1
|
Zhang YY, Feng PP, Wang HF, Zhang H, Liang T, Hao XS, Wang FZ, Fei HR. Licochalcone B induces DNA damage, cell cycle arrest, apoptosis, and enhances TRAIL sensitivity in hepatocellular carcinoma cells. Chem Biol Interact 2022; 365:110076. [DOI: 10.1016/j.cbi.2022.110076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022]
|
2
|
OSMI-1 Enhances TRAIL-Induced Apoptosis through ER Stress and NF-κB Signaling in Colon Cancer Cells. Int J Mol Sci 2021; 22:ijms222011073. [PMID: 34681736 PMCID: PMC8539180 DOI: 10.3390/ijms222011073] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/09/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Levels of O-GlcNAc transferase (OGT) and hyper-O-GlcNAcylation expression levels are associated with cancer pathogenesis. This study aimed to find conditions that maximize the therapeutic effect of cancer and minimize tissue damage by combining an OGT inhibitor (OSMI-1) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). We found that OSMI-1 treatment in HCT116 human colon cancer cells has a potent synergistic effect on TRAIL-induced apoptosis signaling. Interestingly, OSMI-1 significantly increased TRAIL-mediated apoptosis by increasing the expression of the cell surface receptor DR5. ROS-induced endoplasmic reticulum (ER) stress by OSMI-1 not only upregulated CHOP-DR5 signaling but also activated Jun-N-terminal kinase (JNK), resulting in a decrease in Bcl2 and the release of cytochrome c from mitochondria. TRAIL induced the activation of NF-κB and played a role in resistance as an antiapoptotic factor. During this process, O-GlcNAcylation of IκB kinase (IKK) and IκBα degradation occurred, followed by translocation of p65 into the nucleus. However, combination treatment with OSMI-1 counteracted the effect of TRAIL-mediated NF-κB signaling, resulting in a more synergistic effect on apoptosis. Therefore, the combined treatment of OSMI-1 and TRAIL synergistically increased TRAIL-induced apoptosis through caspase-8 activation. Conclusively, OSMI-1 potentially sensitizes TRAIL-induced cell death in HCT116 cells through the blockade of NF-κB signaling and activation of apoptosis through ER stress response.
Collapse
|
3
|
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer and the fifth most common cancer worldwide. HCC is recognized as the fourth most common cause of cancer related deaths worldwide due to the lack of effective early diagnostic tools, which often leads to individuals going undiagnosed until the cancer has reached late stage development. The current FDA approved treatments for late stage HCC provide a minimal increase in patient survival and lack tumor specificity, resulting in toxic systemic side effects. Gene therapy techniques, such as chimeric antigen receptor (CAR)-T Cells, viral vectors, and nanoparticles, are being explored as novel treatment options in various genetic diseases. Pre-clinical studies using gene therapy to treat in vitro and in vivo models of HCC have demonstrated potential efficacy for use in human patients. This review highlights genetic targets, techniques, and current clinical trials in HCC utilizing gene therapy.
Collapse
|
4
|
Xiao C, Rui Y, Zhou S, Huang Y, Wei Y, Wang Z. TNF-related apoptosis-inducing ligand (TRAIL) promotes trophoblast cell invasion via miR-146a-EGFR/CXCR4 axis: A novel mechanism for preeclampsia? Placenta 2020; 93:8-16. [DOI: 10.1016/j.placenta.2020.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/02/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
|
5
|
Abudoureyimu M, Lai Y, Tian C, Wang T, Wang R, Chu X. Oncolytic Adenovirus-A Nova for Gene-Targeted Oncolytic Viral Therapy in HCC. Front Oncol 2019; 9:1182. [PMID: 31781493 PMCID: PMC6857090 DOI: 10.3389/fonc.2019.01182] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/21/2019] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent cancers worldwide, particularly in China. Despite the development of HCC treatment strategies, the survival rate remains unpleasant. Gene-targeted oncolytic viral therapy (GTOVT) is an emerging treatment modality-a kind of cancer-targeted therapy-which creates viral vectors armed with anti-cancer genes. The adenovirus is a promising agent for GAOVT due to its many advantages. In spite of the oncolytic adenovirus itself, the host immune response is the determining factor for the anti-cancer efficacy. In this review, we have summarized recent developments in oncolytic adenovirus engineering and the development of novel therapeutic genes utilized in HCC treatment. Furthermore, the diversified roles the immune response plays in oncolytic adenovirus therapy and recent attempts to modulate immune responses to enhance the anti-cancer efficacy of oncolytic adenovirus have been discussed.
Collapse
Affiliation(s)
- Mubalake Abudoureyimu
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Yongting Lai
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, China
| | - Chuan Tian
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Ting Wang
- Department of Medical Oncology, Jinling Hospital, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Liu N, Wu Z, Chen A, Chai D, Li L, Zhang L, Zheng J. ISG12a and its interaction partner NR4A1 are involved in TRAIL-induced apoptosis in hepatoma cells. J Cell Mol Med 2019; 23:3520-3529. [PMID: 30821058 PMCID: PMC6484314 DOI: 10.1111/jcmm.14251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/24/2018] [Accepted: 02/05/2019] [Indexed: 12/30/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in cancer cells while sparing normal cells, thereby leading to the development of TRAIL receptor agonists for cancer treatment. However, these agonist-based therapeutics exhibit little clinical benefits due to the lack of biomarkers to predict whether patients are responsive to the treatment, as well as determine the resistance of cancer cells to TRAIL-based agonists. Our previous study has demonstrated that ISG12a enhances TRAIL-induced apoptosis and might serve as a biomarker to predict the TRAIL response. The downstream mechanism by which ISG12a augments TRAIL-induced apoptosis remains to be elucidated. In this study, we found that ISG12a was localized in the mitochondria and nucleus and augmented TRAIL-induced apoptosis through intrinsic apoptotic pathway. In addition, ISG12a interacted with NR4A1 and promoted its nuclear-to-cytoplasm translocation. Upon translocate to cytoplasm, NR4A1 targeted mitochondria and induced Bcl2 conformational change, thereby exposing its BH3 domain. Moreover, TRAIL treatment can induce NR4A1 expression through the activation of NF-κB in TRAIL-resistant Huh7 hepatoma cells. Knockdown of NR4A1 could overcome TRAIL resistance. However, in TRAIL-sensitive LH86 liver cancer cells, TRAIL activated the Jun N-terminal kinases signalling pathway. Overall, these results showed that both ISG12a and its interaction partner NR4A1 are involved in TRAIL-mediated apoptosis in hepatoma cells.
Collapse
Affiliation(s)
- Nianli Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiyuan Wu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Aoxing Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liantao Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Longzhen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
7
|
Lee MW, Kim DS, Kim HR, Park HJ, Lee JW, Sung KW, Koo HH, Yoo KH. Inhibition of N-myc expression sensitizes human neuroblastoma IMR-32 cells expressing caspase-8 to TRAIL. Cell Prolif 2019; 52:e12577. [PMID: 30724400 PMCID: PMC6536445 DOI: 10.1111/cpr.12577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 12/13/2022] Open
Abstract
Objectives This study aims to explore the roles of N‐myc and caspase‐8 in TRAIL‐resistant IMR‐32 cells which exhibit MYCN oncogene amplification and lack caspase‐8 expression. Materials and methods We established N‐myc–downregulated IMR‐32 cells using shRNA lentiviral particles targeting N‐myc and examined the effect the N‐myc inhibition on TRAIL susceptibility in human neuroblastoma IMR‐32 cells expressing caspase‐8. Results Cisplatin treatment in IMR‐32 cells increased the expression of death receptor 5 (DR5; TRAIL‐R2), but not other receptors, via downregulation of NF‐κB activity. However, the cisplatin‐mediated increase in DR5 failed to induce cell death following TRAIL treatment. Furthermore, interferon (IFN)‐γ pretreatment increased caspase‐8 expression in IMR‐32 cells, but cisplatin failed to trigger TRAIL cytotoxicity. We downregulated N‐myc expression in IMR‐32 cells using N‐myc–targeting shRNA. These cells showed decreased growth rate and Bcl‐2 expression accompanied by a mild collapse in the mitochondrial membrane potential as compared with those treated with scrambled shRNA. TRAIL treatment in N‐myc–negative cells expressing caspase‐8 following IFN‐γ treatment significantly triggered apoptotic cell death. Concurrent treatment with cisplatin enhanced TRAIL‐mediated cytotoxicity, which was abrogated by an additional pretreatment with DR5:Fc chimera protein. Conclusions N‐myc and caspase‐8 expressions are involved in TRAIL susceptibility in IMR‐32 cells, and the combination of treatment with cisplatin and TRAIL may serve as a promising strategy for the development of therapeutics against neuroblastoma that is controlled by N‐myc and caspase‐8 expression.
Collapse
Affiliation(s)
- Myoung Woo Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dae Seong Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Ryung Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Jin Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
8
|
Nazim UMD, Park SY. Attenuation of autophagy flux by 6-shogaol sensitizes human liver cancer cells to TRAIL-induced apoptosis via p53 and ROS. Int J Mol Med 2019; 43:701-708. [PMID: 30483736 PMCID: PMC6317668 DOI: 10.3892/ijmm.2018.3994] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022] Open
Abstract
Tumor necrosis factor (TNF)‑related apoptosis‑inducing ligand (TRAIL) is a member of the TNF superfamily and is an antitumor drug that induces apoptosis in tumor cells with minimal or no effects on normal cells. Here, it is demonstrated that 6‑shogaol (6‑sho), a bioactive component of ginger, exerted anti‑inflammatory and anticancer properties, attenuated tumor cell propagation and induced TRAIL‑mediated cell death in liver cancer cells. The current study identified a potential pathway by revealing that TRAIL and 6‑sho or chloroquine acted together to trigger reactive oxygen species (ROS) production, to upregulate tumor‑suppressor protein 53 (p53) expression and to change the mitochondrial transmembrane potential (MTP). Treatment with N‑acetyl‑L‑cysteine reversed these effects, restoring the MTP and attenuated ROS production and p53 expression. Interestingly, treatment with 6‑sho increased p62 and microtubule‑associated proteins 1A/1B light chain 3B‑II levels, indicating an inhibited autophagy flux. In conclusion, attenuation of 6‑sho‑induced autophagy flux sensitized cells to TRAIL‑induced apoptosis via p53 and ROS, suggesting that the administration of TRAIL in combination with 6‑sho may be a suitable therapeutic method for the treatment of TRAIL‑resistant Huh7 liver cells.
Collapse
Affiliation(s)
- Uddin MD. Nazim
- Department of Biochemistry, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Sang-Youel Park
- Department of Biochemistry, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| |
Collapse
|
9
|
Jiang W, Wu DB, Fu SY, Chen EQ, Tang H, Zhou TY. Insight into the role of TRAIL in liver diseases. Biomed Pharmacother 2018; 110:641-645. [PMID: 30544063 DOI: 10.1016/j.biopha.2018.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/19/2018] [Accepted: 12/02/2018] [Indexed: 02/05/2023] Open
Abstract
TNF-related apoptosis inducing ligand (TRAIL) is a potential antitumor protein known for its ability to selectively eliminate various types of tumor cells without exerting toxic effects in normal cells and tissues. TRAIL has recently been suggested as a potential therapeutic target in hepatocellular carcinoma (HCC) because it promotes apoptosis in cancer cells. Furthermore, studies on the role of TRAIL in liver injury have reported that TRAIL plays an essential role in viral hepatitis, fatty liver diseases, etc. However, several contradictory and confounding effects of TRAIL in these liver diseases have not been fully elucidated or placed into perspective. Hence, this review summarizes recent progress in studies on TRAIL, including its role in apoptotic signaling, potential therapeutic applications of TRAIL in HCC, hepatitis virus infection, and liver fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Wuhou District, Chengdu, Sichuan Province, China
| | - Dong-Bo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Wuhou District, Chengdu, Sichuan Province, China
| | - Si-Yu Fu
- Center of Infectious Diseases, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Wuhou District, Chengdu, Sichuan Province, China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Wuhou District, Chengdu, Sichuan Province, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Wuhou District, Chengdu, Sichuan Province, China
| | - Tao-You Zhou
- Center of Infectious Diseases, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Wuhou District, Chengdu, Sichuan Province, China.
| |
Collapse
|
10
|
Nazim U, Park S. Luteolin sensitizes human liver cancer cells to TRAIL‑induced apoptosis via autophagy and JNK‑mediated death receptor 5 upregulation. Int J Oncol 2018; 54:665-672. [DOI: 10.3892/ijo.2018.4633] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/19/2018] [Indexed: 11/05/2022] Open
Affiliation(s)
- Uddin Nazim
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Sang‑Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| |
Collapse
|
11
|
Park SH, Kim JL, Jeong S, Kim BR, Na YJ, Jo MJ, Yun HK, Jeong YA, Kim DY, Kim BG, You S, Oh SC, Lee DH. Codium fragile F2 sensitize colorectal cancer cells to TRAIL-induced apoptosis via c-FLIP ubiquitination. Biochem Biophys Res Commun 2018; 508:1-8. [PMID: 30409427 DOI: 10.1016/j.bbrc.2018.10.159] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 10/25/2018] [Indexed: 12/22/2022]
Abstract
This study demonstrates that combined treatment with subtoxic doses of Codium extracts (CE), a flavonoid found in many fruits and vegetables, and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), induces apoptosis in TRAIL-resistant colorectal cancer (CRC) cells. Effective induction of apoptosis by combined treatment with CE and TRAIL was not blocked by Bcl-xL overexpression, which is known to confer resistance to various chemotherapeutic agents. While TRAIL-mediated proteolytic processing of procaspase-3 was partially blocked in various CRC cells treated with TRAIL alone, co-treatment with CE efficiently recovered TRAIL-induced caspase activation. We observed that CE treatment of CRC cells did not change the expression of anti-apoptotic proteins and pro-apoptotic proteins, including death receptors (DR4 and DR5). However, CE treatment markedly reduced the protein level of the short form of the cellular FLICE-inhibitory protein (c-FLIPS), an inhibitor of caspase-8, via proteasome-mediated degradation. Collectively, these observations show that CE recovers TRAIL sensitivity in various CRC cells via down-regulation of c-FLIPS.
Collapse
Affiliation(s)
- Seong Hye Park
- Graduate School of Medicine, Korea University College of Medicine, Seoul, 152-703, Republic of Korea
| | - Jung Lim Kim
- Department of Oncology, Korea University Guro Hospital, Seoul, 152-703, Republic of Korea
| | - Soyeon Jeong
- Department of Oncology, Korea University Guro Hospital, Seoul, 152-703, Republic of Korea
| | - Bo Ram Kim
- Department of Oncology, Korea University Guro Hospital, Seoul, 152-703, Republic of Korea
| | - Yoo Jin Na
- Graduate School of Medicine, Korea University College of Medicine, Seoul, 152-703, Republic of Korea
| | - Min Jee Jo
- Graduate School of Medicine, Korea University College of Medicine, Seoul, 152-703, Republic of Korea
| | - Hye Kyeong Yun
- Graduate School of Medicine, Korea University College of Medicine, Seoul, 152-703, Republic of Korea
| | - Yoon A Jeong
- Graduate School of Medicine, Korea University College of Medicine, Seoul, 152-703, Republic of Korea
| | - Dae Yeong Kim
- Graduate School of Medicine, Korea University College of Medicine, Seoul, 152-703, Republic of Korea
| | - Bu Gyeom Kim
- Graduate School of Medicine, Korea University College of Medicine, Seoul, 152-703, Republic of Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon 210-702, Republic of Korea
| | - Sang Cheul Oh
- Graduate School of Medicine, Korea University College of Medicine, Seoul, 152-703, Republic of Korea; Department of Oncology, Korea University Guro Hospital, Seoul, 152-703, Republic of Korea.
| | - Dae-Hee Lee
- Graduate School of Medicine, Korea University College of Medicine, Seoul, 152-703, Republic of Korea; Department of Oncology, Korea University Guro Hospital, Seoul, 152-703, Republic of Korea.
| |
Collapse
|
12
|
Lin H, Wang Y, Lai H, Li X, Chen T. Iron(II)-Polypyridyl Complexes Inhibit the Growth of Glioblastoma Tumor and Enhance TRAIL-Induced Cell Apoptosis. Chem Asian J 2018; 13:2730-2738. [PMID: 29963768 DOI: 10.1002/asia.201800862] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/26/2018] [Indexed: 12/14/2022]
Abstract
A promising cancer-targeting agent for the induction of apoptosis in tumor necrosis factor (TNF) proteins, the TNF-related apoptosis-inducing ligand (TRAIL) ligand, has found limited applications in the treatment of cancer cells, owing to its resistance by cancer cell lines. Therefore, the rational design of anticancer agents that could sensitize cancer cells towards TRAIL is of great significance. Herein, we report that synthetic iron(II)-polypyridyl complexes are capable of inhibiting the proliferation of glioblastoma cancer cells and efficiently enhancing TRAIL-induced cell apoptosis. Mechanistic studies demonstrated that the synthesized complexes induced cancer-cell apoptosis through triggering the activation of p38 and p53 and inhibiting the activation of ERK. Moreover, uPA and MMP-2/MMP-9, among the most important metastatic regulatory proteins, were also found to be significantly alerted after the treatment. Furthermore, we also found that tumor growth in nude mice was significantly inhibited by iron complex Fe2 through the induction of apoptosis without clear systematic toxicity, as indicated by histological analysis. Taken together, this study provides evidence for the further development of metal-based anticancer agents and chemosensitizers of TRAIL for the treatment of human glioblastoma cancer cells.
Collapse
Affiliation(s)
- Hao Lin
- The First Affiliated Hospital, and, Department of Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| | - Yifan Wang
- The First Affiliated Hospital, and, Department of Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| | - Haoqiang Lai
- The First Affiliated Hospital, and, Department of Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiaoling Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, P. R. China
| | - Tianfeng Chen
- The First Affiliated Hospital, and, Department of Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
13
|
Yang X, Li Z, Wu Q, Chen S, Yi C, Gong C. TRAIL and curcumin codelivery nanoparticles enhance TRAIL-induced apoptosis through upregulation of death receptors. Drug Deliv 2017; 24:1526-1536. [PMID: 28994313 PMCID: PMC8241104 DOI: 10.1080/10717544.2017.1384863] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/22/2017] [Accepted: 09/22/2017] [Indexed: 02/05/2023] Open
Abstract
Active targeting nanoparticles were developed to simultaneously codeliver tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Curcumin (Cur). In the nanoparticles (TRAIL-Cur-NPs), TRAIL was used as both active targeting ligand and therapeutic agent, and Cur could upregulate death receptors (DR4 and DR5) to increase the apoptosis-inducing effects of TRAIL. Compared with corresponding free drugs, TRAIL-Cur-NPs group showed enhanced cellular uptake, cytotoxicity and apoptosis induction effect on HCT116 colon cancer cells. In addition, in vivo anticancer studies suggested that TRAIL-Cur-NPs had superior therapeutic effect on tumors without obvious toxicity, which was mainly due to the high tumor targeting and synergistic effect of TRAIL and Cur. The synergistic mechanism of improved antitumor efficacy was proved to be upregulation of DR4 and DR5 in tumor cells induced by Cur. Thus, the prepared codelivery nanoparticles may have potential applications in colorectal cancer therapy.
Collapse
Affiliation(s)
- Xi Yang
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhaojun Li
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiotherapy, Hainan General Hospital, Haikou, China
| | - Qinjie Wu
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shouchun Chen
- Chengdu Huachuang Biotechnology Co. Ltd, Chengdu, China
| | - Cheng Yi
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Changyang Gong
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Hu W, Jia X, Gao Y, Zhang Q. Chaetospirolactone reverses the apoptotic resistance towards TRAIL in pancreatic cancer. Biochem Biophys Res Commun 2017; 495:621-628. [PMID: 29107694 DOI: 10.1016/j.bbrc.2017.10.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 12/17/2022]
Abstract
The pancreatic cancer is one of the most aggressive tumors. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can trigger apoptosis by interaction with death receptors. However, in TRAIL-resistant pancreatic cancer, responsiveness to TRAIL treatment is terribly poor. In current work, we have demonstrated that a natural product chaetospirolactone (CSL) isolated from an endophytic fungus Chaetomium sp. NF00754 can enhance the susceptibility of TRAIL-resistant pancreatic cancer cells to apoptosis. CSL can induce apoptosis in TRAIL-treated pancreatic cancer cells. Furthermore, combined CSL and TRAIL treatment significantly inhibits viability and migration of pancreatic cancer cells. Combinatorial TRAIL and CSL treatment repressed xenograft tumor growth without substantially toxic side effects. CSL can specifically upregulate expression of death receptor 4 (DR4). Further study revealed that CSL represses the activities of an epigenetic regulator enhancer of zeste homolog 2 (EZH2) and consistently reduces histone H3 lysine 27 trimethylation (H3K27me3) to allow DR4 transcription. Taken together, CSL treatment may reverse TRAIL resistance in pancreatic cancer cells via epigenetic regulation of DR4 implying that administration of CSL might represent a putative strategy for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Wei Hu
- Department of Oncology, Jining NO.1 People's Hospital, Jining, 272011, Shandong, China
| | - Xuefeng Jia
- Department of Oncology, Jining NO.1 People's Hospital, Jining, 272011, Shandong, China
| | - Yanfang Gao
- Department of Medical Oncology, Weifang People's Hospital, Weifang, 261041, Shandong, China
| | - Qiujie Zhang
- Department of Oncology, Jining NO.1 People's Hospital, Jining, 272011, Shandong, China.
| |
Collapse
|
15
|
Meyer K, Kwon YC, Ray RB, Ray R. N-terminal gelsolin fragment potentiates TRAIL mediated death in resistant hepatoma cells. Sci Rep 2017; 7:12803. [PMID: 28993697 PMCID: PMC5634413 DOI: 10.1038/s41598-017-13131-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/19/2017] [Indexed: 01/10/2023] Open
Abstract
TNF-α related apoptosis-inducing ligand (TRAIL) selectively kills tumor cells, without damaging normal cells. TRAIL receptors facilitate induction of apoptosis for selective elimination of malignant cells. However, some cancer cells have developed resistances to TRAIL which limits anticancer potential. Gelsolin, a multifunctional actin-binding protein, mediates cell death involving the TRAIL receptors in the hepatic stellate cell line, LX2. Here, we have shown that conditioned medium (CM) containing gelsolin fragments or an N-terminal gelsolin fragment (amino acid residues 1-70) in the presence of TRAIL impairs cell viability of TRAIL resistant transformed human hepatocytes (HepG2). Cell growth regulation by CM and TRAIL was associated with the modulation of p53/Mdm2, Erk and Akt phosphorylation status. The use of N-terminal gelsolin peptide1-70 alone or in combination with TRAIL, induced inhibition of Akt phosphorylation and key survival factors, Mdm2 and Survivin. Treatment of cells with an Akt activator SC79 or p53 siRNA reduced the effects of the N-terminal gelsolin fragment and TRAIL. Together, our study suggests that the N-terminal gelsolin fragment enhances TRAIL-induced loss of cell viability by inhibiting phosphorylation of Akt and promoting p53 function, effecting cell survival.
Collapse
Affiliation(s)
- Keith Meyer
- Departments of Internal Medicine and Pathology, Saint Louis University, Missouri, USA
| | - Young-Chan Kwon
- Departments of Internal Medicine and Pathology, Saint Louis University, Missouri, USA
| | - Ratna B Ray
- Pathology, Saint Louis University, Missouri, USA
| | - Ranjit Ray
- Departments of Internal Medicine and Pathology, Saint Louis University, Missouri, USA.
| |
Collapse
|
16
|
Li X, You M, Liu YJ, Ma L, Jin PP, Zhou R, Zhang ZX, Hua B, Ji XJ, Cheng XY, Yin F, Chen Y, Yin W. Reversal of the Apoptotic Resistance of Non-Small-Cell Lung Carcinoma towards TRAIL by Natural Product Toosendanin. Sci Rep 2017; 7:42748. [PMID: 28209994 PMCID: PMC5314365 DOI: 10.1038/srep42748] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/13/2017] [Indexed: 11/18/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively triggers cancer cell death via its association with death receptors on the cell membrane, but exerts negligible side effects on normal cells. However, some non-small-cell lung carcinoma (NSCLC) patients exhibited resistance to TRAIL treatment in clinical trials, and the mechanism varies. In this study, we described for the first time that toosendanin (TSN), a triterpenoid derivative used in Chinese medicine for pain management, could significantly sensitize human primary NSCLC cells or NSCLC cell lines to TRAIL-mediated apoptosis both in vitro and in vivo, while showing low toxicity against human primary cells or tissues. The underlying apoptotic mechanisms involved upregulation of death receptor 5 (DR5) and CCAAT/enhancer binding protein homologous protein, which is related to the endoplasmic reticulum stress response, and is further associated with reactive oxygen species generation and Ca2+ accumulation. Surprisingly, TSN also induced autophagy in NSCLC cells, which recruited membrane DR5, and subsequently antagonized the apoptosis-sensitizing effect of TSN. Taken together, TSN can be used to sensitize tumors and the combination of TRAIL and TSN may represent a useful strategy for NSCLC therapy; moreover, autophagy serves as an important drug resistance mechanism for TSN.
Collapse
Affiliation(s)
- Xin Li
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences, Nanjing University, Nanjing, 210093, China.,Jiangsu Key Lab of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming You
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Yong-Jian Liu
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences, Nanjing University, Nanjing, 210093, China
| | - Lin Ma
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences, Nanjing University, Nanjing, 210093, China
| | - Pei-Pei Jin
- Department of Anesthesiology and Intensive Care Unit, Changhai Hospital, Affiliated Hospital of the Second Military Medical University, Shanghai, China
| | - Ri Zhou
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences, Nanjing University, Nanjing, 210093, China
| | - Zhao-Xin Zhang
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences, Nanjing University, Nanjing, 210093, China
| | - Baojin Hua
- Guang'anmen hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Jun Ji
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences, Nanjing University, Nanjing, 210093, China
| | - Xiao-Ying Cheng
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences, Nanjing University, Nanjing, 210093, China
| | - Fangzhou Yin
- College of Pharmacy, Nanjing University of Chinese medicine, China
| | - Yan Chen
- Guang'anmen hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Jiangsu Cancer Hospital &Institute Affiliated to Nanjing Medical University, China
| | - Wu Yin
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences, Nanjing University, Nanjing, 210093, China.,Jiangsu Key Lab of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
17
|
Artesunate acts as fuel to fire in sensitizing HepG2 cells towards TRAIL mediated apoptosis via STAT3 inhibition and DR4 augmentation. Biomed Pharmacother 2017; 88:515-520. [PMID: 28126677 DOI: 10.1016/j.biopha.2017.01.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 10/20/2022] Open
Abstract
In the present study, we investigated in vitro, the role of artesunate (ATS) with comparable potency to oxaliplatin (OXP) in sensitizing tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) resistant HepG2 cells towards apoptosis. ATS in consistency with OXP was found to reverse TRAIL resistant HepG2 cells towards TRAIL mediated apoptosis by enhancing caspase-3 and cleavage of PARP. Additionally, ATS also suppressed the nuclear translocation of activated signal transducers and activators of transcription 3 (STAT3) thereby sensitizing the HepG2 cells towards only death receptor 4 (DR4) mediated apoptosis. Furthermore, ATS exposure in TRAIL resistant cells resulted in significant increase of both DR4/DR5 expression and STAT3 inhibition thereby arbitrating TRAIL mediated apoptosis in HepG2 cells. The increase in expression was comparable to that of STAT3 silenced cells. From all the above observations, we conclude that ATS up-regulated DR4 expression by targeting STAT3, which in turn sensitized HepG2 cells to TRAIL mediated apoptosis.
Collapse
|
18
|
Villanueva-Paz M, Cordero MD, Pavón AD, Vega BC, Cotán D, De la Mata M, Oropesa-Ávila M, Alcocer-Gomez E, de Lavera I, Garrido-Maraver J, Carrascosa J, Zaderenko AP, Muntané J, de Miguel M, Sánchez-Alcázar JA. Amitriptyline induces mitophagy that precedes apoptosis in human HepG2 cells. Genes Cancer 2016; 7:260-277. [PMID: 27738496 PMCID: PMC5059116 DOI: 10.18632/genesandcancer.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Systemic treatments for hepatocellular carcinoma (HCC) have been largely unsuccessful. This study investigated the antitumoral activity of Amitriptyline, a tricyclic antidepressant, in hepatoma cells. Amitriptyline-induced toxicity involved early mitophagy activation that subsequently switched to apoptosis. Amitriptyline induced mitochondria dysfunction and oxidative stress in HepG2 cells. Amitriptyline specifically inhibited mitochondrial complex III activity that is associated with decreased mitochondrial membrane potential (∆Ψm) and increased reactive oxygen species (ROS) production. Transmission electron microscopy (TEM) studies revealed structurally abnormal mitochondria that were engulfed by double-membrane structures resembling autophagosomes. Consistent with mitophagy activation, fluorescence microscopy analysis showed mitochondrial Parkin recruitment and colocalization of mitochondria with autophagosome protein markers. Pharmacological or genetic inhibition of autophagy exacerbated the deleterious effects of Amitriptyline on hepatoma cells and led to increased apoptosis. These results suggest that mitophagy acts as an initial adaptive mechanism of cell survival. However persistent mitochondrial damage induced extensive and lethal mitophagy, autophagy stress and autophagolysome permeabilization leading eventually to cell death by apoptosis. Amitriptyline also induced cell death in hepatoma cells lines with mutated p53 and non-sense p53 mutation. Our results support the hypothesis that Amitriptyline-induced mitochondrial dysfunction can be a useful therapeutic strategy for HCC treatment, especially in tumors showing p53 mutations and/or resistant to genotoxic treatments.
Collapse
Affiliation(s)
- Marina Villanueva-Paz
- Centro Andaluz de Biología de Desarrollo (CABD), Universidad Pablo de Olavide/CSIC/, Sevilla, Spain
| | - Mario D Cordero
- Facultad de Odontología, Universidad de Sevilla, Sevilla, Spain
| | - Ana Delgado Pavón
- Centro Andaluz de Biología de Desarrollo (CABD), Universidad Pablo de Olavide/CSIC/, Sevilla, Spain
| | - Beatriz Castejón Vega
- Centro Andaluz de Biología de Desarrollo (CABD), Universidad Pablo de Olavide/CSIC/, Sevilla, Spain
| | - David Cotán
- Centro Andaluz de Biología de Desarrollo (CABD), Universidad Pablo de Olavide/CSIC/, Sevilla, Spain
| | - Mario De la Mata
- Centro Andaluz de Biología de Desarrollo (CABD), Universidad Pablo de Olavide/CSIC/, Sevilla, Spain
| | - Manuel Oropesa-Ávila
- Centro Andaluz de Biología de Desarrollo (CABD), Universidad Pablo de Olavide/CSIC/, Sevilla, Spain
| | - Elizabet Alcocer-Gomez
- Centro Andaluz de Biología de Desarrollo (CABD), Universidad Pablo de Olavide/CSIC/, Sevilla, Spain
| | - Isabel de Lavera
- Centro Andaluz de Biología de Desarrollo (CABD), Universidad Pablo de Olavide/CSIC/, Sevilla, Spain
| | - Juan Garrido-Maraver
- Centro Andaluz de Biología de Desarrollo (CABD), Universidad Pablo de Olavide/CSIC/, Sevilla, Spain
| | - José Carrascosa
- Centro Andaluz de Biología de Desarrollo (CABD), Universidad Pablo de Olavide/CSIC/, Sevilla, Spain
| | - Ana Paula Zaderenko
- Sistemas Físicos, Químicos y Naturales-Universidad Pablo de Olavide, Sevilla, Spain
| | - Jordi Muntané
- Departmento de Cirugía General y Aparato Digestivo, Hospital Universitario Virgen del Rocío/Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla, Sevilla, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Manuel de Miguel
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - José Antonio Sánchez-Alcázar
- Centro Andaluz de Biología de Desarrollo (CABD), Universidad Pablo de Olavide/CSIC/, Sevilla, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| |
Collapse
|
19
|
Wang K, Kievit FM, Jeon M, Silber JR, Ellenbogen RG, Zhang M. Nanoparticle-Mediated Target Delivery of TRAIL as Gene Therapy for Glioblastoma. Adv Healthc Mater 2015; 4:2719-26. [PMID: 26498165 DOI: 10.1002/adhm.201500563] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/14/2015] [Indexed: 12/21/2022]
Abstract
Human tumor necrosis factor α-related apoptosis-inducing ligand (TRAIL) is an attractive cancer therapeutic because of its ability to induce apoptosis in tumor cells while having a negligible effect on normal cells. However, the short serum half-life of TRAIL and lack of efficient in vivo administration approaches have largely hindered its clinical use. Using nanoparticles (NPs) as carriers in gene therapy is considered as an alternative approach to increase TRAIL delivery to tumors as transfected cells would be induced to secrete TRAIL into the tumor microenvironment. To enable effective delivery of plasmid DNA encoding TRAIL into glioblastoma (GBM), we developed a targeted iron oxide NP coated with chitosan-polyethylene glycol-polyethyleneimine copolymer and chlorotoxin (CTX) and evaluated its effect in delivering TRAIL in vitro and in vivo. NP-TRAIL successfully delivers TRAIL into human T98G GBM cells and induces secretion of 40 pg mL(-1) of TRAIL in vitro. Transfected cells show threefold increased apoptosis as compared to the control DNA bound NPs. Systemic administration of NP-TRAIL-CTX to mice bearing T98G-derived flank xenografts results in near-zero tumor growth and induces apoptosis in tumor tissue. Our results suggest that NP-TRAIL-CTX can potentially serve as a targeted anticancer therapeutic for more efficient TRAIL delivery to GBM.
Collapse
Affiliation(s)
- Kui Wang
- Department of Materials Science and Engineering; University of Washington; Seattle WA 98195 USA
| | - Forrest M. Kievit
- Department of Neurological Surgery; University of Washington; Seattle WA 98195 USA
| | - Mike Jeon
- Department of Materials Science and Engineering; University of Washington; Seattle WA 98195 USA
| | - John R. Silber
- Department of Neurological Surgery; University of Washington; Seattle WA 98195 USA
| | | | - Miqin Zhang
- Department of Materials Science and Engineering; University of Washington; Seattle WA 98195 USA
- Department of Neurological Surgery; University of Washington; Seattle WA 98195 USA
| |
Collapse
|
20
|
Far upstream element-binding protein 1 (FUBP1) is a potential c-Myc regulator in esophageal squamous cell carcinoma (ESCC) and its expression promotes ESCC progression. Tumour Biol 2015; 37:4115-26. [PMID: 26490982 DOI: 10.1007/s13277-015-4263-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/15/2015] [Indexed: 01/12/2023] Open
Abstract
The human far upstream element (FUSE) binding protein 1 (FUBP1) belongs to an ancient family which is required for proper regulation of the c-Myc proto-oncogene. Although c-Myc plays an important role in development of various carcinomas, the relevance of FUBP1 and their contribution to esophageal squamous cell carcinoma (ESCC) development remain unclear. In this study, we aimed to investigate the relationship between FUBP1 and c-Myc as well as their contribution to ESCC development. Western blot and immunohistochemical analyses were performed to evaluate FUBP1 expression. Coimmunoprecipitation analysis was performed to explore the correlation between FUBP1 and c-Myc in ESCC. In addition, the role of FUBP1 in ESCC proliferation was studied in ESCC cells through knocking FUBP1 down. The regulation of FUBP1 on proliferation was confirmed by Cell Counting Kit-8 (CCK-8) assay, flow cytometric assays, and clone formation assays. The expressions of FUBP1 and c-Myc were both upregulated in ESCC tissues. In addition to correlation between expression of FUBP1 and tumor grade, we also confirmed the correlation of FUBP1, c-Myc, and Ki-67 expression by twos. Moreover, upregulation of FUBP1 and c-Myc in ESCC was associated with poor survival. FUBP1 was confirmed to activate c-Myc in ESCC tissues and cells. FUBP1 was demonstrated to promote proliferation of ESCC cells. Moreover, downregulation of both FUBP1 and c-Myc was confirmed to inhibit proliferation of ESCC cells. Our results indicated that FUBP1 may potentially stimulate c-Myc expression in ESCC and its expression may promote ESCC progression.
Collapse
|
21
|
Zhang DW, Li HY, Lau WY, Cao LQ, Li Y, Jiang XF, Yang XW, Xue P. Gli2 silencing enhances TRAIL-induced apoptosis and reduces tumor growth in human hepatoma cells in vivo. Cancer Biol Ther 2015; 15:1667-76. [PMID: 25535898 DOI: 10.4161/15384047.2014.972286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Our previous studies have showed that Gli2 played a predominant role in proliferation and apoptosis resistance to TRAIL in hepatoma cells. The purpose of this study was to explore whether Gli2 silencing enhances efficiency of TRAIL for hepatoma in vivo. SMMC-7721-shRNA cells were implanted subcutaneously into nude mices and TRAIL was injected into the peritoneal space. TUNEL assay was used to detect apoptosis of tumor cells. The expression of Gli2, c-FLIPL, c-FLIPS, and Bcl-2 protein was determined by immunohistochemistry, respectively. Apoptosis and the level of caspases proteins in SMMC-7721 and HepG2 cells were detected by Flow cytometry and Western blot. Transcriptional activity of c-FLIP induced by Gli2 was measured by luciferase reporter gene assay. The results showed that lower volumes and weights of tumor were found in mice xenografted with SMMC-7721-shRNA cells as compared with control cells in the presence of TRAIL (P < 0.05). TUNEL assay showed significantly higher apoptosis index (AI) in the SMMC-7721-shRNA group than in the control groups (P < 0.05). There were remarkable positive correlations between Gli2 and c-FLIPL, c-FLIPS, Bcl-2 protein expression. Over-expression of c-FLIP or Bcl-2 in HepG2 cells attenuated TRAIL-induced apoptosis via suppression of caspase-8 or caspase-9 activity, respectively. Luciferase reporter gene assay found a regulatory sequence by which Gli2 activated transcription between -1007 to -244 in the c-FLIP promoter region. This study demonstrates that Gli2 showed regulatory activity on transcription of c-FLIP gene, and Gli2 silencing enhances TRAIL-induced apoptosis via down-regulation of c-FLIP and Bcl-2 in human hepatoma cells in vivo.
Collapse
Affiliation(s)
- Da-wei Zhang
- a Department of Hepatobiliary Surgery ; The Second Affiliated Hospital of Guangzhou Medical University ; Guangzhou , China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Antitumor effect of TRAIL on oral squamous cell carcinoma using magnetic nanoparticle-mediated gene expression. Cell Biochem Biophys 2015; 69:663-72. [PMID: 24563116 DOI: 10.1007/s12013-014-9849-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We developed a new magnetic nanovector to improve the efficiency and targeting of transgene therapy for oral squamous cell carcinoma (OSCC). Positively charged polymer PEI-modified Fe(3)O(4) magnetic nanoparticles were tested as gene transfer vectors in the presence of a magnetic field. The Fe(3)O(4) nanoparticles were prepared by a co-precipitation method and had good dispersibility in water. These nanoparticles modified by PEI were combined with negatively charged pACTERT-EGFP via electrostatic interaction. The transfection efficiency of the magnetic nano-gene vector with the magnetic field was determined by a fluorescence-inverted microscope and flow cytometry. The results showed significant improvement compared with the control group (p < 0.05). The magnetic complexes also exhibited up to 6-times higher transfection efficiency compared with commonly used PEI or lipofectin. On the basis of these results, the antitumor effect with suicide gene therapy using pACTERT-TRAIL in vitro and vivo was evaluated. In vitro apoptosis was determined with the Annexin V-FITC Apoptosis Detection Kit. The results suggested that PEI-modified Fe(3)O(4) nanoparticles could mediate the killing of Tca83 cells. Furthermore, treatment with pACTERT-TRAIL delivered by magnetic nanoparticles showed a significant cytostatic effect through the induction of apoptosis in a xenograft model. This indicates that magnetic nano-gene vectors could improve the transgene efficiency for Tca83 cells and could exhibit antitumor functions with the plasmid pACTERT-TRAIL. This may be a new way to treat OSCC.
Collapse
|
23
|
α-Hispanolol sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis via death receptor up-regulation. Toxicol Appl Pharmacol 2015; 286:168-77. [DOI: 10.1016/j.taap.2015.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/25/2015] [Accepted: 04/21/2015] [Indexed: 12/18/2022]
|
24
|
Wu PH, Chen XM, Liu XQ, He JL, Feng Q, Lan X, Zhang X, Geng YQ, Wang YX, Ding YB. Activation of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor gene expression following DNA demethylation in placental choriocarcinoma and transformed cell lines. Reprod Fertil Dev 2015; 28:RD14408. [PMID: 26014898 DOI: 10.1071/rd14408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 04/29/2015] [Indexed: 11/23/2022] Open
Abstract
We characterised DNA methylation and gene expression of four tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors DR4, DR5, DcR1 and DcR2 in three choriocarcinoma (JAR, JEG-3, BeWo) and two transformed (HTR-8/SVneo and HPT-8) cell lines. DR4 mRNA was detected in JAR, JEG-3, BeWo and HTR-8/SVneo cells, whereas DR5 was present in all detected cells. DcR1 transcripts were expressed only in JAR, JEG-3 and BeWo cells, whereas DcR2 transcripts were detected only in HTR-8/SVneo and HPT-8 cells. Hypermethylated DR4 promoter was observed in JAR, JEG-3, BeWo and HTR-8/SVneo cells, hypermethylated DcR1 promoter in HTR-8/SVneo and HPT-8 cells and hypermethylated DcR2 promoter in JAR, JEG-3 and BeWo cells. Restoration of DR4, DcR1 and DcR2 expression with decreased DNA methylation of these genes was induced by the DNA demethylation agent 5-aza-2'-deoxycytidine (5-aza-CdR) in trophoblast cells, whereas DR5 expression did not exhibit any change. Significant negative correlation between the expression and DNA methylation of these genes was also observed. In all tested cell lines, only HPT-8 demonstrated sensitivity to TRAIL-induced apoptosis. Combined treatment with 5-aza-CdR and TRAIL resulted in apoptosis in JAR, JEG-3, BeWo and HTR-8/SVneo cells but not in HPT-8 cells. The results indicate that DNA methylation is associated with TRAIL receptor expression and might be involved in trophoblast apoptosis.
Collapse
|
25
|
Abstract
Resveratrol is a natural polyphenol found in a wide variety of plants, including grapes, berries, and peanuts. Resveratrol can modulate a wide spectrum of molecular targets, including those involved in cancer signaling pathways. Here, we evaluated the role of resveratrol in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and examined the molecular mechanisms in the human hepatocellular carcinoma cell line HepG2. We used the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay to assess cell viability, flow cytometry to analyze cell cycle and apoptosis, and immunoblotting to detect protein expression. Resveratrol decreased cell viability at a concentration of 100 μmol/l or higher. At a concentration of 50 μmol/l, resveratrol induced S phase arrest of the cell cycle without apoptosis. In addition, phospho-AMPK increased significantly in a dose-dependent manner. Resveratrol was found to synergistically augment TRAIL-induced apoptosis. The rates of early apoptosis were 3.4, 9.6, and 49.6% on treatment with 50 μmol/l resveratrol, 10 ng/ml TRAIL, and both reagents, respectively. Resveratrol significantly downregulated the expression of survivin in a dose-dependent manner. In conclusion, we found that that resveratrol could augment TRAIL sensitivity by downregulating survivin. These results suggest that combination resveratrol with TRAIL may be an effective new strategy for the treatment of hepatocellular carcinoma.
Collapse
|
26
|
Wan Z, Pan H, Liu S, Zhu J, Qi W, Fu K, Zhao T, Liang J. Downregulation of SNAIL sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis by regulating the NF-κB pathway. Oncol Rep 2015; 33:1560-6. [PMID: 25607597 DOI: 10.3892/or.2015.3743] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/09/2015] [Indexed: 11/05/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer and the second most lethal cancer worldwide. Evidence has shown HCC cell resistance to TRAIL‑mediated apoptosis. In a previous study, we verified that silencing SNAIL downregulated the growth of HCC cells. In addition, the mechanism of resistance to TRAIL in HCC cells was connected with the activation of nuclear factor-κB (NF-κB). Thus, it was hypothesized that the downregultaion of SNAIL sensitizes HCC cells to TRAIL-induced apoptosis by regulating the NF-κB pathway. In the present study, the most effective lentiviral vectors carrying shRNA against SNAIL were selected and adenoviral vectors harboring TRAIL were constructed. The expression of SNAIL and TRAIL was detected by quantitative PCR and western blotting. HCC cell viability and apoptosis were assessed using an MTT assay and the Hoechst test. To determine how to sensitize HCC cells to TRAIL-induced apoptosis after silencing SNAIL, p53 was assessed by western blot analysis. We also investigated the expression of Bcl-xL, cIAP2, survivin and Raf-1 protein using western blot analysis and the apoptotic degree of HuH-7 cells was detected using the Hoechst test following the suppression of each gene, which was a possible molecular mechanism to sensitive TRAIL-induced apoptosis through the downregulation of SNAIL in HCC cells. Silencing SNAIL resulted in increased apoptosis by enhancing sensitization to TRAIL in all the HCC cells. Additionally, p53 protein was upregulated in HuH-7 cells. Expression of Bcl-xL, cIAP2, survivin and Raf-1 was downregulated following silencing of SNAIL, while down-regulation of any of the proteins contributed to SNAIL suppression enhancing HCC cell sensitivity to TRAIL‑induced apoptosis, with the exception of cIAP2. The results demonstrated that silencing SNAIL can sensitize TRAIL-induced apoptosis in HCC cells by upregulating p53 protein and by regulating related genes of the NF-κB pathway such as Bcl-xL, survivin and Raf-1.
Collapse
Affiliation(s)
- Zhaojun Wan
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Huazheng Pan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Shihai Liu
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jingjuan Zhu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Weiwei Qi
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Kai Fu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Teng Zhao
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jun Liang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
27
|
Yao L, Cao J, Sun H, Guo A, Li A, Ben Z, Zhang H, Wang X, Ding Z, Yang X, Huang X, Ji Y, Zhou Z. FBP1 and p27kip1 expression after sciatic nerve injury: implications for Schwann cells proliferation and differentiation. J Cell Biochem 2014; 115:130-40. [PMID: 23939805 DOI: 10.1002/jcb.24640] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 07/30/2013] [Indexed: 11/09/2022]
Abstract
Far Upstream Element (FUSE) Binding Protein 1 (FBP1), first identified as a single-stranded DNA (ssDNA) binding protein that binds to the FUSE, could modulate c-myc mRNA levels and also has been shown to regulate tumor cell proliferation and replication of virus. Typically, FBP1 could active the translation of p27kip1 (p27) and participate in tumor growth. However, the expression and roles of FBP1 in peripheral system lesions and repair are still unknown. In our study, we found that FBP1 protein levels was relatively higher in the normal sciatic nerves, significantly decreased and reached a minimal level at Day 3, and then returned to the normal level at 4 weeks. Spatially, we observed that FBP1 had a major colocation in Schwann cells and FBP1 was connected with Ki-67 and Oct-6. In vitro, we detected the decreased level of FBP1 and p27 in the TNF-α-induced Schwann cells proliferation model, while increased expression in cAMP-induced Schwann cells differentiation system. Specially, FBP1-specific siRNA-transfected SCs did not show fine and longer morphological change after cAMP treatment and had a decreased motility compared with normal. At 3 days after cAMP treatment and SC/neuron co-cultures, p27 was transported to cytoplasm to form CDK4/6-p27 to participate in SCs differentiation. In conclusion, we speculated that FBP1 and p27 were involved in SCs proliferation and the following differentiation in the sciatic nerve after crush by transporting p27 from nucleus to cytoplasm.
Collapse
Affiliation(s)
- Li Yao
- Department of Orthopaedics, Affiliated Jiangyin Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China; Department of Immunology, Medical College, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Shin EA, Sohn EJ, Won G, Choi JU, Jeong M, Kim B, Kim MJ, Kim SH. Upregulation of microRNA135a-3p and death receptor 5 plays a critical role in Tanshinone I sensitized prostate cancer cells to TRAIL induced apoptosis. Oncotarget 2014; 5:5624-36. [PMID: 25015549 PMCID: PMC4170628 DOI: 10.18632/oncotarget.2152] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 06/29/2014] [Indexed: 01/24/2023] Open
Abstract
Though tumor necrosis factor related apoptosis inducing ligand (TRAIL) has been used as a potent anticancer agent, TRAIL resistance is a hot-issue in cancer therapy. We investigated the antitumor mechanism of Tanshinone I to sensitize prostate cancer cells to TRAIL. Comibination of Tanshinone I and TRAIL exerted synergistic cytotoxicity, increased cleaved PARP, sub G1 population, the number of TUNELpositive cells, activated caspase 8, 9 and ROS production in PC-3 and DU145 cells. Of note, combination of Tanshinone I and TRAIL enhanced the protein expression of death receptor 5 (DR5) and attenuated anti-apoptotic proteins. RT-PCR and RT-qPCR analyses confirmed that co-treatment of Tanshinone I and TRAIL up-regulated DR5 and microRNA 135a-3p at mRNA level or activity of DR5 promoter and attenuated phosphorylation of extracellular signal regulated kinases in PC-3. Conversely, the silencing of DR5 blocked the increased cytotoxicity, sub G1 population and PARP cleavages induced by co-treatment of Tanshinone I and TRAIL. Interestingly, miR135a-3p mimic enhanced DR5 at mRNA, increased PARP cleavage, Bax and the number of TUNEL positive cells in Tanshinone I and TRAIL cotreated PC-3. Overall, our findings suggest that Tanshinone I enhances TRAIL mediated apoptosis via upregulation of miR135a-3p mediated DR5 in prostate cancer cells as a potent TRAIL sensitizer.
Collapse
Affiliation(s)
- Eun Ah Shin
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Seoul, South Korea
| | - Eun Jung Sohn
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Seoul, South Korea
| | - Gunho Won
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Seoul, South Korea
| | - Jeong-Un Choi
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Seoul, South Korea
| | - Myongsuk Jeong
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Seoul, South Korea
| | - Bonglee Kim
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Seoul, South Korea
| | - Min-Jeong Kim
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Seoul, South Korea
| | - Sung-Hoon Kim
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
29
|
Fayyaz S, Yaylim I, Turan S, Kanwal S, Farooqi AA. Hepatocellular carcinoma: targeting of oncogenic signaling networks in TRAIL resistant cancer cells. Mol Biol Rep 2014; 41:6909-17. [PMID: 25037270 DOI: 10.1007/s11033-014-3577-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/01/2014] [Indexed: 01/18/2023]
Abstract
Apoptotic response in hepatocellular carcinoma (HCC) cells is impaired because of interconnectivity of proteins into complexes and signaling networks that are highly divergent in time and space. TNF-related apoptosis-inducing ligand (TRAIL) has emerged as an attractive anticancer agent reported to selectively induce apoptosis in cancer cells. Although diametrically opposed roles of TRAIL are reported both as an inducer of apoptosis and regulator of metastasis, overwhelmingly accumulating experimental evidence highlighting apoptosis inducing activity of TRAIL is directing TRAIL into clinical trials. Insights from TRAIL mediated signaling in HCC research are catalyzing new lines of study that should not only explain molecular mechanisms of disease but also highlight emerging paradigms in restoration of TRAIL mediated apoptosis in resistant cancer cells. It is becoming progressively more understandable that phytochemicals derived from edible plants have shown potential in modelling their interactions with their target proteins. Rapidly accumulating in vitro and in-vivo evidence indicates that phytonutrients have anticancer activity in rodent models of hepatocellular carcinoma. In this review we bring to limelight how phytonutrients restore apoptosis in hepatocellular carcinoma cells by rebalancing pro-apoptotic and anti-apoptotic proteins. Evidence has started to emerge, that reveals how phytonutrients target pharmacologically intractable proteins to suppress cancer. Target-based small-molecule discovery has entered into the mainstream research in the pharmaceutical industry and a better comprehension of the genetics of patients will be essential for identification of responders and non-responders.
Collapse
Affiliation(s)
- Sundas Fayyaz
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan
| | | | | | | | | |
Collapse
|
30
|
Subramaniam A, Loo SY, Rajendran P, Manu KA, Perumal E, Li F, Shanmugam MK, Siveen KS, Park JI, Ahn KS, Hui KM, Kumar AP, Sethi G. An anthraquinone derivative, emodin sensitizes hepatocellular carcinoma cells to TRAIL induced apoptosis through the induction of death receptors and downregulation of cell survival proteins. Apoptosis 2014; 18:1175-87. [PMID: 23700228 DOI: 10.1007/s10495-013-0851-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is currently under clinical trials for cancer, however many tumor cells, including hepatocellular carcinoma (HCC) develop resistance to TRAIL-induced apoptosis. Hence, novel agents that can alleviate TRAIL-induced resistance are urgently needed. In the present report, we investigated the potential of emodin to enhance apoptosis induced by TRAIL in HCC cells. As observed by MTT cytotoxicity assay and the externalization of the membrane phospholipid phosphatidylserine, we found that emodin can significantly potentiate TRAIL-induced apoptosis in HCC cells. When investigated for the mechanism(s), we observed that emodin can downregulate the expression of various cell survival proteins, and induce the cell surface expression of both TRAIL receptors, death receptors (DR) 4 as well as 5. In addition, emodin increased the expression of C/EBP homologous protein (CHOP) in a time-dependent manner. Knockdown of CHOP by siRNA decreased the induction of emodin-induced DR5 expression and apoptosis. Emodin-induced induction of DR5 was mediated through the generation of reactive oxygen species (ROS), as N-acetylcysteine blocked the induction of DR5 and the induction of apoptosis. Also, the knockdown of X-linked inhibitor of apoptosis protein by siRNA significantly reduced the sensitization effect of emodin on TRAIL-induced apoptosis. Overall, our experimental results clearly indicate that emodin can indeed potentiate TRAIL-induced apoptosis through the downregulation of antiapoptotic proteins, increased expression of apoptotic proteins, and ROS mediated upregulation of DR in HCC cells.
Collapse
Affiliation(s)
- Aruljothi Subramaniam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Does DcR1 (TNF-related apoptosis-inducing-ligand Receptor 3) have any role in human AMD pathogenesis? Sci Rep 2014; 4:4114. [PMID: 24534820 PMCID: PMC3927205 DOI: 10.1038/srep04114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/22/2014] [Indexed: 11/23/2022] Open
Abstract
It has been postulated that there is a link between age related degenerative diseases and cancer. The TNF-related apoptosis-inducing ligand (TRAIL) has been shown to selectively kill tumor cells by binding to pro-apoptotic and anti-apoptotic receptors. Our aim was to study the levels of anti-apoptotic receptor (DcR1) in age related macular degeneration (AMD) and controls. AMD patients (115) were classified into two groups: Dry and Wet AMD. Wet AMDs were further classified into occult, predominant classic and minimal classic. 61 healthy individuals were recruited as normal controls. After normalization with total protein, DcR1 levels were analyzed by ELISA. Mann Whitney U-statistic was used for analysis of DcR1 ELISA results. We have observed DcR1 levels in serum sample which were significantly lower in AMD patients as compared to controls (p = 0.001). On the other hand, we did not find difference in DcR1 levels between wet and dry AMD. The present study defines the plausible role of DcR1 in AMD pathology signifying a new therapeutic target for AMD.
Collapse
|
32
|
Omar HA, Arafa ESA, Maghrabi IA, Weng JR. Sensitization of Hepatocellular Carcinoma Cells to Apo2L/TRAIL by a Novel Akt/NF-κB Signalling Inhibitor. Basic Clin Pharmacol Toxicol 2014; 114:464-71. [DOI: 10.1111/bcpt.12190] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/30/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Hany A. Omar
- Division of Medicinal Chemistry; College of Pharmacy; The Ohio State University; Columbus OH USA
- Department of Pharmacology; Faculty of Pharmacy; Beni-Suef University; Beni-Suef Egypt
- Department of Pharmacology; College of Pharmacy; University of Sharjah; Sharjah United Arab Emirates
| | - El-Shaimaa A. Arafa
- Department of Pharmacology; Faculty of Pharmacy; Beni-Suef University; Beni-Suef Egypt
| | - Ibrahim A. Maghrabi
- Department of Clinical Pharmacy; College of Pharmacy; Taif University; Taif Saudi Arabia
| | - Jing-Ru Weng
- Department of Biological Science and Technology; China Medical University; Taichung Taiwan
| |
Collapse
|
33
|
TRAIL-secreting mesenchymal stem cells promote apoptosis in heat-shock-treated liver cancer cells and inhibit tumor growth in nude mice. Gene Ther 2014; 21:317-27. [PMID: 24451114 DOI: 10.1038/gt.2013.88] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 12/06/2013] [Accepted: 12/16/2013] [Indexed: 12/18/2022]
Abstract
Liver cancer is one of the top six leading causes of cancer-related death. Radiofrequency ablation (RFA) is an important means of treating liver cancer. Residual cancer after RFA is the most frequent cause of recurrence in cases of liver cancer. The main difference between residual cancer cells and ordinary liver cancer cells is that residual cancer cells experience heat shock. The secretable form of trimeric human tumor necrosis factor-related apoptosis-inducing ligand (stTRAIL) induces apoptosis in a variety of human cancers but not in normal tissues. It has shown potent cancer-selective killing activity and has drawn considerable attention as a possible cancer therapy. In the present work, the therapeutic potential of this stTRAIL-based gene therapy was evaluated in hepatocellular carcinoma subjected to RFA. Rat bone marrow mesenchymal stem cells (BM-MSCs) were isolated and transduced with a lentiviral vector encoding stTRAIL (stTRAIL-MSCs, T-MSCs). Cells treated with heat treatment at 43 °C for 45 min served as simulated residual cancer cells. After treatment with T-MSCs, apoptosis in heat-shock-treated liver cancer cells increased significantly, and caspase-3 was upregulated. When T-MSCs were subcutaneously injected into nude mice, they localized to the tumors and inhibited tumor growth, significantly increasing survival. Collectively, the results of the present study indicate that BM-MSC can provide a steady source of stTRAIL and may be suitable for use in the prevention of the recurrence of hepatocellular carcinoma after RFA with secretable trimeric TRAIL.
Collapse
|
34
|
Marcq I, Nyga R, Cartier F, Amrathlal RS, Ossart C, Ouled-Haddou H, Ghamlouch H, Galmiche A, Chatelain D, Lamotte L, Debuysscher V, Fuentes V, Nguyen-Khac E, Regimbeau JM, Marolleau JP, Latour S, Bouhlal H. Identification of SLAMF3 (CD229) as an inhibitor of hepatocellular carcinoma cell proliferation and tumour progression. PLoS One 2013; 8:e82918. [PMID: 24376606 PMCID: PMC3869749 DOI: 10.1371/journal.pone.0082918] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/29/2013] [Indexed: 01/26/2023] Open
Abstract
Although hepatocellular carcinoma (HCC) is one of the most common malignancies and constitutes the third leading cause of cancer-related deaths, the underlying molecular mechanisms are not fully understood. In the present study, we demonstrate for the first time that hepatocytes express signalling lymphocytic activation molecule family member 3 (SLAMF3/CD229) but not other SLAMF members. We provide evidence to show that SLAMF3 is involved in the control of hepatocyte proliferation and in hepatocellular carcinogenesis. SLAMF3 expression is significantly lower in primary human HCC samples and HCC cell lines than in human healthy primary hepatocytes. In HCC cell lines, the restoration of high levels of SLAMF3 expression inhibited cell proliferation and migration and enhanced apoptosis. Furthermore, SLAMF3 expression was associated with inhibition of HCC xenograft progression in the nude mouse model. The restoration of SLAMF3 expression levels also decreased the phosphorylation of MAPK ERK1/2, JNK and mTOR. In samples from resected HCC patients, SLAMF3 expression levels were significantly lower in tumorous tissues than in peritumoral tissues. Our results identify SLAMF3 as a specific marker of normal hepatocytes and provide evidence for its potential role in the control of proliferation of HCC cells.
Collapse
Affiliation(s)
- Ingrid Marcq
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
| | - Rémy Nyga
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
| | - Flora Cartier
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
- INSERM U1053, Laboratoire de Physiologie du Cancer du Foie, Université Bordeaux Segalen, 146, rue Léo Saignat, Bordeaux, France
| | - Rabbind Singh Amrathlal
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
| | - Christèle Ossart
- Service d’hématologie Clinique et de thérapie cellulaire Centre Hospitalier Universitaire sud, Amiens, France
| | - Hakim Ouled-Haddou
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
| | - Hussein Ghamlouch
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
| | - Antoine Galmiche
- Service de Biochimie, Centre Hospitalier Universitaire sud, Amiens, France
| | - Denis Chatelain
- Service d’Anatomie Pathologique, Centre Hospitalier Universitaire sud, Amiens, France
| | - Luciane Lamotte
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
| | - Véronique Debuysscher
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
| | - Vincent Fuentes
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
- Service d’Immunologie, Centre Hospitalier Universitaire sud, Amiens, France
| | - Eric Nguyen-Khac
- Service Hepato-Gastroenterologie, Centre Hospitalier Universitaire sud, Amiens, France
| | - Jean-Marc Regimbeau
- Service de chirurgie digestive Centre Hospitalier Universitaire sud, Amiens, France
| | - Jean-Pierre Marolleau
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
- Service d’hématologie Clinique et de thérapie cellulaire Centre Hospitalier Universitaire sud, Amiens, France
| | - Sylvain Latour
- IRNEM U768, Hôpital Necker enfants maladies, Paris, France
| | - Hicham Bouhlal
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
- Service d’hématologie Clinique et de thérapie cellulaire Centre Hospitalier Universitaire sud, Amiens, France
- * E-mail:
| |
Collapse
|
35
|
Wahl K, Siegemund M, Lehner F, Vondran F, Nüssler A, Länger F, Krech T, Kontermann R, Manns MP, Schulze-Osthoff K, Pfizenmaier K, Bantel H. Increased apoptosis induction in hepatocellular carcinoma by a novel tumor-targeted TRAIL fusion protein combined with bortezomib. Hepatology 2013; 57:625-36. [PMID: 22991197 DOI: 10.1002/hep.26082] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 09/04/2012] [Indexed: 12/31/2022]
Abstract
UNLABELLED As the result of an increasing incidence and a prevalent therapy resistance of hepatocellular carcinoma (HCC), there is a strong need for novel strategies to enhance treatment responses in HCC. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been proposed as a promising anticancer drug because it can selectively induce apoptosis in cancer cells, but not in healthy cells. Nevertheless, most tumor cells show TRAIL resistance, emphasizing the requirement for apoptosis-sensitizing agents and TRAIL molecules with improved tumor specificity. In this study, we employed a recombinant TRAIL molecule, in which three TRAIL protomers were expressed as a single polypeptide chain (scTRAIL), and a novel TRAIL variant, in which scTRAIL was additionally fused to an antibody fragment recognizing epidermal growth factor receptor (EGFR) to improve its HCC-targeting properties. We analyzed the proapoptotic effects of both TRAIL versions in combination with the proteasome inhibitor bortezomib (BZB) in hepatoma cells and primary human hepatocytes as well as in intact explants from HCC and healthy liver tissue. We demonstrate that EGFR-targeted TRAIL in combination with BZB induced significantly higher caspase activation and cell death in hepatoma cells, but not in primary hepatocytes. Importantly, when incubated with fresh liver explants, the combination of EGFR-targeted TRAIL and BZB displayed selective cytotoxicity for HCC, but not for tumor-free liver tissue, which could even be verified in liver explants from the same individuals. Unlike nontargeted TRAIL, EGFR-targeted TRAIL combined with BZB exerted no toxicity in liver tissues from nonalcoholic fatty liver disease patients. CONCLUSION EGFR-targeted TRAIL reveals increased antitumor activity toward HCC without inducing toxicity to tumor-free liver tissue and might therefore represent a promising novel strategy for HCC treatment.
Collapse
Affiliation(s)
- Kristin Wahl
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Synergistic induction of TRAIL-mediated apoptosis by anisomycin in human hepatoma cells via the BH3-only protein Bid and c-Jun/AP-1 signaling pathway. Biomed Pharmacother 2012; 67:321-8. [PMID: 23582782 DOI: 10.1016/j.biopha.2012.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 11/04/2012] [Indexed: 11/22/2022] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF super-family, and it has been shown that many human cancer cell lines are refractory to TRAIL-induced cell death. However, the molecular mechanisms underlying resistance are unclear. In the present study, we show that TRAIL-resistance is reversed in human hepatoma cells by anisomycin, which is known to inhibit protein synthesis and induce ribotoxic stress. Synergistic induction of apoptosis in cells treated with anisomycin plus TRAIL was associated with activation of caspases and cleavage of Bid, a pro-apoptotic BH3-only protein. Silencing of Bid expression by small interfering RNA (siRNA) significantly attenuated the loss of mitochondrial membrane potential (MMP, Δψm) and significantly increased induction of apoptosis in cells treated with anisomycin and TRAIL, confirming that Bid cleavage is required for the response. In addition, c-Jun/AP-1 was rapidly activated upon stimulation with anisomycin; however, the knockdown of c-Jun/AP-1 expression by c-Jun siRNA markedly reduced anisomycin plus TRAIL-induced loss of MMP and apoptosis. Taken together, the findings show that anisomycin sensitizes TRAIL-mediated hepatoma cell apoptosis via the mitochondria-associated pathway, involving the cleavage of Bid and activation of the c-Jun/AP-1 pathway, indicating that this compound can be used as an anti-tumor agent in combination with TRAIL.
Collapse
|
37
|
Nojiri K, Sugimoto K, Shiraki K, Tameda M, Inagaki Y, Ogura S, Kasai C, Kusagawa S, Yoneda M, Yamamoto N, Takei Y, Nobori T, Ito M. Sorafenib and TRAIL have synergistic effect on hepatocellular carcinoma. Int J Oncol 2012; 42:101-8. [PMID: 23123700 DOI: 10.3892/ijo.2012.1676] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/21/2012] [Indexed: 02/06/2023] Open
Abstract
A multi-kinase inhibitor, sorafenib, was recently approved and is currently recommended for the treatment of advanced hepatocellular carcinoma (HCC). However, HCC treatment outcomes are still poor and necessitate improvement. Therefore, we investigated the influence of sorafenib in combination with each of cytotoxic chemotherapy agents, hypoxia or tumor necrosis factor (TNF)-related apoptosis‑inducing ligand (TRAIL), on cytotoxicity to determine which is the better adjuvant. Additive cytotoxicity of sorafenib to chemotherapy agents, hypoxia and TRAIL, to HCC cells was assessed using cell viability assay. Intracellular levels of anti-apoptotic proteins were determined using western blot analysis. Activation of Wnt/β-catenin signaling was assessed using a luciferase reporter gene assay. Sorafenib significantly and synergistically enhanced the cytotoxicity of TRAIL to HCC cells and 4',6-diamidino-2-phenylindole (DAPI) staining showed increased apoptosis among cells treated with sorafenib and TRAIL. This augmentation in cytotoxicity was derived from sorafenib-mediated downregulation of anti-apoptotic proteins. However, sorafenib did not enhance the cytotoxicity of chemotherapy agents (cisplatin, 5-FU or doxorubicin) or hypoxic treatment to HCC. Moreover, hypoxic treatment induced Wnt/β-catenin signaling activation. Our data showed that in combination TRAIL and sorafenib had a synergistic cytokilling effect on HCC cells and that this effect derived from sorafenib-mediated downregulation of anti-apoptotic proteins.
Collapse
Affiliation(s)
- Keiichiro Nojiri
- First Department of Internal Medicine, Mie University School of Medicine, Tsu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yeh CH, Yang YY, Huang YF, Chow KC, Chen MF. Induction of apoptosis in human Hep3B hepatoma cells by norcantharidin through a p53 independent pathway via TRAIL/DR5 signal transduction. Chin J Integr Med 2012; 18:676-82. [DOI: 10.1007/s11655-012-1206-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Indexed: 11/30/2022]
|
39
|
Zhang B, Shan H, Li D, Li ZR, Zhu KS, Jiang ZB. The inhibitory effect of MSCs expressing TRAIL as a cellular delivery vehicle in combination with cisplatin on hepatocellular carcinoma. Cancer Biol Ther 2012; 13:1175-84. [PMID: 22922789 DOI: 10.4161/cbt.21347] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been demonstrated to induce cell apoptosis in many types of tumors, while many hepatocellular carcinoma (HCC) cells display high resistance to TRAIL. Another outstanding limitation of TRAIL is the short half-life in vivo. Stem cell-based therapies provide a promising approach for the treatment of many types of tumors because of the ability of tropism. Therefore, as a new therapeutic strategy, the combination of chemotherapeutic agents and TRAIL gene modified MSCs (TRAIL-MSCs) would improve the therapeutic efficacy of HCC in vivo. This is the first time to show the potential of combination of chemotherapeutic agents and MSCs as a gene vector in the therapy of HCC.
Collapse
Affiliation(s)
- Bo Zhang
- Molecular Imaging Laboratory, Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | | | | | | | | | | |
Collapse
|
40
|
A New Player in the Development of TRAIL Based Therapies for Hepatocarcinoma Treatment: ATM Kinase. Cancers (Basel) 2012; 4:354-78. [PMID: 24213315 PMCID: PMC3712690 DOI: 10.3390/cancers4020354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/15/2012] [Accepted: 03/26/2012] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. HCCs are genetically and phenotypically heterogeneous tumors characterized by very poor prognosis, mainly due to the lack, at present, of effective therapeutic options, as these tumors are rarely suitable for radiotherapy and often resistant to chemotherapy protocols. In the last years, agonists targeting the Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL) death receptor, has been investigated as a valuable promise for cancer therapy, based on their selectivity for malignant cells and low toxicity for healthy cells. However, many cancer models display resistance to death receptor induced apoptosis, pointing to the requirement for the development of combined therapeutic approaches aimed to selectively sensitize cancer cells to TRAIL. Recently, we identified ATM kinase as a novel modulator of the ability of chemotherapeutic agents to enhance TRAIL sensitivity. Here, we review the biological determinants of HCC responsiveness to TRAIL and provide an exhaustive and updated analysis of the molecular mechanisms exploited for combined therapy in this context. The role of ATM kinase as potential novel predictive biomarker for combined therapeutic approaches based on TRAIL and chemotherapeutic drugs will be closely discussed.
Collapse
|
41
|
Chen CY, Yiin SJ, Hsu JL, Wang WC, Lin SC, Chern CL. Isoobtusilactone A sensitizes human hepatoma Hep G2 cells to TRAIL-induced apoptosis via ROS and CHOP-mediated up-regulation of DR5. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3533-3539. [PMID: 22400995 DOI: 10.1021/jf2051224] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Hepatoma cells are relatively resistant to TRAIL. We have previously shown that isoobtusilactone A (IOA), a potent anticancer agent isolated from Cinnamomum kotoense, induced mitochondria-mediated apoptosis in hepatoma cells. Here, we report that IOA could potentiate TRAIL-induced apoptosis in Hep G2 cells. The combined treatment with IOA and TRAIL significantly induced caspase-dependent apoptosis. This correlated with the up-regulation of C/EBP homologous protein (CHOP) and death receptor 5 (DR5) protein levels. Gene silencing of the DR5 by small interfering RNA abrogated the apoptosis induced by the combined regimen of IOA and TRAIL, suggesting that the sensitization to TRAIL was mediated through DR5. By analyzing the DR5 promoter, we found that IOA induced a CHOP-dependent DR5 transactivation. DR5 expression after IOA treatment was accompanied by provoking intracellular reactive oxygen species (ROS) generation. Pretreatment with N-acetyl-L-cysteine (NAC) attenuated IOA-induced CHOP and DR5 expression and inhibited TRAIL-induced apoptosis. Taken together, our data suggested that ROS-dependent and CHOP-regulated DR5 expression played a pivotal role in the synergistic enhancement of TRAIL-induced apoptosis instigated by IOA in Hep G2 cells.
Collapse
Affiliation(s)
- Chung-Yi Chen
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
42
|
Zhang D, Liu J, Wang Y, Chen J, Chen T. shRNA-mediated silencing of Gli2 gene inhibits proliferation and sensitizes human hepatocellular carcinoma cells towards TRAIL-induced apoptosis. J Cell Biochem 2012; 112:3140-50. [PMID: 21695716 DOI: 10.1002/jcb.23240] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aberrant activation of the Hedgehog (Hh) signaling pathway has been reported in various cancer types including hepatocellular carcinoma (HCC). As a key effector of this signaling, Gli2 plays a crucial role in carcinogenesis, including the activation of genes encoding apoptosis inhibitors and cell-cycle regulators. In this study, we examined the role of Gli2 proliferation and survival of HCC cells. First, the expression levels of Hh pathway components were detected in a subset of HCC cell lines. To establish the role of Gli2 in maintaining the tumorigenic properties of HCC cells, we developed small hairpin RNA (shRNA) targeting Gli2 and transfected it into SMMC-7721 cell, which was selected with high level of Hh signaling expression. Next, effects of Gli2 gene silencing, on cell proliferation and on the expression of cell cycle-related proteins were evaluated, then, whether down-regulation of Gli2 renders HCC cell susceptible to TRAIL was examined in vitro. Knockdown of Gli2 inhibited cell proliferation and induced G1 phase arrest of cell cycle in SMMC-7721 cell through down-regulation of cyclin D1, cyclinE2, and up-regulation of p21-WAF1. Also, Gli2 gene siliencing sensitized SMMC-7721 cell to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by reducing the expression of the long and short isoform of c-FLIP and Bcl-2, and then augmented the activation of initiator caspases-8/-9 and effector caspases-3, which induces PARP cleavage. In conclusion, our data suggest that Gli2 plays a predominant role in the proliferation and apoptosis resistance of HCC cells, and that knockdown of Gli2 may be a novel anticancer strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Dawei Zhang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China
| | | | | | | | | |
Collapse
|
43
|
Dong B, Lv G, Wang Q, Wei F, Bellail AC, Hao C, Wang G. Targeting A20 enhances TRAIL-induced apoptosis in hepatocellular carcinoma cells. Biochem Biophys Res Commun 2012; 418:433-8. [PMID: 22285182 DOI: 10.1016/j.bbrc.2012.01.056] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 01/11/2012] [Indexed: 11/17/2022]
Abstract
A20 was initially identified as a primary gene product following TNF α treatment in human umbilical vein endothelial cells. Increased A20 expression is associated with tumorigenesis in many cancers, whereas the loss of A20 function is linked to lymphoma. It has been reported that A20 protects cells from TRAIL-induced apoptosis; however, the mechanism by which A20 is involved is still largely unknown. Our results indicate that TRAIL induces the hepatocellular carcinoma apoptosis associated with A20 knockdown in a concentration-dependent manner. TRAIL-induced apoptosis requires p18 caspase-8 activation, and, the activation of caspase-8 is at least in part, due to the direct cleavage of RIP1 by A20 knockdown. These findings suggest that A20 modulates the sensitivity to TRAIL by RIP1 ubiquitination, thereby repressing the recruitment and activation of pro-caspase-8 into the active form caspase-8. Thus, our study suggests that A20 protects against TRAIL-induced apoptosis through the regulation of RIP1 ubiquitination.
Collapse
Affiliation(s)
- Bingfei Dong
- Department of Hepatopancreatobiliary Surgery, First Hospital of Jilin University, Jilin University, 71 Xinmin Street, Changchun 130021, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Epidemiological data from the last years show an increasing trend of incidence and mortality of cholangiocarcinoma (CC) worldwide. Many pathophysiologic aspects of this neoplasia are still unknown and need to be fully discovered. However, several progresses were recently made in order to establish the molecular mechanisms involved in the transformation and growth of malignant cholangiocytes. The principal concept that at least seems to be established is that cholangiocarcinogenesis is a multistep cellular process evolving from a normal condition of the epithelial biliary cells through a chronic inflammation status ending with malignant transformation. The bad prognosis related to CC justifies why a better identification of the molecular mechanisms involved in the growth and progression of this cancer is required for the development of effective preventive measures and valid treatment regimens. This Paper describes the scientific progresses made in the last years in defining the molecular pathways implicated in the generation of this devastating disease.
Collapse
|
45
|
Moon DO, Kang CH, Kang SH, Choi YH, Hyun JW, Chang WY, Kang HK, Koh YS, Maeng YH, Kim YR, Kim GY. Capsaicin sensitizes TRAIL-induced apoptosis through Sp1-mediated DR5 up-regulation: involvement of Ca(2+) influx. Toxicol Appl Pharmacol 2011; 259:87-95. [PMID: 22200406 DOI: 10.1016/j.taap.2011.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 12/16/2022]
Abstract
Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various malignant cells, several cancers including human hepatocellular carcinoma (HCC) exhibit potent resistance to TRAIL-induced cell death. The aim of this study is to evaluate the anti-cancer potential of capsaicin in TRAIL-induced cancer cell death. As indicated by assays that measure phosphatidylserine exposure, mitochondrial activity and activation of caspases, capsaicin potentiated TRAIL-resistant cells to lead to cell death. In addition, we found that capsaicin induces the cell surface expression of TRAIL receptor DR5, but not DR4 through the activation Sp1 on its promoter region. Furthermore, we investigated that capsaicin-induced DR5 expression and apoptosis are inhibited by calcium chelator or inhibitors for calmodulin-dependent protein kinase. Taken together, our data suggest that capsaicin sensitizes TRAIL-mediated HCC cell apoptosis by DR5 up-regulation via calcium influx-dependent Sp1 activation.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Department of Biology Education, Daegu University, Gyungsan, Gyeongbuk 712-714, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
ABT-263 sensitizes TRAIL-resistant hepatocarcinoma cells by downregulating the Bcl-2 family of anti-apoptotic protein. Cancer Chemother Pharmacol 2011; 69:799-805. [PMID: 22037880 DOI: 10.1007/s00280-011-1763-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/12/2011] [Indexed: 02/05/2023]
Abstract
PURPOSE Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent due to its selective cytotoxicity to transformed cells. However, most human hepatocellular carcinomas (HCC) develop resistance to TRAIL. Thus, there is an urgent need to investigate the molecular targets and the underlying mechanisms that may be involved in overriding the resistance of tumor cells to TRAIL. METHODS Cell viability analysis was performed in HCC cells after treatment with TRAIL and/or ABT-263. Flow cytometry was used to assess apoptosis. The expression of caspases and members of the Bcl-2 family was examined through immunoblot analysis. Finally, the viability of cancer cells transfected with a plasmid containing HBx (hepatitis B virus X protein) following treatment with TRAIL was also measured. RESULTS In this study, we demonstrate that ABT-263, a potent and orally bioavailable inhibitor of the Bcl-2 family, was able to reverse the resistance of hepatocarcinoma cell lines to TRAIL-induced apoptosis, while sparing normal liver cells. The molecular mechanism of the reversal in resistance may be attributed to the inhibition by ABT-263 of anti-apoptosis proteins of the Bcl-2 family. In addition, we determined that HBx was able to sensitize TRAIL-resistant hepatocarcinoma Huh7 cells. CONCLUSIONS These findings provide a novel insight into the clinical application of TRAIL-induced apoptosis of HCC cells.
Collapse
|
47
|
Lin YW, Chiang BH. 4-acetylantroquinonol B isolated from Antrodia cinnamomea arrests proliferation of human hepatocellular carcinoma HepG2 cell by affecting p53, p21 and p27 levels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:8625-8631. [PMID: 21739974 DOI: 10.1021/jf2011326] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The 4-acetylantroquinonol B isolated from the mycelium of Antrodia cinnamomea could inhibit proliferation of hepatocellular carcinoma cells HepG2 with IC(50) 0.1 μg/mL. When the HepG2 cells were treated with 4-acetylantroquinonol B for 72 h, the proportion of cells in the G1 phase of the cell cycle increased and that in the S phase decreased significantly, and the proportion of G2/M phase cells were not obviously changed. In addition, the 4-acetylantroquinonol B treatment resulted in the decreases of CDK2 and CDK4, and an increase of p27 in a dose-dependent manner. The protein levels of p53 and p21 proteins were also increased when the cells were treated with low dosage (0.1 μg/mL) of 4-acetylantroquinonol B. Higher dosages, however, decreased the expression of p53 and p21 proteins. Assay of RT-PCR indicated that, corresponding to the increases of p53 and p21 proteins at the dosage of 0.1 μg/mL, the mRNAs of p53 and p21 showed 1.66- and 1.61-fold upregulations, respectively. Corresponding to the decreases of CDK2 and CDK4 proteins, the mRNAs of CDK2 and CDK4 showed -1.02- and -1.13-fold downregulations, respectively. However, level of p27 mRNA showed -1.2-fold downregulation in spite of the increase in p27 protein. This observation, again, confirms the fact that the p27 gene rarely undergoes homozygous inactivation in cancer cells. Our finding suggested that the 4-acetylantroquinonol B inhibits proliferation of HepG2 cells via affecting p53, p21 and p27 proteins, and can be considered as a potential cancer drug.
Collapse
Affiliation(s)
- Yu-Wei Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
48
|
Yang JF, Cao JG, Tian L, Liu F. 5, 7-Dimethoxyflavone sensitizes TRAIL-induced apoptosis through DR5 upregulation in hepatocellular carcinoma cells. Cancer Chemother Pharmacol 2011; 69:195-206. [PMID: 21660448 DOI: 10.1007/s00280-011-1686-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 05/26/2011] [Indexed: 12/15/2022]
Abstract
PURPOSE 5, 7-dimethoxyflavone (DMF) has been reported to induce apoptosis in various cancer cells. The aim of this study was to examine whether DMF sensitizes human hepatocellular carcinoma (HCC) cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis and its mechanism. METHODS Human hepatocellular carcinoma cell lines Hep3B, Huh-7, and Hep G2 and human embryo liver L-02 cells were cultured in vitro. The cytotoxic activities were determined using MTT assay. The apoptotic cell death was examined using Flow cytometry using PI staining and DNA agarose gel electrophoresis. The activities of caspase-3, caspase-8, and caspase-9 were measured using ELISA. Intracellular ROS was measured by FCM using the fluorescent probe DCHF-DA, and the expression of DR4, DR5, CHOP, GPR78, and ATF4 proteins was analyzed using Western blot. RESULTS Our results demonstrated subtoxic concentrations of DMF sensitize HCC cells to TRAIL-induced apoptosis and induce the death receptor 5 (DR5) expression level, accompanying the generation of reactive oxygen species (ROS) and the upregulation of CHOP, GPR78, and ATF4 protein expression. Pretreatment with N-acetylcysteine (NAC) inhibited DMF-induced upregulation of DR5, CHOP, GPR78, and ATF4 protein expression and blocked the cotreatment-induced apoptosis. Furthermore, DMF-mediated sensitization of HCC cells to TRAIL was reduced by administration of a blocking antibody or small interfering RNAs for DR5, salubrinal, an inhibitor of ER stress, and the small interfering RNAs for CHOP. However, DMF could not induce the upregulation of DR5 expression, generation of ROS, and sensitization of TRAIL-induced apoptotic cell death in human embryo liver L-02 cells or normal human peripheral blood mononuclear cells (PBMCs). CONCLUSION The present study demonstrates that DMF selectively enhances TRAIL-induced apoptosis by ROS-stimulated ER-stress triggering CHOP-mediated DR5 upregulation in HCC.
Collapse
Affiliation(s)
- Jian-Feng Yang
- Medical College, Hunan Normal University, Changsha 410013, China
| | | | | | | |
Collapse
|
49
|
Woods DC, White YAR, Dau C, Johnson AL. TLR4 activates NF-κB in human ovarian granulosa tumor cells. Biochem Biophys Res Commun 2011; 409:675-80. [PMID: 21616060 DOI: 10.1016/j.bbrc.2011.05.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 02/08/2023]
Abstract
Previous studies have demonstrated expression of Toll-like receptors (TLRs) in the surface epithelium of normal ovaries (OSE) and in epithelial ovarian tumors. Most notably, OSE-derived cancers express TLR4, which activates the nuclear factor-kappa B (NF-κB) signaling cascade as a mediator of inflammatory response. Currently, there is considerable interest in elucidating the role of TLR-mediated signaling in cancers. Nevertheless, the expression of TLRs in granulosa cell tumors (GCTs) of the ovary, and the extent to which GCT expression of TLRs may influence cell-signaling pathways and/or modulate the efficacy of chemotherapeutics, has yet to be determined. In the present study, human GCT lines (COV434 and KGN) were utilized to evaluate expression of functional TLR4. TLR4 is expressed in GCT cell lines and ligation of TLR4 with bacterial lipopolysaccharide (LPS) led to IκB degradation and activation of NF-κB. NF-κB activation was confirmed by nuclear localization of NF-κB p65 following treatment with LPS and the naturally occurring ligand, HSP60. Notably, immunoneutralization of TLR4 blocked nuclear localization, and inhibition of NF-κB signaling attenuated LPS-induced TNFα plus increased doubling time in both cell lines. Contradictory to reports using human OSE cell lines, inhibition of NF-κB signaling failed to sensitize GCT lines to TRAIL or cisplatin. In summary, findings herein are the first to demonstrate a functional TLR-signaling pathway specifically in GCTs, and indicate that in contrast to OSE-derived cancers, inhibition of NF-κB does not sensitize GCTs to TRAIL or cisplatin.
Collapse
Affiliation(s)
- Dori C Woods
- Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
50
|
Carlisi D, D'Anneo A, Angileri L, Lauricella M, Emanuele S, Santulli A, Vento R, Tesoriere G. Parthenolide sensitizes hepatocellular carcinoma cells to TRAIL by inducing the expression of death receptors through inhibition of STAT3 activation. J Cell Physiol 2011; 226:1632-41. [PMID: 21413021 DOI: 10.1002/jcp.22494] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This article shows that HepG2, Hep3B, and SK-Hep1 cells, three lines of human hepatocellular carcinoma (HCC) cells, are resistant to apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Parthenolide, a sesquiterpene lactone found in European feverfew, has been shown to exert both anti-inflammatory and anti-cancer activities. This article demonstrates that co-treatment with parthenolide and TRAIL-induced apoptosis with synergistic interactions in the three lines of HCC cells. In order to explain these effects we ascertained that parthenolide increased either at protein or mRNA level the total content of death receptors TRAIL-R1 and -R2 as well as their surface expression. These effects were found in the three cell lines in the case of TRAIL-R2, while for TRAIL-R1 they were observed in HepG2 and SK-Hep1 cells, but not in Hep3B cells. We suggest that the effects of parthenolide on death receptors depend on the decrease in the level of phosphorylated and active forms of STAT proteins, an event which could be a consequence of the inhibitory effect exerted by parthenolide on the activation of JAK proteins. In agreement with this hypothesis treatment with STAT3 siRNA increased in HCC cells the effect of parthenolide on the expression of death receptors. Sensitization by parthenolide to TRAIL stimulated in the three cell lines the extrinsic mechanism of apoptosis with the activation of both caspases 8 and 3, whereas mitochondria were not involved in the process. Our results suggest that co-treatment with parthenolide and TRAIL could represent a new important therapeutic strategy for hepatic tumors.
Collapse
Affiliation(s)
- Daniela Carlisi
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, Sezione di Scienze Biochimiche, Università di Palermo, Policlinico, Palermo, Italy
| | | | | | | | | | | | | | | |
Collapse
|