow clarification of the most appropriate therapeutic strategy for this uncommon nosological entity.
Collapse
Affiliation(s)
- Aikaterini Mastoraki
- 1st Department of Surgery, National and Kapodistrian University of Athens, Laikon Hospital, Athens, Greece
| | - Dimitrios Schizas
- 1st Department of Surgery, National and Kapodistrian University of Athens, Laikon Hospital, Athens, Greece
| | - Vasiliki Ntella
- 1st Department of Surgery, National and Kapodistrian University of Athens, Laikon Hospital, Athens, Greece
| | - Anastasia Roka
- 1st Department of Surgery, National and Kapodistrian University of Athens, Laikon Hospital, Athens, Greece
| | - Michail Vailas
- 1st Department of Surgery, National and Kapodistrian University of Athens, Laikon Hospital, Athens, Greece
| | - Ioannis S Papanikolaou
- 1st Department of Surgery, National and Kapodistrian University of Athens, Laikon Hospital, Athens, Greece
| | - Pantelis Vassiliu
- 4th Department of Surgery, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Ioannis Papaconstantinou
- 2nd Department of Surgery, National and Kapodistrian University of Athens, Aretaieion Hospital, Athens, Greece
| |
Collapse
|
8
|
A Systematic Review and Meta-Analysis: Evaluation of the β-Human Papillomavirus in Immunosuppressed Individuals with Cutaneous Squamous Cell Carcinoma. Biomedicine (Taipei) 2020; 10:1-10. [PMID: 33854928 PMCID: PMC7735980 DOI: 10.37796/2211-8039.1110] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/18/2020] [Indexed: 11/30/2022] Open
Abstract
Background Some types of beta-human papillomavirus (β-HPV) may be one of the probable causes of squamous cell carcinoma (SCC) in transplant recipients. β-HPVs are linked to SCC in the literature with small number of subjects. Aim Herein, the first meta-analysis was carried out on the association between β-HPVs and cutaneous SCC in immunosuppressed patients. Methods A systematic search was carried out in the PubMed and Scopus databases up to December 2018. The odds ratio (OR) were calculated by RevMan 5.3 software and the event rate (ER) by Comprehensive Meta-Analysis 2.0 software with a 95% confidence interval (CI). Results A total of 1250 records were identified through the two databases, but at last eleven studies were included in the meta-analysis that they were published from 1989 to 2018. The results showed a significantly high prevalence of β-HPVs in cutaneous SCC patients (ER = 69.1%; 95%CI: 58.7%, 77.8%). In addition, the prevalence of overall β-HPVs and β-HPVs of 5, 8, 9, 17, 49, 75, and 76 in immunosuppressed cutaneous SCC patients was significantly higher compared with controls. Conclusions The findings of the present meta-analysis support the hypothesis that β-HPV may play a role in cutaneous SCC development in immunosuppressed individuals.
Collapse
|
9
|
Progress in L2-Based Prophylactic Vaccine Development for Protection against Diverse Human Papillomavirus Genotypes and Associated Diseases. Vaccines (Basel) 2020; 8:vaccines8040568. [PMID: 33019516 PMCID: PMC7712070 DOI: 10.3390/vaccines8040568] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
The human papillomaviruses (HPVs) are a family of small DNA tumor viruses including over 200 genotypes classified by phylogeny into several genera. Different genera of HPVs cause ano-genital and oropharyngeal cancers, skin cancers, as well as benign diseases including skin and genital warts. Licensed vaccines composed of L1 virus-like particles (VLPs) confer protection generally restricted to the ≤9 HPV types targeted. Here, we examine approaches aimed at broadening the protection against diverse HPV types by targeting conserved epitopes of the minor capsid protein, L2. Compared to L1 VLP, L2 is less immunogenic. However, with appropriate presentation to the immune system, L2 can elicit durable, broadly cross-neutralizing antibody responses and protection against skin and genital challenge with diverse HPV types. Such approaches to enhance the strength and breadth of the humoral response include the display of L2 peptides on VLPs or viral capsids, bacteria, thioredoxin and other platforms for multimerization. Neither L2 nor L1 vaccinations elicit a therapeutic response. However, fusion of L2 with early viral antigens has the potential to elicit both prophylactic and therapeutic immunity. This review of cross-protective HPV vaccines based on L2 is timely as several candidates have recently entered early-phase clinical trials.
Collapse
|
10
|
Dacus D, Riforgiate E, Wallace NA. β-HPV 8E6 combined with TERT expression promotes long-term proliferation and genome instability after cytokinesis failure. Virology 2020; 549:32-38. [PMID: 32818730 PMCID: PMC11381111 DOI: 10.1016/j.virol.2020.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 11/25/2022]
Abstract
Human papillomavirus (HPV) is a family of viruses divided into five genera: alpha, beta, gamma, mu, and nu. There is an ongoing discussion about whether beta genus HPVs (β-HPVs) contribute to cutaneous squamous cell carcinoma (cSCC). The data presented here add to this conversation by determining how a β-HPV E6 protein (β-HPV 8E6) alters the cellular response to cytokinesis failure. Specifically, cells were observed after cytokinesis failure was induced by dihydrocytochalasin B (H2CB). β-HPV 8E6 attenuated the immediate toxicity associated with H2CB but did not promote long-term proliferation after H2CB. Immortalization by telomerase reverse transcriptase (TERT) activation also rarely allowed cells to sustain proliferation after H2CB exposure. In contrast, TERT expression combined with β-HPV 8E6 expression allowed cells to proliferate for months following cytokinesis failure. However, this continued proliferation comes with genome destabilizing consequences. Cells that survived H2CB-induced cytokinesis failure suffered from changes in ploidy.
Collapse
Affiliation(s)
- Dalton Dacus
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | | | | |
Collapse
|
11
|
Jung S, Vinh DC. Disseminated Pruritic Macules in a Solid Organ Transplant Recipient. Clin Infect Dis 2020; 69:897-899. [PMID: 31418014 DOI: 10.1093/cid/ciy949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/01/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sungmi Jung
- Department of Pathology, and, McGill University Health Centre, Montreal, Quebec, Canada
| | - Donald C Vinh
- Division of Infectious Diseases, Department of Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Bandolin L, Borsetto D, Fussey J, Da Mosto MC, Nicolai P, Menegaldo A, Calabrese L, Tommasino M, Boscolo-Rizzo P. Beta human papillomaviruses infection and skin carcinogenesis. Rev Med Virol 2020; 30:e2104. [PMID: 32232924 DOI: 10.1002/rmv.2104] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/17/2022]
Abstract
During the last decade, the worldwide incidence of keratinocyte carcinomas (KC) has increased significantly. They are now the most common malignancy, representing approximately 30% of all cancers. The role of ultraviolet (UV) radiation as a major environmental risk factor for skin cancers is well recognized. The aim of this review is to analyse the current understanding of the nature of beta-human papillomavirus (HPV) and its association with KC and explore the implications for the management and prevention of these cancers. A comprehensive review of the literature on beta-HPV and its association with KC was undertaken, the results reported in the form of a narrative review. A subgroup of HPV that infects the mucosal epithelia of the genital tract has been firmly associated with carcinogenesis. In addition, some HPV types with cutaneous tropism have been proposed to cooperate with UV in the development of KC. The first evidence for this association was reported in 1922 in patients with epidermodysplasia verruciformis (EV). Since then, epidemiological studies have highlighted the higher risk of skin cancer in patients with EV and certain cutaneous HPV types, and in vitro studies have elucidated molecular mechanisms and transforming properties of beta-HPV. Furthermore, in vivo research conducted on transgenic mice models has shown the possible role of beta-HPV in cutaneous carcinogenesis as a co-factor with UV radiation and immunosuppression. There is good evidence supporting the role of beta-HPV in the oncogenesis of KC. The high prevalence of beta-HPV in human skin and the worldwide burden of KC makes the search for an effective vaccine relevant and worthwhile.
Collapse
Affiliation(s)
- Luigia Bandolin
- Department of Neurosciences, Section of Otolaryngology, University of Padova, Padova, Italy
| | | | - Jonathan Fussey
- Department of Otolaryngology, Royal Devon and Exeter Hospital, Exeter, UK
| | | | - Piero Nicolai
- Department of Neurosciences, Section of Otolaryngology, University of Padova, Padova, Italy
| | - Anna Menegaldo
- Department of Neurosciences, Section of Otolaryngology, University of Padova, Padova, Italy
| | - Luca Calabrese
- Head and Neck Department, Ospedale di Bolzano, Bolzano, Italy
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Paolo Boscolo-Rizzo
- Department of Neurosciences, Section of Otolaryngology, University of Padova, Padova, Italy
| |
Collapse
|
13
|
Combined pulsed dye laser and systemic retinoids for the treatment of hypertrophic resistant warts among organ transplant patients. Lasers Med Sci 2020; 35:1653-1657. [DOI: 10.1007/s10103-020-03011-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/25/2020] [Indexed: 11/26/2022]
|
14
|
Tampa M, Mitran CI, Mitran MI, Nicolae I, Dumitru A, Matei C, Manolescu L, Popa GL, Caruntu C, Georgescu SR. The Role of Beta HPV Types and HPV-Associated Inflammatory Processes in Cutaneous Squamous Cell Carcinoma. J Immunol Res 2020; 2020:5701639. [PMID: 32322596 PMCID: PMC7165336 DOI: 10.1155/2020/5701639] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/25/2020] [Indexed: 11/21/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common form of skin cancer with a complex but not fully understood pathogenesis. Recent research suggests the role of beta human papillomavirus (HPV) types and HPV-associated inflammatory processes in cSCC development. Beta HPV types are components of the normal flora; however, under the influence of certain cofactors, the virus may trigger a malignant process. Dysregulation of the immune system (chronic inflammation and immunosuppression), environmental factors (ultraviolet radiation), and genetic factors are the most important cofactors involved in beta HPV-related carcinogenesis. In addition, the oncoproteins E6 and E7 of beta HPV types differ biochemically from their counterparts in the structure of alpha HPV types, resulting in different mechanisms of action in carcinogenesis. The aim of our manuscript is to present an updated point of view on the involvement of beta HPV types in cSCC pathogenesis.
Collapse
Affiliation(s)
- Mircea Tampa
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- “Victor Babes” Clinical Hospital for Infectious Diseases, 281 Mihai Bravu, 030303 Bucharest, Romania
| | - Cristina Iulia Mitran
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Madalina Irina Mitran
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Ilinca Nicolae
- “Victor Babes” Clinical Hospital for Infectious Diseases, 281 Mihai Bravu, 030303 Bucharest, Romania
| | - Adrian Dumitru
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- Emergency University Hospital Bucharest, 169 Splaiul Independenței, 050098 Bucharest, Romania
| | - Clara Matei
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Loredana Manolescu
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
| | - Gabriela Loredana Popa
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- Colentina Clinical Hospital, 19-21 Ștefan cel Mare, 020125 Bucharest, Romania
| | - Constantin Caruntu
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 22-24 Gr. Manolescu, Bucharest 011233, Romania
| | - Simona Roxana Georgescu
- “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu, 020021 Bucharest, Romania
- “Victor Babes” Clinical Hospital for Infectious Diseases, 281 Mihai Bravu, 030303 Bucharest, Romania
| |
Collapse
|
15
|
da Cruz Silva LL, de Oliveira WRP, Sotto MN. Epidermodysplasia verruciformis: revision of a model of carcinogenic disease. SURGICAL AND EXPERIMENTAL PATHOLOGY 2019. [DOI: 10.1186/s42047-019-0046-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
16
|
Haley CT, Mui UN, Vangipuram R, Rady PL, Tyring SK. Human oncoviruses: Mucocutaneous manifestations, pathogenesis, therapeutics, and prevention: Papillomaviruses and Merkel cell polyomavirus. J Am Acad Dermatol 2018; 81:1-21. [PMID: 30502418 DOI: 10.1016/j.jaad.2018.09.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/09/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022]
Abstract
In 1964, the first human oncovirus, Epstein-Barr virus, was identified in Burkitt lymphoma cells. Since then, 6 other human oncoviruses have been identified: human papillomavirus, Merkel cell polyomavirus, hepatitis B and C viruses, human T-cell lymphotropic virus-1, and human herpesvirus-8. These viruses are causally linked to 12% of all cancers, many of which have mucocutaneous manifestations. In addition, oncoviruses are associated with multiple benign mucocutaneous diseases. Research regarding the pathogenic mechanisms of oncoviruses and virus-specific treatment and prevention is rapidly evolving. Preventative vaccines for human papillomavirus and hepatitis B virus are already available. This review discusses the mucocutaneous manifestations, pathogenesis, diagnosis, treatment, and prevention of oncovirus-related diseases. The first article in this continuing medical education series focuses on diseases associated with human papillomavirus and Merkel cell polyomavirus, while the second article in the series focuses on diseases associated with hepatitis B and C viruses, human T-cell lymphotropic virus-1, human herpesvirus-8, and Epstein-Barr virus.
Collapse
Affiliation(s)
| | | | - Ramya Vangipuram
- Center for Clinical Studies, Webster, Texas; Department of Dermatology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Peter L Rady
- Department of Dermatology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Stephen K Tyring
- Center for Clinical Studies, Webster, Texas; Department of Dermatology, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
17
|
Bolatti EM, Hošnjak L, Chouhy D, Re-Louhau MF, Casal PE, Bottai H, Kocjan BJ, Stella EJ, Gorosito MD, Sanchez A, Bussy RF, Poljak M, Giri AA. High prevalence of Gammapapillomaviruses (Gamma-PVs) in pre-malignant cutaneous lesions of immunocompetent individuals using a new broad-spectrum primer system, and identification of HPV210, a novel Gamma-PV type. Virology 2018; 525:182-191. [PMID: 30292127 DOI: 10.1016/j.virol.2018.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022]
Abstract
Genus Gammapapillomavirus (Gamma-PV) is the most diverse and largest clade within the Papillomaviridae family. A novel set of degenerate primers targeting the E1 gene was designed and further used in combination with the well-known CUT PCR assay to assess HPV prevalence and genus distribution in a variety of cutaneous samples from 448 immunocompetent individuals. General HPV, Gamma-PV and mixed infections prevalence were significantly higher in actinic keratosis with respect to benign and malignant neoplasms, respectively (p = 0.0047, p = 0.0172, p = 0.00001). Gamma-PVs were significantly more common in actinic keratosis biopsies than Beta- and Alpha-PVs (p = 0.002). The full-length genome sequence of a novel putative Gamma-PV type was amplified by 'hanging droplet' long-range PCR and cloned. The novel virus, designated HPV210, clustered within species Gamma-12. This study provides an additional tool enabling detection of HPV infections in skin and adds new insights about possible early roles of Gamma-PVs in the development of cutaneous malignant lesions.
Collapse
Affiliation(s)
- Elisa M Bolatti
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, 2000 Rosario, Argentina; Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lea Hošnjak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Diego Chouhy
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, 2000 Rosario, Argentina; Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Maria F Re-Louhau
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, 2000 Rosario, Argentina
| | - Pablo E Casal
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Hebe Bottai
- Área Estadística y Procesamiento de Datos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Boštjan J Kocjan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Emma J Stella
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, 2000 Rosario, Argentina
| | - Mario D Gorosito
- División de Anatomía Patológica, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe 3100, 2000 Rosario, Argentina
| | - Adriana Sanchez
- División de Dermatología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe 3100, 2000 Rosario, Argentina
| | - Ramón Fernandez Bussy
- División de Dermatología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe 3100, 2000 Rosario, Argentina
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia.
| | - Adriana A Giri
- Grupo Virología Humana, Instituto de Biología Molecular y Celular de Rosario (CONICET), Suipacha 590, 2000 Rosario, Argentina; Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| |
Collapse
|
18
|
Epidermodysplasia Verruciformis-like HPV Infection of the Vulva in Immunosuppressed Women. Int J Gynecol Pathol 2018; 37:233-238. [PMID: 28700430 DOI: 10.1097/pgp.0000000000000417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The vast majority of vulvar human papilloma virus infections are produced by α human papilloma viruses and consist of exophytic or flat warts and classic or "usual" vulvar intraepithelial neoplasia. This report details 2 examples of epidermodysplasia verruciformis-like lesions of the vulva in women who were immunosuppressed. The most consistent morphologic feature was the presence of abnormal mature keratinocytes with large pale open nuclei with small nucleoli and eosinophilic cytoplasm, situated in the upper epithelial layers. In addition to these features, which are commonly seen in epidermodysplasia verruciformis-associated lesions, 1 case displayed in addition more extensively distributed abnormal nuclei, including involvement of both the upper epithelial strata and the epithelial/stromal interface. Both lesions were associated with β-papilloma virus type 5. The unique aspects of epidermodysplasia verruciformis-like lesions relative to the more common human papilloma virus infections of the vulva are highlighted and these cases illustrate the range of epithelial distribution that might be encountered in lesions involving the vulvar mucosa.
Collapse
|
19
|
Dutta S, Robitaille A, Aubin F, Fouéré S, Galicier L, Boutboul D, Luzi F, Di Bonito P, Tommasino M, Gheit T. Identification and characterization of two novel Gammapapillomavirus genomes in skin of an immunosuppressed Epidermodysplasia Verruciformis patient. Virus Res 2018; 249:66-68. [PMID: 29526719 DOI: 10.1016/j.virusres.2018.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/03/2018] [Accepted: 03/04/2018] [Indexed: 01/19/2023]
Abstract
Two novel human gamma-papillomavirus genomes (HPV_MTS3, and HPV_MTS4) were isolated from the skin of an immunosuppressed, late-onset Epidermodysplasia Verruciformis patient and fully cloned. The L1 open reading frames of HPV_MTS3 and HPV_MTS4 were 77% and 91% identical to their closest HPV full genome isolates w18c39 and EV03c60, which belong to the species gamma-22and gamma-7 of the genus Gammapapillomavirus, respectively.
Collapse
Affiliation(s)
- Sankhadeep Dutta
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Alexis Robitaille
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - François Aubin
- Dermatology Department and EA3181, Centre National de Référence HPV, Centre Hospitalier Universitaire, Université de Franche-Comté, Besançon, France
| | - Sébastien Fouéré
- STD Unit (Centre des MST) Dermatology Department (Service de Dermatologie), Saint Louis University Hospital, Paris, France
| | - Lionel Galicier
- Department of Clinical Immunology, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), Paris, France
| | - David Boutboul
- Department of Clinical Immunology, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), Paris, France
| | - Fabiola Luzi
- Plastic and Reconstructive Surgery, San Gallicano Dermatologic Institute, IRCCS, Rome, Italy
| | - Paola Di Bonito
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Tarik Gheit
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France.
| |
Collapse
|
20
|
Abstract
The discovery of genotype 16 as the prototype oncogenic human papillomavirus (HPV) initiated a quarter century of laboratory and epidemiological studies that demonstrated their necessary, but not sufficient, aetiological role in cervical and several other anogenital and oropharyngeal cancers. Early virus-induced immune deviation can lead to persistent subclinical infection that brings the risk of progression to cancer. Effective secondary prevention of cervical cancer through cytological and/or HPV screening depends on regular and widespread use in the general population, but coverage is inadequate in low-resource settings. The discovery that the major capsid antigen L1 could self-assemble into empty virus-like particles (VLPs) that are both highly immunogenic and protective led to the licensure of several prophylactic VLP-based HPV vaccines for the prevention of cervical cancer. The implementation of vaccination programmes in adolescent females is underway in many countries, but their impact critically depends on the population coverage and is improved by herd immunity. This Review considers how our expanding knowledge of the virology and immunology of HPV infection can be exploited to improve vaccine technologies and delivery of such preventive strategies to maximize reductions in HPV-associated disease, including incorporation of an HPV vaccine covering oncogenic types within a standard multitarget paediatric vaccine.
Collapse
Affiliation(s)
| | - Peter L. Stern
- Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
21
|
Risk of Human Papillomavirus Infection in Cancer-Prone Individuals: What We Know. Viruses 2018; 10:v10010047. [PMID: 29361695 PMCID: PMC5795460 DOI: 10.3390/v10010047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 02/06/2023] Open
Abstract
Human papillomavirus (HPV) infections cause a significant proportion of cancers worldwide, predominantly squamous cell carcinomas (SCC) of the mucosas and skin. High-risk HPV types are associated with SCCs of the anogenital and oropharyngeal tract. HPV oncogene activities and the biology of SCCs have been intensely studied in laboratory models and humans. What remains largely unknown are host tissue and immune-related factors that determine an individual's susceptibility to infection and/or carcinogenesis. Such susceptibility factors could serve to identify those at greatest risk and spark individually tailored HPV and SCC prevention efforts. Fanconi anemia (FA) is an inherited DNA repair disorder that is in part characterized by extreme susceptibility to SCCs. An increased prevalence of HPV has been reported in affected individuals, and molecular and functional connections between FA, SCC, and HPV were established in laboratory models. However, the presence of HPV in some human FA tumors is controversial, and the extent of the etiological connections remains to be established. Herein, we discuss cellular, immunological, and phenotypic features of FA, placed into the context of HPV pathogenesis. The goal is to highlight this orphan disease as a unique model system to uncover host genetic and molecular HPV features, as well as SCC susceptibility factors.
Collapse
|
22
|
Uberoi A, Yoshida S, Lambert PF. Development of an in vivo infection model to study Mouse papillomavirus-1 (MmuPV1). J Virol Methods 2017; 253:11-17. [PMID: 29253496 DOI: 10.1016/j.jviromet.2017.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022]
Abstract
Preclinical model systems to study multiple features of the papillomavirus life cycle are extremely valuable tools to aid our understanding of Human Papillomavirus (HPV) biology, disease progression and treatments. Mouse papillomavirus (MmuPV1) is the first ever rodent papillomavirus that can infect the laboratory strain of mice and was discovered recently in 2011. This model is an attractive model to study papillomavirus pathogenesis due to the ubiquitous availability of lab mice and the fact that this mouse species is easily genetically modifiable. Several other groups, including ours, have reported that MmuPV1-induced papillomas are restricted to T-cell deficient immunosuppressed mice. In our lab we showed for the first time that MmuPV1 causes skin cancers in UVB-irradiated immunocompetent animals. In this report we describe in detail the MmuPV1-UV infection model that can be adapted to study MmuPV1 biology in immunocompetent animals.
Collapse
Affiliation(s)
- Aayushi Uberoi
- McArdle Laboratory of Cancer Research, 1111 Highland Avenue, University of Wisconsin, Madison 53705, United States
| | - Satoshi Yoshida
- McArdle Laboratory of Cancer Research, 1111 Highland Avenue, University of Wisconsin, Madison 53705, United States
| | - Paul F Lambert
- McArdle Laboratory of Cancer Research, 1111 Highland Avenue, University of Wisconsin, Madison 53705, United States.
| |
Collapse
|
23
|
Metformin is associated with decreased skin cancer risk in Taiwanese patients with type 2 diabetes. J Am Acad Dermatol 2017; 78:694-700. [PMID: 29246826 DOI: 10.1016/j.jaad.2017.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/27/2017] [Accepted: 12/03/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Metformin, an antidiabetic drug, is associated with decreased cancer risk, but its effect on skin cancer is unknown. OBJECTIVE To evaluate skin cancer risk associated with metformin use. METHODS In total, 16,237 matched pairs of ever and never metformin users with new-onset type 2 diabetes diagnosed during 1999-2005 were retrospectively enrolled and followed until December 31, 2011, using Taiwan's National Health Insurance database. Hazard ratios (HRs) were estimated using Cox regression weighted for propensity scores. RESULTS Skin cancer incidence was 45.59 and 83.90 per 100,000 person-years among ever and never users, respectively (HR 0.540, 95% confidence interval [CI] 0.357-0.819). Among ever users, the HRs (95% CIs) for the first (<21.00 months), second (21.00-45.83 months), and third (>45.83 months) cumulative duration tertiles were 0.817 (0.448-1.489), 0.844 (0.504-1.412), and 0.114 (0.036-0.364), respectively, and the HRs (95% CIs) for the first, second, and third cumulative dose tertiles were 1.006 (0.579-1.748), 0.578 (0.317-1.051), and 0.229 (0.099-0.530), respectively. HRs (95% CIs) were 0.523 (0.175-1.562) for melanoma and 0.496 (0.319-0.772) for nonmelanoma skin cancer. LIMITATIONS Few patients had skin cancer and information on ultraviolet light exposure and tumor histopathology was lacking. CONCLUSION Metformin use is associated with a decreased skin cancer risk.
Collapse
|
24
|
Sominsky S, Shterzer N, Jackman A, Shapiro B, Yaniv A, Sherman L. E6 proteins of α and β cutaneous HPV types differ in their ability to potentiate Wnt signaling. Virology 2017; 509:11-22. [DOI: 10.1016/j.virol.2017.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 01/29/2023]
|
25
|
Kalnin K, Chivukula S, Tibbitts T, Yan Y, Stegalkina S, Shen L, Cieszynski J, Costa V, Sabharwal R, Anderson SF, Christensen N, Jagu S, Roden RBS, Kleanthous H. Incorporation of RG1 epitope concatemers into a self-adjuvanting Flagellin-L2 vaccine broaden durable protection against cutaneous challenge with diverse human papillomavirus genotypes. Vaccine 2017; 35:4942-4951. [PMID: 28778613 PMCID: PMC6454882 DOI: 10.1016/j.vaccine.2017.07.086] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/14/2017] [Accepted: 07/23/2017] [Indexed: 12/23/2022]
Abstract
AIM To achieve durable and broad protection against human papillomaviruses by vaccination with multimers of minor capsid antigen L2 using self-adjuvanting fusions with the toll-like receptor-5 (TLR5) ligand bacterial flagellin (Fla) instead of co-formulation with alum. METHODS Fla fusions with L2 protective epitopes comprising residues 11-200, 11-88 and/or 17-38 of a single or multiple HPV types were produced in E. coli and their capacity to activate TLR5 signaling was assessed. Immunogenicity was evaluated serially following administration of 3 intramuscular doses of Fla-L2 multimer without exogenous adjuvant, followed by challenge 1, 3, 6 or 12months later, and efficacy compared to vaccination with human doses of L1 VLP vaccines (Gardasil and Cervarix) or L2 multimer formulated in alum. Serum antibody responses were assessed by peptide ELISA, in vitro neutralization assays and passive transfer to naïve rabbits in which End-Point Protection Titers (EPPT) were determined using serial dilutions of pooled immune sera collected 1, 3, 6 or 12months after completing active immunization. Efficacy was assessed by determining wart volume following concurrent challenge at different sites with HPV6/16/18/31/45/58 'quasivirions' containing cottontail rabbit papillomavirus (CRPV) genomes. RESULTS Vaccination in the absence of exogenous adjuvant with Fla-HPV16 L2 11-200 fusion protein elicited durable protection against HPV16, but limited cross-protection against other HPV types. Peptide mapping data suggested the importance of the 17-38 aa region in conferring immunity. Indeed, addition of L2 residues 17-38 of HPV6/18/31/39/52 to a Fla-HPV16 L2 11-200 or 11-88 elicited broader protection via active or passive immunization, similar to that seen with vaccination with an alum-adjuvanted L2 multimer comprising the aa 11-88 peptides of five or eight genital HPV types. CONCLUSIONS Vaccination with flagellin fused L2 multimers provided lasting (>1year) immunity without the need for an exogenous adjuvant. Inclusion of the L2 amino acid 17-38 region in such multi-HPV type fusions expanded the spectrum of protection.
Collapse
Affiliation(s)
- Kirill Kalnin
- Research, Sanofi Pasteur, 38 Sidney Street, Cambridge, MA, USA.
| | | | | | - Yanhua Yan
- Research, Sanofi Pasteur, 38 Sidney Street, Cambridge, MA, USA
| | | | - Lihua Shen
- Research, Sanofi Pasteur, 38 Sidney Street, Cambridge, MA, USA
| | | | - Victor Costa
- Research, Sanofi Pasteur, 38 Sidney Street, Cambridge, MA, USA
| | | | | | - Neil Christensen
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Subhashini Jagu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Richard B S Roden
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
26
|
Shao X, Wang F, Xu B. Two-step irradiance schedule versus single-dose cold compress for pain control during 5-aminolevulinic acid-based photodynamic therapy of condyloma acuminatum. Lasers Surg Med 2017. [PMID: 28640436 DOI: 10.1002/lsm.22699] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The purpose of this study was to investigate the effect of two-step irradiance schedule in relieving pain during PDT of CA. METHODS The study was a prospective, controlled trial of 141 CA patients who were randomly divided into Group A (two-step irradiance schedule) and Group B (single-dose cold compress). The numeric rating scales (NRS) of patients' pain were recorded at 5, 10, 15, and 20 minutes during each PDT. RESULTS The efficacy of PDT and NRS scores of patients in the two groups were compared. There was no significant difference in gender, age, lesion site, and disease course between the two groups (P > 0.05). In addition, the cure rate of patients in the two groups was not significantly different (97.1% vs. 95.8%, χ2 = 0.000, P = 1.000). However, the NRS scores at different time points and number of PDT sessions were significantly different (F = 198.233 and 165.224, respectively, P < 0.05). The NRS scores of patients in Group A were significantly lower than those of patients in Group B (F = 82.762, P < 0.0001). Moreover, the NRS scores at different positions were significantly different (F = 28.286, P < 0.0001). The NRS scores of penis were significantly lower than those of the vulva and crissum (P < 0.05). CONCLUSIONS Compared with single-dose cold compress, two-step irradiance schedule could more significantly reduce the patients' pain degree during treatment, especially for vulva and crissum. Lasers Surg. Med. 49:908-912, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaonan Shao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Fang Wang
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Bin Xu
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| |
Collapse
|
27
|
Green AC, Olsen CM. Cutaneous squamous cell carcinoma: an epidemiological review. Br J Dermatol 2017; 177:373-381. [PMID: 28211039 DOI: 10.1111/bjd.15324] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2016] [Indexed: 12/20/2022]
Abstract
Cutaneous squamous cell carcinoma (SCC) is a common cancer in white populations and its disease burden is often substantially underestimated. SCC occurs more often in men than women and increases dramatically with age; those affected often develop multiple primaries over time, which increases the burden. The main external cause is solar ultraviolet radiation (UVR), with immunosuppression being the other established risk factor, shown by the high SCC rates in organ transplant recipients. Sunbed use and certain genetic disorders and medical conditions are also associated with SCC, while associations with human papillomavirus infection and high bodyweight are not established. The presence of actinic keratoses (AKs) on sun-damaged skin is one of the strongest predictors of SCC in unaffected people and a very small proportion of AKs are SCC precursors, although the true rate of malignant transformation of AKs is unknown. The mainstay of SCC prevention is protection of the skin from undue sun exposure by use of clothing cover and sunscreen during summer or in sunny places. Educational, behavioural and multicomponent interventions directed at individuals ranging from parents of newborns, to school children and adolescents, to outdoor workers, have repeatedly been shown to be effective in improving sun-protective behaviours. Health policies can facilitate SCC prevention by setting standards for relevant behaviours to reduce UVR exposure, for example, by legislated restriction of the tanning industry. Skin cancer prevention initiatives are generally highly cost-effective and public investment should be encouraged to control the growing public health problems caused by SCC.
Collapse
Affiliation(s)
- A C Green
- Cancer and Population Studies Group, QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital, QLD 4029, Brisbane, Australia.,CRUK Manchester Institute and Institute of Inflammation and Repair, University of Manchester, Manchester, U.K
| | - C M Olsen
- Cancer Control Group, QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital, QLD 4029, Brisbane, Australia.,School of Public Health, the University of Queensland, Brisbane, Australia
| |
Collapse
|
28
|
Apalla Z, Nashan D, Weller RB, Castellsagué X. Skin Cancer: Epidemiology, Disease Burden, Pathophysiology, Diagnosis, and Therapeutic Approaches. Dermatol Ther (Heidelb) 2017; 7:5-19. [PMID: 28150105 PMCID: PMC5289116 DOI: 10.1007/s13555-016-0165-y] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 12/26/2022] Open
Abstract
Skin cancer, including both melanoma and non-melanoma, is the most common type of malignancy in the Caucasian population. Firstly, we review the evidence for the observed increase in the incidence of skin cancer over recent decades, and investigate whether this is a true increase or an artefact of greater screening and over-diagnosis. Prevention strategies are also discussed. Secondly, we discuss the complexities and challenges encountered when diagnosing and developing treatment strategies for skin cancer. Key case studies are presented that highlight the practic challenges of choosing the most appropriate treatment for patients with skin cancer. Thirdly, we consider the potential risks and benefits of increased sun exposure. However, this is discussed in terms of the possibility that the avoidance of sun exposure in order to reduce the risk of skin cancer may be less important than the reduction in all-cause mortality as a result of the potential benefits of increased exposure to the sun. Finally, we consider common questions on human papillomavirus infection.
Collapse
Affiliation(s)
- Zoe Apalla
- First Department of Dermatology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Dorothée Nashan
- Teaching Hospital of the University of Münster, Münster, Germany
| | | | - Xavier Castellsagué
- Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Catalonia, Spain
| |
Collapse
|
29
|
Moscicki AB, Ma Y, Gheit T, McKay-Chopin S, Farhat S, Widdice LE, Tommasino M. Prevalence and Transmission of Beta and Gamma Human Papillomavirus in Heterosexual Couples. Open Forum Infect Dis 2017; 4:ofw216. [PMID: 28480229 PMCID: PMC5414092 DOI: 10.1093/ofid/ofw216] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/21/2016] [Accepted: 10/20/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Beta (β) and gamma (γ) human papillomavirus (HPV) are commonly found on the skin. Few of the β types are associated with nonmelanoma skin cancer. Little is known about transmission patterns of these HPV, specifically in the anogenital (AG) areas. The primary objective of this study was to examine the AG concordance and transmission of β and γHPV types between heterosexual couples. METHODS Archival samples from a previously published study examining concordance of alpha HPV types between couples were tested for β and γHPV. Hand, mouth, and genital samples were obtained 5 times over a 6-week period. RESULTS Of the 21 couples examined, β and γHPV were detected in AG sites in 67% and 30% of men, respectively, and 41% and 25% of women. Positive concordance for β and γHPV was 27% and 20%, respectively, which was greater than the observed concordance between noncouples (10% for βHPV and 4% for γHPV). Transmission rate of βHPV between AG areas was 15.9 (95% confidence interval [CI], 3.3-46.5) per 100 person months for men-to-women at risk and for γHPV was 6.6 (95% CI, .2-36.7). Risks for women-to-men were similar. CONCLUSIONS Beta and γHPV are common in the AG area, and data suggest that they can be sexually transmitted.
Collapse
Affiliation(s)
- Anna-Barbara Moscicki
- Department of Pediatrics, Division of Adolescent Medicine, University of California, Los Angeles
| | - Yifei Ma
- Department of Pediatrics, School of Medicine, University of California, San Francisco
| | - Tarik Gheit
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Sandrine McKay-Chopin
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Sepideh Farhat
- Department of Pediatrics, School of Medicine, University of California, San Francisco
| | - Lea E Widdice
- Cincinnati Children's Hospital Medical Center and University of Cincinnati, Ohio
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
30
|
Proteomic analysis of the gamma human papillomavirus type 197 E6 and E7 associated cellular proteins. Virology 2016; 500:71-81. [PMID: 27771561 DOI: 10.1016/j.virol.2016.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 12/26/2022]
Abstract
Gamma HPV197 was the most frequently identified HPV when human skin cancer specimens were analyzed by deep sequencing (Arroyo Muhr et al., Int. J. Cancer 136: 2546-55, 2015). To gain insight into the biological activities of HPV197, we investigated the cellular interactomes of HPV197 E6 and E7. HPV197 E6 protein interacts with a broad spectrum of cellular LXXLL domain proteins, including UBE3A and MAML1. HPV197 E6 also binds and inhibits the TP53 tumor suppressor and interacts with the CCR4-NOT ubiquitin ligase and deadenylation complex. Despite lacking a canonical retinoblastoma (RB1) tumor suppressor binding site, HPV197 E7 binds RB1 and activates E2F transcription. Hence, HPV197 E6 and E7 proteins interact with a similar set of cellular proteins as E6 and E7 proteins encoded by HPVs that have been linked to human carcinogenesis and/or have transforming activities in vitro.
Collapse
|
31
|
Sequence-based approach for rapid identification of cross-clade CD8+ T-cell vaccine candidates from all high-risk HPV strains. 3 Biotech 2016; 6:39. [PMID: 28330110 PMCID: PMC4729761 DOI: 10.1007/s13205-015-0352-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/13/2015] [Indexed: 11/16/2022] Open
Abstract
Human papilloma virus (HPV) is the primary etiological agent responsible for cervical cancer in women. Although in total 16 high-risk HPV strains have been identified so far. Currently available commercial vaccines are designed by targeting mainly HPV16 and HPV18 viral strains as these are the most common strains associated with cervical cancer. Because of the high level of antigenic specificity of HPV capsid antigens, the currently available vaccines are not suitable to provide cross-protection from all other high-risk HPV strains. Due to increasing reports of cervical cancer cases from other HPV high-risk strains other than HPV16 and 18, it is crucial to design vaccine that generate reasonable CD8+ T-cell responses for possibly all the high-risk strains. With this aim, we have developed a computational workflow to identify conserved cross-clade CD8+ T-cell HPV vaccine candidates by considering E1, E2, E6 and E7 proteins from all the high-risk HPV strains. We have identified a set of 14 immunogenic conserved peptide fragments that are supposed to provide protection against infection from any of the high-risk HPV strains across globe.
Collapse
|
32
|
Jiang RT, Schellenbacher C, Chackerian B, Roden RBS. Progress and prospects for L2-based human papillomavirus vaccines. Expert Rev Vaccines 2016; 15:853-62. [PMID: 26901354 DOI: 10.1586/14760584.2016.1157479] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human papillomavirus (HPV) is a worldwide public health problem, particularly in resource-limited countries. Fifteen high-risk genital HPV types are sexually transmitted and cause 5% of all cancers worldwide, primarily cervical, anogenital and oropharyngeal carcinomas. Skin HPV types are generally associated with benign disease, but a subset is linked to non-melanoma skin cancer. Licensed HPV vaccines based on virus-like particles (VLPs) derived from L1 major capsid antigen of key high risk HPVs are effective at preventing these infections but do not cover cutaneous types and are not therapeutic. Vaccines targeting L2 minor capsid antigen, some using capsid display, adjuvant and fusions with early HPV antigens or Toll-like receptor agonists, are in development to fill these gaps. Progress and challenges with L2-based vaccines are summarized.
Collapse
Affiliation(s)
- Rosie T Jiang
- a Department of Pathology , The Johns Hopkins University , Baltimore , MD , USA
| | - Christina Schellenbacher
- b Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology , Medical University Vienna (MUW) , Vienna , Austria
| | - Bryce Chackerian
- c Department of Molecular Genetics and Microbiology , University of New Mexico School of Medicine , Albuquerque , NM , USA
| | - Richard B S Roden
- a Department of Pathology , The Johns Hopkins University , Baltimore , MD , USA.,d Department of Oncology , The Johns Hopkins University , Baltimore , MD , USA.,e Department of Gynecology & Obstetrics , The Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|
33
|
Prevalence and Associated Risk Factors of Human Papillomavirus in Healthy Skin Specimens Collected from Rural Anyang, China, 2006-2008. J Invest Dermatol 2016; 136:1191-1198. [PMID: 26916390 DOI: 10.1016/j.jid.2016.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 12/20/2022]
Abstract
Skin infections with cutaneous human papillomavirus (HPV) have been linked to the development of non-melanoma skin cancer, in which mucosal HPV may also play a crucial role. However, systematic investigations of the distribution and associated factors of HPV infection in healthy skin of the general population are scarce. HPV DNA from palmar exfoliated cells of 2,087 individuals was detected by FAP6085/64 and SPF1/GP6+ primers followed by sequencing. A total of 338 papillomavirus types were detected, with HPV-3, HPV-57, and HPV-49 being the most dominant types. The overall prevalence for HPV DNA on skin was 79.92% and for alpha-, beta-, and gamma-HPV were 27.07%, 38.76%, and 29.56%, respectively. Having multiple lifetime sexual partners (adjusted odds ratio 1.60), being a migrant worker (adjusted odds ratio 2.05, reference: farmers), and frequent bathing (Ptrend = 0.001) were associated with alpha-HPV DNA presence. Advancing age increased the detection risk of beta-HPV (Ptrend = 0.001). Higher education (Ptrend = 0.017) and frequent bathing (Ptrend = 0.001) were positively related to gamma-HPV positivity. This study demonstrates that alpha-HPV commonly exists on healthy skin of the general population in rural China, and alpha- and gamma-HPV infections are related to certain behaviors, different from beta-HPV infection. These findings are crucial to better understanding the biology of HPV infection and may be suggestive of the potential transmission of these viruses.
Collapse
|
34
|
McDowell LJ, Young RJ, Johnston ML, Tan TJ, Kleid S, Liu CS, Bressel M, Estall V, Rischin D, Solomon B, Corry J. p16-positive lymph node metastases from cutaneous head and neck squamous cell carcinoma: No association with high-risk human papillomavirus or prognosis and implications for the workup of the unknown primary. Cancer 2016; 122:1201-8. [PMID: 26881928 DOI: 10.1002/cncr.29901] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/18/2015] [Accepted: 12/28/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND The incidence of p16 overexpression and the role of human papillomavirus (HPV) in cutaneous head and neck squamous cell carcinoma (cHNSCC) are unclear. METHODS One hundred forty-three patients with cHNSCC lymph node metastases involving the parotid gland were evaluated for p16 expression by immunohistochemistry. The detection of 18 high-risk HPV subtypes was performed with HPV RNA in situ hybridization for a subset of 59 patients. The results were correlated with clinicopathological features and outcomes. RESULTS The median follow-up time was 5.3 years. No differences were observed in clinicopathological factors with respect to the p16 status. p16 was positive, weak, and negative in 45 (31%), 21 (15%), and 77 cases (54%), respectively. No high-risk HPV subtypes were identified, regardless of the p16 status. The p16 status was not prognostic for overall (hazard ratio, 1.08; 95% confidence interval [CI], 0.85-1.36; P = .528), cancer-specific (hazard ratio, 1.12; 95% CI, 0.77-1.64; P = .542), or progression-free survival (hazard ratio, 1.03; 95% CI, 0.83-1.29; P = .783). Distant metastasis-free survival, freedom from locoregional failure, and freedom from local failure were also not significantly associated with the p16 status. CONCLUSIONS p16 positivity is common but not prognostic in cHNSCC lymph node metastases. High-risk HPV subtypes are not associated with p16 positivity and do not appear to play a role in this disease. HPV testing, in addition to the p16 status in the unknown primary setting, may provide additional information for determining a putative primary site.
Collapse
Affiliation(s)
- Lachlan J McDowell
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Richard J Young
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Meredith L Johnston
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Tze-Jian Tan
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Stephen Kleid
- Division of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Chen S Liu
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Mathias Bressel
- Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Vanessa Estall
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia.,University of Melbourne, Parkville, Australia
| | - Danny Rischin
- University of Melbourne, Parkville, Australia.,Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Benjamin Solomon
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia.,University of Melbourne, Parkville, Australia.,Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - June Corry
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia.,University of Melbourne, Parkville, Australia
| |
Collapse
|