1
|
Witchel SF, Rajkovic A, Yatsenko SA. Discrepancies Between Sex Prediction and Fetal Sex After Prenatal Noninvasive Cell-Free DNA Screening. J Endocr Soc 2025; 9:bvaf007. [PMID: 39881673 PMCID: PMC11775114 DOI: 10.1210/jendso/bvaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Indexed: 01/31/2025] Open
Abstract
In the last 10 years the field of prenatal diagnosis has been significantly reshaped followed by the implementation of noninvasive prenatal cell-free DNA (cfDNA) testing methodologies in clinical practice. Based on a superior performance and higher sensitivity and specificity than the former practice of biochemical markers screening, the American College of Obstetricians and Gynecologists and American College of Medical Genetics and Genomics recommend noninvasive prenatal cfDNA screening for trisomy 21, 18, 13, and sex chromosome aneuploidy to all pregnant people. While cfDNA screening is helpful in risk assessment for the most common autosomal trisomies, cfDNA also provides information about fetal sex chromosomes. Prediction of fetal sex is highly desired by the parents and also useful to healthcare providers for management of pregnancies that are at-risk for X-linked conditions. In fact, utilization of cfDNA screening has resulted in a significant number of referrals to evaluate discordant results for cfDNA sex prediction and appearance of fetal genitalia by prenatal ultrasound scan or at birth raising concerns about the fetus/infant atypical sex development known as a difference in sex development (DSD). In this mini-review, we outline principles and limitations of cfDNA technology, summarize recent findings related to cfDNA test performance in prediction of sex chromosome abnormalities and DSD conditions, define the technical and biological causes of discrepant results, provide recommendations to consolidate efforts by prenatal and clinical management teams in challenging situations, and discuss ethical considerations associated with fetal sex prediction and prenatal DSD diagnosis.
Collapse
Affiliation(s)
- Selma F Witchel
- Division of Pediatric Endocrinology, Department of Pediatrics, UPMC Children's Hospital, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Aleksandar Rajkovic
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
2
|
Mohammed H, Ansari N, Baig AZ, Alshowaikhat JJ, Uz Zama MM, Hussain Timraz J, Ahmed RA, Samy M. Sex Assignment in Cases of Ambiguous Genitalia. Cureus 2024; 16:e74730. [PMID: 39735144 PMCID: PMC11682607 DOI: 10.7759/cureus.74730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2024] [Indexed: 12/31/2024] Open
Abstract
Ambiguous genitalia is a rare disorder where it is unclear whether an infant's external genitals are male or female. This can be attributed to various internal and external etiologies, such as androgen receptor abnormalities, gonadal abnormalities (such as gonadal dysgenesis or Klinefelter syndrome where a male has an extra X chromosome), enzymatic defects, etc. Correction of such atypical genitalia requires a multidisciplinary approach, including but not limited to surgeons and therapists. It is important to keep in mind that the treatment plan is tailored according to the specific etiology that is causative of the patient's condition, along with the anticipated perioperative and postoperative complications. Islamically speaking, this topic has been addressed in various Islamic literature and disciplines, including guidelines for dealing with this medical condition. Moreover, follow-up of the patient must be done to allow smooth integration into society.
Collapse
Affiliation(s)
- Hajira Mohammed
- Department of Medicine and Surgery, Batterjee Medical College for Science and Technology, Jeddah, SAU
| | - Nesa Ansari
- Department of Medicine and Surgery, Batterjee Medical College for Science and Technology, Jeddah, SAU
| | - Ahmed Zafar Baig
- Department of Medicine and Surgery, Batterjee Medical College for Science and Technology, Jeddah, SAU
| | - Joud J Alshowaikhat
- Department of Medicine and Surgery, Batterjee Medical College for Science and Technology, Jeddah, SAU
| | - Madiha M Uz Zama
- Department of Medicine and Surgery, Batterjee Medical College for Science and Technology, Jeddah, SAU
| | - Jumana Hussain Timraz
- Department of Medicine and Surgery, Batterjee Medical College for Science and Technology, Jeddah, SAU
| | - Ruqayyah A Ahmed
- Department of Medicine and Surgery, Batterjee Medical College for Science and Technology, Jeddah, SAU
| | - Mohommad Samy
- Department of General Surgery, General Medicine Practice Program, Batterjee Medical College for Science and Technology, Jeddah, SAU
| |
Collapse
|
3
|
Chen H, Chen G, Li F, Huang Y, Zhu L, Zhao Y, Jiang Z, Yan X, Yu L. Application and insights of targeted next-generation sequencing in a large cohort of 46,XY disorders of sex development in Chinese. Biol Sex Differ 2024; 15:73. [PMID: 39285472 PMCID: PMC11403886 DOI: 10.1186/s13293-024-00648-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
PURPOSE 46,XY disorders of sex development (46,XY DSD) are characterized by incomplete masculinization of genitalia with reduced androgenization. Accurate clinical management remains challenging, especially based solely on physical examination. Targeted next-generation sequencing (NGS) with known pathogenic genes provides a powerful tool for diagnosis efficiency. This study aims to identify the prevalent genetic variants by targeted NGS technology and investigate the diagnostic rate in a large cohort of 46,XY DSD patients, with most of them presenting atypical phenotypes. METHODS Two different DSD panels were developed for sequencing purposes, targeting a cohort of 402 patients diagnosed with 46,XY DSD, who were recruited from the Department of Urology at Children's Hospital, Zhejiang University School of Medicine (Hangzhou, China). The detailed clinical characteristics were evaluated, and peripheral blood was collected for targeted panels to find the patients' variants. The clinical significance of these variants was annotated according to American College of Medical Genetics and Genomics (ACMG) guidelines. RESULTS A total of 108 variants across 42 genes were found in 107 patients, including 46 pathogenic or likely pathogenic variants, with 45.7%(21/46) being novel. Among these genes, SRD5A2, AR, FGFR1, LHCGR, NR5A1, CHD7 were the most frequently observed. Besides, we also detected some uncommon causative genes like SOS1, and GNAS. Oligogenic variants were also identified in 9 patients, including several combinations PROKR2/FGFR1/CYP11B1, PROKR2/ATRX, PROKR2/AR, FGFR1/LHCGR/POR, FGFR1/NR5A1, GATA4/NR5A1, WNT4/AR, MAP3K1/FOXL2, WNT4/AR, and SOS1/FOXL2. CONCLUSION The overall genetic diagnostic rate was 11.2%(45/402), with an additional 15.4% (62/402) having variants of uncertain significance. Additionally, trio/duo patients had a higher genetic diagnostic rate (13.4%) compared to singletons (8.6%), with a higher proportion of singletons (15.1%) presenting variants of uncertain significance. In conclusion, targeted gene panels identified pathogenic variants in a Chinese 46,XY DSD cohort, expanding the genetic understanding and providing evidence for known pathogenic genes' involvement.
Collapse
Affiliation(s)
- Hongyu Chen
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Guangjie Chen
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Fengxia Li
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Yong Huang
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Linfeng Zhu
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Yijun Zhao
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Ziyi Jiang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Xiang Yan
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| | - Lan Yu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| |
Collapse
|
4
|
Olivera-Bernal GC, De Ita-Ley M, Ricárdez-Marcial EF, Garduño-Zarazúa LM, González-Cuevas ÁR, Sepúlveda-Robles OA, Huicochea-Montiel JC, Cárdenas-Conejo A, Santana-Díaz L, Rosas-Vargas H. Cytogenomic description of a Mexican cohort with differences in sex development. Mol Cytogenet 2024; 17:16. [PMID: 39010086 PMCID: PMC11251293 DOI: 10.1186/s13039-024-00685-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Differences in Sex Development (DSD) is a heterogeneous group of congenital alterations that affect inner and/or outer primary sex characters. Although these conditions do not represent a mortality risk, they can have a severe psycho-emotional impact if not appropriately managed. The genetic changes that can give rise to DSD are diverse, from chromosomal alterations to single base variants involved in the sexual development network. Epidemiological studies about DSD indicate a global frequency of 1:4500-5500, which can increase to 1:200-300, including isolated anatomical defects. To our knowledge, this study is the first to describe epidemiological and genetic features of DSD in a cohort of Mexican patients of a third-level care hospital. METHODS Descriptive and retrospective cross-sectional study that analyzed DSD patients from 2015 to 2021 attended a Paediatric Hospital from Mexico City. RESULTS One hundred one patients diagnosed with DSD were registered and grouped into different entities according to the Chicago consensus statement and the diagnosis defined by the multidisciplinary group. Of the total, 54% of them belong to the chromosomal DSD classification, 16% belongs to 46, XX and 30% of them belongs to the 46, XY classification. CONCLUSION The frequency for chromosomal DSDs was consistent with the literature; however, we found that DSD 46, XY is more frequent in our cohort, which may be due to the age of the patients captured, the characteristics of our study population, or other causes that depend on the sample size.
Collapse
Affiliation(s)
- Grecia C Olivera-Bernal
- Medical Research Unit in Human Genetics, Instituto Mexicano del Seguro Social (IMSS)/Hospital de Pediatría, Centro Médico Nacional SXXI, Ave. Cuauhtémoc 330, 06720, Mexico City, Mexico
| | - Marlon De Ita-Ley
- Medical Research Unit in Human Genetics, Instituto Mexicano del Seguro Social (IMSS)/Hospital de Pediatría, Centro Médico Nacional SXXI, Ave. Cuauhtémoc 330, 06720, Mexico City, Mexico
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Edgar F Ricárdez-Marcial
- Department of Genetics, Instituto Mexicano del Seguro Social (IMSS)/Hospital General Centro Médico Nacional "La Raza", Mexico City, Mexico
| | - Luz María Garduño-Zarazúa
- Medical Research Unit in Human Genetics, Instituto Mexicano del Seguro Social (IMSS)/Hospital de Pediatría, Centro Médico Nacional SXXI, Ave. Cuauhtémoc 330, 06720, Mexico City, Mexico
| | - Ángel Ricardo González-Cuevas
- Medical Research Unit in Human Genetics, Instituto Mexicano del Seguro Social (IMSS)/Hospital de Pediatría, Centro Médico Nacional SXXI, Ave. Cuauhtémoc 330, 06720, Mexico City, Mexico
| | - Omar A Sepúlveda-Robles
- Medical Research Unit in Human Genetics, Instituto Mexicano del Seguro Social (IMSS)/Hospital de Pediatría, Centro Médico Nacional SXXI, Ave. Cuauhtémoc 330, 06720, Mexico City, Mexico
| | - Juan Carlos Huicochea-Montiel
- Department of Paediatric Genetics, Instituto Mexicano del Seguro Social (IMSS)/Hospital de Pediatría, Centro Médico Nacional S XXI, Mexico City, Mexico
| | - Alan Cárdenas-Conejo
- Department of Paediatric Genetics, Instituto Mexicano del Seguro Social (IMSS)/Hospital de Pediatría, Centro Médico Nacional S XXI, Mexico City, Mexico
| | - Laura Santana-Díaz
- Department of Genetics, Instituto Mexicano del Seguro Social (IMSS)/Hospital General Centro Médico Nacional "La Raza", Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Medical Research Unit in Human Genetics, Instituto Mexicano del Seguro Social (IMSS)/Hospital de Pediatría, Centro Médico Nacional SXXI, Ave. Cuauhtémoc 330, 06720, Mexico City, Mexico.
| |
Collapse
|
5
|
Aghaei S, Farrokhi E, Saffari-Chaleshtori J, Hoseinzadeh M, Molavi N, Hashemipour M, Rostampour N, Asgharzadeh S, Tabatabaiefar MA. New molecular insights into the A218V variant impact on the steroidogenic acute regulatory protein (STAR) associated with 46, XY disorders of sexual development. Mol Genet Genomics 2023; 298:693-708. [PMID: 37004560 DOI: 10.1007/s00438-023-02006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/07/2023] [Indexed: 04/04/2023]
Abstract
Disorders of sexual development (DSD) are an abnormal congenital conditions associated with atypical development of the urogenital tract and external genital structures. The steroidogenic acute regulatory (STAR) gene, associated with congenital lipoid adrenal hyperplasia (CLAH), is included in the targeted gene panel for the DSD diagnosis. Therefore, the genetic alterations of the STAR gene and their molecular effect were examined in the CLAH patients affected with DSD. Ten different Iranian families including twelve male pseudo-hermaphroditism patients with CLAH phenotype were studied using genetic linkage screening and STAR gene sequencing in the linked families to the STAR locus. Furthermore, the structural, dynamical, and functional impacts of the variants on the STAR in silico were analyzed. Sanger sequencing showed the pathogenic variant p.A218V in STAR gene, as the first report in Iranian population. Moreover, modeling and simulation analysis were performed using tools such as radius of gyration, root mean square deviation (RMSD), root mean square fluctuation (RMSF), and molecular docking showed that p.A218V variant affects the residues interaction in cholesterol-binding site and the proper folding of STAR through increasing H-bound and the amount of α-Helix, deceasing total flexibility and changing fluctuations in some residues, resulting in reduced steroidogenic activity of the STAR protein. The study characterized the structural and functional changes of STAR caused by pathogenic variant p.A218V. It leads to limited cholesterol-binding activity of STAR, ultimately leading to the CLAH disease. Molecular dynamics simulation of STAR variants could help explain different clinical manifestations of CLAH disease.
Collapse
Affiliation(s)
- Shahrzad Aghaei
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Effat Farrokhi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Javad Saffari-Chaleshtori
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Marziyeh Hoseinzadeh
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Newsha Molavi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahin Hashemipour
- Metabolic Liver Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Noushin Rostampour
- Metabolic Liver Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samira Asgharzadeh
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Department of Genetics and Molecular Biology, School of Medicine and Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
6
|
Construction of Copy Number Variation Map Identifies Small Regions of Overlap and Candidate Genes for Atypical Female Genitalia Development. REPRODUCTIVE MEDICINE 2022. [DOI: 10.3390/reprodmed3020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Copy number variations (CNVs) have been implicated in various conditions of differences of sexual development (DSD). Generally, larger genomic aberrations are more often considered disease-causing or clinically relevant, but over time, smaller CNVs have been associated with various forms of DSD. The main objective of this study is to identify small CNVs and the smallest regions of overlap (SROs) in patients with atypical female genitalia (AFG) and build a CNV map of AFG. We queried the DECIPHER database for recurrent duplications and/or deletions detected across the genome of AFG individuals. From these data, we constructed a chromosome map consisting of SROs and investigated such regions for genes that may be associated with the development of atypical female genitalia. Our study identified 180 unique SROs (7.95 kb to 45.34 Mb) distributed among 22 chromosomes. The most SROs were found in chromosomes X, 17, 11, and 22. None were found in chromosome 3. From these SROs, we identified 22 genes as potential candidates. Although none of these genes are currently associated with AFG, a literature review indicated that almost half were potentially involved in the development and/or function of the reproductive system, and only one gene was associated with a disorder that reported an individual patient with ambiguous genitalia. Our data regarding novel SROs requires further functional investigation to determine the role of the identified candidate genes in the development of atypical female genitalia, and this paper should serve as a catalyst for downstream molecular studies that may eventually affect the genetic counseling, diagnosis, and management of these DSD patients.
Collapse
|
7
|
Allen NG, Krishna KB, Lee PA. Differences of Sex Development: What Neonatologists Need to Know. Clin Perinatol 2022; 49:207-218. [PMID: 35210002 DOI: 10.1016/j.clp.2021.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Differences of sex development (DSD) refer to rare conditions in which an individual's sex development is different from typical male or female development. The neonatologist is often the first health care provider to interact with parents of newborns with DSD and must be familiar with the approach to patients with DSD. In this article, we discuss definition of DSD, initial workup of the patient with DSD, terminology, and controversies in care.
Collapse
Affiliation(s)
- Natalie G Allen
- Division of Endocrinology and Diabetes, Department of Pediatrics, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA.
| | - Kanthi Bangalore Krishna
- Division of Endocrinology and Diabetes, Department of Pediatrics, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Peter A Lee
- Division of Endocrinology and Diabetes, Department of Pediatrics, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW The aim of this study was to provide a basic overview on human sex development with a focus on involved genes and pathways, and also to discuss recent advances in the molecular diagnostic approaches applied to clinical workup of individuals with a difference/disorder of sex development (DSD). RECENT FINDINGS Rapid developments in genetic technologies and bioinformatics analyses have helped to identify novel genes and genomic pathways associated with sex development, and have improved diagnostic algorithms to integrate clinical, hormonal and genetic data. Recently, massive parallel sequencing approaches revealed that the phenotype of some DSDs might be only explained by oligogenic inheritance. SUMMARY Typical sex development relies on very complex biological events, which involve specific interactions of a large number of genes and pathways in a defined spatiotemporal sequence. Any perturbation in these genetic and hormonal processes may result in atypical sex development leading to a wide range of DSDs in humans. Despite the huge progress in the understanding of molecular mechanisms underlying DSDs in recent years, in less than 50% of DSD individuals, the genetic cause is currently solved at the molecular level.
Collapse
Affiliation(s)
- Idoia Martinez de LaPiscina
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital
- Department of Biomedical Research, University of Bern, Bern, Switzerland
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV/EHU, CIBERER, CIBERDEM, ENDO-ERN, Barakaldo, Spain
| | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Granada ML, Audí L. El laboratorio en el diagnóstico multidisciplinar del desarrollo sexual anómalo o diferente (DSD). ADVANCES IN LABORATORY MEDICINE 2021; 2:481-493. [PMCID: PMC10197318 DOI: 10.1515/almed-2020-0119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/24/2021] [Indexed: 06/28/2023]
Abstract
Objetivos El desarrollo de las características sexuales femeninas o masculinas acontece durante la vida fetal, determinándose el sexo genético, el gonadal y el sexo genital interno y externo (femenino o masculino). Cualquier discordancia en las etapas de diferenciación ocasiona un desarrollo sexual anómalo o diferente (DSD) que se clasifica según la composición de los cromosomas sexuales del cariotipo. Contenido En este capítulo se abordan la fisiología de la determinación y el desarrollo de las características sexuales femeninas o masculinas durante la vida fetal, la clasificación general de los DSD y su estudio diagnóstico clínico, bioquímico y genético que debe ser multidisciplinar. Los estudios bioquímicos deben incluir, además de las determinaciones bioquímicas generales, análisis de hormonas esteroideas y peptídicas, en condiciones basales o en pruebas funcionales de estimulación. El estudio genético debe comenzar con la determinación del cariotipo al que seguirá un estudio molecular en los cariotipos 46,XX ó 46,XY, orientado a la caracterización de un gen candidato. Además, se expondrán de manera específica los marcadores bioquímicos y genéticos en los DSD 46,XX, que incluyen el desarrollo gonadal anómalo (disgenesias, ovotestes y testes), el exceso de andrógenos de origen fetal (el más frecuente), fetoplacentario o materno y las anomalías del desarrollo de los genitales internos. Perspectivas El diagnóstico de un DSD requiere la contribución de un equipo multidisciplinar coordinado por un clínico y que incluya los servicios de bioquímica y genética clínica y molecular, un servicio de radiología e imagen y un servicio de anatomía patológica.
Collapse
Affiliation(s)
- Maria Luisa Granada
- Department of Clinical Biochemistry, Hospital Germans Trias i Pujol, Autonomous University of Barcelona, Badalona, España
| | - Laura Audí
- Growth and Development Research Group, Vall d’Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia, España
| |
Collapse
|
10
|
Granada ML, Audí L. The laboratory in the multidisciplinary diagnosis of differences or disorders of sex development (DSD): III) Biochemical and genetic markers in the 46,XYIV) Proposals for the differential diagnosis of DSD. ADVANCES IN LABORATORY MEDICINE 2021; 2:494-515. [PMID: 37360892 PMCID: PMC10197773 DOI: 10.1515/almed-2021-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/20/2021] [Indexed: 06/28/2023]
Abstract
Objectives 46,XY differences/disorders of sex development (DSD) involve an abnormal gonadal and/or genital (external and/or internal) development caused by lack or incomplete intrauterine virilization, with or without the presence of Müllerian ducts remnants. Content Useful biochemical markers for differential diagnosis of 46,XY DSD include hypothalamic-pituitary-gonadal hormones such as luteinizing and follicle-stimulating hormones (LH and FSH; in baseline or after LHRH stimulation conditions), the anti-Müllerian hormone (AMH), inhibin B, insulin-like 3 (INSL3), adrenal and gonadal steroid hormones (including cortisol, aldosterone, testosterone and their precursors, dihydrotestosterone and estradiol) and the pituitary ACTH hormone. Steroid hormones are measured at baseline or after stimulation with ACTH (adrenal hormones) and/or with HCG (gonadal hormones). Summary Different patterns of hormone profiles depend on the etiology and the severity of the underlying disorder and the age of the patient at diagnosis. Molecular diagnosis includes detection of gene dosage or copy number variations, analysis of candidate genes or high-throughput DNA sequencing of panels of candidate genes or the whole exome or genome. Outlook Differential diagnosis of 46,XX or 46,XY DSD requires a multidisciplinary approach, including patient history and clinical, morphological, imaging, biochemical and genetic data. We propose a diagnostic algorithm suitable for a newborn with DSD that focuses mainly on biochemical and genetic data.
Collapse
Affiliation(s)
- Maria Luisa Granada
- Department of Clinical Biochemistry, Hospital Germans Trias i Pujol, Autonomous University of Barcelona, Badalona, Spain
| | - Laura Audí
- Growth and Development Research Group, Vall d’Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia, Spain
| |
Collapse
|
11
|
Granada ML, Audí L. The laboratory in the multidisciplinary diagnosis of differences or disorders of sex development (DSD): I) Physiology, classification, approach, and methodologyII) Biochemical and genetic markers in 46,XX DSD. ADVANCES IN LABORATORY MEDICINE 2021; 2:468-493. [PMID: 37360895 PMCID: PMC10197333 DOI: 10.1515/almed-2021-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/24/2021] [Indexed: 06/28/2023]
Abstract
Objectives The development of female or male sex characteristics occurs during fetal life, when the genetic, gonadal, and internal and external genital sex is determined (female or male). Any discordance among sex determination and differentiation stages results in differences/disorders of sex development (DSD), which are classified based on the sex chromosomes found on the karyotype. Content This chapter addresses the physiological mechanisms that determine the development of female or male sex characteristics during fetal life, provides a general classification of DSD, and offers guidance for clinical, biochemical, and genetic diagnosis, which must be established by a multidisciplinary team. Biochemical studies should include general biochemistry, steroid and peptide hormone testing either at baseline or by stimulation testing. The genetic study should start with the determination of the karyotype, followed by a molecular study of the 46,XX or 46,XY karyotypes for the identification of candidate genes. Summary 46,XX DSD include an abnormal gonadal development (dysgenesis, ovotestes, or testes), an androgen excess (the most frequent) of fetal, fetoplacental, or maternal origin and an abnormal development of the internal genitalia. Biochemical and genetic markers are specific for each group. Outlook Diagnosis of DSD requires the involvement of a multidisciplinary team coordinated by a clinician, including a service of biochemistry, clinical, and molecular genetic testing, radiology and imaging, and a service of pathological anatomy.
Collapse
Affiliation(s)
- Maria Luisa Granada
- Department of Clinical Biochemistry, Hospital Germans Trias i Pujol, Autonomous University of Barcelona, Badalona, Spain
| | - Laura Audí
- Growth and Development Research Group, Vall d’Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia, Spain
| |
Collapse
|
12
|
Granada ML, Audí L. El laboratorio en el diagnóstico multidisciplinar del desarrollo sexual anómalo o diferente (DSD): III) Marcadores bioquímicos y genéticos en los 46,XY IV) Propuestas para el diagnóstico diferencial de los DSD. ADVANCES IN LABORATORY MEDICINE 2021; 2:494-515. [PMID: 37360897 PMCID: PMC10197789 DOI: 10.1515/almed-2020-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/20/2021] [Indexed: 06/28/2023]
Abstract
Objetivos El desarrollo sexual anómalo o diferente (DSD) con cariotipo 46,XY incluye anomalías en el desarrollo gonadal y/o genital (externo y/o interno). Contenido Los marcadores bioquímicos útiles para el diagnóstico diferencial de los DSD con cariotipo 46,XY incluyen las hormonas del eje hipotálamo-hipófiso gonadal como son las gonadotropinas LH y FSH (en condiciones basales o tras la estimulación con LHRH), la hormona anti-Mülleriana, la inhibina B, el factor insulinoide tipo 3 y las hormonas esteroideas de origen suprarrenal (se incluirá la hormona hipofisaria ACTH) y testicular (cortisol, aldosterona y sus precursores, testosterona y sus precursores, dihidrotestosterona y estradiol). Las hormonas esteroideas se analizarán en condiciones basales o tras la estimulación con ACTH (hormonas adrenales) y/o con HCG (hormonas testiculares). Los patrones de variación de las distintas hormonas dependerán de la causa y la edad de cada paciente. El diagnóstico molecular debe incluir el análisis de un gen candidato, un panel de genes o el análisis de un exoma completo. Perspectivas El diagnóstico diferencial de los DSD con cariotipos 46,XX ó 46,XY debe ser multidisciplinar, incluyendo los antecedentes clínicos, morfológicos, de imagen, bioquímicos y genéticos. Se han elaborado numerosos algoritmos diagnósticos.
Collapse
Affiliation(s)
- Maria Luisa Granada
- Department of Clinical Biochemistry, Hospital Germans Trias i Pujol, Autonomous University of Barcelona, Badalona, España
| | - Laura Audí
- Growth and Development Research Group, Vall d’Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III,Barcelona, Catalonia, España
| |
Collapse
|
13
|
Ibba A, Del Pistoia M, Balsamo A, Baronio F, Capalbo D, Russo G, DE Sanctis L, Bizzarri C. Differences of sex development in the newborn: from clinical scenario to molecular diagnosis. Minerva Pediatr (Torino) 2021; 73:606-620. [PMID: 34152117 DOI: 10.23736/s2724-5276.21.06512-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Differences/disorders of sex development (DSD) are defined as a group of congenital conditions in which the development of chromosomal, gonadal or anatomical sex is atypical. The incidence of DSD is 1:4500 births. The current classification divides DSDs into 3 categories according to chromosomal sex: 46,XX DSD, 46,XY DSD and sex chromosome DSD. DSD phenotypes can be concordant with the genotype (apparently normal external genitalia associated with gonadal dysgenesis), or can range from simply hypospadias to completely masculinised or feminised genitalia with a discordant karyotype. Numerous genes implicated in genital development have been reported. The search of genetic variants represents a central element of the extended investigation, as an improved knowledge of the genetic aetiology helps the immediate and long-term management of children with DSDs, in term of sex of rearing, hormone therapy, surgery, fertility and cancer risk. This review aims to assess the current role of molecular diagnosis in DSD management.
Collapse
Affiliation(s)
- Anastasia Ibba
- Pediatric Endocrine Unit and Neonatal Screening Centre, Pediatric Hospital Microcitemico A. Cao, ARNAS Brotzu, Cagliari, Italy -
| | - Marta Del Pistoia
- Division of Neonatology and NICU, Department of Clinical and Experimental Medicine, Santa Chiara University Hospital, Pisa, Italy
| | - Antonio Balsamo
- Pediatric Unit, Department of Medical and Surgical Sciences, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Federico Baronio
- Pediatric Unit, Department of Medical and Surgical Sciences, S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - Donatella Capalbo
- Department of Mother and Child, Paediatric Endocrinology Unit, University Hospital Federico II, Naples, Italy
| | - Gianni Russo
- Endocrine Unit, Department of Pediatrics, Scientific Institute San Raffaele, Milan, Italy
| | - Luisa DE Sanctis
- Pediatric Endocrinology Unit, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Carla Bizzarri
- Unit of Endocrinology, Bambino Gesù Children's Hospital (IRCCS), Rome, Italy
| |
Collapse
|
14
|
Chromosome Abnormalities Related to Reproductive and Sexual Development Disorders: A 5-Year Retrospective Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8893467. [PMID: 34036105 PMCID: PMC8118731 DOI: 10.1155/2021/8893467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/23/2021] [Indexed: 12/19/2022]
Abstract
Chromosomal abnormalities are the main genetic risk factor associated with reproductive and sexual development disorders (DSD). The goal of this study is to retrospectively evaluate the frequency of chromosomal aberrations in Moroccan subjects with problems of procreation or sexual ambiguity. A total of 1005 individuals, including 170 infertile couples, underwent cytogenetic analysis in the Cytogenetic Laboratory of the Pasteur Institute of Morocco. Heparinized blood samples were processed according to the standard karyotype method. A total (81.5%) of the patients studied had a normal karyotype, while the remaining (18.5%) patients had an abnormal karyotype. Female patients had more chromosomal abnormalities (52%) than male patients (48%). These chromosomal aberrations included 154 cases (83%) of sex chromosomal abnormalities, the most common being Turner's syndrome and Klinefelter's syndrome, and 31 cases (17%) had autosomal aberrations, especially chromosome 9 reversal (inv(9)(p12;q13)). The present data shows that among 170 couples, 10.6% had chromosomal abnormalities mainly involved in the occurrence of recurrent miscarriages. Genotype-phenotype correlations could not be made, and therefore, studies using more resolutive molecular biology techniques would be desirable.
Collapse
|
15
|
Abstract
Puberty, which in humans is considered to include both gonadarche and adrenarche, is the period of becoming capable of reproducing sexually and is recognized by maturation of the gonads and development of secondary sex characteristics. Gonadarche referring to growth and maturation of the gonads is fundamental to puberty since it encompasses increased gonadal steroid secretion and initiation of gametogenesis resulting from enhanced pituitary gonadotropin secretion, triggered in turn by robust pulsatile GnRH release from the hypothalamus. This chapter reviews the development of GnRH pulsatility from before birth until the onset of puberty. In humans, GnRH pulse generation is restrained during childhood and juvenile development. This prepubertal hiatus in hypothalamic activity is considered to result from a neurobiological brake imposed upon the GnRH pulse generator resident in the infundibular nucleus. Reactivation of the GnRH pulse generator initiates pubertal development. Current understanding of the genetics and physiology of the brake will be discussed, as will hypotheses proposed to account for timing the resurgence in pulsatile GnRH and initiation of puberty. The chapter ends with a discussion of disorders associated with precocious or delayed puberty with a focus on those with etiologies attributed to aberrant GnRH neuron anatomy or function. A pediatric approach to patients with pubertal disorders is provided and contemporary treatments for both precocious and delayed puberty outlined.
Collapse
Affiliation(s)
- Selma Feldman Witchel
- Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Tony M Plant
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
16
|
Khattab A, Marshall I, Radovick S. Controversies surrounding female athletes with differences in sexual development. J Clin Invest 2020; 130:2738-2740. [DOI: 10.1172/jci138479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Lee PA, Fuqua JS, Houk CP, Kogan BA, Mazur T, Caldamone A. Individualized care for patients with intersex (disorders/differences of sex development): part I. J Pediatr Urol 2020; 16:230-237. [PMID: 32249189 DOI: 10.1016/j.jpurol.2020.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/20/2020] [Indexed: 12/16/2022]
Abstract
The care of individuals with disorders/differences of sex development aims to enable affected individuals and their families to have the best quality of life, particularly those born with severe genital ambiguity. Two of the biggest concerns for parents and health professionals are: (1) making a gender assignment and (2) the decisions of whether or not surgery is indicated, and if so, when is best for the patient and parents. These decisions, which can be overwhelming to families, are almost always made in the face of uncertainties. Such decisions must involve the parents, include multidisciplinary contributions, have an underlying principle of full disclosure, and respect familial, philosophical, and cultural values. Assignment as male or female is made with the realization that gender identity cannot be predicted with certainty. Because of the variability among those with the same diagnosis and complexity of phenotype-genotype correlation, the use of algorithms is inappropriate. The goal of this article is to emphasize the need for individualized care to make the best possible decisions for each patient's unique situation.
Collapse
Affiliation(s)
- Peter A Lee
- Penn State College of Medicine, Hershey, PA 17033, USA.
| | - John S Fuqua
- Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | - Tom Mazur
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, John R. Oishei Children's Hospital, Buffalo, NY 14222, USA.
| | - Anthony Caldamone
- Hasbro Children's Hospital, Warren Alpert School of Medicine at Brown University, Providence, RI 02903, USA.
| |
Collapse
|
18
|
Carvalheira G, Malinverni AM, Moysés-Oliveira M, Ueta R, Cardili L, Monteagudo P, Mathez ALG, Verreschi IT, Maluf MA, Shida MEF, Leite MTC, Mazzotti D, Melaragno MI, Dias-da-Silva MR. The Natural History of a Man With Ovotesticular 46,XX DSD Caused by a Novel 3-Mb 15q26.2 Deletion Containing NR2F2 Gene. J Endocr Soc 2019; 3:2107-2113. [PMID: 31687637 PMCID: PMC6821239 DOI: 10.1210/js.2019-00241] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/22/2019] [Indexed: 12/30/2022] Open
Abstract
Gonadal sex determination is a complex genetic process by which an embryonic primordium is driven to form an ovary or a testis, which requires a delicate dosage balance involving many genes. Disruption in this molecular pathway can lead to differences of sex development (DSD). Although some genetic mechanisms leading to 46,XY DSD have been elucidated, little is known about copy-number variation (CNV) causing testicular or ovotesticular 46,XX DSD. We describe a 20-year natural history of a man with SRY-negative 46,XX who was born with atypical male external genitalia, aortic coarctation, and bilateral blepharophimosis-ptosis. The molecular study identified a de novo heterozygous 3-Mb 15q26.2 deletion, a gene-poor locus containing NR2F2, which encodes the nuclear receptor COUP-TFII that is highly expressed in ovary and cardiac arteries. Immunohistochemistry confirmed the low COUP-TFII expression on his ovotestis tissue. Monosomy of 15q26.2, encompassing the NR2F2 gene, may act as a Z-factor regulating the male sex determination negatively. This finding supports a novel type of CNV resulting in DSD in an individual who developed male puberty spontaneously.
Collapse
Affiliation(s)
- Gianna Carvalheira
- Department of Morphology and Genetics, Division of Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Andrea M Malinverni
- Department of Morphology and Genetics, Division of Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Department of Pathology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Mariana Moysés-Oliveira
- Department of Morphology and Genetics, Division of Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Renata Ueta
- Department of Morphology and Genetics, Division of Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Leonardo Cardili
- Department of Pathology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Patrícia Monteagudo
- Department of Medicine, Division of Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Andreia L G Mathez
- Department of Medicine, Division of Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Ieda T Verreschi
- Department of Medicine, Division of Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Miguel A Maluf
- Department of Medicine, Division of Cardiovascular, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Márcia E F Shida
- Department of Medicine, Division of Pediatric Surgery, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Mila T C Leite
- Department of Medicine, Division of Pediatric Surgery, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Diego Mazzotti
- Center for Sleep and Circadian Neurobiology, University of Pensylvania, Philadelphia, Pennsylvania
| | - Maria Isabel Melaragno
- Department of Morphology and Genetics, Division of Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Magnus R Dias-da-Silva
- Department of Medicine, Division of Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Department of Medicine, Division of Endocrinology, Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW To provide a framework for the evaluation of ambiguous genitalia. RECENT FINDINGS The most pressing evaluation of ambiguous genitalia is assessment for life-threatening causes such as salt-wasting congenital adrenal hyperplasia (CAH) or syndromes with underlying anomalies such as neurologic or cardiac malformations. A multidisciplinary team, including specialists in Gynecology, Endocrinology, Urology, Genetics, Clinical Psychology/Psychiatry, Radiology, Nursing, Neonatology, and Pediatric Surgery, should be involved. Each patient should be approached in an individualized manner to assign sex of rearing in the most expeditious yet thoughtful means possible.As knowledge on the natural history of sex preference and fertility of individuals with ambiguous genitalia increases, controversy regarding the indication for and timing of genital surgery continues. Considerations include gender identity, future fertility, malignancy risk, infection prevention, and functional anatomy for sexual activity. SUMMARY The evaluation of ambiguous genitalia should involve a multidisciplinary team. A combination of history taking, physical examination, laboratory evaluation, and radiologic assessment can assist with the diagnosis. Care should be taken to emphasize karyotypic sex is not equivalent to gender and to use caution with regards to irreversible medical and surgical therapies which may impact fertility and sexual function and nonconform with future sex identity.
Collapse
|
20
|
Berklite L, Witchel SF, Yatsenko SA, Schneck FX, Reyes-Múgica M. Early Bilateral Gonadoblastoma Associated With 45,X/46,XY Mosaicism: The Spectrum of Undifferentiated Gonadal Tissue and Gonadoblastoma in the First Months of Life. Pediatr Dev Pathol 2019; 22:380-385. [PMID: 30646821 DOI: 10.1177/1093526618824469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
45,X/46,XY mosaicism is one of a heterogenous group of congenital conditions known as differences (disorders) of sex development (DSD) that results in abnormal development of internal and external genitalia. Patients with DSD, particularly those with segments of the Y chromosome, are at increased risk for germ cell tumors including gonadoblastoma. Gonadoblastoma is a neoplasm comprised of a mixture of germ cells and elements resembling immature granulosa or Sertoli cells with or without Leydig cells or lutein-type cells in an ovarian type stroma. Gonadoblastoma has an increased prevalence of 15% to 40% in patients with 45,X/46,XY mosaicism and has been previously reported in patients as young as 5 months of age with that karyotype. Herein, we describe a 3-month-old child with 45,X/46,XY karyotype who was referred for the evaluation of asymmetric labia majora. Additional evaluation revealed left streak gonad and right dysplastic/dysgenetic testis. Both gonads contained foci of cells typical for gonadoblastoma as well as undifferentiated gonadal tissue, underscoring the potential for very early infantile gonadoblastoma and the spectrum of developmental anomalies associated with this karyotype.
Collapse
Affiliation(s)
- Lara Berklite
- 1 Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Selma F Witchel
- 2 Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Svetlana A Yatsenko
- 3 Magee Womens Hospital, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Francis X Schneck
- 2 Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Miguel Reyes-Múgica
- 2 Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
León NY, Reyes AP, Harley VR. A clinical algorithm to diagnose differences of sex development. Lancet Diabetes Endocrinol 2019; 7:560-574. [PMID: 30803928 DOI: 10.1016/s2213-8587(18)30339-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022]
Abstract
The diagnosis and management of children born with ambiguous genitalia is challenging for clinicians. Such differences of sex development (DSDs) are congenital conditions in which chromosomal, gonadal, or anatomical sex is atypical. The aetiology of DSDs is very heterogenous and a precise diagnosis is essential for management of genetic, endocrine, surgical, reproductive, and psychosocial issues. In this Review, we outline a step-by-step approach, compiled in a diagnostic algorithm, for the clinical assessment and molecular diagnosis of a patient with ambiguity of the external genitalia on initial presentation. We appraise established and emerging technologies and their effect on diagnosis, and discuss current controversies.
Collapse
Affiliation(s)
- Nayla Y León
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Alejandra P Reyes
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC, Australia; Genetics Department, Children's Hospital of Mexico Federico Gómez, Mexico City, Mexico
| | - Vincent R Harley
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC, Australia.
| |
Collapse
|
22
|
Ahmadifard M, Kajbafzadeh A, Panjeh‐Shahi S, Vand‐Rajabpour F, Ahmadi‐Beni R, Arshadi H, Setoodeh A, Rostami P, Tavakkoly‐Bazzaz J, Tabrizi M. Molecular investigation of mutations in androgen receptor and 5‐alpha‐reductase‐2 genes in 46,XY Disorders of Sex Development with normal testicular development. Andrologia 2019; 51:e13250. [DOI: 10.1111/and.13250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Mohamadreza Ahmadifard
- Medical Genetics Department, School of Medicine Tehran University of Medical Sciences Tehran Iran
- Medical Genetics Department, School of Medicine Babol University of Medical Sciences Babol Iran
| | - Abdolmohamad Kajbafzadeh
- Pediatric Urology Research Center Children's Medical Center, Tehran University of Medical Sciences Tehran Iran
| | - Samareh Panjeh‐Shahi
- Medical Genetics Department, School of Medicine Babol University of Medical Sciences Babol Iran
| | - Fatemeh Vand‐Rajabpour
- Medical Genetics Department, School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Reza Ahmadi‐Beni
- Medical Genetics Department, School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Hamid Arshadi
- Pediatric Urology Research Center Children's Medical Center, Tehran University of Medical Sciences Tehran Iran
| | - Aria Setoodeh
- Growth and Development Research Center, Division of Endocrinology and Metabolism, Children’s Medical Center Tehran University of Medical Sciences Tehran Iran
| | - Parastoo Rostami
- Growth and Development Research Center, Division of Endocrinology and Metabolism, Children’s Medical Center Tehran University of Medical Sciences Tehran Iran
| | - Javad Tavakkoly‐Bazzaz
- Medical Genetics Department, School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Mina Tabrizi
- Medical Genetics Department, School of Medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
23
|
Audí L, Ahmed SF, Krone N, Cools M, McElreavey K, Holterhus PM, Greenfield A, Bashamboo A, Hiort O, Wudy SA, McGowan R. GENETICS IN ENDOCRINOLOGY: Approaches to molecular genetic diagnosis in the management of differences/disorders of sex development (DSD): position paper of EU COST Action BM 1303 ‘DSDnet’. Eur J Endocrinol 2018; 179:R197-R206. [PMID: 30299888 PMCID: PMC6182188 DOI: 10.1530/eje-18-0256] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The differential diagnosis of differences or disorders of sex development (DSD) belongs to the most complex fields in medicine. It requires a multidisciplinary team conducting a synoptic and complementary approach consisting of thorough clinical, hormonal and genetic workups. This position paper of EU COST (European Cooperation in Science and Technology) Action BM1303 ‘DSDnet’ was written by leading experts in the field and focuses on current best practice in genetic diagnosis in DSD patients. Ascertainment of the karyotpye defines one of the three major diagnostic DSD subclasses and is therefore the mandatory initial step. Subsequently, further analyses comprise molecular studies of monogenic DSD causes or analysis of copy number variations (CNV) or both. Panels of candidate genes provide rapid and reliable results. Whole exome and genome sequencing (WES and WGS) represent valuable methodological developments that are currently in the transition from basic science to clinical routine service in the field of DSD. However, in addition to covering known DSD candidate genes, WES and WGS help to identify novel genetic causes for DSD. Diagnostic interpretation must be performed with utmost caution and needs careful scientific validation in each DSD case.
Collapse
Affiliation(s)
- L Audí
- Growth and Development Research Unit, Vall d’Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Correspondence should be addressed to L Audí;
| | - S F Ahmed
- Developmental Endocrinology Research Group, University of Glasgow, Glasgow, UK
| | - N Krone
- Academic Unit of Child Health, Department of Oncology and Metabolism, University of Sheffield, Sheffield Children’s Hospital, Western Bank, Sheffield, UK
| | - M Cools
- Department of Paediatric Endocrinology, Ghent University Hospital, Paediatrics and Internal Medicine Research Unit, Ghent University, Ghent, Belgium
| | - K McElreavey
- Human Developmental Genetics, Institut Pasteur, Paris, France
| | - P M Holterhus
- Division of Pediatric Endocrinology and Diabetes, University Hospital of Schleswig-Holstein and Christian Albrechts University, Kiel, Germany
| | - A Greenfield
- Mammalian Genetics Unit, Medical Research Council, Harwell Institute, Oxfordshire, UK
| | - A Bashamboo
- Human Developmental Genetics, Institut Pasteur, Paris, France
| | - O Hiort
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatric and Adolescent Medicine, University of Lübeck, Lübeck, Germany
| | - S A Wudy
- Division of Pediatric Endocrinology and Diabetology, Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Center of Child and Adolescent Medicine, Justus-Liebig-University, Giessen, Germany
| | - R McGowan
- Developmental Endocrinology Research Group, University of Glasgow, Glasgow, UK
- Department of Clinical Genetics, Laboratories Building, Queen Elizabeth University Hospital, Glasgow, UK
| | | |
Collapse
|
24
|
Witchel SF. Disorders of sex development. Best Pract Res Clin Obstet Gynaecol 2018; 48:90-102. [PMID: 29503125 PMCID: PMC5866176 DOI: 10.1016/j.bpobgyn.2017.11.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022]
Abstract
Normal sex development depends on the precise spatio-temporal sequence and coordination of mutually antagonistic activating and repressing factors. These factors regulate the commitment of the unipotential gonad into the binary pathways governing normal sex development. Typically, the presence of the SRY gene on the Y chromosome triggers the cascade of molecular events that lead to male sex development. Disorders of sex development comprise a heterogeneous group of congenital conditions associated with atypical development of internal and external genitalia. These disorders are generally attributed to deviations from the typical progression of sex development. Disorders of sex development can be classified into several categories including chromosomal, gonadal, and anatomic abnormalities. Genetic tools such as microarray analyses and next-generation sequencing techniques have identified novel genetic variants among patients with disorders of sexual development. Most importantly, patient management needs to be individualized, especially for decisions related to sex of rearing, surgical interventions, hormone treatment, and potential for fertility preservation.
Collapse
Affiliation(s)
- Selma Feldman Witchel
- Division of Pediatric Endocrinology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| |
Collapse
|
25
|
Indyk JA. Disorders/differences of sex development (DSDs) for primary care: the approach to the infant with ambiguous genitalia. Transl Pediatr 2017; 6:323-334. [PMID: 29184813 PMCID: PMC5682373 DOI: 10.21037/tp.2017.10.03] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The initial management of the neonate with ambiguous genitalia can be a very stressful and anxious time for families, as well as for the general practitioner or neonatologist. A timely approach must be sensitive and attend to the psychosocial needs of the family. In addition, it must also effectively address the diagnostic dilemma that is frequently seen in the care of patients with disorders of sex development (DSDs). One great challenge is assigning a sex of rearing, which must take into account a variety of factors including the clinical, biochemical and radiologic clues as to the etiology of the atypical genitalia (AG). However, other important aspects cannot be overlooked, and these include parental and cultural views, as well as the future outlook in terms of surgery and fertility potential. Achieving optimal outcomes requires open and transparent dialogue with the family and caregivers, and should harness the resources of a multidisciplinary team. The multiple facets of this approach are outlined in this review.
Collapse
Affiliation(s)
- Justin A Indyk
- Section of Endocrinology, Nationwide Children's Hospital, the Ohio State University, Columbus, Ohio 43205, USA
| |
Collapse
|