1
|
Lapi SE, Scott PJH, Scott AM, Windhorst AD, Zeglis BM, Abdel-Wahab M, Baum RP, Buatti JM, Giammarile F, Kiess AP, Jalilian A, Knoll P, Korde A, Kunikowska J, Lee ST, Paez D, Urbain JL, Zhang J, Lewis JS. Recent advances and impending challenges for the radiopharmaceutical sciences in oncology. Lancet Oncol 2024; 25:e236-e249. [PMID: 38821098 PMCID: PMC11340123 DOI: 10.1016/s1470-2045(24)00030-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 06/02/2024]
Abstract
This paper is the first of a Series on theranostics that summarises the current landscape of the radiopharmaceutical sciences as they pertain to oncology. In this Series paper, we describe exciting developments in radiochemistry and the production of radionuclides, the development and translation of theranostics, and the application of artificial intelligence to our field. These developments are catalysing growth in the use of radiopharmaceuticals to the benefit of patients worldwide. We also highlight some of the key issues to be addressed in the coming years to realise the full potential of radiopharmaceuticals to treat cancer.
Collapse
Affiliation(s)
- Suzanne E Lapi
- Departments of Radiology and Chemistry, O'Neal Comprehensive Cancer Center, University of Alabama, Birmingham, AL, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Andrew M Scott
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia; Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia; Department of Surgery, Faculty of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands; Cancer Center Amsterdam, Vrije Universiteit, Amsterdam, Netherlands
| | - Brian M Zeglis
- Department of Chemistry, Hunter College, City University of New York, New York City, NY, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA; Department of Radiology, Weill Cornell Medical College, New York City, NY, USA
| | - May Abdel-Wahab
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Richard P Baum
- Deutsche Klinik für Diagnostik (DKD Helios Klinik) Wiesbaden, Curanosticum MVZ Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, Germany
| | - John M Buatti
- Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Francesco Giammarile
- Nuclear Medicine and Diagnostic Imaging Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria; Centre Leon Bérard, Lyon, France
| | - Ana P Kiess
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amirreza Jalilian
- Radiochemistry and Radiotechnology Section, Division of Physical and Chemical Sciences, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Peter Knoll
- Dosimetry and Medical Radiation Physics Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Aruna Korde
- Radiochemistry and Radiotechnology Section, Division of Physical and Chemical Sciences, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Jolanta Kunikowska
- Nuclear Medicine Department, Medical University of Warsaw, Warsaw, Poland
| | - Sze Ting Lee
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia; Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia; Department of Surgery, Faculty of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Diana Paez
- Nuclear Medicine and Diagnostic Imaging Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Jean-Luc Urbain
- Department of Radiology-Nuclear Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jingjing Zhang
- Department of Diagnostic Radiology, National University of Singapore, Singapore; Clinical Imaging Research Centre, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA; Department of Radiology, Weill Cornell Medical College, New York City, NY, USA; Department of Pharmacology, Weill Cornell Medical College, New York City, NY, USA.
| |
Collapse
|
2
|
Lapi SE, Scott PJH. The future of the radiopharmaceutical sciences. Nucl Med Biol 2024; 132-133:108907. [PMID: 38599143 DOI: 10.1016/j.nucmedbio.2024.108907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024]
Affiliation(s)
- Suzanne E Lapi
- Departments of Radiology and Chemistry, University of Alabama at Birmingham, O'Neal Comprehensive Cancer Center at UAB, Birmingham, AL, USA.
| | - Peter J H Scott
- Departments of Radiology, Medicinal Chemistry and Pharmacology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Li J, Long Q, Ding H, Wang Y, Luo D, Li Z, Zhang W. Progress in the Treatment of Central Nervous System Diseases Based on Nanosized Traditional Chinese Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308677. [PMID: 38419366 PMCID: PMC11040388 DOI: 10.1002/advs.202308677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Traditional Chinese Medicine (TCM) is widely used in clinical practice to treat diseases related to central nervous system (CNS) damage. However, the blood-brain barrier (BBB) constitutes a significant impediment to the effective delivery of TCM, thus substantially diminishing its efficacy. Advances in nanotechnology and its applications in TCM (also known as nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain region. This review provides an overview of the physiological and pathological mechanisms of the BBB and systematically classifies the common TCM used to treat CNS diseases and types of nanocarriers that effectively deliver TCM to the brain. Additionally, drug delivery strategies for nano-TCMs that utilize in vivo physiological properties or in vitro devices to bypass or cross the BBB are discussed. This review further focuses on the application of nano-TCMs in the treatment of various CNS diseases. Finally, this article anticipates a design strategy for nano-TCMs with higher delivery efficiency and probes their application potential in treating a wider range of CNS diseases.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Qingyin Long
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Huang Ding
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Yang Wang
- Institute of Integrative MedicineDepartment of Integrated Traditional Chinese and Western MedicineXiangya HospitalCentral South University ChangshaChangsha410008China
| | - Dan Luo
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Zhou Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Wei Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| |
Collapse
|
4
|
Bowden G, Scott PJH, Boros E. Radiochemistry: A Hot Field with Opportunities for Cool Chemistry. ACS CENTRAL SCIENCE 2023; 9:2183-2195. [PMID: 38161375 PMCID: PMC10755734 DOI: 10.1021/acscentsci.3c01050] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 01/03/2024]
Abstract
Recent Food and Drug Administration (FDA) approval of diagnostic and therapeutic radiopharmaceuticals and concurrent miniaturization of particle accelerators leading to improved access has fueled interest in the development of chemical transformations suitable for short-lived radioactive isotopes on the tracer scale. This recent renaissance of radiochemistry is paired with new opportunities to study fundamental chemical behavior and reactivity of elements to improve their production, separation, and incorporation into bioactive molecules to generate new radiopharmaceuticals. This outlook outlines pertinent challenges in the field of radiochemistry and indicates areas of opportunity for chemical discovery and development, including those of clinically established (C-11, F-18) and experimental radionuclides in preclinical development across the periodic table.
Collapse
Affiliation(s)
- Gregory
D. Bowden
- Department
of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
- Werner
Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, 72074 Tuebingen, Germany
- Cluster
of Excellence iFIT (EXC 2180) “Image Guided and Functionally
Instructed Tumor Therapies”, Eberhard
Karls University of Tuebingen, 72074 Tuebingen, Germany
| | - Peter J. H. Scott
- Department
of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Eszter Boros
- Department
of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Dellal F, Santo Domingo Porqueras D, Narayanin-Richenapin S, Thimotee M, Delahaye V, Diouf Y, Piasta K, Gumienna-Kontecka E, Kozlowski H, Beyler M, Tripier R, Moyeux A, Gager O, Besnard V, Salerno M. Multistep synthesis of a novel copper complex with potential for Alzheimer's disease diagnosis. J Biol Inorg Chem 2023; 28:777-790. [PMID: 37978078 DOI: 10.1007/s00775-023-02028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/12/2023] [Indexed: 11/19/2023]
Abstract
Positron emission tomography (PET) imaging of Aβ plaques, is recognized as a tool for the diagnosis of Alzheimer's disease. As a contribution to the development of new strategies for early diagnosis of the disease, using PET medical imaging technique, a new copper complex, the [Cu(TE1PA-ONO)]+ was synthesized in ten steps. The key step of our strategy is the coupling of a monopicolinate-N-alkylated cyclam-based ligand with a moiety capable of recognizing Aβ plaques via a successful and challenging Buchwald-Hartwig coupling reaction. To our knowledge, it is the first time that such a strategy is used to functionalize polyazamacrocyclic derivatives. The thermodynamic stability constants determined in MeOH/H2O solvent indicate that the attachment of this moiety does not weaken the chelating properties of TE1PA-ONO ligand in relation to parent HTE1PA. The novel complex described here is able to recognize amyloid plaques in brain sections from Alzheimer's disease patients and shows low toxicity to human neuronal cells.
Collapse
Affiliation(s)
- Fatma Dellal
- Université Sorbonne Paris Nord, UMR-CNRS 7244, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), équipe NBD, 1 rue de Chablis, 93000, Bobigny, France
| | - Diego Santo Domingo Porqueras
- Université Sorbonne Paris Nord, UMR-CNRS 7244, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), équipe NBD, 1 rue de Chablis, 93000, Bobigny, France
| | - Stacy Narayanin-Richenapin
- Université Sorbonne Paris Nord, UMR-CNRS 7244, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), équipe NBD, 1 rue de Chablis, 93000, Bobigny, France
| | - Marine Thimotee
- Université Sorbonne Paris Nord, UMR-CNRS 7244, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), équipe NBD, 1 rue de Chablis, 93000, Bobigny, France
| | - Vanessa Delahaye
- Université Sorbonne Paris Nord, UMR-CNRS 7244, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), équipe NBD, 1 rue de Chablis, 93000, Bobigny, France
| | - Yacine Diouf
- Université Sorbonne Paris Nord, UMR-CNRS 7244, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), équipe NBD, 1 rue de Chablis, 93000, Bobigny, France
| | - Karolina Piasta
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wroclaw, Poland
| | | | - Henryk Kozlowski
- Department of Health Sciences, University of Opole, Katowicka 68, 45-060, Opole, Poland
| | - Maryline Beyler
- Univ Brest, UMR-CNRS 6521 CEMCA, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238, Brest, France
| | - Raphael Tripier
- Univ Brest, UMR-CNRS 6521 CEMCA, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238, Brest, France
| | - Alban Moyeux
- Université Sorbonne Paris Nord, UMR-CNRS 7244, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), équipe NBD, 1 rue de Chablis, 93000, Bobigny, France
| | - Olivier Gager
- Université Sorbonne Paris Nord, UMR-CNRS 7244, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), équipe NBD, 1 rue de Chablis, 93000, Bobigny, France
| | - Valérie Besnard
- Université Sorbonne Paris Nord, UMR1272, Laboratoire Hypoxie et Poumon, Plateforme TisCel 13, 1 rue de Chablis, 93000, Bobigny, France
| | - Milena Salerno
- Université Sorbonne Paris Nord, UMR-CNRS 7244, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), équipe NBD, 1 rue de Chablis, 93000, Bobigny, France.
| |
Collapse
|
6
|
Bhoopal B, Gollapelli KK, Damuka N, Miller M, Krizan I, Bansode A, Register T, Frye BM, Kim J, Mintz A, Orr M, Craft S, Whitlow C, Lockhart SN, Shively CA, Solingapuram Sai KK. Preliminary PET Imaging of Microtubule-Based PET Radioligand [ 11C]MPC-6827 in a Nonhuman Primate Model of Alzheimer's Disease. ACS Chem Neurosci 2023; 14:3745-3751. [PMID: 37724996 PMCID: PMC10966409 DOI: 10.1021/acschemneuro.3c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
The microtubule (MT) instability observed in Alzheimer's disease (AD) is commonly attributed to hyperphosphorylation of the MT-associated protein, tau. In vivo PET imaging offers an opportunity to gain critical information about MT changes with the onset and development of AD and related dementia. We developed the first brain-penetrant MT PET ligand, [11C]MPC-6827, and evaluated its in vivo imaging utility in vervet monkeys. Consistent with our previous in vitro cell uptake and in vivo rodent imaging experiments, [11C]MPC-6827 uptake increased with MT destabilization. Radioactive uptake was inversely related to (cerebrospinal fluid) CSF Aβ42 levels and directly related to age in a nonhuman primate (NHP) model of AD. Additionally, in vitro autoradiography studies also corroborated PET imaging results. Here, we report the preliminary results of PET imaging with [11C]MPC-6827 in four female vervet monkeys with high or low CSF Aβ42 levels, which have been shown to correlate with the Aβ plaque burden, similar to humans.
Collapse
Affiliation(s)
- Bhuvanachandra Bhoopal
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Krishna Kumar Gollapelli
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Naresh Damuka
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Mack Miller
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Ivan Krizan
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Avinash Bansode
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Thomas Register
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Brett M Frye
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Jeongchul Kim
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Akiva Mintz
- Department of Radiology, Columbia University School of Medicine, New York, New York 10032, United States
| | - Miranda Orr
- Department of Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Suzanne Craft
- Department of Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Christopher Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Samuel N Lockhart
- Department of Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Carol A Shively
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | | |
Collapse
|
7
|
Leo I, Vidula M, Bisaccia G, Procopio MC, Licordari R, Perotto M, La Vecchia G, Miaris N, Bravo PE, Bucciarelli-Ducci C. The Role of Advanced Cardiovascular Imaging Modalities in Cardio-Oncology: From Early Detection to Unravelling Mechanisms of Cardiotoxicity. J Clin Med 2023; 12:4945. [PMID: 37568347 PMCID: PMC10419705 DOI: 10.3390/jcm12154945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Advances in cancer therapies have led to a global improvement in patient survival rates. Nevertheless, the price to pay is a concomitant increase in cardiovascular (CV) morbidity and mortality in this population. Increased inflammation and disturbances of the immune system are shared by both cancer and CV diseases. Immunological effects of anti-cancer treatments occur with both conventional chemotherapy and, to a greater extent, with novel biological therapies such as immunotherapy. For these reasons, there is growing interest in the immune system and its potential role at the molecular level in determining cardiotoxicity. Early recognition of these detrimental effects could help in identifying patients at risk and improve their oncological management. Non-invasive imaging already plays a key role in evaluating baseline CV risk and in detecting even subclinical cardiac dysfunction during surveillance. The aim of this review is to highlight the role of advanced cardiovascular imaging techniques in the detection and management of cardiovascular complications related to cancer treatment.
Collapse
Affiliation(s)
- Isabella Leo
- Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK; (I.L.)
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Mahesh Vidula
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA (P.E.B.)
- Divisions of Nuclear Medicine and Cardiothoracic Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Giandomenico Bisaccia
- Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK; (I.L.)
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Cristina Procopio
- Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK; (I.L.)
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Roberto Licordari
- Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK; (I.L.)
- Department of Biomedical and Dental Sciences and of Morphological and Functional Images, University of Messina, 98122 Messina, Italy
| | - Maria Perotto
- Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK; (I.L.)
| | - Giulia La Vecchia
- Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK; (I.L.)
- Department of Cardiovascular and Pulmonary Science, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Nikolaos Miaris
- Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK; (I.L.)
| | - Paco E. Bravo
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA (P.E.B.)
- Divisions of Nuclear Medicine and Cardiothoracic Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chiara Bucciarelli-Ducci
- Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK; (I.L.)
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London WC2R 2LS, UK
| |
Collapse
|
8
|
Rong J, Haider A, Jeppesen TE, Josephson L, Liang SH. Radiochemistry for positron emission tomography. Nat Commun 2023; 14:3257. [PMID: 37277339 PMCID: PMC10241151 DOI: 10.1038/s41467-023-36377-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 01/30/2023] [Indexed: 06/07/2023] Open
Abstract
Positron emission tomography (PET) constitutes a functional imaging technique that is harnessed to probe biological processes in vivo. PET imaging has been used to diagnose and monitor the progression of diseases, as well as to facilitate drug development efforts at both preclinical and clinical stages. The wide applications and rapid development of PET have ultimately led to an increasing demand for new methods in radiochemistry, with the aim to expand the scope of synthons amenable for radiolabeling. In this work, we provide an overview of commonly used chemical transformations for the syntheses of PET tracers in all aspects of radiochemistry, thereby highlighting recent breakthrough discoveries and contemporary challenges in the field. We discuss the use of biologicals for PET imaging and highlight general examples of successful probe discoveries for molecular imaging with PET - with a particular focus on translational and scalable radiochemistry concepts that have been entered to clinical use.
Collapse
Affiliation(s)
- Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Achi Haider
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Troels E Jeppesen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA.
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
9
|
Penet MF, Sharma RK, Bharti S, Mori N, Artemov D, Bhujwalla ZM. Cancer insights from magnetic resonance spectroscopy of cells and excised tumors. NMR IN BIOMEDICINE 2023; 36:e4724. [PMID: 35262263 PMCID: PMC9458776 DOI: 10.1002/nbm.4724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Multinuclear ex vivo magnetic resonance spectroscopy (MRS) of cancer cells, xenografts, human cancer tissue, and biofluids is a rapidly expanding field that is providing unique insights into cancer. Starting from the 1970s, the field has continued to evolve as a stand-alone technology or as a complement to in vivo MRS to characterize the metabolome of cancer cells, cancer-associated stromal cells, immune cells, tumors, biofluids and, more recently, changes in the metabolome of organs induced by cancers. Here, we review some of the insights into cancer obtained with ex vivo MRS and provide a perspective of future directions. Ex vivo MRS of cells and tumors provides opportunities to understand the role of metabolism in cancer immune surveillance and immunotherapy. With advances in computational capabilities, the integration of artificial intelligence to identify differences in multinuclear spectral patterns, especially in easily accessible biofluids, is providing exciting advances in detection and monitoring response to treatment. Metabolotheranostics to target cancers and to normalize metabolic changes in organs induced by cancers to prevent cancer-induced morbidity are other areas of future development.
Collapse
Affiliation(s)
- Marie-France Penet
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Raj Kumar Sharma
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
| | - Santosh Bharti
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
| | - Noriko Mori
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
| | - Dmitri Artemov
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Zaver M. Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Damuka N, Bashetti N, Mintz A, Bansode AH, Miller M, Krizan I, Furdui C, Bhoopal B, Gollapelli KK, Shanmukha Kumar JV, Deep G, Dugan G, Cline M, Solingapuram Sai KK. [ 18F]KS1, a novel ascorbate-based ligand images ROS in tumor models of rodents and nonhuman primates. Biomed Pharmacother 2022; 156:113937. [PMID: 36411624 PMCID: PMC11017304 DOI: 10.1016/j.biopha.2022.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/20/2022] Open
Abstract
Over production of reactive oxygen species (ROS) caused by altered redox regulation of signaling pathways is common in many types of cancers. While PET imaging is recognized as the standard tool for cancer imaging, there are no clinically-approved PET radiotracers for ROS-imaging in cancer diagnosis and treatment. An ascorbate-based radio ligand promises to meet this urgent need. Our laboratory recently synthesized [18F] KS1, a fluoroethoxy furanose ring-containing ascorbate derivative, to track ROS in prostate tumor-bearing mice. Here we report cell uptake assays of [18F]KS1 with different ROS-regulating agents, PET imaging in head and neck squamous cell carcinoma (HNSCC) mice, and doxorubicin-induced rats; PET imaging in healthy and irradiated hepatic tumor-bearing rhesus to demonstrate its translational potential. Our preliminary evaluations demonstrated that KS1 do not generate ROS in tumor cells at tracer-level concentrations and tumor-killing properties at pharmacologic doses. [18F]KS1 uptake was low in HNSCC pretreated with ROS blockers, and high with ROS inducers. Tumors in high ROS-expressing SCC-61 took up significantly more [18F]KS1 than rSCC-61 (low-ROS expressing HNSCC); high uptake in doxorubicin-treated rats compared to saline-treated controls. Rodent biodistribution and PET imaging of [18F]KS1 in healthy rhesus monkeys demonstrated its favorable safety, pharmacokinetic properties with excellent washout profile, within 3.0 h of radiotracer administration. High uptake of [18F]KS1 in liver tumor tissues of the irradiated hepatic tumor-bearing monkey showed target selectivity. Our strong data in vitro, in vivo, and ex vivo here supports the high translational utility of [18F]KS1 to image ROS.
Collapse
Affiliation(s)
- Naresh Damuka
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Nagaraju Bashetti
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Andhra Pradesh, India
| | - Akiva Mintz
- Department of Radiology, Columbia University, New York, NY, United States
| | - Avinash H Bansode
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mack Miller
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ivan Krizan
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Cristina Furdui
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Bhuvanachandra Bhoopal
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | | - J V Shanmukha Kumar
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Andhra Pradesh, India
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Greg Dugan
- Department of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mark Cline
- Department of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | |
Collapse
|
11
|
Edelmann MR. Radiolabelling small and biomolecules for tracking and monitoring. RSC Adv 2022; 12:32383-32400. [PMID: 36425706 PMCID: PMC9650631 DOI: 10.1039/d2ra06236d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Radiolabelling small molecules with beta-emitters has been intensively explored in the last decades and novel concepts for the introduction of radionuclides continue to be reported regularly. New catalysts that induce carbon/hydrogen activation are able to incorporate isotopes such as deuterium or tritium into small molecules. However, these established labelling approaches have limited applicability for nucleic acid-based drugs, therapeutic antibodies, or peptides, which are typical of the molecules now being investigated as novel therapeutic modalities. These target molecules are usually larger (significantly >1 kDa), mostly multiply charged, and often poorly soluble in organic solvents. However, in preclinical research they often require radiolabelling in order to track and monitor drug candidates in metabolism, biotransformation, or pharmacokinetic studies. Currently, the most established approach to introduce a tritium atom into an oligonucleotide is based on a multistep synthesis, which leads to a low specific activity with a high level of waste and high costs. The most common way of tritiating peptides is using appropriate precursors. The conjugation of a radiolabelled prosthetic compound to a functional group within a protein sequence is a commonly applied way to introduce a radionuclide or a fluorescent tag into large molecules. This review highlights the state-of-the-art in different radiolabelling approaches for oligonucleotides, peptides, and proteins, as well as a critical assessment of the impact of the label on the properties of the modified molecules. Furthermore, applications of radiolabelled antibodies in biodistribution studies of immune complexes and imaging of brain targets are reported.
Collapse
Affiliation(s)
- Martin R Edelmann
- Department of Pharmacy and Pharmacology, University of Bath Bath BA2 7AY UK
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Therapeutic Modalities, Small Molecule Research, Isotope Synthesis, F. Hoffmann-La Roche Ltd CH-4070 Basel Switzerland
| |
Collapse
|
12
|
Sun J, Huangfu Z, Yang J, Wang G, Hu K, Gao M, Zhong Z. Imaging-guided targeted radionuclide tumor therapy: From concept to clinical translation. Adv Drug Deliv Rev 2022; 190:114538. [PMID: 36162696 DOI: 10.1016/j.addr.2022.114538] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 09/03/2022] [Accepted: 09/11/2022] [Indexed: 01/24/2023]
Abstract
Since the first introduction of sodium iodide I-131 for use with thyroid patients almost 80 years ago, more than 50 radiopharmaceuticals have reached the markets for a wide range of diseases, especially cancers. The nuclear medicine paradigm also shifts from solely molecular imaging or radionuclide therapy to imaging-guided radionuclide therapy, which is deemed a vital component of precision cancer therapy and an emerging medical modality for personalized medicine. The imaging-guided radionuclide therapy highlights the systematic integration of targeted nuclear diagnostics and radionuclide therapeutics. Regarding this, nuclear imaging serves to "visualize" the lesions and guide the therapeutic strategy, followed by administration of a precise patient specific dose of radiotherapeutics for treatment according to the absorbed dose to different organs and tumors calculated by dosimetry tools, and finally repeated imaging to predict the prognosis. This strategy leads to significantly enhanced therapeutic efficacy, improved patient outcomes, and manageable adverse events. In this review, we provide an overview of imaging-guided targeted radionuclide therapy for different tumors such as advanced prostate cancer and neuroendocrine tumors, with a focus on development of new radioligands and their preclinical and clinical results, and further discuss about challenges and future perspectives.
Collapse
Affiliation(s)
- Juan Sun
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhenyuan Huangfu
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Jiangtao Yang
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Guanglin Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China.
| | - Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan.
| | - Mingyuan Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhiyuan Zhong
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
13
|
Jackson IM, Webb EW, Scott PJ, James ML. In Silico Approaches for Addressing Challenges in CNS Radiopharmaceutical Design. ACS Chem Neurosci 2022; 13:1675-1683. [PMID: 35606334 PMCID: PMC9945852 DOI: 10.1021/acschemneuro.2c00269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Positron emission tomography (PET) is a highly sensitive and versatile molecular imaging modality that leverages radiolabeled molecules, known as radiotracers, to interrogate biochemical processes such as metabolism, enzymatic activity, and receptor expression. The ability to probe specific molecular and cellular events longitudinally in a noninvasive manner makes PET imaging a particularly powerful technique for studying the central nervous system (CNS) in both health and disease. Unfortunately, developing and translating a single CNS PET tracer for clinical use is typically an extremely resource-intensive endeavor, often requiring synthesis and evaluation of numerous candidate molecules. While existing in vitro methods are beginning to address the challenge of derisking molecules prior to costly in vivo PET studies, most require a significant investment of resources and possess substantial limitations. In the context of CNS drug development, significant time and resources have been invested into the development and optimization of computational methods, particularly involving machine learning, to streamline the design of better CNS therapeutics. However, analogous efforts developed and validated for CNS radiotracer design are conspicuously limited. In this Perspective, we overview the requirements and challenges of CNS PET tracer design, survey the most promising computational methods for in silico CNS drug design, and bridge these two areas by discussing the potential applications and impact of computational design tools in CNS radiotracer design.
Collapse
Affiliation(s)
- Isaac M. Jackson
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - E. William Webb
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109
| | - Peter J.H. Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109;,Corresponding Authors: Peter J. H. Scott − Department of Radiology, University of Michigan, Ann Arbor, MI 48109, United States; , Michelle L. James − Departments of Radiology, and Neurology & Neurological Sciences, 1201 Welch Rd., P-206, Stanford, CA 94305-5484, United States;
| | - Michelle L. James
- Department of Radiology, Stanford University, Stanford, CA 94305;,Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94304.,Corresponding Authors: Peter J. H. Scott − Department of Radiology, University of Michigan, Ann Arbor, MI 48109, United States; , Michelle L. James − Departments of Radiology, and Neurology & Neurological Sciences, 1201 Welch Rd., P-206, Stanford, CA 94305-5484, United States;
| |
Collapse
|
14
|
Damuka N, Sai KKS. Method to Development of PET Radiopharmaceutical for Cancer Imaging. Methods Mol Biol 2022; 2413:13-22. [PMID: 35044650 PMCID: PMC9093700 DOI: 10.1007/978-1-0716-1896-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The increasing number of different novel positron emission tomography (PET) radiopharmaceuticals poses challenges for their manufacturing procedures at different PET research facilities. Recent commercially available radiochemistry units with disposable cassettes are becoming common stations to produce radiopharmaceuticals with high specifications to understand the critical PET imaging outputs of the study. Therefore, several radiochemists across the PET research centers develop and optimize their own radiochemistry protocols to develop a novel or routine radiopharmaceutical at their lab. In this report, we describe the general procedure and steps followed to develop a (clinical-grade) radiopharmaceutical on a commercially available radiochemistry unit, TRASIS AIO. As an example, we use our routine protocol followed for the production of [11C]acetate, a fatty acid metabolic PET imaging ligand for several cancer imaging studies.
Collapse
Affiliation(s)
- Naresh Damuka
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157
| | | |
Collapse
|
15
|
Berland L, Kim L, Abousaway O, Mines A, Mishra S, Clark L, Hofman P, Rashidian M. Nanobodies for Medical Imaging: About Ready for Prime Time? Biomolecules 2021; 11:637. [PMID: 33925941 PMCID: PMC8146371 DOI: 10.3390/biom11050637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
Recent advances in medical treatments have been revolutionary in shaping the management and treatment landscape of patients, notably cancer patients. Over the last decade, patients with diverse forms of locally advanced or metastatic cancer, such as melanoma, lung cancers, and many blood-borne malignancies, have seen their life expectancies increasing significantly. Notwithstanding these encouraging results, the present-day struggle with these treatments concerns patients who remain largely unresponsive, as well as those who experience severely toxic side effects. Gaining deeper insight into the cellular and molecular mechanisms underlying these variable responses will bring us closer to developing more effective therapeutics. To assess these mechanisms, non-invasive imaging techniques provide valuable whole-body information with precise targeting. An example of such is immuno-PET (Positron Emission Tomography), which employs radiolabeled antibodies to detect specific molecules of interest. Nanobodies, as the smallest derived antibody fragments, boast ideal characteristics for this purpose and have thus been used extensively in preclinical models and, more recently, in clinical early-stage studies as well. Their merit stems from their high affinity and specificity towards a target, among other factors. Furthermore, their small size (~14 kDa) allows them to easily disperse through the bloodstream and reach tissues in a reliable and uniform manner. In this review, we will discuss the powerful imaging potential of nanobodies, primarily through the lens of imaging malignant tumors but also touching upon their capability to image a broader variety of nonmalignant diseases.
Collapse
Affiliation(s)
- Léa Berland
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
- Université Côte d’Azur, CNRS, INSERM, IRCAN, 06100 Nice, France;
| | - Lauren Kim
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
- Department of Chemistry and Bioengineering, Harvard University, Cambridge, MA 02138, USA
| | - Omar Abousaway
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
| | - Andrea Mines
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
| | - Shruti Mishra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
| | - Louise Clark
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
| | - Paul Hofman
- Université Côte d’Azur, CNRS, INSERM, IRCAN, 06100 Nice, France;
- Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Nice Center Hospital, 06100 Nice, France
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
16
|
Tanzey SS, Mossine AV, Sowa AR, Torres J, Brooks AF, Sanford MS, Scott PJH. A spot test for determination of residual TBA levels in 18F-radiotracers for human use using Dragendorff reagent. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5004-5009. [PMID: 33000785 PMCID: PMC11345741 DOI: 10.1039/d0ay01565b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
When utilizing [18F]tetrabutylammonium fluoride ([18F]TBAF) in the synthesis of 18F-labeled radiotracers for clinical positron emission tomography (PET) imaging, it is necessary to confirm that residual TBA levels in formulated doses do not exceed established specifications (≤2.6 mg per patient dose). Historically this has been accomplished using HPLC, but this is time consuming for short-lived PET radiotracers and limited by the need for expensive equipment. This motivated us to introduce a TLC spot test for determining residual TBA, and we have developed a new method which employs the Dragendorff reagent. Herein we report details of the TLC method and use it to quantify residual TBA in different formulations of 6-[18F]fluoro-DOPA.
Collapse
Affiliation(s)
- Sean S Tanzey
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Serrano ME, Bahri MA, Becker G, Seret A, Mievis F, Giacomelli F, Lemaire C, Salmon E, Luxen A, Plenevaux A. Quantification of [ 18F]UCB-H Binding in the Rat Brain: From Kinetic Modelling to Standardised Uptake Value. Mol Imaging Biol 2020; 21:888-897. [PMID: 30460626 DOI: 10.1007/s11307-018-1301-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE [18F]UCB-H is a specific positron emission tomography (PET) biomarker for the Synaptic Vesicle protein 2A (SV2A), the binding site of the antiepileptic drug levetiracetam. With a view to optimising acquisition time and simplifying data analysis with this radiotracer, we compared two parameters: the distribution volume (Vt) obtained from Logan graphical analysis using a Population-Based Input Function, and the Standardised Uptake Value (SUV). PROCEDURES Twelve Sprague Dawley male rats, pre-treated with three different doses of levetiracetam were employed to develop the methodology. Three additional kainic acid (KA) treated rats (temporal lobe epilepsy model) were also used to test the procedure. Image analyses focused on: (i) length of the dynamic acquisition (90 versus 60 min); (ii) correlations between Vt and SUV over 20-min consecutive time-frames; (iii) and (iv) evaluation of differences between groups using the Vt and the SUV; and (v) preliminary evaluation of the methodology in the KA epilepsy model. RESULTS A large correlation between the Vt issued from 60 to 90-min acquisitions was observed. Further analyses highlighted a large correlation (r > 0.8) between the Vt and the SUV. Equivalent differences between groups were detected for both parameters, especially in the 20-40 and 40-60-min time-frames. The same results were also obtained with the epilepsy model. CONCLUSIONS Our results enable the acquisition setting to be changed from a 90-min dynamic to a 20-min static PET acquisition. According to a better image quality, the 20-40-min time-frame appears optimal. Due to its equivalence to the Vt, the SUV parameter can be considered in order to quantify [18F]UCB-H uptake in the rat brain. This work, therefore, establishes a starting point for the simplification of SV2A in vivo quantification with [18F]UCB-H, and represents a step forward to the clinical application of this PET radiotracer.
Collapse
Affiliation(s)
- Maria Elisa Serrano
- GIGA - CRC In Vivo Imaging, University of Liège, Allée du 6 Août, Building B30, Sart Tilman, 4000, Liège, Belgium.
| | - Mohamed Ali Bahri
- GIGA - CRC In Vivo Imaging, University of Liège, Allée du 6 Août, Building B30, Sart Tilman, 4000, Liège, Belgium
| | - Guillaume Becker
- GIGA - CRC In Vivo Imaging, University of Liège, Allée du 6 Août, Building B30, Sart Tilman, 4000, Liège, Belgium
| | - Alain Seret
- GIGA - CRC In Vivo Imaging, University of Liège, Allée du 6 Août, Building B30, Sart Tilman, 4000, Liège, Belgium
| | - Frédéric Mievis
- Nucleis, University of Liège, Allée du 6 Août, Building B30, Sart Tilman, 4000, Liège, Belgium
| | - Fabrice Giacomelli
- Nucleis, University of Liège, Allée du 6 Août, Building B30, Sart Tilman, 4000, Liège, Belgium
| | - Christian Lemaire
- GIGA - CRC In Vivo Imaging, University of Liège, Allée du 6 Août, Building B30, Sart Tilman, 4000, Liège, Belgium
| | - Eric Salmon
- GIGA - CRC In Vivo Imaging, University of Liège, Allée du 6 Août, Building B30, Sart Tilman, 4000, Liège, Belgium
| | - André Luxen
- GIGA - CRC In Vivo Imaging, University of Liège, Allée du 6 Août, Building B30, Sart Tilman, 4000, Liège, Belgium
| | - Alain Plenevaux
- GIGA - CRC In Vivo Imaging, University of Liège, Allée du 6 Août, Building B30, Sart Tilman, 4000, Liège, Belgium
| |
Collapse
|
18
|
Gao C, Wang Y, Sun J, Han Y, Gong W, Li Y, Feng Y, Wang H, Yang M, Li Z, Yang Y, Gao C. Neuronal mitochondria-targeted delivery of curcumin by biomimetic engineered nanosystems in Alzheimer's disease mice. Acta Biomater 2020; 108:285-299. [PMID: 32251785 DOI: 10.1016/j.actbio.2020.03.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023]
Abstract
Biomimetic nanotechnology represents a promising approach for the delivery of therapeutic agents for the treatment of complex diseases. Recently, neuronal mitochondria have been proposed to serve as a promising therapeutic target for sporadic Alzheimer's disease (AD). However, the efficient intravenous delivery of therapeutic agents to neuronal mitochondria in the brain remains a major challenge due to the complicated physiological and pathological environment. Herein, we devised and tested a strategy for functional antioxidant delivery to neuronal mitochondria by loading antioxidants into red blood cell (RBC) membrane-camouflaged human serum albumin nanoparticles bearing T807 and triphenylphosphine (TPP) molecules attached to the RBC membrane surface (T807/TPP-RBC-NPs). With the advantage of the suitable physicochemical properties of the nanoparticles and the unique biological functions of the RBC membrane, the T807/TPP-RBC-NPs are stabilized and promote sustained drug release, providing improved biocompatibility and long-term circulation. Under the synergistic effects of T807 and TPP, T807/TPP-RBC-NPs can not only penetrate the blood-brain barrier (BBB) but also target nerve cells and further localize in the mitochondria. After encapsulating curcumin (CUR) as the model antioxidant, the research data demonstrated that CUR-loaded T807/TPP-RBC-NPs can relieve AD symptoms by mitigating mitochondrial oxidative stress and suppressing neuronal death both in vitro and in vivo. In conclusion, the intravenous neuronal mitochondria-targeted biomimetic engineered delivery nanosystems provides an effective drug delivery platform for brain diseases. STATEMENT OF SIGNIFICANCE: The efficient intravenous delivery of therapeutic agents to neuronal mitochondria in the brain remains a major challenge for drug delivery due to the complicated physiological and pathological environment. To address this need, various types of nanovessels have been fabricated using a variety of materials in the last few decades. However, problems with the synthetic materials still exist and even cause toxicology issues. New findings in nanomedicine are promoting the development of biomaterials. Herein, we designed a red blood cell (RBC) membrane-coated human serum albumin nanoparticle dual-modified with T807 and TPP (T807/TPP-RBC-NPs) to accomplish these objectives. After encapsulating curcumin as the model drug, the research data demonstrated that the intravenous neuronal mitochondria-targeted biomimetic engineered delivery nanosystems are a promising therapeutic candidate for mitochondrial dysfunction in Alzheimer's disease (AD).
Collapse
|
19
|
Pike LC, Thomas CM, Guerrero-Urbano T, Michaelidou A, Greener T, Miles E, Eaton D, Barrington SF. Guidance on the use of PET for treatment planning in radiotherapy clinical trials. Br J Radiol 2019; 92:20190180. [PMID: 31437023 PMCID: PMC6849663 DOI: 10.1259/bjr.20190180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/16/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
The aim of this article is to propose meaningful guidance covering the practical and technical issues involved when planning or conducting clinical trials involving positron emission tomography (PET)-guided radiotherapy. The complexity of imaging requirements will depend on the study aims, design and PET methods used. Where PET is used to adapt radiotherapy, a high level of accuracy and reproducibility is required to ensure effective and safe treatment delivery. The guidance in this document is intended to assist researchers designing clinical trials involving PET-guided radiotherapy to provide sufficient information about the appropriate methods to complete PET-CT imaging to a consistent standard at participating centres. The guidance is divided into six categories: application of PET in radiotherapy, resource requirements, quality assurance, imaging protocol design, data management and image processing. Each section provides an overview of the recent literature to support the specific recommendations. This guidance builds on previous recommendations from the National Cancer Research Institute PET Research Network and has been produced in collaboration with the National Radiotherapy Trials Quality Assurance Group.
Collapse
Affiliation(s)
- Lucy C Pike
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, King’s Health Partners, London, UK
| | | | | | | | - Tony Greener
- Radiotherapy Physics, Guy's & St Thomas’ NHS Foundation Trust, London, UK
| | - Elizabeth Miles
- National Radiotherapy Trials QA Group, Mount Vernon Hospital, Northwood, UK
| | | | - Sally F Barrington
- King’s College London and Guy’s and St Thomas’ PET Centre, School of Biomedical Engineering and Imaging Sciences, King’s College London, King’s Health Partners, London, UK
| |
Collapse
|
20
|
Frank C, Winter G, Rensei F, Samper V, Brooks AF, Hockley BG, Henderson BD, Rensch C, Scott PJH. Development and implementation of ISAR, a new synthesis platform for radiopharmaceutical production. EJNMMI Radiopharm Chem 2019; 4:24. [PMID: 31659546 PMCID: PMC6751239 DOI: 10.1186/s41181-019-0077-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/30/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND PET radiopharmaceutical development and the implementation of a production method on a synthesis module is a complex and time-intensive task since new synthesis methods must be adapted to the confines of the synthesis platform in use. Commonly utilized single fluid bus architectures put multiple constraints on synthesis planning and execution, while conventional microfluidic solutions are limited by compatibility at the macro-to-micro interface. In this work we introduce the ISAR synthesis platform and custom-tailored fluid paths leveraging up to 70 individually addressable valves on a chip-based consumable. The ISAR synthesis platform replaces traditional stopcock valve manifolds with a fluidic chip that integrates all fluid paths (tubing) and valves into one consumable and enables channel routing without the single fluid bus constraint. ISAR can scale between the macro- (10 mL), meso- (0.5 mL) and micro- (≤0.05 mL) domain seamlessly, addressing the macro-to-micro interface challenge and enabling custom tailored fluid circuits for a given application. In this paper we demonstrate proof-of-concept by validating a single chip design to address the challenge of synthesizing multiple batches of [13N]NH3 for clinical use throughout the workday. RESULTS ISAR was installed at an academic PET Center and used to manufacture [13N]NH3 in > 96% radiochemical yield. Up to 9 batches were manufactured with a single consumable chip having parallel paths without the need to open the hot-cell. Quality control testing confirmed the ISAR-based [13N]NH3 met existing clinical release specifications, and utility was demonstrated by imaging a rodent with [13N]NH3 produced on ISAR. CONCLUSIONS ISAR represents a new paradigm in radiopharmaceutical production. Through a new system architecture, ISAR integrates the principles of microfluidics with the standard volumes and consumables established in PET Centers all over the world. Proof-of-concept has been demonstrated through validation of a chip design for the synthesis of [13N]NH3 suitable for clinical use.
Collapse
Affiliation(s)
| | - Georg Winter
- GE Healthcare, Oskar-Schlemmer-Str. 11, 80807 Munich, Germany
| | | | | | - Allen F. Brooks
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI 48109 USA
| | - Brian G. Hockley
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI 48109 USA
| | - Bradford D. Henderson
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI 48109 USA
| | | | - Peter J. H. Scott
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI 48109 USA
| |
Collapse
|
21
|
Fersing C, Bouhlel A, Cantelli C, Garrigue P, Lisowski V, Guillet B. A Comprehensive Review of Non-Covalent Radiofluorination Approaches Using Aluminum [ 18F]fluoride: Will [ 18F]AlF Replace 68Ga for Metal Chelate Labeling? Molecules 2019; 24:E2866. [PMID: 31394799 PMCID: PMC6719958 DOI: 10.3390/molecules24162866] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022] Open
Abstract
Due to its ideal physical properties, fluorine-18 turns out to be a key radionuclide for positron emission tomography (PET) imaging, for both preclinical and clinical applications. However, usual biomolecules radiofluorination procedures require the formation of covalent bonds with fluorinated prosthetic groups. This drawback makes radiofluorination impractical for routine radiolabeling, gallium-68 appearing to be much more convenient for the labeling of chelator-bearing PET probes. In response to this limitation, a recent expansion of the 18F chemical toolbox gave aluminum [18F]fluoride chemistry a real prominence since the late 2000s. This approach is based on the formation of an [18F][AlF]2+ cation, complexed with a 9-membered cyclic chelator such as NOTA, NODA or their analogs. Allowing a one-step radiofluorination in an aqueous medium, this technique combines fluorine-18 and non-covalent radiolabeling with the advantage of being very easy to implement. Since its first reports, [18F]AlF radiolabeling approach has been applied to a wide variety of potential PET imaging vectors, whether of peptidic, proteic, or small molecule structure. Most of these [18F]AlF-labeled tracers showed promising preclinical results and have reached the clinical evaluation stage for some of them. The aim of this report is to provide a comprehensive overview of [18F]AlF labeling applications through a description of the various [18F]AlF-labeled conjugates, from their radiosynthesis to their evaluation as PET imaging agents.
Collapse
Affiliation(s)
- Cyril Fersing
- Institut de Recherche en Cancérologie de Montpellier (IRCM), University of Montpellier, INSERM U1194, Montpellier Cancer Institute (ICM), 34298 Montpellier, France.
- Nuclear Medicine Department, Montpellier Cancer Institute (ICM), University of Montpellier, 208 Avenue des Apothicaires, 34298 Montpellier CEDEX 5, France.
| | - Ahlem Bouhlel
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
| | - Christophe Cantelli
- Institut de Recherche en Cancérologie de Montpellier (IRCM), University of Montpellier, INSERM U1194, Montpellier Cancer Institute (ICM), 34298 Montpellier, France
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques, 34093 Montpellier CEDEX, France
| | - Philippe Garrigue
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
- Department of Nuclear Medicine, Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13385 Marseille, France
| | - Vincent Lisowski
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques, 34093 Montpellier CEDEX, France
| | - Benjamin Guillet
- CERIMED, Aix-Marseille University, 13005 Marseille, France
- Centre de recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille University, INSERM 1263, INRA 1260, 13385 Marseille, France
- Department of Nuclear Medicine, Aix-Marseille University, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13385 Marseille, France
| |
Collapse
|
22
|
Solingapuram Sai KK, Bashetti N, Chen X, Norman S, Hines JW, Meka O, Kumar JVS, Devanathan S, Deep G, Furdui CM, Mintz A. Initial biological evaluations of 18F-KS1, a novel ascorbate derivative to image oxidative stress in cancer. EJNMMI Res 2019; 9:43. [PMID: 31101996 PMCID: PMC6525227 DOI: 10.1186/s13550-019-0513-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS)-induced oxidative stress damages many cellular components such as fatty acids, DNA, and proteins. This damage is implicated in many disease pathologies including cancer and neurodegenerative and cardiovascular diseases. Antioxidants like ascorbate (vitamin C, ascorbic acid) have been shown to protect against the deleterious effects of oxidative stress in patients with cancer. In contrast, other data indicate potential tumor-promoting activity of antioxidants, demonstrating a potential temporal benefit of ROS. However, quantifying real-time tumor ROS is currently not feasible, since there is no way to directly probe global tumor ROS. In order to study this ROS-induced damage and design novel therapeutics to prevent its sequelae, the quantitative nature of positron emission tomography (PET) can be harnessed to measure in vivo concentrations of ROS. Therefore, our goal is to develop a novel translational ascorbate-based probe to image ROS in cancer in vivo using noninvasive PET imaging of tumor tissue. The real-time evaluations of ROS state can prove critical in developing new therapies and stratifying patients to therapies that are affected by tumor ROS. METHODS We designed, synthesized, and characterized a novel ascorbate derivative (E)-5-(2-chloroethylidene)-3-((4-(2-fluoroethoxy)benzyl)oxy)-4-hydroxyfuran-2(5H)-one (KS1). We used KS1 in an in vitro ROS MitoSOX-based assay in two different head and neck squamous cancer cells (HNSCC) that express different ROS levels, with ascorbate as reference standard. We radiolabeled 18F-KS1 following 18F-based nucleophilic substitution reactions and determined in vitro reactivity and specificity of 18F-KS1 in HNSCC and prostate cancer (PCa) cells. MicroPET imaging and standard biodistribution studies of 18F-KS1 were performed in mice bearing PCa cells. To further demonstrate specificity, we performed microPET blocking experiments using nonradioactive KS1 as a blocker. RESULTS KS1 was synthesized and characterized using 1H NMR spectra. MitoSOX assay demonstrated good correlations between increasing concentrations of KS1 and ascorbate and increased reactivity in SCC-61 cells (with high ROS levels) versus rSCC-61cells (with low ROS levels). 18F-KS1 was radiolabeled with high radiochemical purity (> 94%) and specific activity (~ 100 GBq/μmol) at end of synthesis (EOS). Cell uptake of 18F-KS1 was high in both types of cancer cells, and the uptake was significantly blocked by nonradioactive KS1, and the ROS blocker, superoxide dismutase (SOD) demonstrating specificity. Furthermore, 18F-KS1 uptake was increased in PCa cells under hypoxic conditions, which have been shown to generate high ROS. Initial in vivo tumor uptake studies in PCa tumor-bearing mice demonstrated that 18F-KS1 specifically bound to tumor, which was significantly blocked (threefold) by pre-injecting unlabeled KS1. Furthermore, biodistribution studies in the same tumor-bearing mice showed high tumor to muscle (target to nontarget) ratios. CONCLUSION This work demonstrates the strong preliminary support of 18F-KS1, both in vitro and in vivo for imaging ROS in cancer. If successful, this work will provide a new paradigm to directly probe real-time oxidative stress levels in vivo. Our work could enhance precision medicine approaches to treat cancer, as well as neurodegenerative and cardiovascular diseases affected by ROS.
Collapse
Affiliation(s)
| | - Nagaraju Bashetti
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh 522502 India
| | - Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Skylar Norman
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Justin W. Hines
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Omsai Meka
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - J. V. Shanmukha Kumar
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh 522502 India
| | | | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032 USA
| |
Collapse
|
23
|
Shah T, Krishnamachary B, Wildes F, Wijnen JP, Glunde K, Bhujwalla ZM. Molecular causes of elevated phosphoethanolamine in breast and pancreatic cancer cells. NMR IN BIOMEDICINE 2018; 31:e3936. [PMID: 29928787 PMCID: PMC6118328 DOI: 10.1002/nbm.3936] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 05/03/2023]
Abstract
Elevated phosphoethanolamine (PE) is frequently observed in MRS studies of human cancers and xenografts. The role of PE in cell survival and the molecular causes underlying this increase are, however, relatively underexplored. In this study, we investigated the roles of ethanolamine kinases (Etnk-1 and 2) and choline kinases (Chk-α and β) in contributing to increased PE in human breast and pancreatic cancer cells. We investigated the effect of silencing Etnk-1 and Etnk-2 on cell viability as a potential therapeutic strategy. Both breast and pancreatic cancer cells showed higher PE compared with their nonmalignant counterparts. We identified Etnk-1 as a major cause of the elevated PE levels in these cancer cells, with little or no contribution from Chk-α, Chk-β, or Etnk-2. The increase of PE observed in pancreatic cancer cells in culture was replicated in the corresponding tumor xenografts. Downregulation of Etnk-1 with siRNA resulted in cell cytotoxicity that correlated with PE levels in breast and pancreatic cancer cells. Etnk-1 may provide a potential therapeutic target in breast and pancreatic cancers.
Collapse
Affiliation(s)
- Tariq Shah
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Flonne Wildes
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jannie P. Wijnen
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Centre of Image Sciences/High field MR Research group, Radiology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Kristine Glunde
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Zaver M. Bhujwalla
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Correspondence: Zaver M. Bhujwalla, PhD, Division of Cancer Imaging Research, Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Rm 208C Traylor Building, Baltimore, MD 21205, USA, Phone: +1 (410) 955 9698 | Fax: +1 (410) 614 1948,
| |
Collapse
|
24
|
Freeman LM, Blaufox MD. Letter from the Editors. Semin Nucl Med 2017; 47:425-426. [PMID: 28826517 DOI: 10.1053/j.semnuclmed.2017.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
|