1
|
Pleiotropic Roles of Atrial Natriuretic Peptide in Anti-Inflammation and Anti-Cancer Activity. Cancers (Basel) 2022; 14:cancers14163981. [PMID: 36010974 PMCID: PMC9406604 DOI: 10.3390/cancers14163981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The relationship between inflammation and carcinogenesis, as well as the response to anti-tumor therapy, is intimate. Atrial natriuretic peptides (ANPs) play a pivotal role in the homeostatic control of blood pressure, electrolytes, and water balance. In addition, ANPs exert immune-modulatory effects in the tissue microenvironment, thus exhibiting a fascinating ability to prevent inflammation-related tumorigenesis and cancer recurrence. In cancers, ANPs show anti-proliferative effects through several molecular pathways. Furthermore, ANPs attenuate the side effects of cancer therapy. Therefore, ANPs have potential therapeutic value in tumors. Here, we summarized the roles of ANPs in diverse aspects of the immune system and the molecular mechanisms underlying the anti-cancer effects of ANPs, contributing to the development of ANP-based anti-cancer agents. Abstract The atrial natriuretic peptide (ANP), a cardiovascular hormone, plays a pivotal role in the homeostatic control of blood pressure, electrolytes, and water balance and is approved to treat congestive heart failure. In addition, there is a growing realization that ANPs might be related to immune response and tumor growth. The anti-inflammatory and immune-modulatory effects of ANPs in the tissue microenvironment are mediated through autocrine or paracrine mechanisms, which further suppress tumorigenesis. In cancers, ANPs show anti-proliferative effects through several molecular pathways. Furthermore, ANPs attenuate the side effects of cancer therapy. Therefore, ANPs act on several hallmarks of cancer, such as inflammation, angiogenesis, sustained tumor growth, and metastasis. In this review, we summarized the contributions of ANPs in diverse aspects of the immune system and the molecular mechanisms underlying the anti-cancer effects of ANPs.
Collapse
|
2
|
Hepatocardiac or Cardiohepatic Interaction: From Traditional Chinese Medicine to Western Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6655335. [PMID: 33777158 PMCID: PMC7981187 DOI: 10.1155/2021/6655335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/18/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022]
Abstract
There is a close relationship between the liver and heart based on "zang-xiang theory," "five-element theory," and "five-zang/five-viscus/five-organ correlation theory" in the theoretical system of Traditional Chinese Medicine (TCM). Moreover, with the development of molecular biology, genetics, immunology, and others, the Modern Medicine indicates the existence of the essential interorgan communication between the liver and heart (the heart and liver). Anatomically and physiologically, the liver and heart are connected with each other primarily via "blood circulation." Pathologically, liver diseases can affect the heart; for example, patients with end-stage liver disease (liver failure/cirrhosis) may develop into "cirrhotic cardiomyopathy," and nonalcoholic fatty liver disease (NAFLD) may promote the development of cardiovascular diseases via multiple molecular mechanisms. In contrast, heart diseases can affect the liver, heart failure may lead to cardiogenic hypoxic hepatitis and cardiac cirrhosis, and atrial fibrillation (AF) markedly alters the hepatic gene expression profile and induces AF-related hypercoagulation. The heart can also influence liver metabolism via certain nonsecretory cardiac gene-mediated multiple signals. Moreover, organokines are essential mediators of organ crosstalk, e.g., cardiomyokines link the heart to the liver, while hepatokines link the liver to the heart. Therefore, both TCM and Western Medicine, and both the basic research studies and the clinical practices, all indicate that there exist essential "heart-liver axes" and "liver-heart axes." To investigate the organ interactions between the liver and heart (the heart and liver) will help us broaden and deepen our understanding of the pathogenesis of both liver and heart diseases, thus improving the strategies of prevention and treatment in the future.
Collapse
|
3
|
42 °C heat stress pretreatment protects human melanocytes against 308-nm laser-induced DNA damage in vitro. Lasers Med Sci 2020; 35:1801-1809. [DOI: 10.1007/s10103-020-03012-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/29/2020] [Indexed: 01/03/2023]
|
4
|
Al-Attar R, Storey KB. Effects of anoxic exposure on the nuclear factor of activated T cell (NFAT) transcription factors in the stress-tolerant wood frog. Cell Biochem Funct 2018; 36:420-430. [PMID: 30411386 DOI: 10.1002/cbf.3362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/15/2018] [Accepted: 10/03/2018] [Indexed: 11/08/2022]
Abstract
The wood frog, Lithobates sylvaticus (also known as Rana sylvatica), is used for studying natural freeze tolerance. These animals convert 65% to 70% of their total body water into extracellular ice and survive freezing for weeks in winter. Freezing interrupts oxygen delivery to organs; thus, wood frogs limit their ATP usage by depressing their metabolism and redirecting the available energy only to prosurvival processes. Here, we studied the nuclear factor of activated T cell (NFAT) transcription factor family in response to 24-hour anoxia, and 4-hour aerobic recovery in liver and skeletal muscle. Protein expression levels of NFATc1-c4, calcineurin A and glycogen synthase kinase 3β (NFAT regulators), osteopontin, and atrial natriuretic peptide (ANP) (targets of NFATc3 and NFATc4, respectively) were measured by immunoblotting, and the DNA-binding activities of NFATc1-c4 were measured by DNA-protein interaction ELISAs. Results show that NFATc4, calcineurin, and ANP protein expression as well as NFATc4 DNA binding increased during anoxia in liver where calcineurin and ANP protein levels and NFATc4 DNA binding remaining high after aerobic recovery. Anoxia caused a significant increase in NFATc3 protein expression but not DNA-binding activity in muscle. Our results show that anoxia can increase NFATc4 transcriptional activity in liver, leading to the increase in expression of cytoprotective genes in the wood frog. Understanding the molecular mechanisms involved in mediating survival under anoxia/reoxygenation conditions in a naturally stress-tolerant model, such as the wood frog, provides insightful information on the prosurvival regulatory mechanisms involved in combating stress. This information will also further our understanding of metabolic rate depression and answer the question of how frogs tolerate prolonged periods of oxygen deprivation and resume to full function upon recovery without facing any detrimental side effects as other animals would.
Collapse
Affiliation(s)
- Rasha Al-Attar
- Institude of Biochemistry and Department of Biology, Carleton University, Ottawa, Canada
| | - Kenneth B Storey
- Institude of Biochemistry and Department of Biology, Carleton University, Ottawa, Canada
| |
Collapse
|
5
|
Levada K, Guldiken N, Zhang X, Vella G, Mo FR, James LP, Haybaeck J, Kessler SM, Kiemer AK, Ott T, Hartmann D, Hüser N, Ziol M, Trautwein C, Strnad P. Hsp72 protects against liver injury via attenuation of hepatocellular death, oxidative stress, and JNK signaling. J Hepatol 2018; 68:996-1005. [PMID: 29331340 PMCID: PMC9252261 DOI: 10.1016/j.jhep.2018.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 12/27/2017] [Accepted: 01/03/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS Heat shock protein (Hsp) 72 is a molecular chaperone that has broad cytoprotective functions and is upregulated in response to stress. To determine its hepatic functions, we studied its expression in human liver disorders and its biological significance in newly generated transgenic animals. METHODS Double transgenic mice overexpressing Hsp72 (gene Hspa1a) under the control of a tissue-specific tetracycline-inducible system (Hsp72-LAP mice) were produced. Acute liver injury was induced by a single injection of acetaminophen (APAP). Feeding with either a methionine choline-deficient (MCD; 8 weeks) or a 3,5-diethoxycarbonyl-1,4-dihydrocollidine-supplemented diet (DDC; 12 weeks) was used to induce lipotoxic injury and Mallory-Denk body (MDB) formation, respectively. Primary hepatocytes were treated with palmitic acid. RESULTS Patients with non-alcoholic steatohepatitis and chronic hepatitis C infection displayed elevated HSP72 levels. These levels increased with the extent of hepatic inflammation and HSP72 expression was induced after treatment with either interleukin (IL)-1β or IL-6. Hsp72-LAP mice exhibited robust, hepatocyte-specific Hsp72 overexpression. Primary hepatocytes from these animals were more resistant to isolation-induced stress and Hsp72-LAP mice displayed lower levels of hepatic injury in vivo. Mice overexpressing Hsp72 had fewer APAP protein adducts and were protected from oxidative stress and APAP-/MCD-induced cell death. Hsp72-LAP mice and/or hepatocytes displayed significantly attenuated Jnk activation. Overexpression of Hsp72 did not affect steatosis or the extent of MDB formation. CONCLUSIONS Our results demonstrate that HSP72 induction occurs in human liver disease, thus, HSP72 represents an attractive therapeutic target owing to its broad hepatoprotective functions. LAY SUMMARY HSP72 constitutes a stress-inducible, protective protein. Our data demonstrate that it is upregulated in patients with chronic hepatitis C and non-alcoholic steatohepatitis. Moreover, Hsp72-overexpressing mice are protected from various forms of liver stress.
Collapse
Affiliation(s)
- Kateryna Levada
- Department of Internal Medicine III, RWTH University Hospital Aachen, Germany; Interdisciplinary Center for Clinical Research (IZKF), RWTH University Hospital Aachen, Germany; Center for Functionalized Magnetic Materials (FunMagMa), Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Nurdan Guldiken
- Department of Internal Medicine III, RWTH University Hospital Aachen, Germany; Interdisciplinary Center for Clinical Research (IZKF), RWTH University Hospital Aachen, Germany
| | - Xiaoji Zhang
- Department of Internal Medicine III, RWTH University Hospital Aachen, Germany; Interdisciplinary Center for Clinical Research (IZKF), RWTH University Hospital Aachen, Germany
| | - Giovanna Vella
- Department of Internal Medicine III, RWTH University Hospital Aachen, Germany
| | - Fa-Rong Mo
- Department of Internal Medicine III, RWTH University Hospital Aachen, Germany
| | - Laura P James
- Arkansas Children's Hospital Research Institute and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AK, USA
| | - Johannes Haybaeck
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, Germany; Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Sonja M Kessler
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Thomas Ott
- Core Facility Transgenic Animals, University of Tübingen, Tübingen, Germany
| | - Daniel Hartmann
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Norbert Hüser
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Marianne Ziol
- Pathology Department, GH Paris-Seine-Saint-Denis, APHP, Bondy, France; University Paris 13, Bobigny, France; Centre de Ressources Biologiques - Hôpital Jean Verdier, GH Paris-Seine-Saint-Denis, APHP, Bondy, France
| | - Christian Trautwein
- Department of Internal Medicine III, RWTH University Hospital Aachen, Germany
| | - Pavel Strnad
- Department of Internal Medicine III, RWTH University Hospital Aachen, Germany; Interdisciplinary Center for Clinical Research (IZKF), RWTH University Hospital Aachen, Germany.
| |
Collapse
|
6
|
Agusti A, Hernández-Rabaza V, Balzano T, Taoro-Gonzalez L, Ibañez-Grau A, Cabrera-Pastor A, Fustero S, Llansola M, Montoliu C, Felipo V. Sildenafil reduces neuroinflammation in cerebellum, restores GABAergic tone, and improves motor in-coordination in rats with hepatic encephalopathy. CNS Neurosci Ther 2017; 23:386-394. [PMID: 28296282 DOI: 10.1111/cns.12688] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/23/2017] [Accepted: 02/09/2017] [Indexed: 12/31/2022] Open
Abstract
AIMS Patients with liver disease may develop hepatic encephalopathy (HE), with cognitive impairment and motor in-coordination. Rats with HE due to portacaval shunts (PCS) show motor in-coordination. We hypothesized that in PCS rats: (i) Motor in-coordination would be due to enhanced GABAergic tone in cerebellum; (ii) increased GABAergic tone would be due to neuroinflammation; (iii) increasing cGMP would reduce neuroinflammation and GABAergic tone and restore motor coordination. To assess these hypotheses, we assessed if (i) treatment with sildenafil reduces neuroinflammation; (ii) reduced neuroinflammation is associated with reduced GABAergic tone and restored motor coordination. METHODS Rats were treated with sildenafil to increase cGMP. Microglia and astrocytes activation were analyzed by immunohistochemistry, extracellular GABA by microdialysis, and motor coordination in the beam walking. RESULTS PCS rats show neuroinflammation in cerebellum, with microglia and astrocytes activation, increased IL-1b and TNF-a and reduced YM-1 and IL-4. Membrane expression of the GABA transporter GAT1 is reduced, while GAT3 is increased. Extracellular GABA and motor in-coordination are increased. Sildenafil treatment eliminates neuroinflammation, microglia and astrocytes activation; changes in membrane expression of GABA transporters; and restores motor coordination. CONCLUSIONS This study supports an interplay between cGMP-neuroinflammation and GABAergic neurotransmission in impairing motor coordination in PCS rats.
Collapse
Affiliation(s)
- Ana Agusti
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | - Tiziano Balzano
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Lucas Taoro-Gonzalez
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Andrea Ibañez-Grau
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Andrea Cabrera-Pastor
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Santos Fustero
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carmina Montoliu
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
7
|
Kuo SC, Liu YW, Tsai CH, Sheen-Chen SM. Ischemic preconditioning in hepatic ischemic–reperfusion injury. FORMOSAN JOURNAL OF SURGERY 2016. [DOI: 10.1016/j.fjs.2016.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
8
|
Hernandez-Rabaza V, Agusti A, Cabrera-Pastor A, Fustero S, Delgado O, Taoro-Gonzalez L, Montoliu C, Llansola M, Felipo V. Sildenafil reduces neuroinflammation and restores spatial learning in rats with hepatic encephalopathy: underlying mechanisms. J Neuroinflammation 2015; 12:195. [PMID: 26511444 PMCID: PMC4625867 DOI: 10.1186/s12974-015-0420-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/21/2015] [Indexed: 02/07/2023] Open
Abstract
Background There are no specific treatments for the neurological alterations of cirrhotic patients with minimal hepatic encephalopathy (MHE). Rats with MHE due to portacaval shunt (PCS) show impaired spatial learning. The underlying mechanisms remain unknown. The aims of this work were to assess: (a) whether PCS rats show neuroinflammation in hippocampus, (b) whether treatment with sildenafil reduces neuroinflammation and restores spatial learning in PCS rats, and (c) analyze the underlying mechanisms. Methods Neuroinflammation was assessed by determining inflammatory markers by Western blot. Phosphorylation of MAP-kinase p38 was assessed by immunohistochemistry. Membrane expression of GABA and glutamate receptors was analyzed using BS3 cross-linker. Spatial learning was analyzed using the radial and Morris water mazes. To assess if sildenafil reverses the alterations, rats were treated with sildenafil in the drinking water. Results PCS rats show increased IL-1β and TNF-α levels and phosphorylation (activity) of p38 in hippocampus. Membrane expression of subunits α1 of GABAA receptor and GluR2 of AMPA receptor are increased in PCS rats, while subunits GluR1 of AMPA receptors and NR1 and NR2a of NMDA receptors are reduced. PCS rats show reduced spatial learning in the radial and Morris water mazes. Sildenafil treatment normalizes IL-1β and TNF-α levels, p38 phosphorylation, and membrane expression of GABAA, AMPA, and NMDA receptors and restores spatial learning. Conclusions Increased IL-1β alters GABAergic and glutamatergic neurotransmission in hippocampus and impairs spatial learning in rats with MHE. Sildenafil reduces neuroinflammation and restores learning. Phosphodiesterase-5 inhibitors may be useful to improve cognitive function in patients with MHE.
Collapse
Affiliation(s)
- Vicente Hernandez-Rabaza
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Calle Eduardo Primo Yufera, 3, 46012, Valencia, Spain
| | - Ana Agusti
- Fundación Investigación Hospital Clínico de Valencia. Instituto de Investigación Sanitaria-INCLIVA, Valencia, Spain
| | - Andrea Cabrera-Pastor
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Calle Eduardo Primo Yufera, 3, 46012, Valencia, Spain
| | - Santos Fustero
- Laboratorio de Moleculas Orgánicas, Centro de Investigación Príncipe Felipe, Valencia, Spain.,Departamento de Química Organica, Universidad de Valencia, Valencia, Spain
| | - Oscar Delgado
- Laboratorio de Moleculas Orgánicas, Centro de Investigación Príncipe Felipe, Valencia, Spain.,Departamento de Química Organica, Universidad de Valencia, Valencia, Spain
| | - Lucas Taoro-Gonzalez
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Calle Eduardo Primo Yufera, 3, 46012, Valencia, Spain
| | - Carmina Montoliu
- Fundación Investigación Hospital Clínico de Valencia. Instituto de Investigación Sanitaria-INCLIVA, Valencia, Spain
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Calle Eduardo Primo Yufera, 3, 46012, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Calle Eduardo Primo Yufera, 3, 46012, Valencia, Spain.
| |
Collapse
|
9
|
De Vito P. Atrial natriuretic peptide: an old hormone or a new cytokine? Peptides 2014; 58:108-16. [PMID: 24973596 DOI: 10.1016/j.peptides.2014.06.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/19/2014] [Accepted: 06/19/2014] [Indexed: 02/07/2023]
Abstract
Atrial natriuretic peptide (ANP) a cardiovascular hormone mainly secreted by heart atria in response to stretching forces induces potent diuretic, natriuretic and vasorelaxant effects and plays a major role in the homeostasis of blood pressure as well as of water and salt balance. The hormone can also act as autocrine/paracrine factor and modulate several immune functions as well as cytoprotective effects. ANP contributes to innate immunity being able to: (i) stimulate the host defense against extracellular microbes by phagocytosis and Reactive Oxygen Species (ROS) release; (ii) inhibit the synthesis and release of proinflammatory markers such as TNF-α, IL-1, MCP-1, nitric oxide (NO), cyclooxygenase-2 (COX-2); (iii) inhibit the expression of adhesion molecules such as ICAM-1 and E-selectin. ANP can also affect the adaptive immunity being able to: (i) reduce the number of CD4(+) CD8(+) lymphocytes as well as to increase the CD4(-) CD8(-) cells; (ii) stimulate the differentiation of naïve CD4(+) cells toward the Th2 and/or Th17 phenotype. The hormone shows protective effects during: (i) ventricular hypertrophy and myocardial injury; (ii) atherosclerosis and hypertension by the induction of antiproliferative effects; (iii) oxidative stress counteracting the dangerous effects of ROS; (iv) growth of tumors cells by the induction of apoptosis or necrosis. Since not much is known about of the role of ANP locally produced and released by non-cardiac cells, this review outlines the contribution of ANP in different aspect of innate as well as adaptive immunity also with respect to the excessive cell growth in physiological and/or pathological conditions.
Collapse
Affiliation(s)
- Paolo De Vito
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
10
|
Yamada T, Kotake Y, Nagata H, Takeda J. Atrial natriuretic peptide reduces hepatic ischemia-reperfusion injury in rabbits. J Anesth 2013; 27:901-8. [PMID: 23736823 DOI: 10.1007/s00540-013-1643-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 05/13/2013] [Indexed: 01/16/2023]
Abstract
PURPOSE Atrial natriuretic peptide (ANP) has been known to be protective against hepatic ischemia/reperfusion injury. The purpose of this study was to verify the hypothesis that ANP conserves microvascular circulation and reduces ischemia-reperfusion injury in the in vivo rabbit model. METHODS With IRB approval, 30 male Japanese white rabbits under pentobarbital anesthesia were studied. These animals were randomly assigned to the following three groups (n = 10 each): control, ANP, and sham group. Animals in the ANP group received continuous infusion of ANP at 0.1 μg/kg/min throughout the study period. Animals in control and ANP groups underwent 90 min of partial hepatic ischemia by clamping the right hepatic artery and portal vein. Descending aortic blood flow (AoF) was monitored with a transit-time ultrasound flowmeter. Hepatic tissue microvascular blood flow (HTBF) at both right (ischemic) and left (nonischemic) lobe was intermittently evaluated with the hydrogen clearance method. After 180 min of reperfusion, hepatic injury was determined with serum AST and ALT. Galactose clearance of reperfused right lobe was also measured as an indicator of hepatic metabolic function. Histopathological change and the number of apoptotic hepatocytes were also evaluated. RESULTS Systemic hemodynamic data including mean arterial pressure, heart rate, and AoF did not differ among the three groups during the study period. ANP attenuated ischemia-induced right HTBF decrease. ANP also suppressed histopathological degeneration, apoptosis, and decline in galactose clearance after reperfusion. CONCLUSIONS ANP attenuated hepatic microvascular dysfunction and hepatocyte injury after reperfusion without significant hemodynamic change.
Collapse
Affiliation(s)
- Takashige Yamada
- Department of Anesthesiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan,
| | | | | | | |
Collapse
|
11
|
Jaeschke H, Woolbright BL. Current strategies to minimize hepatic ischemia-reperfusion injury by targeting reactive oxygen species. Transplant Rev (Orlando) 2012; 26:103-14. [PMID: 22459037 DOI: 10.1016/j.trre.2011.10.006] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 10/17/2011] [Indexed: 12/15/2022]
Abstract
Ischemia-reperfusion is a major component of injury in vascular occlusion both during liver surgery and during liver transplantation. The pathophysiology of hepatic ischemia-reperfusion includes a number of mechanisms including oxidant stress that contribute to various degrees to the overall organ damage. A large volume of recent research has focused on the use of antioxidants to ameliorate this injury, although results in experimental models have not translated well to the clinic. This review focuses on critical sources and mediators of oxidative stress during hepatic ischemia-reperfusion, the status of current antioxidant interventions, and emerging mechanisms of protection by preconditioning. While recent advances in regulation of antioxidant systems by Nrf2 provide interesting new potential therapeutic targets, an increased focus must be placed on more in-depth mechanistic investigations in hepatic ischemia-reperfusion injury and translational research in order to refine current strategies in disease management.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | |
Collapse
|
12
|
Köhler D, Birk P, König K, Straub A, Eldh T, Morote-Garcia JC, Rosenberger P. Phosphorylation of vasodilator-stimulated phosphoprotein (VASP) dampens hepatic ischemia-reperfusion injury. PLoS One 2011; 6:e29494. [PMID: 22216296 PMCID: PMC3245274 DOI: 10.1371/journal.pone.0029494] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 11/29/2011] [Indexed: 01/29/2023] Open
Abstract
Recent work has demonstrated that the formation of platelet neutrophil complexes (PNCs) affects inflammatory tissue injury. Vasodilator-stimulated phosphoprotein (VASP) is crucially involved into the control of PNC formation and myocardial reperfusion injury. Given the clinical importance of hepatic IR injury we pursued the role of VASP during hepatic ischemia followed by reperfusion. We report here that VASP−/− animals demonstrate reduced hepatic IR injury compared to wildtype (WT) controls. This correlated with serum levels of lactate dehydrogenase (LDH), aspartate (AST) and alanine (ALT) aminotransferase and the presence of PNCs within ischemic hepatic tissue and could be confirmed using repression of VASP through siRNA. In studies employing bone marrow chimeric mice we identified hematopoietic VASP to be of crucial importance for the extent of hepatic injury. Phosphorylation of VASP on Ser153 through Prostaglandin E1 or on Ser235 through atrial natriuretic peptide resulted in a significant reduction of hepatic IR injury. This was associated with a reduced presence of PNCs in ischemic hepatic tissue. Taken together, these studies identified VASP and VASP phosphorylation as crucial target for future hepatoprotective strategies.
Collapse
Affiliation(s)
- David Köhler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Philipp Birk
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Klemens König
- Clinic of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt am Main, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Andreas Straub
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Therese Eldh
- Department of Radiation Oncology, University Hospital, Tübingen, Germany
| | - Julio C. Morote-Garcia
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Peter Rosenberger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
- Clinic of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt am Main, Johann Wolfgang Goethe University, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
13
|
Lee LY, Kaizu T, Toyokawa H, Zhang M, Ross M, Stolz DB, Huang C, Gandhi C, Geller DA, Murase N. Carbon monoxide induces hypothermia tolerance in Kupffer cells and attenuates liver ischemia/reperfusion injury in rats. Liver Transpl 2011; 17:1457-66. [PMID: 21850691 PMCID: PMC3222745 DOI: 10.1002/lt.22415] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Ischemia/reperfusion (I/R) injury in liver grafts, which is initiated by cold preservation and is augmented by reperfusion, is a major problem that complicates graft quality, posttransplant patient care, and outcomes of liver transplantation (LT). Kupffer cells (KCs) play important roles in I/R injury; however, little is known about their changes during cold preservation. We examined whether a pretreatment with carbon monoxide (CO), a cytoprotective product of heme degradation, could influence KC activity during cold storage and protect liver grafts against LT-induced I/R injury. In vitro, primary rat KCs were stimulated for 24 hours under hypothermic conditions (4°C, 20% O(2)), with lipopolysaccharide, or under hypoxic conditions (37°C, 5% O(2)) with or without a CO pretreatment. When rat KCs were exposed to hypothermic conditions, they produced reactive oxygen species (ROS), but they did not produce tumor necrosis factor α (TNF-α) or nitric oxide. The preincubation of KCs with CO up-regulated heat shock protein 70 (HSP70) and inhibited ROS generation. When liver grafts from donor rats exposed to CO (250 ppm) for 24 hours were transplanted after 18 hours of cold preservation in University of Wisconsin solution, HSP70 expression increased in these grafts versus control grafts, and serum aspartate aminotransferase and alanine aminotransferase levels as well as necrotic areas and inflammatory infiltrates were significantly reduced after LT. CO-pretreated liver grafts showed less up-regulation of TNF-α and inducible nitric oxide synthase messenger RNA (mRNA) and reduced expression of proapoptotic B cell lymphoma 2-associated X protein mRNA, cleaved caspase-3, and poly(adenosine diphosphate ribose) polymerase. In conclusion, the pretreatment of donors with CO ameliorates LT-associated I/R injury with increased hepatic HSP70 expression, particularly in the KC population.
Collapse
Affiliation(s)
- Lung-Yi Lee
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Takashi Kaizu
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Hideyoshi Toyokawa
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Matthew Zhang
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Mark Ross
- Center for Biologic Imaging, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Donna Beer Stolz
- Center for Biologic Imaging, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Chao Huang
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Chandrashekhar Gandhi
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - David A. Geller
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| | - Noriko Murase
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213
| |
Collapse
|
14
|
De Vito P, Incerpi S, Pedersen JZ, Luly P. Atrial natriuretic peptide and oxidative stress. Peptides 2010; 31:1412-9. [PMID: 20385186 DOI: 10.1016/j.peptides.2010.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 04/01/2010] [Accepted: 04/01/2010] [Indexed: 02/07/2023]
Abstract
Atrial natriuretic peptide (ANP) is a hormone, produced mainly by cardiomyocytes, with a major role in cardiovascular homeostatic mechanisms such as natriuresis and vasodilation, which serve to regulate blood pressure. However, ANP also acts as an autocrine/paracrine factor on other targets such as kidney, lung, thymus, liver and the immune system. ANP participates in the regulation of cell growth and proliferation, and evidence is accumulating that these effects are associated with the generation of reactive oxygen species (ROS). In vascular cells and cardiomyocytes ANP stimulates the antioxidant defense, but in other systems such as hepatoblastoma and macrophages ANP may produce either antioxidant or prooxidant effects, depending on experimental conditions and cell context. At present very little is known on the relationship between ANP and ROS production in the normal homeostatic processes or during the development of cardiovascular diseases and cancer. Our current knowledge of the role of ANP in signaling pathways leading to the generation of intracellular messengers such as diacylglycerol (DAG), and guanosine 3'-5'-cyclic monophosphate has been examined in order to clarify the mechanisms by which the hormone may counteract or contribute to the potentially dangerous effects of free radicals.
Collapse
Affiliation(s)
- Paolo De Vito
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | | | | | | |
Collapse
|
15
|
Aoyama A, Chen F, Fujinaga T, Sato A, Tsuruyama T, Zhang J, Shoji T, Sakai H, Nakamura T, Date H, Wada H, Bando T. Post-ischemic infusion of atrial natriuretic peptide attenuates warm ischemia-reperfusion injury in rat lung. J Heart Lung Transplant 2009; 28:628-34. [PMID: 19481025 DOI: 10.1016/j.healun.2009.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 01/29/2009] [Accepted: 03/05/2009] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The serious shortage of organs for transplantation, especially lungs, has drawn increasing attention to donation after cardiac death and protection of organs against warm ischemic injury. Atrial natriuretic peptide (ANP) activates guanylate cyclase receptors and increases cyclic guanosine monophosphate (cGMP) levels, which decrease in the lung during ischemia. In this study we investigated the effect on lung ischemia-reperfusion injury of administering synthetic ANP (carperitide) at the onset of reperfusion after warm ischemia. METHODS An isolated rat lung perfusion model was used. The rats were allocated into three groups: the control group; the ANP group; and the sham group. In the control and ANP groups, the heart-lung block was exposed to 60 minutes of ischemia at 37 degrees C, and subsequently reperfused for 60 minutes. At the onset of reperfusion, either saline or ANP was added to the perfusate. In the sham group, lungs were continuously perfused without ischemia and only saline was added to the perfusate. RESULTS ANP significantly reduced pulmonary vascular resistance and pulmonary edema, and improved oxygenation. It also significantly increased cGMP levels in reperfused lungs. Histologically, lungs in the ANP group showed significantly fewer signs of injury and fewer cells demonstrated apoptotic changes or single-stranded DNA than lungs in the control group. CONCLUSIONS Our results indicate that ANP administered at the onset of reperfusion increases cGMP in lung tissue and attenuates warm ischemia-reperfusion injury in isolated perfused rat lung.
Collapse
Affiliation(s)
- Akihiro Aoyama
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gaitanaki C, Kalpachidou T, Aggeli IKS, Papazafiri P, Beis I. CoCl2 induces protective events via the p38-MAPK signalling pathway and ANP in the perfused amphibian heart. ACTA ACUST UNITED AC 2007; 210:2267-77. [PMID: 17575032 DOI: 10.1242/jeb.003178] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) constitute one of the most important intracellular signalling pathways. In particular, the p38-MAPK subfamily is known to be activated under various stressful conditions, such as mechanical or oxidative stress. Furthermore, cobalt chloride (CoCl2) has been shown to mimic hypoxic responses in various cell lines and cause overproduction of reactive oxygen species (ROS). In the current study, we investigated the effect of CoCl2 on p38-MAPK signalling pathway in the perfused Rana ridibunda heart. Immunoblot analysis of the phosphorylated, and thus activated, form of p38-MAPK revealed that maximum phosphorylation was attained at 500 micromol l(-1) CoCl2. A similar profile was observed for MAPKAPK2 and Hsp27 phosphorylation (direct and indirect p38-MAPK substrates, respectively). Time course analysis of p38-MAPK phosphorylation pattern showed that the kinase reached its peak within 15 min of treatment with 500 micromol l(-1) CoCl2. Similar results were obtained for Hsp27 phosphorylation. In the presence of the antioxidants Trolox or Lipoic acid, p38-MAPK CoCl2-induced phosphorylation was attenuated. Analogous results were obtained for Hsp27 and MAPKAPK2. In parallel, mRNA levels of the ANP gene, a hormone whose transcriptional regulation has previously been shown to be regulated by p38-MAPK, were examined (semi-quantitative ratiometric RT-PCR). CoCl2 treatment significantly increased ANP mRNA levels, whereas, in the presence of antioxidants, the transcript levels returned to basal values. All the above data indicate that CoCl2 stimulates compensatory mechanisms involving the p38-MAPK signalling cascade along with ANP.
Collapse
Affiliation(s)
- Catherine Gaitanaki
- Department of Animal and Human Physiology, School of Biology, University of Athens, Panepistimioupolis, 157 84 Athens, Greece
| | | | | | | | | |
Collapse
|
17
|
Kobayashi K, Oshima K, Muraoka M, Akao T, Totsuka O, Shimizu H, Sato H, Tanaka K, Konno K, Matsumoto K, Takeyoshi I. Effect of atrial natriuretic peptide on ischemia-reperfusion injury in a porcine total hepatic vascular exclusion model. World J Gastroenterol 2007; 13:3487-92. [PMID: 17659696 PMCID: PMC4146785 DOI: 10.3748/wjg.v13.i25.3487] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effect of ANP on warm I/R injury in a porcine THVE model.
METHODS: Miniature pigs (mini-pigs) weighing 16-24 kg were observed for 120 min after reperfusion following 120 min of THVE. The animals were divided into two groups. ANP (0.1 μg/kg per min) was administered to the ANP group (n = 7), and vehicle was administered to the control group (n = 7). Either vehicle or ANP was intravenously administered from 30 min before the THVE to the end of the experiment. Arterial blood was collected to measure AST, LDH, and TNF-α. Hepatic tissue blood flow (HTBF) was also measured. Liver specimens were harvested for p38 MAPK analysis and histological study. Those results were compared between the two groups.
RESULTS: The AST and LDH levels were lower in the ANP group than in the control group; the AST levels were significantly different between the two groups (60 min: 568.7 ± 113.3 vs 321.6 ± 60.1, P = 0.038 < 0.05, 120 min: 673.6 ± 148.2 vs 281.1 ± 44.8, P = 0.004 < 0.01). No significant difference was observed in the TNF-α levels between the two groups. HTBF was higher in the ANP group, but the difference was not significant. A significantly higher level of phosphorylated p38 MAPK was observed in the ANP group compared to the control group (0 min: 2.92 ± 1.1 vs 6.38 ± 1.1, P = 0.011 < 0.05). Histological tissue damage was milder in the ANP group than in the control group.
CONCLUSION: Our results show that ANP has a protective role in I/R injury with p38 MAPK activation in a porcine THVE model.
Collapse
Affiliation(s)
- Katsumi Kobayashi
- Department of Thoracic and Visceral Organ Surgery, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Diesel B, Kulhanek-Heinze S, Höltje M, Brandt B, Höltje HD, Vollmar AM, Kiemer AK. Alpha-lipoic acid as a directly binding activator of the insulin receptor: protection from hepatocyte apoptosis. Biochemistry 2007; 46:2146-55. [PMID: 17274632 DOI: 10.1021/bi602547m] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND AIM Alpha-lipoic acid has cytoprotective potential which has previously been explained by its antioxidant properties. The aim of this study was to assess LA-induced-specific cytoprotective signalling pathways in hepatocytes. METHODS Apoptosis of rat hepatocytes was induced by actinomycinD/TNF-alpha. Caspase-3-like activity was determined by a fluorometric; LDH by an enzymatic assay; and phosphorylation of the insulin receptor, Akt, and Bad by Western blot (after immunoprecipitation). Protein kinase and insulin receptor activities were measured by in vitro phosphorylation. Computer modeling studies were performed by using the program GRID. RESULTS Alpha-lipoic acid decreased actinomycinD/TNF-alpha-induced apoptosis, as did the antioxidants Trolox and N-acetylcysteine. The activation of PI3-kinase/Akt involving phosphorlyation of Bad markedly contributed to the cytoprotective action of alpha-lipoic acid. Alpha-lipoic acid but not other antioxidants protected against actinomycinD/TNF-alpha-induced apoptosis via phosphorylation of the insulin receptor. Computer modeling studies revealed a direct binding site for alpha-lipoic acid at the tyrosine kinase domain of the insulin receptor, suggesting a stabilizing function in loop A that is involved in ATP binding. Treatment of immunoprecipitated insulin receptor with LA induced substrate phosphorylation. CONCLUSIONS Alpha-lipoic acid mediates its antiapoptotic action via activation of the insulin receptor/PI3-kinase/Akt pathway. We show for the first time a direct binding site for alpha-lipoic acid at the insulin receptor tyrosine kinase domain, which might make alpha-lipoic acid a model substance for the development of insulin mimetics.
Collapse
Affiliation(s)
- Britta Diesel
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Baldini PM, De Vito P, Antenucci D, Vismara D, D'Aquilio F, Luly P, Zalfa F, Bagni C, Di Nardo P. Atrial natriuretic peptide induces cell death in human hepatoblastoma (HepG2) through the involvement of NADPH oxidase. Cell Death Differ 2005; 11 Suppl 2:S210-2. [PMID: 15565178 DOI: 10.1038/sj.cdd.4401520] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
20
|
Abstract
Atrial natriuretic peptide (ANP) is a hormone predominately produced by the heart atria which regulates the water and salt balance as well as blood pressure homeostasis. Being expressed in various parts of the immune system a link of the peptide to the immune system has been proposed. In fact, this review focus on effects of ANP in the immune system and reports about the role of the peptide in innate immune functions as well as in the adaptive immune response.
Collapse
Affiliation(s)
- Angelika M Vollmar
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-11, 81375 Munich, Germany.
| |
Collapse
|
21
|
Lu H, Zhu ZG, Yao XX, Zhao R, Yan C, Zhang Y, Liu BY, Yin HR, Lin YZ. Hepatic preconditioning of doxorubicin in stop-flow chemotherapy: NF-κB/IκB-α pathway and expression of HSP72. World J Gastroenterol 2005; 11:2136-41. [PMID: 15810080 PMCID: PMC4305783 DOI: 10.3748/wjg.v11.i14.2136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To provide hepatic protection through administration of doxorubicin before stop-flow chemotherapy (SFC) and to investigate the expression of heat shock protein 72 (HSP72) and role of nuclear factor kappa B (NF-κB) in this effect.
METHODS: The hepatic preconditioning of doxorubicin was established in a porcine model by injection of doxorubicin (1 mg/kg) before SFC. The experimental animals were randomized into two groups: groups receiving doxorubicin (DOX) and normal saline (NS). Serial serum and tissue samples were taken from both groups to evaluate the protection of doxorubicin. Western blot and immuno-precipitation were applied to detect the expression of HSP72, NF-κB p65 protein, inhibitor κB-α (IκB-α) and phosphorylated IκB-α as well. The expression of tumor necrosis factor α (TNF-α) was estimated by semiquantitative RT-PCR. And the extent of the hepatic injury was estimated with the level of serum aminotransferases.
RESULTS: An abundance production of HSP72 in porcine liver was observed after 24 h of intravenous administration of doxorubicin, but without any change in the expression of NF-κB p65 subunit in cytoplasm. NF-κB p65 subunit accumulated in nuclei at the end of SFC and reached its highest level at 30 min after the restoration of the abdominal circulation and decreased gradually during the 6 h after SFC in NS group, while there was little change in DOX group. There was also a slight decrease of IκB-α at 30 min after the restoration of the abdominal circulation in NS group accompanying with the appearance of phosphorylated IκB-α. The expression of TNF-α was significantly higher in NS group than that in DOX group (average 1.40±0.17 vs 0.62±0.22, P<0.01) at serial time points after SFC. Serum ALT and AST levels of NS group were higher after 24 h than those of DOX group (93.2±7.8 IU/L vs 53.3±13.9 IU/L, 217.0±29.4 IU/L vs 155.0±15.6 IU/L for ALT and AST respectively, P<0.05) and after 48 h than those of DOX group (66.6±18.1 IU/L vs 43.3±16.7 IU/L, 174.4±21.3 IU/L vs 125.7±10.5 IU/L for ALT and AST respectively, P<0.05).
CONCLUSION: Doxorubicin renders the liver to be tolerant to the hepatic influence in SFC in a porcine model through the NF-κB/IκB-α pathway with the expression of HSP72.
Collapse
Affiliation(s)
- Hui Lu
- Shanghai Institute of Digestive Surgery, Rujin Hospital, Shanghai Second Medical University, Ruijin Road II, Shanghai 200025, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kulhanek-Heinze S, Gerbes AL, Gerwig T, Vollmar AM, Kiemer AK. Protein kinase A dependent signalling mediates anti-apoptotic effects of the atrial natriuretic peptide in ischemic livers. J Hepatol 2004; 41:414-20. [PMID: 15336444 DOI: 10.1016/j.jhep.2004.05.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Revised: 05/17/2004] [Accepted: 05/27/2004] [Indexed: 12/30/2022]
Abstract
BACKGROUND/AIMS Preconditioning of livers with atrial natriuretic peptide (ANP) attenuates ischemia-reperfusion injury (IRI) via the particulate guanylate cyclase. Recently, we have shown that ANP affects the p38 MAPK signalling cascade in the liver. Thus, aim of the present study was to elucidate the role of cGMP- and p38 MAPK-dependent signalling pathways in ANP-mediated anti-apoptotic effects. METHODS Rat livers were perfused with KH-buffer with or without ANP, 8-Br-cGMP (+/-kinase inhibitors) and kept in UW solution (4 degrees C, 24h). Caspase-3-like activity was measured by a fluorometric assay. Expression of cGMP-dependent protein kinases (PKG) in liver tissue was determined by RT-PCR, BAD phosphorylation by Western blot, and cAMP-dependent protein kinase (protein kinase A, PKA) activity by in vitro phosphorylation. RESULTS Compared to control organs, ANP-preconditioning reduced post-ischemic caspase-3-like activity. Neither perfusion with a p38 MAPK inhibitor nor with a PKG inhibitor abolished the ANP-mediated anti-apoptotic action. The two PKG isoforms were demonstrated not to be expressed in the liver. In contrast, liver perfusion with a selective PKA inhibitor abrogated the anti-apoptotic effect of ANP. Phosphorylation of pro-apoptotic BAD by ANP-activated PKA might inhibit liver cell apoptosis. CONCLUSIONS ANP mediates its anti-apoptotic action during ischemic injury via a crosstalk with the PKA pathway.
Collapse
Affiliation(s)
- Stefanie Kulhanek-Heinze
- Department of Pharmacy, Center of Drug Research, University of Munich, Butenandtstr. 5-13, 81377 Munich, Germany
| | | | | | | | | |
Collapse
|
23
|
Kiemer AK, Förnges AC, Pantopoulos K, Bilzer M, Andriopoulos B, Gerwig T, Kenngott S, Gerbes AL, Vollmar AM. ANP-induced decrease of iron regulatory protein activity is independent of HO-1 induction. Am J Physiol Gastrointest Liver Physiol 2004; 287:G518-26. [PMID: 15087280 DOI: 10.1152/ajpgi.00514.2003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Atrial natriuretic peptide (ANP)-preconditioned livers are protected from ischemia-reperfusion injury. ANP-treated organs show increased expression of heme oxygenase (HO)-1. Because HO-1 liberates bound iron, the aim of our study was to determine whether ANP affects iron regulatory protein (IRP) activity and, thus, the levels of ferritin. Rat livers were perfused with Krebs-Henseleit buffer [+/-ANP, 8-bromo-cGMP (8-Br-cGMP), and tin protoporphyrin, 20 min], stored in University of Wisconsin solution (4 degrees C, 24 h), and reperfused (120 min). IRP activity was assessed by gel-shift assays, and ferritin, IRP phosphorylation, and PKC localization were assessed by Western blot. Control livers displayed decreased IRP activity at the end of ischemia but no change in ferritin content during ischemia and reperfusion. ANP-pretreated livers showed reduced IRP activity, an effect mimicked by 8-Br-cGMP. Ferritin levels were increased in ANP-pretreated organs. Simultaneous perfusion of livers with ANP and tin protoporphyrin did not reduce ANP-induced action, arguing against a role for HO-1 in changes in IRP activity. ANP and 8-Br-cGMP decreased membrane localization of PKC-alpha and PKC-epsilon, but this modulation of PKC seems unrelated to inhibition of IRP binding. This work shows the cGMP-mediated attenuation of IRP binding activity by ANP, which results in increased hepatic ferritin levels. This change in IRPs is independent of ANP-induced HO-1 and reduced PKC activation.
Collapse
Affiliation(s)
- Alexandra K Kiemer
- Department of Pharmacy, Center of Drug Research, University of Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
De Vito P, Di Nardo P, Palmery M, Peluso I, Luly P, Baldini PM. Oxidant-induced pHi/Ca2+ changes in rat aortic smooth muscle cells. The role of atrial natriuretic peptide. Mol Cell Biochem 2004; 252:353-62. [PMID: 14577610 DOI: 10.1023/a:1025508828271] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this study was to investigate the effects of oxidative stress on PLD activity, [Ca2+]i and pHi levels and the possible relationship among them. Moreover, since atrial natriuretic peptide (ANP) protects against oxidant-induced injury, we investigated the potential protective role of the hormone in rat aortic smooth muscle (RASM) cells exposed to oxidative stress. Water-soluble 2,2'-Azobis (2-amidinopropane) dihydrochloride (AAPH) was used as free radical generating system, since it generates peroxyl radicals with defined reaction and the half time of peroxyl radicals is longer than other ROS. A significant increase of PLD activity was related to a significant decrease in pHi, while [Ca2+]i levels showed an increase followed by a decrease after cell exposure to AAPH. [Ca2+]i changes and pHi fall induced by AAPH were prevented by cadmium which inhibits a plasma membrane Ca2+ ATPase coupled to Ca2+/H+ exchanger, that operates the efflux of Ca2+ coupled to H+ influx. The involvement of PLD in pHi and [Ca2+]i changes was confirmed by calphostin-c treatment, a potent inhibitor of PLD, which abolished all AAPH-induced effects. Pretreatment of RASM cells with pharmacological concentrations of ANP attenuated the AAPH effects on PLD activity as well as [Ca2+]i and pHi changes, while no effects were observed with physiological ANP concentrations, suggesting a possible role of the hormone as defensive effector against early events of the oxidative stress.
Collapse
Affiliation(s)
- P De Vito
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Ploessl I, Gallmeier E, Schaefer C, Bilzer M, Bittmann I, Göke B, Wagner ACC. ANP preconditioning does not increase protection against experimental pancreatitis, observed after general anesthesia and jugular vein catheterization. Pancreas 2004; 28:166-73. [PMID: 15028949 DOI: 10.1097/00006676-200403000-00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
It has been widely shown that preconditioning, inducing heat shock proteins, can protect against experimentally induced pancreatitis. Solid evidence indicates that HSP70 plays a central role in this context, possibly by inhibition of premature intracellular trypsinogen activation. Current preconditioning protocols such as whole body hyperthermia are, however, quite strenuous and clinically not applicable. There is little data on other means to induce pancreatic HSPs such as pharmacologic pretreatment.However, in models of ischemic liver reperfusion injury, it has been demonstrated that atrial natriuretic peptide (ANP) can be used for such pharmacologic preconditioning. Evidence indicates that ANP exerts its protective effects via increased cGMP levels, activation of heat shock transcription factor (HSF) and, increased protein levels of HSP70. Pancreatic acinar cells express ANP receptors and respond to ANP treatment with increased cGMP levels. We have, therefore, investigated whether intravenous ANP pretreatment could be used to protect the pancreas against experimental pancreatitis. When given 20 minutes prior to pancreatitis induction, ANP pretreatment had no effect on cerulein-induced pancreatitis. In contrast, 24 hours after preconditioning, induction of HSP70 protein expression and protection against experimental pancreatitis were found. However, controls treated with NaCl without ANP showed a similar response. This indicates that stress caused by general anesthesia and jugular vein catheterization can be sufficient for preconditioning while ANP, in contrast to models of ischemic liver reperfusion injury, does not confer additional protection.
Collapse
Affiliation(s)
- I Ploessl
- Department of Medicine II, Grosshadern Hospital, University of Munich, Institute of Pathology, University of Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Cyclic GMP, produced in response to nitric oxide and natriuretic peptides, is a key regulator of vascular smooth muscle cell contractility, growth, and differentiation, and is implicated in opposing the pathophysiology of hypertension, cardiac hypertrophy, atherosclerosis, and vascular injury/restenosis. cGMP regulates gene expression both positively and negatively at transcriptional as well as at posttranscriptional levels. cGMP-regulated transcription factors include the cAMP-response element binding protein CREB, the serum response factor SRF, and the nuclear factor of activated T cells NF/AT. cGMP can regulate CREB directly, through phosphorylation by cGMP-dependent protein kinase, or indirectly, through activation of mitogen-activated protein kinase pathways; regulation of SRF and NF/AT by cGMP is indirect, through modulation of RhoA and calcineurin signaling, respectively. Downregulation of the RNA-binding protein HuR by cGMP leads to destabilization of guanylate cyclase mRNA, but this posttranscriptional mechanism may affect many more cGMP-regulated genes. In this review, we discuss the role of cGMP-regulated gene expression in (patho)physiological processes most relevant to the cardiovascular system, such as regulation of vascular tone, cardiac hypertrophy, phenotypic modulation of vascular smooth muscle cells, and regulation of cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Renate B Pilz
- Department of Medicine and Cancer Center, University of California at San Diego, 9500 Gilman Dr, La Jolla, Calif 92093-0652, USA.
| | | |
Collapse
|
27
|
Abstract
Ischemia/reperfusion is the main cause of hepatic damage consequent to temporary clamping of the hepatoduodenal ligament during liver surgery as well as graft failure after liver transplantation. In recent years, a number of animal studies have shown that pre-exposure of the liver to transient ischemia, hyperthermia, or mild oxidative stress increases the tolerance to reperfusion injury, a phenomenon known as hepatic preconditioning. The development of hepatic preconditioning can be differentiated into 2 phases. An immediate phase (early preconditioning) occurs within minutes and involves the direct modulation of energy supplies, pH regulation, Na(+) and Ca(2+) homeostasis, and caspase activation. The subsequent phase (late preconditioning) begins 12-24 hours after the stimulus and requires the synthesis of multiple stress-response proteins, including heat shock proteins HSP70, HSP27, and HSP32/heme oxygenase 1. Hepatic preconditioning is not limited to parenchymal cells but ameliorates sinusoidal perfusion, prevents postischemic neutrophil infiltration, and decreases the production of proinflammatory cytokines by Kupffer cells. This latter effect is important in improving systemic disorders associated with hepatic ischemia/reperfusion. The signals triggering hepatic preconditioning have been partially characterized, showing that adenosine, nitric oxide, and reactive oxygen species can activate multiple protein kinase cascades involving, among others, protein kinase C and p38 mitogen-activated protein kinase. These observations, along with preliminary studies in humans, give a rationale to perform clinical trials aimed at verifying the possible application of hepatic preconditioning in preventing ischemia/reperfusion injury during liver surgery.
Collapse
Affiliation(s)
- Rita Carini
- Department of Medical Sciences, A. Avogdro University of East Piedmont, Via Solaroli 17, 28100 Novara, Italy
| | | |
Collapse
|
28
|
|
29
|
Gerwig T, Meissner H, Bilzer M, Kiemer AK, Arnholdt H, Vollmar AM, Gerbes AL. Atrial natriuretic peptide preconditioning protects against hepatic preservation injury by attenuating necrotic and apoptotic cell death. J Hepatol 2003; 39:341-8. [PMID: 12927919 DOI: 10.1016/s0168-8278(03)00240-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND/AIMS Preconditioning of livers with the atrial natriuretic peptide (ANP) markedly reduces hepatic ischemia-reperfusion injury. Aim of this study was to characterize the influence of ANP preconditioning on necrotic and apoptotic cell death and on proliferation. METHODS Rat livers were perfused with Krebs-Henseleit buffer with or without ANP or its second messenger analogue 8-Bromo cyclic guanosine monophosphate (8-Br cGMP) for 20 min, stored in cold University of Wisconsin solution (24 h), and reperfused for up to 120 min. Apoptosis and necrosis were determined using biochemical and morphological criteria, proliferation was assessed by Ki67 histochemistry. RESULTS Apoptosis peaked after 24 h of cold ischemia. Preconditioning with both ANP and 8-Br-cGMP significantly reduced caspase-3-like activity and the number of triphosphate nick-end labelling-positive cells. Reduction of apoptosis was significant for hepatocytes, but not for endothelial cells. After ischemia, degenerative cell changes were clearly reduced in ANP pretreated livers. After reperfusion, ANP preconditioning led to a significant reduction of necrotic hepatocytes and endothelial cells in periportal zones. Cell proliferation was not affected by preconditioning. CONCLUSIONS ANP reduces necrotic and apoptotic cell death without affecting the proliferation status. The protection takes place mainly in the periportal area and seems to be most prominent against necrosis of hepatocytes and endothelial cells during reperfusion.
Collapse
Affiliation(s)
- Tobias Gerwig
- Department of Pharmacy, Center of Drug Research, University of Munich, Klinikum Grosshadern, Marchioninistrasse 15, D-81377 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Kiemer AK, Gerwig T, Gerbes AL, Meissner H, Bilzer M, Vollmar AM. Kupffer-cell specific induction of heme oxygenase 1 (hsp32) by the atrial natriuretic peptide--role of cGMP. J Hepatol 2003; 38:490-8. [PMID: 12663242 DOI: 10.1016/s0168-8278(03)00056-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIMS Pretreatment with atrial natriuretic peptide (ANP) attenuates ischemia-reperfusion injury of livers via cGMP. Heme oxygenase-1 (HO-1) is known as a protective mediator in ischemia-reperfusion injury. The aim of this study was to investigate whether ANP affects the expression of HO-1. METHODS Rat livers were perfused with KH-buffer with/without ANP or 8-Br-cGMP, kept in UW solution (4 degrees C, 24 h), and reperfused. HO-1 mRNA and protein was determined by Northern and Western blot, in situ hybridization, and immunohistochemistry in livers or isolated liver cells. RESULTS ANP significantly elevated HO-1 mRNA expression at the end of the preconditioning period and was without effects at the end of ischemia and during reperfusion. 8-Br-cGMP did not affect HO-1 mRNA expression. In situ hybridization as well as immunohistological double-staining revealed that Kupffer cells but not hepatocytes showed HO-1 mRNA and protein expression. Hepatocytes revealed no changes in HO-1 protein whereas Kupffer cells showed a marked increase in HO-1 protein after ANP treatment. Inhibition of HO-1 did not abrogate hepatoprotection conveyed by ANP. CONCLUSION Our data show the potency of ANP to specifically induce HO-1 in Kupffer cells independently of cGMP. This increased expression of HO-1 is not involved in hepatoprotection conferred by ANP being in line with the knowledge that ANP mediates hepatoprotection via cGMP.
Collapse
Affiliation(s)
- Alexandra K Kiemer
- Department of Pharmacy, Center of Drug Research, University of Munich, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Kiemer AK, Bildner N, Weber NC, Vollmar AM. Characterization of heme oxygenase 1 (heat shock protein 32) induction by atrial natriuretic peptide in human endothelial cells. Endocrinology 2003; 144:802-12. [PMID: 12586756 DOI: 10.1210/en.2002-220610] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Atrial natriuretic peptide (ANP) is a cardiovascular hormone possessing antiinflammatory and cytoprotective potential. The aim of this study was to characterize induction of heme oxygenase (HO)-1 by ANP in human umbilical vein endothelial cells (HUVEC). METHODS HUVEC were treated with ANP, 8-bromo-cyclic GMP (cGMP), or cANF in the presence or absence of various inhibitors. HO-1 was determined by Western blot and RT-PCR, c-jun N-terminal kinase (JNK) and ERK by the use of phospho-specific antibodies. Activator protein (AP)-1 activation was assessed by gelshift assay. Reporter gene assays were performed using native or mutated AP-1 binding sites of the HO-1 promoter. TNF-alpha-induced cell death was investigated by Hoechst staining, fluorescence-activated cell sorting analysis, caspase-3-measurement, and 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide test. RESULTS ANP (10(-9)-10(-6) mol/liter) induced the expression of HO-1 protein and mRNA. Induction was mediated via the guanylate-cyclase-coupled receptor because 8-Br-cGMP mimicked the effect of ANP, whereas the clearance receptor agonist cANF did not induce HO-1. Endogenously produced cGMP also induced HO-1 because phosphodiesterase inhibition markedly elevated HO-1. The lack of effect of the cGMP-dependent protein kinase inhibitor 8-(4-chlorophenylthio)guanosine-3',5'-cyclic monophosphorothioate, Rp-isomer (Rp-8-pCT-cGMPS) suggested no involvement for this cGMP effector pathway in the signal transduction. ANP lead to activation of the transcription factor AP-1, and subsequently of JNK, as well as of ERK. Cotreatment of the cells with U0126 or SP600125, as well as reporter gene assays revealed the involvement of AP-1/JNK activation in HO-1 induction. Abrogation of HO-1 induction by PD-98059 showed also a role for ERK. Treatment of HUVEC with ANP did not protect from TNF-alpha-induced apoptosis. CONCLUSION This work characterizes the induction of HO-1 by ANP in HUVEC, which is shown to be mediated via JNK/AP-1 and ERK pathways. ANP-induced HO-1 does not confer protection against TNF-alpha-induced apoptosis.
Collapse
Affiliation(s)
- Alexandra K Kiemer
- Department of Pharmacy, Center of Drug Research, University of Munich, 81377 Munich, Germany.
| | | | | | | |
Collapse
|
32
|
Kim SH, Koh GY, Cho KW, Park WY, Seo JS. Stretch-activated atrial natriuretic peptide secretion in atria with heat shock protein 70 overexpression. Exp Biol Med (Maywood) 2003; 228:200-6. [PMID: 12563028 DOI: 10.1177/153537020322800211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The mechanical overload of the heart is known to induce the expression of atrial natriuretic peptide (ANP) and heat-shock protein 70 (HSP70) in the heart. However, the relationship between these two substances remains unknown. In the present study, we characterized ANP secretion from mouse atria and examined a possible role that HSP70 may play in the regulation of ANP synthesis and secretion by using atria in transgenic mice in which HSP70 was overexpressed. We generated transgenic mice harboring the human HSP70gene under the transcriptional control of human myosin heavy-chain promoter. In these mice, the transgene was overexpressed in the heart. Both atrial ANP messenger RNA and its concentration in the HSP70 transgenic mice were measured; these were not significantly different from those in wild-type mice. In isolated perfused nonbeating atria, basal secretion of ANP was similar in both groups. When atrial volume was increased by changing atrial pressure, extracellular fluid (ECF) translocation and ANP secretion proportionately increased. Changes in atrial volume and ECF translocation and ANP secretion were positively correlated. However, these parameters did not significantly differ between the two groups. Endothelin-1 (ET-1), the strongest paracrine stimulus of ANP secretion, accentuated stretch-activated ANP secretion without significantly changing mechanically stimulated ECF translocation, as compared with that in the wild-type mice. The increased ANP secretion due to ET-1 in the transgenic mice was similar to that in the wild-type mice. The results suggest that both atrial stretching and ET-1 are important stimuli to ANP secretion from mouse atria, and the responsiveness of the ANP system to those stimuli are unlikely coupled to the pathway involving HSP70.
Collapse
Affiliation(s)
- Suhn Hee Kim
- Department of Physiology, Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju 561-180, Republic of Korea.
| | | | | | | | | |
Collapse
|
33
|
Carini R, De Cesaris MG, Splendore R, Domenicotti C, Nitti MP, Pronzato MA, Albano E. Mechanisms of hepatocyte protection against hypoxic injury by atrial natriuretic peptide. Hepatology 2003; 37:277-85. [PMID: 12540777 DOI: 10.1053/jhep.2003.50033] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atrial natriuretic peptide (ANP) reduces ischemia and/or reperfusion damage in several organs, but the mechanisms involved are largely unknown. We used freshly isolated rat hepatocytes to investigate the mechanisms by which ANP enhances hepatocyte resistance to hypoxia. The addition of ANP (1 micromol/L) reduced the killing of hypoxic hepatocytes by interfering with intracellular Na(+) accumulation without ameliorating adenosine triphosphate (ATP) depletion and pH decrease caused by hypoxia. The effects of ANP were mimicked by 8-bromo-guanosine 3', 5'-cyclic monophosphate (cGMP) and were associated with the activation of cGMP-dependent kinase (cGK), suggesting the involvement of guanylate cyclase-coupled natriuretic peptide receptor (NPR)-A/B ANP receptors. However, stimulating NPR-C receptor with des-(Gln(18), Ser(19),Gly(20),Leu(21),Gly(22))-ANP fragment 4-23 amide (C-ANP) also increased hepatocyte tolerance to hypoxia. C-ANP protection did not involve cGK activation but was instead linked to the stimulation of protein kinase C (PKC)-delta through G(i) protein- and phospholipase C-mediated signals. PKC-delta activation was also observed in hepatocytes receiving ANP. The inhibition of phospholipase C or PKC by U73122 and chelerythrine, respectively, significantly reduced ANP cytoprotection, indicating that ANP interaction with NPR-C receptors also contributed to cytoprotection. In ANP-treated hepatocytes, the stimulation of both cGK and PKC-delta was coupled with dual phosphorylation of p38 mitogen-activated protein kinase (MAPK). The p38 MAPK inhibitor SB203580 abolished ANP protection by reverting p38 MAPK-mediated regulation of Na(+) influx by the Na(+)/H(+) exchanger. In conclusion, ANP recruits 2 independent signal pathways, one mediated by cGMP and cGK and the other associated with G(i) proteins, phospholipase C, and PKC-delta. Both cGK and PKC-delta further transduce ANP signals to p38 MAPK that, by maintaining Na(+) homeostasis, are responsible for ANP protection against hypoxic injury.
Collapse
Affiliation(s)
- Rita Carini
- Department of Medical Sciences, University Amedeo Avogadro of East Piedmont, Novara, Italy.
| | | | | | | | | | | | | |
Collapse
|
34
|
Kiemer AK, Kulhanek-Heinze S, Gerwig T, Gerbes AL, Vollmar AM. Stimulation of p38 MAPK by hormal preconditioning with atrial natriuretic peptide. World J Gastroenterol 2002; 8:707-11. [PMID: 12174383 PMCID: PMC4656325 DOI: 10.3748/wjg.v8.i4.707] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: Stress-activated signaling pathways responsible for hepatic ischemia reperfusion injury and their modulation by protective interventions are widely unknown. Preconditioning of rat livers with Atrial Natriuretic Peptide (ANP) attenuates ischemia reperfusion injury (Gerbes et al[21]Hepatology 1998, 28:1309-1317). Since ANP has recently been shown to be a regulator of the p38 MAPK pathway in endothelial cells (Kiemer et al[25]Circ Res 2002, 90:874-881), aim of this study was to investigate activities of MAPK during ischemia and reperfusion and effects of ANP on MAPK.
METHODS: Rat livers were perfused with KH-buffer in the presence or absence of ANP for 20 min, kept in cold UW solution for 24 h, and reperfused for up to 120 min. Activities of p38 MAPK and JNK was determined by in vitro phosphorylation assays using MBP and c-jun as substrates. After SDS/PAGE electrophoresis, gels were quantified by phosphorimaging.
RESULTS: Activity of p38 MAPK in control organs decreased in the course of ischemia and reperfusion by 85%, whereas ANP increased p38 activity by up to 30-fold. JNK activation of control livers increased in the course of ischemia and reperfusion by up to three-fold. This increase in JNK activity was slightly elevated in ANP preconditioned organs.
CONCLUSION: This work represents a systematic investigation of MAPK activation during liver ischemia and reperfusion. Employing ANP, for the first time a pharmacological approach to modulate these central signal transduction molecules is presented.
Collapse
Affiliation(s)
- Alexandra K Kiemer
- Department of Pharmacy, Center of Drug Research, Butenandtstr. 5-13, 81377 Munich, Germany.
| | | | | | | | | |
Collapse
|
35
|
Kiemer AK, Weber NC, Vollmar AM. Induction of IkappaB: atrial natriuretic peptide as a regulator of the NF-kappaB pathway. Biochem Biophys Res Commun 2002; 295:1068-76. [PMID: 12135603 DOI: 10.1016/s0006-291x(02)00807-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Atrial natriuretic peptide (ANP) was shown to possess anti-inflammatory potential due to its potency to inhibit the production of inflammatory mediators, such as TNF-alpha. The aim of this study was to determine potential effects of ANP on endothelial cells targeted by TNF-alpha. HUVEC were treated with TNF-alpha and expression of adhesion molecules was investigated by FACS and RT-PCR. Pre-treatment of cells with ANP (30min) significantly reduced TNF-alpha-induced cell surface protein and mRNA expression of E-selectin and ICAM-1, whereas it did not influence VCAM-1. ANP reduced TNF-alpha-induced NF-kappaB activity, which was paralleled by a decreased translocation of p65 to nuclei. ANP did not alter TNF-alpha-induced phosphorylation and degradation of IkappaB-alpha, but attenuated degradation of IkappaB-epsilon. Moreover, ANP leads to a transcriptional induction of IkappaB-alpha. The induction of IkappaB by ANP is suggested as a novel mechanism for regulating inflammatory signalling in endothelial cells, leading to reduced TNF-alpha-induced expression of adhesion molecules.
Collapse
Affiliation(s)
- Alexandra K Kiemer
- Department of Pharmacy, Center of Drug Research, University of Munich, Butenandtstrasse 5-13, 81377 Munich, Germany.
| | | | | |
Collapse
|