1
|
Abuharb AI, Alzarroug AF, Algahtani SN, Alghamdi HK, Alosaimi FA, Alsuwayna N, Almughira AI. The Impact and Implications of Regenerative Medicine in Urology. Cureus 2024; 16:e52264. [PMID: 38352111 PMCID: PMC10863929 DOI: 10.7759/cureus.52264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2024] [Indexed: 02/16/2024] Open
Abstract
Urology focuses on the treatment of genitourinary disorders through therapies ranging from lifestyle changes to advanced surgeries; the field has recently incorporated robotic and minimally invasive technologies that have improved patient outcomes and reduced hospital stays and complications. However, these methods still have certain limitations. Regenerative medicine, focusing on natural repair abilities, can be an effective and safer alternative. This review aims to examine the impact of regenerative medicine in urology. We adopted a systematic review design by following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. An exhaustive online literature search involving the databases PubMed, the Cochrane Central Register of Controlled Trials (CENTRAL), and Google Scholar was conducted spanning the period between January 2010 and October 2023. Data were extracted from studies on regenerative medicine in urology with a special focus on efficacy and safety. Data from 16 studies were analyzed, which showed that cell therapy, biological materials, and tissue engineering are generally used in the field of urinary diseases. The main applications include the regeneration of urinary tissue, the correction of urinary incontinence, the treatment of erectile dysfunction, the reconstruction of ureteric defects, and the formation of bladder tissue. The study findings generally lack definitive conclusions on effectiveness and safety. While our results indicate that regenerative medicine is successful on a subjective level, more clinical trials are needed to establish its effectiveness and safety.
Collapse
Affiliation(s)
- Abdullah I Abuharb
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | | | - Saad N Algahtani
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Hatan K Alghamdi
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Fahad A Alosaimi
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | - Nasser Alsuwayna
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, SAU
| | | |
Collapse
|
2
|
Tran HHV, Urgessa NA, Geethakumari P, Kampa P, Parchuri R, Bhandari R, Alnasser AR, Akram A, Kar S, Osman F, Mashat GD, Mohammed L. Detection and Diagnostic Accuracy of Cardiac Arrhythmias Using Wearable Health Devices: A Systematic Review. Cureus 2023; 15:e50952. [PMID: 38249280 PMCID: PMC10800119 DOI: 10.7759/cureus.50952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Photoplethysmography (PPG) is the wearable devices' most widely used technology for monitoring heart rate. The systematic review used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standards and guidelines. This systematic review seeks to establish the effects of wearable health devices on cardiac arrhythmias concerning their impact on the personalization of cardiac management, their refining effect on stroke prevention strategies, and their influence on research and preventive care of cardiac arrhythmias and their re-evaluation of the patient-physician relationship. The population, exposure, control, outcomes, and studies (PECOS) criteria were used in the systematic review. This review considered studies that covered the tests conducted on individuals who presented with cardiovascular diseases (CVD) and also healthy people. The intervention for studies included wearable health devices that could detect and diagnose cardiac arrhythmias. The study considered articles that reported on the personalization of cardiac management, stroke prevention strategies, influence in research and preventive care of cardiac arrhythmias, and the re-evaluation of the patient-physician relationship. Two independent researchers were used in the extraction of the data. In case of dispute, the issue was resolved using a third party. The study's quality analysis was conducted using AXIS. The management of atrial fibrillation (AF) lies heavily in the prevention of stroke. The accuracy being reported in the prediction of arrhythmias and the monitoring of heart rates makes wearable devices an efficient means to personalize health care. Personalization of health and treatment in preventing and managing arrhythmias becomes possible due to the portability of smart wearable devices. However, limitations may be observed due to the high costs incurred in their purchase and use. Using smart wearable devices for the detection of cardiac arrhythmias was very significant.
Collapse
Affiliation(s)
- Hadrian Hoang-Vu Tran
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Neway A Urgessa
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Prabhitha Geethakumari
- Internal Medicine, California Institute of Behavioural Neurosciences & Psycholgy, Fairfield, USA
| | - Prathima Kampa
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Rakesh Parchuri
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Renu Bhandari
- Internal Medicine, Manipal College of Medical Sciences, Pokhara, NPL
- Internal Medicine/Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ali R Alnasser
- General Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aqsa Akram
- Internal Medicine, Dallah Hospital, Riyadh, SAU
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Saikat Kar
- Neurosciences and Psychology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Fatema Osman
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ghadi D Mashat
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lubna Mohammed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
3
|
García-Perdomo HA, Jurado-Penagos A. Application of regenerative medicine and 3d bioprinting in urology. Actas Urol Esp 2022; 46:323-328. [PMID: 35660078 DOI: 10.1016/j.acuroe.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/05/2021] [Indexed: 06/15/2023]
Abstract
In the last two decades, a new purpose has collected great efforts from scientists in all branches of medicine. It is about the possibility to make the body regenerate ill tissues and organs by itself with de right artificial stimuli or the construction of new functional organs to replace the damaged ones. This process comprises various interdisciplinary approaches to healthcare, such as tissue engineering, molecular medicine, biotechnology, and three-dimensional printing. Urologists have been remarkably active in this field of medicine called Regenerative Medicine. The searching of the different requirements like suitable and compatible biomaterials, versatile cells, adequate techniques to construct tissues, available biomolecules, and the knowledge of all these minimizing risks, are some of the aims and the approximations until now. Despite many obstacles, in vitro and in vivo studies are already showing encouraging options. We will review the advances related to the bladder, urethra, ureter, and kidneys. Difficulties such as ethical issues, time investment and high costs, have been some of the drawbacks encountered. Further studies are still required for its clinical application in daily life.
Collapse
Affiliation(s)
- Herney Andres García-Perdomo
- Division of Urology/Urooncology, Departament of Surgery, School of Medicine, Universidad del Valle, Cali, Colombia.
| | - Angie Jurado-Penagos
- UROGIV Research Group, School of Medicine, Universidad del Valle, Cali, Colombia
| |
Collapse
|
4
|
García-Perdomo H, Jurado-Penagos A. Aplicación de la medicina regenerativa y la bioimpresión 3D en urología. Actas Urol Esp 2022. [DOI: 10.1016/j.acuro.2021.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Yu HY, Lee S, Ju H, Kim Y, Shin JH, Yun H, Ryu CM, Heo J, Lim J, Song S, Lee S, Hong KS, Chung HM, Kim JK, Choo MS, Shin DM. Intravital imaging and single cell transcriptomic analysis for engraftment of mesenchymal stem cells in an animal model of interstitial cystitis/bladder pain syndrome. Biomaterials 2021; 280:121277. [PMID: 34861510 DOI: 10.1016/j.biomaterials.2021.121277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 11/08/2021] [Accepted: 11/23/2021] [Indexed: 11/15/2022]
Abstract
Mesenchymal stem cell (MSC) therapy is a promising treatment for various intractable disorders including interstitial cystitis/bladder pain syndrome (IC/BPS). However, an analysis of fundamental characteristics driving in vivo behaviors of transplanted cells has not been performed, causing debates about rational use and efficacy of MSC therapy. Here, we implemented two-photon intravital imaging and single cell transcriptome analysis to evaluate the in vivo behaviors of engrafted multipotent MSCs (M-MSCs) derived from human embryonic stem cells (hESCs) in an acute IC/BPS animal model. Two-photon imaging analysis was performed to visualize the dynamic association between engrafted M-MSCs and bladder vasculature within live animals until 28 days after transplantation, demonstrating the progressive integration of transplanted M-MSCs into a perivascular-like structure. Single cell transcriptome analysis was performed in highly purified engrafted cells after a dual MACS-FACS sorting procedure and revealed expression changes in various pathways relating to pericyte cell adhesion and cellular stress. Particularly, FOS and cyclin dependent kinase-1 (CDK1) played a key role in modulating the migration, engraftment, and anti-inflammatory functions of M-MSCs, which determined their in vivo therapeutic potency. Collectively, this approach provides an overview of engrafted M-MSC behavior in vivo, which will advance our understanding of MSC therapeutic applications, efficacy, and safety.
Collapse
Affiliation(s)
- Hwan Yeul Yu
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; ToolGen Inc., Seoul, South Korea
| | - Seungun Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyein Ju
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Youngkyu Kim
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea; Department of Convergence Medicine, University of Ulsan, College of Medicine, Seoul, South Korea
| | - Jung-Hyun Shin
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - HongDuck Yun
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Chae-Min Ryu
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jinbeom Heo
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jisun Lim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sujin Song
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sanghwa Lee
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea; Department of Convergence Medicine, University of Ulsan, College of Medicine, Seoul, South Korea
| | - Ki-Sung Hong
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, South Korea; Mirae Cell Bio Co., Ltd., Seoul, South Korea
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, South Korea; Mirae Cell Bio Co., Ltd., Seoul, South Korea
| | - Jun Ki Kim
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea; Department of Convergence Medicine, University of Ulsan, College of Medicine, Seoul, South Korea
| | - Myung-Soo Choo
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Dong-Myung Shin
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
6
|
Caneparo C, Sorroza-Martinez L, Chabaud S, Fradette J, Bolduc S. Considerations for the clinical use of stem cells in genitourinary regenerative medicine. World J Stem Cells 2021; 13:1480-1512. [PMID: 34786154 PMCID: PMC8567446 DOI: 10.4252/wjsc.v13.i10.1480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
The genitourinary tract can be affected by several pathologies which require repair or replacement to recover biological functions. Current therapeutic strategies are challenged by a growing shortage of adequate tissues. Therefore, new options must be considered for the treatment of patients, with the use of stem cells (SCs) being attractive. Two different strategies can be derived from stem cell use: Cell therapy and tissue therapy, mainly through tissue engineering. The recent advances using these approaches are described in this review, with a focus on stromal/mesenchymal cells found in adipose tissue. Indeed, the accessibility, high yield at harvest as well as anti-fibrotic, immunomodulatory and proangiogenic properties make adipose-derived stromal/SCs promising alternatives to the therapies currently offered to patients. Finally, an innovative technique allowing tissue reconstruction without exogenous material, the self-assembly approach, will be presented. Despite advances, more studies are needed to translate such approaches from the bench to clinics in urology. For the 21st century, cell and tissue therapies based on SCs are certainly the future of genitourinary regenerative medicine.
Collapse
Affiliation(s)
- Christophe Caneparo
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
| | - Luis Sorroza-Martinez
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
| | - Julie Fradette
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec G1V0A6, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec G1V0A6, Canada
| |
Collapse
|
7
|
Abstract
Stem cells are capable of self-renewal and differentiation into a range of cell types and promote the release of chemokines and progenitor cells necessary for tissue regeneration. Mesenchymal stem cells are multipotent progenitor cells with enhanced proliferation and differentiation capabilities and less tumorigenicity than conventional adult stem cells; these cells are also easier to acquire. Bladder dysfunction is often chronic in nature with limited treatment modalities due to its undetermined pathophysiology. Most treatments focus on symptom alleviation rather than pathognomonic changes repair. The potential of stem cell therapy for bladder dysfunction has been reported in preclinical models for stress urinary incontinence, overactive bladder, detrusor underactivity, and interstitial cystitis/bladder pain syndrome. Despite these findings, however, stem cell therapy is not yet available for clinical use. Only one pilot study on detrusor underactivity and a handful of clinical trials on stress urinary incontinence have reported the effects of stem cell treatment. This limitation may be due to stem cell function loss following ex vivo expansion, poor in vivo engraftment or survival after transplantation, or a lack of understanding of the precise mechanisms of action underlying therapeutic outcomes and in vivo behavior of stem cells administered to target organs. Efficacy comparisons with existing treatment modalities are also needed for the successful clinical application of stem cell therapies. This review describes the current status of stem cell research on treating bladder dysfunction and suggests future directions to facilitate clinical applications of this promising treatment modality, particularly for bladder dysfunction.
Collapse
|
8
|
Abdal Dayem A, Kim K, Lee SB, Kim A, Cho SG. Application of Adult and Pluripotent Stem Cells in Interstitial Cystitis/Bladder Pain Syndrome Therapy: Methods and Perspectives. J Clin Med 2020; 9:jcm9030766. [PMID: 32178321 PMCID: PMC7141265 DOI: 10.3390/jcm9030766] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a multifactorial, chronic disease without definite etiology characterized by bladder-related pelvic pain. IC/BPS is associated with pain that negatively affects the quality of life. There are various therapeutic approaches against IC/BPS. However, no efficient therapeutic agent against IC/BPS has been discovered yet. Urothelium dysfunction is one of the key factors of IC/BPS-related pathogenicity. Stem cells, including adult stem cells (ASCs) and pluripotent stem cells (PSCs), such as embryonic stem cells (ESCs) and induced PSCs (iPSCs), possess the abilities of self-renewal, proliferation, and differentiation into various cell types, including urothelial and other bladder cells. Therefore, stem cells are considered robust candidates for bladder regeneration. This review provides a brief overview of the etiology, pathophysiology, diagnosis, and treatment of IC/BPS as well as a summary of ASCs and PSCs. The potential of ASCs and PSCs in bladder regeneration via differentiation into bladder cells or direct transplantation into the bladder and the possible applications in IC/BPS therapy are described in detail. A better understanding of current studies on stem cells and bladder regeneration will allow further improvement in the approaches of stem cell applications for highly efficient IC/BPS therapy.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (A.A.D.); (K.K.); (S.B.L.)
| | - Kyeongseok Kim
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (A.A.D.); (K.K.); (S.B.L.)
| | - Soo Bin Lee
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (A.A.D.); (K.K.); (S.B.L.)
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Korea
- Correspondence: (A.K.); (S.-G.C.); Tel.: +82-2-2030-7675 (A.K.); +82-2-450-4207 (S.-G.C.); Fax: +82-2-2030-7748 (A.K.); +82-2-450-4207 (S.-G.C.)
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (A.A.D.); (K.K.); (S.B.L.)
- Correspondence: (A.K.); (S.-G.C.); Tel.: +82-2-2030-7675 (A.K.); +82-2-450-4207 (S.-G.C.); Fax: +82-2-2030-7748 (A.K.); +82-2-450-4207 (S.-G.C.)
| |
Collapse
|
9
|
Huang P, Ge P, Tian QF, Huang GB. Prediction of key transcription factors during skin regeneration by combining gene expression data and regulatory network information analysis. INT J BIOMATH 2019. [DOI: 10.1142/s1793524519500244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Purpose: Burn is one of the most common injuries in clinical practice. The use of transcription factors (TFs) has been reported to reverse the epigenetic rewiring process and has great promise for skin regeneration. To better identify key TFs for skin reprogramming, we proposed a predictive system that conjoint analyzed gene expression data and regulatory network information. Methods: Firstly, the gene expression data in skin tissues were downloaded and the LIMMA package was used to identify differential-expressed genes (DEGs). Then three ways, including identification of TFs from the DEGs, enrichment analysis of TFs by a Fisher’s test, the direct and network-based influence degree analysis of TFs, were used to identify the key TFs related to skin regeneration. Finally, to obtain most comprehensive combination of TFs, the coverage extent of all the TFs were analyzed by Venn diagrams. Results: The top 30 TFs combinations with higher coverage were acquired. Especially, TFAP2A, ZEB1, and NFKB1 exerted greater regulatory influence on other DEGs in the local network and presented relatively higher degrees in the protein–protein interaction (PPI) networks. Conclusion: These TFs identification could give a deeper understanding of the molecular mechanism of cell trans-differentiation, and provide a reference for the skin regeneration and burn treatment.
Collapse
Affiliation(s)
- Ping Huang
- Medical Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong, P. R. China
| | - Peng Ge
- Department of Burn and Plastic Surgery, The People’s Hospital of Zhangqiu Area, Jinan 250200, Shandong, P. R. China
| | - Qing-Fen Tian
- Department of Burn and Plastic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong, P. R. China
| | - Guo-Bao Huang
- Department of Burn and Plastic Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong, P. R. China
| |
Collapse
|
10
|
Ryu CM, Yu HY, Lee HY, Shin JH, Lee S, Ju H, Paulson B, Lee S, Kim S, Lim J, Heo J, Hong KS, Chung HM, Kim JK, Shin DM, Choo MS. Longitudinal intravital imaging of transplanted mesenchymal stem cells elucidates their functional integration and therapeutic potency in an animal model of interstitial cystitis/bladder pain syndrome. Am J Cancer Res 2018; 8:5610-5624. [PMID: 30555567 PMCID: PMC6276303 DOI: 10.7150/thno.27559] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/08/2018] [Indexed: 12/25/2022] Open
Abstract
Rationale: Mesenchymal stem cell (MSC) therapy may be a novel approach to improve interstitial cystitis/bladder pain syndrome (IC/BPS), an intractable disease characterized by severe pelvic pain and urinary frequency. Unfortunately, the properties of transplanted stem cells have not been directly analyzed in vivo, which hampers elucidation of the therapeutic mechanisms of these cells and optimization of transplantation protocols. Here, we monitored the behaviors of multipotent stem cells (M-MSCs) derived from human embryonic stem cells (hESCs) in real time using a novel combination of in vivo confocal endoscopic and microscopic imaging and demonstrated their improved therapeutic potency in a chronic IC/BPS animal model. Methods: Ten-week-old female Sprague-Dawley rats were instilled with 10 mg of protamine sulfate followed by 750 μg of lipopolysaccharide weekly for 5 weeks. The sham group was instilled with phosphate-buffered saline (PBS). Thereafter, the indicated dose (0.1, 0.25, 0.5, and 1×106 cells) of M-MSCs or PBS was injected once into the outer layer of the bladder. The distribution, perivascular integration, and therapeutic effects of M-MSCs were monitored by in vivo endoscopic and confocal microscopic imaging, awake cystometry, and histological and gene expression analyses. Results: A novel combination of longitudinal intravital confocal fluorescence imaging and microcystoscopy in living animals, together with immunofluorescence analysis of bladder tissues, demonstrated that transplanted M-MSCs engrafted following differentiation into multiple cell types and gradually integrated into a perivascular-like structure until 30 days after transplantation. The beneficial effects of transplanted M-MSCs on bladder voiding function and the pathological characteristics of the bladder were efficient and long-lasting due to the stable engraftment of these cells. Conclusion: This longitudinal bioimaging study of transplanted hESC-derived M-MSCs in living animals reveals their long-term functional integration, which underlies the improved therapeutic effects of these cells on IC/BPS.
Collapse
|
11
|
Beilan JA, Manimala NJ, Slongo J, Loeb A, Spiess PE, Carrion RE. Surgical Reconstruction After Penile Cancer Surgery. CURRENT SEXUAL HEALTH REPORTS 2017. [DOI: 10.1007/s11930-017-0134-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Nazm Bojnordi M. The applications and recovery outcome of spermatogonia stem cells in regenerative medicine. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2017. [DOI: 10.1016/j.mefs.2017.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
13
|
Pokrywczyńska M, Kloskowski T, Balcerczyk D, Buhl M, Jundziłł A, Nowacki M, Męcińska‐Jundziłł K, Drewa T. Stem cells and differentiated cells differ in their sensitivity to urine in vitro. J Cell Biochem 2017; 119:2307-2319. [DOI: 10.1002/jcb.26393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/30/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Marta Pokrywczyńska
- Chair of Urology, Department of Regenerative Medicine, Cell and Tissue Bank, Ludwik Rydygier's Collegium Medicum in BydgoszczNicolaus Copernicus University in TorunBydgoszczPoland
| | - Tomasz Kloskowski
- Chair of Urology, Department of Regenerative Medicine, Cell and Tissue Bank, Ludwik Rydygier's Collegium Medicum in BydgoszczNicolaus Copernicus University in TorunBydgoszczPoland
| | - Daria Balcerczyk
- Chair of Urology, Department of Regenerative Medicine, Cell and Tissue Bank, Ludwik Rydygier's Collegium Medicum in BydgoszczNicolaus Copernicus University in TorunBydgoszczPoland
| | - Monika Buhl
- Chair of Urology, Department of Regenerative Medicine, Cell and Tissue Bank, Ludwik Rydygier's Collegium Medicum in BydgoszczNicolaus Copernicus University in TorunBydgoszczPoland
| | - Arkadiusz Jundziłł
- Chair of Urology, Department of Regenerative Medicine, Cell and Tissue Bank, Ludwik Rydygier's Collegium Medicum in BydgoszczNicolaus Copernicus University in TorunBydgoszczPoland
- Department of Plastic, Reconstructive and Aesthetic Surgery, Collegium MedicumNicolaus Copernicus UniversityBydgoszczPoland
| | - Maciej Nowacki
- Chair and Department of Surgical Oncology, Ludwik Rydygier's Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in TorunFranciszek Łukaszczyk Memorial HospitalBydgoszczPoland
| | - Kaja Męcińska‐Jundziłł
- Chair of Urology, Department of Regenerative Medicine, Cell and Tissue Bank, Ludwik Rydygier's Collegium Medicum in BydgoszczNicolaus Copernicus University in TorunBydgoszczPoland
| | - Tomasz Drewa
- Chair of Urology, Department of Regenerative Medicine, Cell and Tissue Bank, Ludwik Rydygier's Collegium Medicum in BydgoszczNicolaus Copernicus University in TorunBydgoszczPoland
| |
Collapse
|
14
|
Yu HS, Park J, Lee HS, Park SA, Lee DW, Park K. Feasibility of Polycaprolactone Scaffolds Fabricated by Three-Dimensional Printing for Tissue Engineering of Tunica Albuginea. World J Mens Health 2017; 36:66-72. [PMID: 29076301 PMCID: PMC5756809 DOI: 10.5534/wjmh.17025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 01/17/2023] Open
Abstract
PURPOSE To investigate the feasibility of a polycaprolactone (PCL) scaffold fabricated by three-dimensional (3D) printing for tissue engineering applications for tunica albuginea. MATERIALS AND METHODS PCL scaffolds were fabricated by use of a 3D printing system. Two scaffolds were fabricated that differed in the architecture of the lay-down pattern: a 90°PCL scaffold and a 45°PCL scaffold. Mechanical properties were measured to compare tensile strength between the two scaffold types. The scaffolds were characterized by scanning electron microscope (SEM) images. The scaffolds were seeded with fibroblast cells, and the ability of these scaffolds to support the cells was evaluated by immunofluorescence staining. RESULTS The PCL scaffolds had well-structured shapes, regular arrays, and good interconnection in SEM images. The horizontal and vertical Young's modulus coefficients were 13 and 12 MPa for the 90°PCL scaffold and 19 and 21 MPa for the 45°PCL scaffold, respectively. Microscopy images revealed that human fibroblast cells covered the entire scaffold surface. Immunofluorescence staining of ER-TR7 confirmed that the fibroblast cells remained viable and proliferated throughout the time course of the culture. CONCLUSIONS This preliminary study provides experimental evidence for the feasibility of 3D printing of PCL scaffolds for tissue engineering applications of tunica albuginea.
Collapse
Affiliation(s)
- Ho Song Yu
- Department of Urology, Chonnam National University Medical School, Chonnam National University Sexual Medicine Research Center, Gwangju, Korea
| | - Jinju Park
- Department of Urology, Chonnam National University Medical School, Chonnam National University Sexual Medicine Research Center, Gwangju, Korea
| | - Hyun Suk Lee
- Department of Urology, Chonnam National University Medical School, Chonnam National University Sexual Medicine Research Center, Gwangju, Korea
| | - Su A Park
- Nano Convergence and Manufacturing Systems Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, Korea
| | - Dong Weon Lee
- MEMS and Nanotechnology Laboratory, School of Mechanical Systems Engineering, Chonnam National University, Gwangju, Korea
| | - Kwangsung Park
- Department of Urology, Chonnam National University Medical School, Chonnam National University Sexual Medicine Research Center, Gwangju, Korea.
| |
Collapse
|
15
|
Improved efficacy and in vivo cellular properties of human embryonic stem cell derivative in a preclinical model of bladder pain syndrome. Sci Rep 2017; 7:8872. [PMID: 28827631 PMCID: PMC5567131 DOI: 10.1038/s41598-017-09330-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/18/2017] [Indexed: 02/06/2023] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is an intractable disease characterized by severe pelvic pain and urinary frequency. Mesenchymal stem cell (MSC) therapy is a promising approach to treat incurable IC/BPS. Here, we show greater therapeutic efficacy of human embryonic stem cell (hESC)-derived multipotent stem cells (M-MSCs) than adult bone-marrow (BM)-derived counterparts for treating IC/BPS and also monitor long-term safety and in vivo properties of transplanted M-MSCs in living animals. Controlled hESC differentiation and isolation procedures resulted in pure M-MSCs displaying typical MSC behavior. In a hydrochloric-acid instillation-induced IC/BPS animal model, a single local injection of M-MSCs ameliorated bladder symptoms of IC/BPS with superior efficacy compared to BM-derived MSCs in ameliorating bladder voiding function and histological injuries including urothelium denudation, mast-cell infiltration, tissue fibrosis, apoptosis, and visceral hypersensitivity. Little adverse outcomes such as abnormal growth, tumorigenesis, or immune-mediated transplant rejection were observed over 12-months post-injection. Intravital confocal fluorescence imaging tracked the persistence of the transplanted cells over 6-months in living animals. The infused M-MSCs differentiated into multiple cell types and gradually integrated into vascular-like structures. The present study provides the first evidence for improved therapeutic efficacy, long-term safety, and in vivo distribution and cellular properties of hESC derivatives in preclinical models of IC/BPS.
Collapse
|
16
|
Abstract
Reconstructive urologists are constantly facing diverse and complex pathologies that require structural and functional restoration of urinary organs. There is always a demand for a biocompatible material to repair or substitute the urinary tract instead of using patient's autologous tissues with its associated morbidity. Biomimetic approaches are tissue-engineering tactics aiming to tailor the material physical and biological properties to behave physiologically similar to the urinary system. This review highlights the different strategies to mimic urinary tissues including modifications in structure, surface chemistry, and cellular response of a range of biological and synthetic materials. The article also outlines the measures to minimize infectious complications, which might lead to graft failure. Relevant experimental and preclinical studies are discussed, as well as promising biomimetic approaches such as three-dimensional bioprinting.
Collapse
Affiliation(s)
- Moustafa M Elsawy
- Division of Surgery and Interventional Science, Royal Free Hospital, NHS Trust, University College London (UCL)
- Division of Reconstructive Urology, University College London Hospitals (uclh), London, UK
- Urology Department, School of Medicine, Alexandria University, Alexandria, Egypt
| | - Achala de Mel
- Division of Surgery and Interventional Science, Royal Free Hospital, NHS Trust, University College London (UCL)
| |
Collapse
|
17
|
Bickell M, Beilan J, Wallen J, Wiegand L, Carrion R. Advances in Surgical Reconstructive Techniques in the Management of Penile, Urethral, and Scrotal Cancer. Urol Clin North Am 2017; 43:545-559. [PMID: 27717440 DOI: 10.1016/j.ucl.2016.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This article reviews the most up-to-date surgical treatment options for the reconstructive management of patients with penile, urethral, and scrotal cancer. Each organ system is examined individually. Techniques and discussion for penile cancer reconstruction include Mohs surgery, glans resurfacing, partial and total glansectomy, and phalloplasty. Included in the penile cancer reconstruction section is the use of penile prosthesis in phalloplasty patients after penectomy, tissue engineering in phallic regeneration, and penile transplantation. Reconstruction following treatment of primary urethral carcinoma and current techniques for scrotal cancer reconstruction using split-thickness skin grafts and flaps are described.
Collapse
Affiliation(s)
- Michael Bickell
- Department of Urology, University of South Florida, Tampa, FL, USA
| | - Jonathan Beilan
- Department of Urology, University of South Florida, Tampa, FL, USA
| | - Jared Wallen
- Department of Urology, University of South Florida, Tampa, FL, USA
| | - Lucas Wiegand
- Department of Urology, University of South Florida, Tampa, FL, USA
| | - Rafael Carrion
- Department of Urology, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
18
|
Momtahan N, Poornejad N, Struk JA, Castleton AA, Herrod BJ, Vance BR, Eatough JP, Roeder BL, Reynolds PR, Cook AD. Automation of Pressure Control Improves Whole Porcine Heart Decellularization. Tissue Eng Part C Methods 2015; 21:1148-61. [DOI: 10.1089/ten.tec.2014.0709] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nima Momtahan
- Department of Chemical Engineering, Brigham Young University, Provo, Utah
| | - Nafiseh Poornejad
- Department of Chemical Engineering, Brigham Young University, Provo, Utah
| | - Jeremy A. Struk
- Department of Chemical Engineering, Brigham Young University, Provo, Utah
| | | | - Brenden J. Herrod
- Department of Chemical Engineering, Brigham Young University, Provo, Utah
| | - Brady R. Vance
- Department of Chemical Engineering, Brigham Young University, Provo, Utah
| | - Jordan P. Eatough
- Department of Chemical Engineering, Brigham Young University, Provo, Utah
| | | | - Paul R. Reynolds
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Alonzo D. Cook
- Department of Chemical Engineering, Brigham Young University, Provo, Utah
| |
Collapse
|