1
|
Leibel SL, McVicar RN, Murad R, Kwong EM, Clark AE, Alvarado A, Grimmig BA, Nuryyev R, Young RE, Lee JC, Peng W, Zhu YP, Griffis E, Nowell CJ, James B, Alarcon S, Malhotra A, Gearing LJ, Hertzog PJ, Galapate CM, Galenkamp KMO, Commisso C, Smith DM, Sun X, Carlin AF, Sidman RL, Croker BA, Snyder EY. A therapy for suppressing canonical and noncanonical SARS-CoV-2 viral entry and an intrinsic intrapulmonary inflammatory response. Proc Natl Acad Sci U S A 2024; 121:e2408109121. [PMID: 39028694 PMCID: PMC11287264 DOI: 10.1073/pnas.2408109121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 07/21/2024] Open
Abstract
The prevalence of "long COVID" is just one of the conundrums highlighting how little we know about the lung's response to viral infection, particularly to syndromecoronavirus-2 (SARS-CoV-2), for which the lung is the point of entry. We used an in vitro human lung system to enable a prospective, unbiased, sequential single-cell level analysis of pulmonary cell responses to infection by multiple SARS-CoV-2 strains. Starting with human induced pluripotent stem cells and emulating lung organogenesis, we generated and infected three-dimensional, multi-cell-type-containing lung organoids (LOs) and gained several unexpected insights. First, SARS-CoV-2 tropism is much broader than previously believed: Many lung cell types are infectable, if not through a canonical receptor-mediated route (e.g., via Angiotensin-converting encyme 2(ACE2)) then via a noncanonical "backdoor" route (via macropinocytosis, a form of endocytosis). Food and Drug Administration (FDA)-approved endocytosis blockers can abrogate such entry, suggesting adjunctive therapies. Regardless of the route of entry, the virus triggers a lung-autonomous, pulmonary epithelial cell-intrinsic, innate immune response involving interferons and cytokine/chemokine production in the absence of hematopoietic derivatives. The virus can spread rapidly throughout human LOs resulting in mitochondrial apoptosis mediated by the prosurvival protein Bcl-xL. This host cytopathic response to the virus may help explain persistent inflammatory signatures in a dysfunctional pulmonary environment of long COVID. The host response to the virus is, in significant part, dependent on pulmonary Surfactant Protein-B, which plays an unanticipated role in signal transduction, viral resistance, dampening of systemic inflammatory cytokine production, and minimizing apoptosis. Exogenous surfactant, in fact, can be broadly therapeutic.
Collapse
Affiliation(s)
- Sandra L. Leibel
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
| | - Rachael N. McVicar
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Rabi Murad
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Elizabeth M. Kwong
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Alex E. Clark
- Department of Medicine, University of California San Diego, La Jolla, CA92093
| | - Asuka Alvarado
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Bethany A. Grimmig
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Ruslan Nuryyev
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Randee E. Young
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Jamie C. Lee
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Weiqi Peng
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Yanfang P. Zhu
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Eric Griffis
- Nikon Imaging Center, University of California San Diego, La Jolla, CA92093
| | - Cameron J. Nowell
- Monash Institute of Pharmaceutical Sciences, Parkville, VIC3052, Australia
| | - Brian James
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Suzie Alarcon
- La Jolla Institute for Immunology, La Jolla, CA92037
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, CA92093
| | - Linden J. Gearing
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC3168, Australia
- Department of Molecular and Translational Sciences, Monash University Clayton, Clayton, VIC3168, Australia
| | - Paul J. Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC3168, Australia
- Department of Molecular and Translational Sciences, Monash University Clayton, Clayton, VIC3168, Australia
| | - Cheska M. Galapate
- Sanford Burnham Prebys Medical Discovery Institute Cell & Molecular Biology of Cancer, La Jolla, CA92037
| | - Koen M. O. Galenkamp
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Cosimo Commisso
- Sanford Burnham Prebys Medical Discovery Institute Cell & Molecular Biology of Cancer, La Jolla, CA92037
| | - Davey M. Smith
- Department of Medicine, University of California San Diego, La Jolla, CA92093
| | - Xin Sun
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Aaron F. Carlin
- Department of Medicine, University of California San Diego, La Jolla, CA92093
| | - Richard L. Sidman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02115
| | - Ben A. Croker
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Evan Y. Snyder
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| |
Collapse
|
2
|
Garavaglia ML, Bodega F, Porta C, Milzani A, Sironi C, Dalle-Donne I. Molecular Impact of Conventional and Electronic Cigarettes on Pulmonary Surfactant. Int J Mol Sci 2023; 24:11702. [PMID: 37511463 PMCID: PMC10380520 DOI: 10.3390/ijms241411702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The alveolar epithelium is covered by a non-cellular layer consisting of an aqueous hypophase topped by pulmonary surfactant, a lipo-protein mixture with surface-active properties. Exposure to cigarette smoke (CS) affects lung physiology and is linked to the development of several diseases. The macroscopic effects of CS are determined by several types of cell and molecular dysfunction, which, among other consequences, lead to surfactant alterations. The purpose of this review is to summarize the published studies aimed at uncovering the effects of CS on both the lipid and protein constituents of surfactant, discussing the molecular mechanisms involved in surfactant homeostasis that are altered by CS. Although surfactant homeostasis has been the topic of several studies and some molecular pathways can be deduced from an analysis of the literature, it remains evident that many aspects of the mechanisms of action of CS on surfactant homeostasis deserve further investigation.
Collapse
Affiliation(s)
| | - Francesca Bodega
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Cristina Porta
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Aldo Milzani
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Chiara Sironi
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Isabella Dalle-Donne
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
3
|
Leibel SL, McVicar RN, Murad R, Kwong EM, Clark AE, Alvarado A, Grimmig BA, Nuryyev R, Young RE, Lee JC, Peng W, Zhu YP, Griffis E, Nowell CJ, Liu K, James B, Alarcon S, Malhotra A, Gearing LJ, Hertzog PJ, Galapate CM, Galenkamp KM, Commisso C, Smith DM, Sun X, Carlin AF, Croker BA, Snyder EY. The lung employs an intrinsic surfactant-mediated inflammatory response for viral defense. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525578. [PMID: 36747824 PMCID: PMC9900938 DOI: 10.1101/2023.01.26.525578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) causes an acute respiratory distress syndrome (ARDS) that resembles surfactant deficient RDS. Using a novel multi-cell type, human induced pluripotent stem cell (hiPSC)-derived lung organoid (LO) system, validated against primary lung cells, we found that inflammatory cytokine/chemokine production and interferon (IFN) responses are dynamically regulated autonomously within the lung following SARS-CoV-2 infection, an intrinsic defense mechanism mediated by surfactant proteins (SP). Single cell RNA sequencing revealed broad infectability of most lung cell types through canonical (ACE2) and non-canonical (endocytotic) viral entry routes. SARS-CoV-2 triggers rapid apoptosis, impairing viral dissemination. In the absence of surfactant protein B (SP-B), resistance to infection was impaired and cytokine/chemokine production and IFN responses were modulated. Exogenous surfactant, recombinant SP-B, or genomic correction of the SP-B deletion restored resistance to SARS-CoV-2 and improved viability.
Collapse
|
4
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
5
|
Estrada P, Bañares-Hidalgo Á, Pérez-Gil J. Disulfide bonds in the SAPA domain of the pulmonary surfactant protein B precursor. J Proteomics 2022; 269:104722. [PMID: 36108905 DOI: 10.1016/j.jprot.2022.104722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
The disulfide bonds formed in the SAPA domain of a recombinant version of the NH2-terminal propeptide (SP-BN) from the precursor of human pulmonary surfactant protein B (SP-B) were identified through sequential digestion of SP-BN with GluC/trypsin or thermolysin/GluC, followed by mass spectrometry (MS) analysis. MS spectra allowed identification of disulfide bonds between Cys32-Cys49 and Cys40-Cys55, and we propose a disulfide connectivity pattern of 1-3 and 2-4 within the SAPA domain, with the Cys residues numbered according to their position from the N-terminus of the propeptide sequence. The peaks with m/z ∼ 2136 and ∼ 1780 in the MS spectrum of the GluC/trypsin digest were assigned to peptides 24AWTTSSLACAQGPE37 and 45QALQCR50 linked by Cys32-Cys49 and 38FWCQSLE44 and 51ALGHCLQE58 linked by Cys40-Cys55 respectively. Tandem mass spectrometry (MS/MS) analysis verified the position of the bonds. The results of the series ions, immonium ions and internal fragment ions were all compatible with the proposed 1-3/2-4 position of the disulfide bonds in the SAPA domain. This X-pattern differs from the kringle-type found in the SAPB domain of the SAPLIP proteins, where the first Cys in the sequence links to the last, the second to the penultimate and the third to the fourth one. Regarding the SAPB domain of the SP-BN propeptide, the MS analysis of both digests identified the bond Cys100-Cys112, numbered 7-8, which is coincident with the bond position in the kringle motif. SIGNIFICANCE: The SAPLIP (saposin-like proteins) family encompasses several proteins with homology to saposins (sphingolipids activator proteins). These are proteins with mainly alpha-helical folds, compact packing including well conserved disulfide bonds and ability to interact with phospholipids and membranes. There are two types of saposin-like domains termed as Saposin A (SAPA) and Saposin B (SAPB) domains. While disulfide connectivity has been well established in several SAPB domains, the position of disulfide bonds in SAPA domains is still unknown. The present study approaches a detailed proteomic study to determine disulfide connectivity in the SAPA domain of the precursor of human pulmonary surfactant-associated protein SP-B. This task has been a challenge requiring the combination of different sequential proteolytic treatments followed by MS analysis including MALDI-TOF and tandem mass MS/MS spectrometry. The determination for first time of the position of disulfide bonds in SAPA domains is an important step to understand the structural determinants defining its biological functions.
Collapse
Affiliation(s)
- Pilar Estrada
- Dept. Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain
| | - Ángeles Bañares-Hidalgo
- Dept. Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain
| | - Jesús Pérez-Gil
- Dept. Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain.
| |
Collapse
|
6
|
Du Y, Jiao J, Cao A, Ji C, Li M, Ji C, Wu Y, Guo Y, Wang Y, Zhou J, Ren Y. Ultrasound-based radiomics for the evaluation of fetal rat lung maturity a non-invasive assessment method (Ultrasound-based radiomics in fetal rat lung). Prenat Diagn 2022; 42:1429-1437. [PMID: 36056747 DOI: 10.1002/pd.6229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To establish a classification model for the evaluation of rat fetal lung maturity (FLM) using radiomics technology. METHOD A total of 430 high-throughput features were extracted per fetal lung image from 134 fetal lung ultrasound images (four-cardiac-chamber views) of 67 Sprague-Dawley (SD) fetal rats with gestational age (GA) of 16-21 days. The detection of fetal lung tissues included histopathological staining and the expression of the surface protein (SP) SP-A, SP-B, and SP-C. A machine learning classification model was established by a support vector machine based on histopathological results to analyze the relationship between fetal lung texture characteristics and FLM. RESULTS The rat fetal lungs were divided into two groups: terminal sac period (SD1) and canalicular period (SD2). The mRNA transcription and protein expression level of SP-C protein were significantly higher in the SD1 group than in the SD2 group (P < 0.05). The diagnostic performance of the rat FLM classification model was measured as follows: area under the receiver operating characteristic curve (AUC), 0.93 (training set) and 0.89 (validation set); sensitivity, 89.26% (training set) and 87.10% (validation set); specificity, 85.87% (training set) and 79.17% (validation set); accuracy, 87.79% (training set) and 83.64% (validation set). CONCLUSION Ultrasound-based radiomics technology can be used to evaluate the FLM of rats, which lays a foundation for further research on this technology in human fetal lungs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yanran Du
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Jing Jiao
- Department of Electronic Engineering, Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200433, China.,Key Laboratory of Medical Imaging, Computing and Computer-Assisted Intervention, Shanghai, China
| | - Aili Cao
- Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.164, Lanxi Road, Shanghai, 200062, China
| | - Chao Ji
- Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.164, Lanxi Road, Shanghai, 200062, China
| | - Man Li
- Obstetrics and Gynecology Hospital of Fudan University, No.128, Shenyang Road, Shanghai, 200090, China
| | - Chenli Ji
- Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.164, Lanxi Road, Shanghai, 200062, China
| | - Yang Wu
- Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.164, Lanxi Road, Shanghai, 200062, China
| | - Yi Guo
- Department of Electronic Engineering, Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200433, China.,Key Laboratory of Medical Imaging, Computing and Computer-Assisted Intervention, Shanghai, China
| | - Yuanyuan Wang
- Department of Electronic Engineering, Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200433, China.,Key Laboratory of Medical Imaging, Computing and Computer-Assisted Intervention, Shanghai, China
| | - Jianqiao Zhou
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Yunyun Ren
- Obstetrics and Gynecology Hospital of Fudan University, No.128, Shenyang Road, Shanghai, 200090, China
| |
Collapse
|
7
|
Cooney AL, Wambach JA, Sinn PL, McCray PB. Gene Therapy Potential for Genetic Disorders of Surfactant Dysfunction. Front Genome Ed 2022; 3:785829. [PMID: 35098209 PMCID: PMC8798122 DOI: 10.3389/fgeed.2021.785829] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022] Open
Abstract
Pulmonary surfactant is critically important to prevent atelectasis by lowering the surface tension of the alveolar lining liquid. While respiratory distress syndrome (RDS) is common in premature infants, severe RDS in term and late preterm infants suggests an underlying genetic etiology. Pathogenic variants in the genes encoding key components of pulmonary surfactant including surfactant protein B (SP-B, SFTPB gene), surfactant protein C (SP-C, SFTPC gene), and the ATP-Binding Cassette transporter A3 (ABCA3, ABCA3 gene) result in severe neonatal RDS or childhood interstitial lung disease (chILD). These proteins play essential roles in pulmonary surfactant biogenesis and are expressed in alveolar epithelial type II cells (AEC2), the progenitor cell of the alveolar epithelium. SP-B deficiency most commonly presents in the neonatal period with severe RDS and requires lung transplantation for survival. SFTPC mutations act in an autosomal dominant fashion and more commonly presents with chILD or idiopathic pulmonary fibrosis than neonatal RDS. ABCA3 deficiency often presents as neonatal RDS or chILD. Gene therapy is a promising option to treat monogenic lung diseases. Successes and challenges in developing gene therapies for genetic disorders of surfactant dysfunction include viral vector design and tropism for target cell types. In this review, we explore adeno-associated virus (AAV), lentiviral, and adenoviral (Ad)-based vectors as delivery vehicles. Both gene addition and gene editing strategies are compared to best design treatments for lung diseases resulting from pathogenic variants in the SFTPB, SFTPC, and ABCA3 genes.
Collapse
Affiliation(s)
- Ashley L. Cooney
- Department of Pediatrics, The University of Iowa, Iowa City, IA, United States
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA, United States
- *Correspondence: Ashley L. Cooney,
| | - Jennifer A. Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Patrick L. Sinn
- Department of Pediatrics, The University of Iowa, Iowa City, IA, United States
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA, United States
| | - Paul B. McCray
- Department of Pediatrics, The University of Iowa, Iowa City, IA, United States
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
8
|
Regulatory Roles of Human Surfactant Protein B Variants on Genetic Susceptibility to Pseudomonas Aeruginosa Pneumonia-Induced Sepsis. Shock 2021; 54:507-519. [PMID: 31851120 DOI: 10.1097/shk.0000000000001494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Surfactant protein B (SP-B) is essential for life and plays critical roles in host defense and lowering alveolar surface tension. A single-nucleotide polymorphism (SNP rs1130866) of human SP-B (hSP-B) alters the N-linked glycosylation, thus presumably affecting SP-B function. This study has investigated the regulatory roles of hSP-B genetic variants on lung injury in pneumonia-induced sepsis. METHODS Wild-type (WT) FVB/NJ and humanized transgenic SP-B-T and SP-B-C mice (expressing either hSP-B C or T allele without mouse SP-B gene) were infected intratracheally with 50 μL (4 × 10 colony-forming units [CFUs]/mouse) Pseudomonas aeruginosa Xen5 or saline, and then killed 24 or 48 h after infection. Bacterial dynamic growths were monitored from 0 to 48 h postinfection by in vivo imaging. Histopathological, cellular, and molecular changes of lung tissues and bronchoalveolar lavage fluid (BALF) were analyzed. Surface tension of surfactants was determined with constrained drop surfactometry. RESULTS SP-B-C mice showed higher bioluminescence and CFUs, increased inflammation and mortality, the higher score of lung injury, and reduced numbers of lamellar bodies in type II cells compared with SP-B-T or WT (P < 0.05). Minimum surface tension increased dramatically in infected mice (P < 0.01) with the order of SP-B-C > SP-B-T > WT. Levels of multiple cytokines in the lung of infected SP-B-C were higher than those of SP-B-T and WT (P < 0.01). Furthermore, compared with SP-B-T or WT, SP-B-C exhibited lower SP-B, higher NF-κB and NLRP3 inflammasome activation, and higher activated caspase-3. CONCLUSIONS hSP-B variants differentially regulate susceptibility through modulating the surface activity of surfactant, cell death, and inflammatory signaling in sepsis.
Collapse
|
9
|
GM130 regulates pulmonary surfactant protein secretion in alveolar type II cells. SCIENCE CHINA-LIFE SCIENCES 2021; 65:193-205. [PMID: 33740186 DOI: 10.1007/s11427-020-1875-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022]
Abstract
Pulmonary surfactant is a lipid-protein complex secreted by alveolar type II epithelial cells and is essential for the maintenance of the delicate structure of mammalian alveoli to promote efficient gas exchange across the air-liquid barrier. The Golgi apparatus plays an important role in pulmonary surfactant modification and secretory trafficking. However, the physiological function of the Golgi apparatus in the transport of pulmonary surfactants is unclear. In the present study, deletion of GM130, which encodes for a matrix protein of the cis-Golgi cisternae, was shown to induce the disruption of the Golgi structure leading to impaired secretion of lung surfactant proteins and lipids. Specifically, the results of in vitro and in vivo analysis indicated that the loss of GM130 resulted in trapping of Sftpa in the endoplasmic reticulum, Sftpb and Sftpc accumulation in the Golgi apparatus, and an increase in the compensatory secretion of Sftpd. Moreover, global and epithelial-specific GM130 knockout in mice resulted in an enlargement of alveolar airspace and an increase in alveolar epithelial autophagy; however, surfactant repletion partially rescued the enlarged airspace defects in GM130-deficient mice. Therefore, our results demonstrate that GM130 and the mammalian Golgi apparatus play a critical role in the control of surfactant protein secretion in pulmonary epithelial cells.
Collapse
|
10
|
Testoni G, Olmeda B, Duran J, López-Rodríguez E, Aguilera M, Hernández-Álvarez MI, Prats N, Pérez-Gil J, Guinovart JJ. Pulmonary glycogen deficiency as a new potential cause of respiratory distress syndrome. Hum Mol Genet 2020; 29:3554-3565. [PMID: 33219378 DOI: 10.1093/hmg/ddaa249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 11/14/2022] Open
Abstract
The glycogenin knockout mouse is a model of Glycogen Storage Disease type XV. These animals show high perinatal mortality (90%) due to respiratory failure. The lungs of glycogenin-deficient embryos and P0 mice have a lower glycogen content than that of wild-type counterparts. Embryonic lungs were found to have decreased levels of mature surfactant proteins SP-B and SP-C, together with incomplete processing of precursors. Furthermore, non-surviving pups showed collapsed sacculi, which may be linked to a significantly reduced amount of surfactant proteins. A similar pattern was observed in glycogen synthase1-deficient mice, which are devoid of glycogen in the lungs and are also affected by high perinatal mortality due to atelectasis. These results indicate that glycogen availability is a key factor for the burst of surfactant production required to ensure correct lung expansion at the establishment of air breathing. Our findings confirm that glycogen deficiency in lungs can cause respiratory distress syndrome and suggest that mutations in glycogenin and glycogen synthase 1 genes may underlie cases of idiopathic neonatal death.
Collapse
Affiliation(s)
- Giorgia Testoni
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Bárbara Olmeda
- Department of Biochemistry, Faculty of Biology, and Research Institute of Hospital 12 de Octubre, Complutense University, 28040 Madrid, Spain
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Elena López-Rodríguez
- Institute of Functional Anatomy Wilhelm-Waldeyer-Haus, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Mònica Aguilera
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - María Isabel Hernández-Álvarez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Neus Prats
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Jesús Pérez-Gil
- Department of Biochemistry, Faculty of Biology, and Research Institute of Hospital 12 de Octubre, Complutense University, 28040 Madrid, Spain
| | - Joan J Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.,Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
11
|
The biology of the ABCA3 lipid transporter in lung health and disease. Cell Tissue Res 2016; 367:481-493. [PMID: 28025703 DOI: 10.1007/s00441-016-2554-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/29/2016] [Indexed: 01/10/2023]
Abstract
The lipid transporter, ATP-binding cassette class A3 (ABCA3), is a highly conserved multi-membrane-spanning protein that plays a critical role in the regulation of pulmonary surfactant homeostasis. Mutations in ABCA3 have been increasingly recognized as one of the causes of inherited pulmonary diseases. These monogenic disorders produce familial lung abnormalities with pathological presentations ranging from neonatal surfactant-deficiency-induced respiratory failure to childhood or adult diffuse parenchymal lung diseases for which specific treatment modalities remain limited. More than 200 ABCA3 mutations have been reported to date with approximately three quarters of patients presenting as compound heterozygotes. Recent advances in our understanding of the molecular basis underlying normal ABCA3 biosynthesis and processing and of the mechanisms of alveolar epithelial cell dysregulation caused by the expression of its mutant forms are beginning to emerge. These insights and the role of environmental factors and modifier genes are discussed in the context of the considerable variability in disease presentation observed in patients with identical ABCA3 gene mutations. Moreover, the opportunities afforded by an enhanced understanding of ABCA3 biology for targeted therapeutic strategies are addressed.
Collapse
|
12
|
DIFFERENTIAL SUSCEPTIBILITY OF HUMAN SP-B GENETIC VARIANTS ON LUNG INJURY CAUSED BY BACTERIAL PNEUMONIA AND THE EFFECT OF A CHEMICALLY MODIFIED CURCUMIN. Shock 2016; 45:375-84. [PMID: 26863117 DOI: 10.1097/shk.0000000000000535] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Staphylococcus aureus is a common cause of nosocomial pneumonia frequently resulting in acute respiratory distress syndrome (ARDS). Surfactant protein B (SP-B) gene expresses two proteins involved in lowering surface tension and host defense. Genotyping studies demonstrate a significant association between human SP-B genetic variants and ARDS. Curcumins have been shown to attenuate host inflammation in many sepsis models. Our hypothesis is that functional differences of SP-B variants and treatment with curcumin (CMC2.24) modulate lung injury in bacterial pneumonia. Humanized transgenic mice, expressing either SP-B T or C allele without mouse SP-B gene, were used. Bioluminescent labeled S. aureus Xen 36 (50 μL) was injected intratracheally to cause pneumonia. Infected mice received daily CMC2.24 (40 mg/kg) or vehicle alone by oral gavage. Dynamic changes of bacteria were monitored using in vivo imaging system. Histological, cellular, and molecular indices of lung injury were studied in infected mice 48 h after infection. In vivo imaging analysis revealed total flux (bacterial number) was higher in the lung of infected SP-B-C mice compared with infected SP-B-T mice (P < 0.05). Infected SP-B-C mice demonstrated increased mortality, lung injury, apoptosis, and NF-κB expression compared with infected SP-B-T mice. Compared with controls, CMC2.24 treatment significantly reduced the following: mortality, total bacterial flux and lung tissue apoptosis, inflammatory cells, NF-κB expression (P < 0.05), and MMPs-2, -9, -12 activities (P < 0.05). We conclude that mice with SP-B-C allele are more susceptible to S. aureus pneumonia than mice with SP-B-T allele, and that CMC2.24 attenuates lung injury thus reducing mortality.
Collapse
|
13
|
Magrì D, Banfi C, Maruotti A, Farina S, Vignati C, Salvioni E, Morosin M, Brioschi M, Ghilardi S, Tremoli E, Agostoni P. Plasma immature form of surfactant protein type B correlates with prognosis in patients with chronic heart failure. A pilot single-center prospective study. Int J Cardiol 2015; 201:394-9. [PMID: 26310985 DOI: 10.1016/j.ijcard.2015.08.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/03/2015] [Accepted: 08/09/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Gas exchange abnormalities are part of the heart failure (HF) syndrome and growing interest raised on possible biomarkers of alveolar-capillary unit damage. The present pilot single-center study sought to investigate the prognostic values of circulating surfactant protein type B (SP-B) in a cohort of systolic HF patients. METHODS One hundred and fifty-one HF stable outpatients and 37 healthy subjects underwent a full clinical assessment, including pulmonary function and lung diffusion for carbon monoxide (DLco), maximal cardiopulmonary exercise test and measurements for both circulating immature and mature forms of SP-B. Study end-points were hospitalization due to HF worsening and cardiovascular mortality. RESULTS Immature SP-B, but not the mature form, was significantly higher in HF patients than in controls and was independently related to DLco, peak oxygen uptake and ventilatory efficiency. During the follow-up (median: 995 days; interquartile range: 739-1247 days), 97 patients experimented at least one HF hospitalization and 9 died for cardiovascular causes. At univariate analysis immature SP-B levels were significantly related to both cardiovascular death (p=0.033) and HF hospitalization (p<0.001). At multivariate analysis, immature SP-B levels remained independently associated to HF hospitalization (hazard ratio: 2.304; 95% confidence interval 1.858-3.019; p<0.001). CONCLUSIONS Present data confirm a strong relationship between circulating immature SP-B levels, gas exchange abnormalities and exercise limitations in stable HF as well as they are consistent with the use of immature SP-B in HF clinical risk assessment. Larger prospective studies are needed to confirm its prognostic role as well as to evaluate whether immature SP-B plasma concentration varies in response to specific treatment.
Collapse
Affiliation(s)
- Damiano Magrì
- Department of Clinical and Molecular Medicine, University "La Sapienza", Rome, Italy
| | - Cristina Banfi
- Centro Cardiologico Monzino, IRCCS, University of Milan, Italy
| | - Antonello Maruotti
- Southampton Statistical Sciences Research Institute, School of Mathematics, University of Southampton, United Kingdom; Department of Public Institutions, Economy and Society, University "Roma Tre", Rome, Italy
| | - Stefania Farina
- Centro Cardiologico Monzino, IRCCS, University of Milan, Italy
| | - Carlo Vignati
- Centro Cardiologico Monzino, IRCCS, University of Milan, Italy
| | | | - Marco Morosin
- Centro Cardiologico Monzino, IRCCS, University of Milan, Italy; Cardiovascular Dept., "Ospedali Riuniti", Trieste, Postgraduate School of Cardiovascular Sciences, University of Trieste, Italy
| | - Maura Brioschi
- Centro Cardiologico Monzino, IRCCS, University of Milan, Italy
| | | | - Elena Tremoli
- Centro Cardiologico Monzino, IRCCS, University of Milan, Italy
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, University of Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Italy.
| |
Collapse
|
14
|
Allele-specific N-glycosylation delays human surfactant protein B secretion in vitro and associates with decreased protein levels in vivo. Pediatr Res 2013; 74:646-51. [PMID: 24002332 DOI: 10.1038/pr.2013.151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/18/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND Surfactant protein B (SP-B) is essential for normal lung function, and decreased concentrations of SP-B have a deleterious effect on pulmonary outcome. SP-B levels may correlate with variations in the encoding gene (SFTPB). SFTPB single-nucleotide polymorphism Ile131Thr affects proSP-B N-glycosylation in humans and the glycosylated Thr variant associates with pulmonary diseases. METHODS We analyzed SP-B levels in amniotic fluid samples for associations with SFTPB polymorphisms and generated cell lines expressing either proSP-B/131Ile or proSP-B/131Thr for examining the effect of glycosylation on proSP-B secretion kinetics. To determine any transcription preference between Ile131Thr allelic variants, we used heterozygous human lungs for allelic expression imbalance assays. RESULTS Protein levels correlated with Ile131Thr genotype and the lowest SP-B levels were observed in Thr/Thr homozygotes. Our results suggest that Ile131Thr variation-dependent N-glycosylation associates with decreased levels of SP-B, which is secreted from fetal lung to amniotic fluid. Glycosylated proSP-B/131Thr was secreted from transfected cells at a lower rate than nonglycosylated proSP-B/131Ile. Expression levels of the mRNA variants were equal. Secretion of the glycosylated variant was thus delayed in vitro by a posttranscriptional mechanism. CONCLUSION These data support the hypothesis that proSP-B glycosylation due to Ile131Thr variation may have a causal role in genetic susceptibility to acute respiratory distress.
Collapse
|
15
|
Fehrholz M, Hütten M, Kramer BW, Speer CP, Kunzmann S. Amplification of steroid-mediated SP-B expression by physiological levels of caffeine. Am J Physiol Lung Cell Mol Physiol 2013; 306:L101-9. [PMID: 24163141 DOI: 10.1152/ajplung.00257.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Factors positively influencing surfactant homeostasis in general and surfactant protein B (SP-B) expression in particular are considered of clinical importance regarding an improvement of lung function in preterm infants. The objective of this study was to identify effects of physiological levels of caffeine on glucocorticoid-mediated SP-B expression in vitro and in vivo. Levels of SP-B and pepsinogen C were quantified by quantitative real-time RT-PCR or immunoblotting in NCI-H441 cells daily exposed to caffeine and/or dexamethasone (DEX). In vivo, SP-B expression was analyzed in bronchoalveolar lavage (BAL) of preterm sheep exposed to antenatal DEX and/or postnatal caffeine. If DEX and caffeine were continuously present, SP-B mRNA and protein levels were increased for up to 6 days after induction (P < 0.05). Additionally, caffeine enhanced SP-B mRNA expression in DEX-pretreated cells (P < 0.05). Moreover, caffeine amplified DEX-induced pepsinogen C mRNA expression (P < 0.05). After short-term treatment with caffeine in vivo, only slightly higher SP-B levels could be detected in BAL of preterm sheep following antenatal DEX, combined with an increase of arterial oxygen partial pressure (P < 0.01). Our data demonstrated that the continuous presence of caffeine in vitro is able to amplify DEX-mediated SP-B expression. In contrast, short-term improvement of lung function in vivo is likely to be independent of altered SP-B transcription and translation. An impact of caffeine on release of surfactant reservoirs from lamellar bodies could, however, quickly affect SP-B content in BAL, which has to be further investigated. Our findings indicate that caffeine is able to amplify main effects of glucocorticoids that result from changes in surfactant production, maturation, and release.
Collapse
Affiliation(s)
- Markus Fehrholz
- Univ. Children's Hospital, Univ. of Wuerzburg, Josef-Schneider-Str. 2, D-97080 Wuerzburg, Germany.
| | | | | | | | | |
Collapse
|
16
|
Takano M, Horiuchi T, Nagai J, Yumoto R. Effect of cigarette smoke extract on insulin transport in alveolar epithelial cell line A549. Lung 2012; 190:651-9. [PMID: 22960792 DOI: 10.1007/s00408-012-9413-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 08/21/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND The main purpose of this study was to evaluate the effect of cigarette smoke extract (CSE) on insulin transport in alveolar epithelial cells. METHODS We first examined the effect of CSE pretreatment on cell viability, mRNA expression, and lamellar body structures in A549 cells. Then the effect of CSE pretreatment on FITC-insulin transport was examined. RESULTS When A549 cells were treated with 30 μg/ml of CSE for 48 h, the expression of some mRNAs abundantly expressed in type II alveolar epithelial cells such as surfactant protein B was significantly increased. Lamellar bodylike structures became more evident with CSE treatment. FITC-insulin uptake from the apical side and subsequent efflux to the basal side was enhanced by CSE treatment in A549 cells. The enhancing effect of CSE on FITC-insulin uptake was concentration-dependent and reversible. A concentration-dependent enhancing effect of CSE on FITC-insulin uptake was also observed in normal, primary cultured alveolar type II epithelial cells isolated from rats. CONCLUSIONS Treatment of A549 cells by CSE may direct the cells to a more type II-like phenotype. In accordance with this observation, FITC-insulin uptake was enhanced by CSE treatment. These results may partly explain the higher insulin absorption from the lung in smokers than in nonsmokers.
Collapse
Affiliation(s)
- Mikihisa Takano
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | | | | | | |
Collapse
|
17
|
Abstract
Mutations in the genes encoding the surfactant proteins B and C (SP-B and SP-C) and the phospholipid transporter, ABCA3, are associated with respiratory distress and interstitial lung disease in the pediatric population. Expression of these proteins is regulated developmentally, increasing with gestational age, and is critical for pulmonary surfactant function at birth. Pulmonary surfactant is a unique mixture of lipids and proteins that reduces surface tension at the air-liquid interface, preventing collapse of the lung at the end of expiration. SP-B and ABCA3 are required for the normal organization and packaging of surfactant phospholipids into specialized secretory organelles, known as lamellar bodies, while both SP-B and SP-C are important for adsorption of secreted surfactant phospholipids to the alveolar surface. In general, mutations in the SP-B gene SFTPB are associated with fatal respiratory distress in the neonatal period, and mutations in the SP-C gene SFTPC are more commonly associated with interstitial lung disease in older infants, children, and adults. Mutations in the ABCA3 gene are associated with both phenotypes. Despite this general classification, there is considerable overlap in the clinical and histologic characteristics of these genetic disorders. In this review, similarities and differences in the presentation of these disorders with an emphasis on their histochemical and ultrastructural features will be described, along with a brief discussion of surfactant metabolism. Mechanisms involved in the pathogenesis of lung disease caused by mutations in these genes will also be discussed.
Collapse
Affiliation(s)
- Susan E. Wert
- Perinatal Institute, Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Jeffrey A. Whitsett
- Perinatal Institute, Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Lawrence M. Nogee
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|