1
|
Liu N, Wang A, Xue M, Zhu X, Liu Y, Chen M. FOXA1 and FOXA2: the regulatory mechanisms and therapeutic implications in cancer. Cell Death Discov 2024; 10:172. [PMID: 38605023 PMCID: PMC11009302 DOI: 10.1038/s41420-024-01936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
FOXA1 (Forkhead Box A1) and FOXA2 (Forkhead Box A2) serve as pioneering transcription factors that build gene expression capacity and play a central role in biological processes, including organogenesis and differentiation, glycolipid metabolism, proliferation, migration and invasion, and drug resistance. Notably, FOXA1 and FOXA2 may exert antagonistic, synergistic, or complementary effects in the aforementioned biological processes. This article focuses on the molecular mechanisms and clinical relevance of FOXA1 and FOXA2 in steroid hormone-induced malignancies and highlights potential strategies for targeting FOXA1 and FOXA2 for cancer therapy. Furthermore, the article describes the prospect of targeting upstream regulators of FOXA1/FOXA2 to regulate its expression for cancer therapy because of the drug untargetability of FOXA1/FOXA2.
Collapse
Affiliation(s)
- Na Liu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| | - Anran Wang
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China
| | - Mengen Xue
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China
| | - Xiaoren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yang Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minbin Chen
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China.
| |
Collapse
|
2
|
Myo1b Promotes Premature Endothelial Senescence and Dysfunction via Suppressing Autophagy: Implications for Vascular Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:4654083. [PMID: 36654782 PMCID: PMC9842418 DOI: 10.1155/2023/4654083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Endothelial cell (EC) senescence characterized by an irreversible growth arrest leading to endothelial dysfunction has been implicated in vascular aging and aging-associated cardiovascular diseases. Autophagy plays a crucial role in the modulation of cellular senescence. Our previous showed that myosin 1b (Myo1b), one family of nonfilamentous class-1 myosin, was reported to be involved in the modulation of human smooth muscle cell senescence. However, the role of Myo1b in the modulation of EC senescence with links to autophagy has yet to be elucidated. In this study, we sought to explore the role of Myo1b in endothelial senescence and further elucidate the underlying mechanisms. Here, we show prominent upregulation of Myo1b in senescent ECs in comparison with nonsenescence ECs in both mRNA and protein expression levels. Silencing Myo1b in senescent cells ameliorates endothelial dysfunctions and reverses endothelial senescence phenotypic changes such as senescence-associated-β-galactosidase activity, cyclin-dependent kinase inhibitor p21WAF1, expression of vascular adhesion molecule-1 (VCAM1) and intercellular adhesion molecule-1 (ICAM1), and the senescence-associated cytokines. In contrast, in nonsenescent cells, overexpressing Myo1b promotes endothelial senescence and suppresses autophagy through the impairment of autophagosome and lysosome fusion. The interaction between Myo1b and LRRK2 through Myo1b tail domain promotes intracellular calcium elevation, which results in the inhibition of autophagic flux. In vitro and in vivo aging models, Myo1b knockdown in senescent ECs and wild type-aged mice is able to enhance autophagy and ameliorate aging-associated endothelial dysfunction. Taken together, our studies reveal a new function for Myo1b, that is, to couple LRRK2 assembly to promote an increase in intracellular calcium level, which impairs the autophagosome-lysosome fusion, and ultimately the promotion of EC senescence and vascular aging.
Collapse
|
3
|
Yu C, Li X, Zhao Y, Hu Y. The role of FOXA family transcription factors in glucolipid metabolism and NAFLD. Front Endocrinol (Lausanne) 2023; 14:1081500. [PMID: 36798663 PMCID: PMC9927216 DOI: 10.3389/fendo.2023.1081500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Abnormal glucose metabolism and lipid metabolism are common pathological processes in many metabolic diseases, such as nonalcoholic fatty liver disease (NAFLD). Many studies have shown that the forkhead box (FOX) protein subfamily FOXA has a role in regulating glucolipid metabolism and is closely related to hepatic steatosis and NAFLD. FOXA exhibits a wide range of functions ranging from the initiation steps of metabolism such as the development of the corresponding metabolic organs and the differentiation of cells, to multiple pathways of glucolipid metabolism, to end-of-life problems of metabolism such as age-related obesity. The purpose of this article is to review and discuss the currently known targets and signal transduction pathways of FOXA in glucolipid metabolism. To provide more experimental evidence and basis for further research and clinical application of FOXA in the regulation of glucolipid metabolism and the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Chuchu Yu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affifiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojing Li
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affifiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affifiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yu Zhao, ; Yiyang Hu,
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affifiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Clinical Pharmacology, Shuguang Hospital Affifiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yu Zhao, ; Yiyang Hu,
| |
Collapse
|
4
|
Chen Z, Tang N, Wang X, Chen Y. The activity of the carbamoyl phosphate synthase 1 promoter in human liver-derived cells is dependent on hepatocyte nuclear factor 3-beta. J Cell Mol Med 2017; 21:2036-2045. [PMID: 28272778 PMCID: PMC5571533 DOI: 10.1111/jcmm.13123] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/13/2017] [Indexed: 01/15/2023] Open
Abstract
Carbamoyl phosphate synthase 1 (CPS1) is the rate‐limiting enzyme in the first step of the urea cycle and an indispensable enzyme in the metabolism of human liver. However, CPS1 epigenetic regulation involves promoter analysis and the role of liver‐enriched transcription factors (LETFs), which is not fully elucidated. In this work, the promoter region of hCPS1 gene was cloned, and its activity was investigated. An LETF, hepatocyte nuclear factor 3‐beta (HNF3β), was found to promote the transcriptional expression of CPS1 in liver‐derived cell lines. In addition, dual‐luciferase reporter assay shows that the essential binding sites of the HNF3β may exist in the oligonucleotide −70 nt to +73 nt. Two putative binding sites are available for HNF3β. Mutation analysis results show that the binding site 2 of HNF3β was effective, and the transcriptional activity of CPS1 promoter significantly decreased after mutation. Electrophoretic mobile shift assay (EMSA) and ChIP assay confirmed that HNF3β can interact with the binding site in the CPS1 promoter region of −70 nt to +73 nt promoter region in vivo and in vitro to regulate the transcription of CPS1. Moreover, HNF3β overexpression enhanced the transcription of CPS1 and consequently improved the mRNA and protein levels of CPS1, whereas the knockdown of HNF3β showed the opposite effects. Finally, urea production in cells was measured, and ammonia detoxification improved significantly in cells after transfection with HNF3β. HNF3β plays a vital role in regulation of CPS1 gene and could promote the metabolism of ammonia by regulating CPS1 expression.
Collapse
Affiliation(s)
- Zhanfei Chen
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Nanhong Tang
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center for Molecular Medicine, Fujian Medical University, Fuzhou, China
| | - Xiaoqian Wang
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yanling Chen
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center for Molecular Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
5
|
Moya M, Benet M, Guzmán C, Tolosa L, García-Monzón C, Pareja E, Castell JV, Jover R. Foxa1 reduces lipid accumulation in human hepatocytes and is down-regulated in nonalcoholic fatty liver. PLoS One 2012; 7:e30014. [PMID: 22238690 PMCID: PMC3253125 DOI: 10.1371/journal.pone.0030014] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 12/08/2011] [Indexed: 02/06/2023] Open
Abstract
Triglyceride accumulation in nonalcoholic fatty liver (NAFL) results from unbalanced lipid metabolism which, in the liver, is controlled by several transcription factors. The Foxa subfamily of winged helix/forkhead box (Fox) transcription factors comprises three members which play important roles in controlling both metabolism and homeostasis through the regulation of multiple target genes in the liver, pancreas and adipose tissue. In the mouse liver, Foxa2 is repressed by insulin and mediates fasting responses. Unlike Foxa2 however, the role of Foxa1 in the liver has not yet been investigated in detail. In this study, we evaluate the role of Foxa1 in two human liver cell models, primary cultured hepatocytes and HepG2 cells, by adenoviral infection. Moreover, human and rat livers were analyzed to determine Foxa1 regulation in NAFL. Results demonstrate that Foxa1 is a potent inhibitor of hepatic triglyceride synthesis, accumulation and secretion by repressing the expression of multiple target genes of these pathways (e.g., GPAM, DGAT2, MTP, APOB). Moreover, Foxa1 represses the fatty acid transporter protein FATP2 and lowers fatty acid uptake. Foxa1 also increases the breakdown of fatty acids by inducing peroxisomal fatty acid β-oxidation and ketone body synthesis. Finally, Foxa1 is able to largely up-regulate UCP1, thereby dissipating energy and consistently decreasing the mitochondria membrane potential. We also report that human and rat NAFL have a reduced Foxa1 expression, possibly through a protein kinase C-dependent pathway. We conclude that Foxa1 is an antisteatotic factor that coordinately tunes several lipid metabolic pathways to block triglyceride accumulation in hepatocytes. However, Foxa1 is down-regulated in human and rat NAFL and, therefore, increasing Foxa1 levels could protect from steatosis. Altogether, we suggest that Foxa1 could be a novel therapeutic target for NAFL disease and insulin resistance.
Collapse
Affiliation(s)
- Marta Moya
- Experimental Hepatology Unit, University Hospital La Fe, Valencia, Spain
| | - Marta Benet
- Experimental Hepatology Unit, University Hospital La Fe, Valencia, Spain
- CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Carla Guzmán
- Experimental Hepatology Unit, University Hospital La Fe, Valencia, Spain
| | - Laia Tolosa
- Experimental Hepatology Unit, University Hospital La Fe, Valencia, Spain
| | - Carmelo García-Monzón
- CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
- Liver Research Unit, Instituto de Investigación Sanitaria Princesa, University Hospital Santa Cristina, Madrid, Spain
| | - Eugenia Pareja
- Surgery and Liver Transplantation Unit, University Hospital La Fe, Valencia, Spain
| | - José Vicente Castell
- Experimental Hepatology Unit, University Hospital La Fe, Valencia, Spain
- CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Ramiro Jover
- Experimental Hepatology Unit, University Hospital La Fe, Valencia, Spain
- CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
6
|
Transcriptional regulation of glucose sensors in pancreatic β-cells and liver: an update. SENSORS 2010; 10:5031-53. [PMID: 22399922 PMCID: PMC3292162 DOI: 10.3390/s100505031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/07/2010] [Accepted: 05/13/2010] [Indexed: 01/17/2023]
Abstract
Pancreatic β-cells and the liver play a key role in glucose homeostasis. After a meal or in a state of hyperglycemia, glucose is transported into the β-cells or hepatocytes where it is metabolized. In the β-cells, glucose is metabolized to increase the ATP:ADP ratio, resulting in the secretion of insulin stored in the vesicle. In the hepatocytes, glucose is metabolized to CO(2), fatty acids or stored as glycogen. In these cells, solute carrier family 2 (SLC2A2) and glucokinase play a key role in sensing and uptaking glucose. Dysfunction of these proteins results in the hyperglycemia which is one of the characteristics of type 2 diabetes mellitus (T2DM). Thus, studies on the molecular mechanisms of their transcriptional regulations are important in understanding pathogenesis and combating T2DM. In this paper, we will review a recent update on the progress of gene regulation of glucose sensors in the liver and β-cells.
Collapse
|
7
|
Eleswarapu S, Ge X, Wang Y, Yu J, Jiang H. Growth hormone-activated STAT5 may indirectly stimulate IGF-I gene transcription through HNF-3{gamma}. Mol Endocrinol 2009; 23:2026-37. [PMID: 19819986 DOI: 10.1210/me.2009-0178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
IGF-I is abundantly expressed in the liver under the stimulation of GH. We showed previously that expression of hepatocyte nuclear factor (HNF)-3gamma, a liver-enriched transcription factor, was strongly stimulated by GH in bovine liver. In this study, we determined whether GH-increased HNF-3gamma might contribute to GH stimulation of IGF-I gene expression in bovine liver and the underlying mechanism. A sequence analysis of the bovine IGF-I promoter revealed three putative HNF-3 binding sites, which all appear to be conserved in mammals. Chromatin immunoprecipitation assays showed that GH injection increased binding of HNF-3gamma to the IGF-I promoter in bovine liver. Gel-shift assays indicated that one of the three putative HNF-3 binding sites, HNF-3 binding site 1, bound to the HNF-3gamma protein from bovine liver with high affinity. Cotransfection analyses demonstrated that this HNF-3 binding site was essential for the transcriptional response of the IGF-I promoter to HNF-3gamma in CHO cells and to GH in primary mouse hepatocytes. Using similar approaches, we found that GH increased binding of the signal transducer and activator of transcription 5 (STAT5) to the HNF-3gamma promoter in bovine liver, that this binding occurred at a conserved STAT5 binding site, and that this STAT5 binding site was necessary for the HNF-3gamma promoter to respond to GH. Taken together, these results suggest that in addition to direct action, GH-activated STAT5 may also indirectly stimulate IGF-I gene transcription in the liver by directly enhancing the expression of the HNF-3gamma gene.
Collapse
Affiliation(s)
- Satyanarayana Eleswarapu
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, 24061, USA
| | | | | | | | | |
Collapse
|
8
|
Lee HJ, Hwang M, Chattopadhyay S, Choi HS, Lee K. Hepatocyte nuclear factor-3 alpha (HNF-3alpha) negatively regulates androgen receptor transactivation in prostate cancer cells. Biochem Biophys Res Commun 2008; 367:481-6. [PMID: 18178153 DOI: 10.1016/j.bbrc.2007.12.162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 12/27/2007] [Indexed: 10/22/2022]
Abstract
The androgen receptor (AR) is involved in the development and progression of prostate cancers. However, the mechanisms by which this occurs remain incompletely understood. In previous reports, hepatocyte nuclear factor-3alpha (HNF-3alpha) has been shown to be expressed in the epithelia of the prostate gland, and has been determined to regulate the transcription of prostate-specific genes. In this study, we report that HNF-3alpha functions as a novel corepressor of AR in prostatic cells. HNF-3alpha represses AR transactivation on target promoters containing the androgen response element (ARE) in a dose-dependent manner. HNF-3alpha interacts physically with AR, and negatively regulates AR transactivation via competition with AR coactivators, including GRIP1. Furthermore, HNF-3alpha overexpression reduces the androgen-induced expression of prostate-specific antigen (PSA) in LNCaP cells. Taken together, our findings indicate that HNF-3alpha is a novel corepressor of AR, and predict its effects on the proliferation of prostate cancer cells.
Collapse
Affiliation(s)
- Hyun Joo Lee
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, 300 Yongbong-dong, Puk-ku, Gwangju 500-757, Republic of Korea
| | | | | | | | | |
Collapse
|
9
|
Cheng A, Zhang M, Crosson SM, Bao ZQ, Saltiel AR. Regulation of the mouse protein targeting to glycogen (PTG) promoter by the FoxA2 forkhead protein and by 3',5'-cyclic adenosine 5'-monophosphate in H4IIE hepatoma cells. Endocrinology 2006; 147:3606-12. [PMID: 16627590 DOI: 10.1210/en.2005-1513] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The scaffolding protein, protein targeting to glycogen (PTG), orchestrates the signaling of several metabolic enzymes involved in glycogen synthesis. However, little is known concerning the regulation of PTG itself. In this study, we have cloned and characterized the mouse promoter of PTG. We identified multiple FoxA2 binding sites within this region. FoxA2 is a member of the forkhead family of transcription factors that has recently been implicated in the cAMP-dependent regulation of several genes involved in liver metabolism. Using luciferase reporter constructs, we demonstrate that FoxA2 transactivates the PTG promoter in H4IIE hepatoma cells. Nuclear extracts prepared from mouse liver and H4IIE cells were able to bind a FoxA2-specific probe derived within the PTG promoter region. Chromatin immunoprecipitation experiments further demonstrate that FoxA2 binds to the PTG promoter in vivo. Finally, we show that treatment with cAMP analogs activates the PTG promoter and significantly increases PTG levels in H4IIE cells. Our results provide a framework to investigate how additional transcription factors may regulate PTG expression in other cell types.
Collapse
Affiliation(s)
- Alan Cheng
- Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, 48109, USA
| | | | | | | | | |
Collapse
|
10
|
Tan Y, Yoshida Y, Hughes DE, Costa RH. Increased expression of hepatocyte nuclear factor 6 stimulates hepatocyte proliferation during mouse liver regeneration. Gastroenterology 2006; 130:1283-300. [PMID: 16618419 PMCID: PMC1440887 DOI: 10.1053/j.gastro.2006.01.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 12/21/2005] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS The hepatocyte nuclear factor 6 (HNF6 or ONECUT-1) protein is a cell-type specific transcription factor that regulates expression of hepatocyte-specific genes. Using hepatocytes for chromatin immunoprecipitation (ChIP) assays, the HNF6 protein was shown to associate with cell cycle regulatory promoters. Here, we examined whether increased levels of HNF6 stimulate hepatocyte proliferation during mouse liver regeneration. METHODS Tail vein injection of adenovirus expressing the HNF6 complementary DNA was used to increase hepatic HNF6 levels during mouse liver regeneration induced by partial hepatectomy, and DNA replication was determined by bromodeoxyuridine incorporation. Cotransfection and ChIP assays were used to determine transcriptional target promoters. RESULTS Elevated expression of HNF6 during mouse liver regeneration causes a significant increase in the number of hepatocytes entering DNA replication (S phase), and mouse hepatoma Hepa1-6 cells diminished for HNF6 levels by small interfering RNA transfection exhibit a 50% reduction in S phase following serum stimulation. This stimulation in hepatocyte S-phase progression was associated with increased expression of the hepatocyte mitogen tumor growth factor alpha and the cell cycle regulators cyclin D1 and Forkhead box m1 (Foxm1) transcription factor. Cotransfection and ChIP assays show that tumor growth factor alpha, cyclin D1, and HNF6 promoter regions are direct transcriptional targets of the HNF6 protein. Coimmunoprecipitation assays with regenerating mouse liver extracts reveal an association between HNF6 and FoxM1 proteins, and cotransfection assays show that HNF6 stimulates Foxm1 transcriptional activity. CONCLUSIONS These mouse liver regeneration studies show that increased HNF6 levels stimulate hepatocyte proliferation through transcriptional induction of cell cycle regulatory genes.
Collapse
Key Words
- hnf6, hepatocyte nuclear factor 6
- oc-1; onecut 1
- foxm1, forkhead box m1
- tgfα, tumor growth factor α
- adhnf6, adenovirus expressing hnf6
- adlacz, adenovirus expressing β-galactosidase
- chip, chromatin immunoprecipitation
- brdu, bromodeoxyuridine
- s-phase, dna replication
- phx, partial hepatectomy
- co-ip, co-immunoprecipitation
- sirna, small interfering rna
- gh, growth hormone
- creb, camp responsive element binding protein
- cbp, creb binding protein
- cdks, cyclin-dependent kinases
- cdki proteins, cdk inhibitor proteins
- rpa, rnase protection assays
Collapse
Affiliation(s)
- Yongjun Tan
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60607
| | - Yuichi Yoshida
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60607
| | - Douglas E. Hughes
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60607
| | - Robert H. Costa
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60607
- Corresponding author: Robert H. Costa, PhD, University of Illinois at Chicago, College of Medicine, Department of Biochemistry and Molecular Genetics (M/C 669) 900 S. Ashland Ave, MBRB Rm. 2220, Chicago, IL 60607-7170 Office Phone: (312) 996-0474; Lab FAX: (312) 355-4010; E-Mail:
| |
Collapse
|
11
|
Mirosevich J, Gao N, Matusik RJ. Expression of Foxa transcription factors in the developing and adult murine prostate. Prostate 2005; 62:339-52. [PMID: 15389796 DOI: 10.1002/pros.20131] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The Foxa family (a1, a2, and a3) of proteins are transcription factors that are central to endodermal development. Recently, Foxa1 has been shown to regulate the transcription of several murine and human prostate specific genes involved in differentiated function by interacting with DNA promoter sequences and androgen receptors. Currently, the developmental expression pattern of Foxa proteins in the murine prostate is unknown. METHODS Male CD-1 mice (embryonic, prepubertal, pubertal, and adult) were used for immunohistochemical analysis of Foxa1, a2, and a3. Immunofluorescence was also performed for androgen receptor and cytokeratin 14 expression. Prostate tissue from pre-pubertal, pubertal, and adult mice were analyzed by Western blot and RT-PCR analysis for Foxa1, a2, and a3 expression. RESULTS Strong Foxa1 immunoreactivity was observed in epithelial cells throughout prostate development, growth, and adult differentiation. Prominent Foxa2 protein expression was only observed in the early stages of prostate development and was exclusively localized to epithelial cells of the forming buds. RT-PCR analysis identified low Foxa2 mRNA expression levels in the ventral and dorsolateral lobes of the adult prostate, with Foxa2 epithelial cell expression being localized to periurethral regions of the murine adult prostatic complex. Foxa3 expression was not observed in the murine prostate. CONCLUSIONS Foxa proteins represent epithelial cell markers in the murine prostate gland. The early expression of Foxa1 and a2 proteins in prostate formation suggests that these proteins play an important role in normal prostate development, in addition to differentiated secretory function.
Collapse
Affiliation(s)
- Janni Mirosevich
- Vanderbilt Prostate Cancer Center, Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2765, USA
| | | | | |
Collapse
|
12
|
Wang M, Tan Y, Costa RH, Holterman AXL. In vivo regulation of murine CYP7A1 by HNF-6: a novel mechanism for diminished CYP7A1 expression in biliary obstruction. Hepatology 2004; 40:600-8. [PMID: 15349898 DOI: 10.1002/hep.20349] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Disruption of the enterohepatic bile acid circulation during biliary tract obstruction leads to profound perturbation of the cholesterol and bile acid metabolic pathways. Several families of nuclear receptor proteins have been shown to modulate this critical process by regulating hepatic cholesterol catabolism and bile acid synthesis through the transcriptional control of cholesterol 7-alpha hydroxylase (CYP7A1). Hepatocyte nuclear factor (HNF) 6 (also known as OC-1) is a member of the ONECUT family of transcription factors that activate numerous hepatic target genes essential to liver function. We have previously shown that hepatic expression of mouse HNF-6 messenger RNA (mRNA) and protein significantly decrease following bile duct ligation. Because CYP7A1 contains potential HNF-6 binding sites in its promoter region, we tested the hypothesis that HNF-6 transcriptionally regulates CYP7A1. Following bile duct ligation, we demonstrated that diminished HNF-6 mRNA levels correlate with a reduction in CYP7A1 mRNA expression. Increasing hepatic levels of HNF-6 either by infection with recombinant adenovirus vector expressing HNF-6 cDNA by growth hormone treatment leads to an induction of CYP7A1 mRNA. To directly evaluate if HNF-6 is a transcriptional activator for CYP7A1, we used deletional and mutational analyses of CYP7A1 promoter sequences and defined sequences -206/-194 to be critical for CYP7A1 transcriptional stimulation by HNF-6 in cotransfection assays. In conclusion, the HNF-6 protein is a component of the complex network of hepatic transcription factors that regulates the expression of hepatic genes essential for bile acid homeostasis and cholesterol/lipid metabolism in normal and pathological conditions.
Collapse
Affiliation(s)
- Minhua Wang
- Department of Surgery, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
13
|
Jung D, Hagenbuch B, Fried M, Meier PJ, Kullak-Ublick GA. Role of liver-enriched transcription factors and nuclear receptors in regulating the human, mouse, and rat NTCP gene. Am J Physiol Gastrointest Liver Physiol 2004; 286:G752-61. [PMID: 14701722 DOI: 10.1152/ajpgi.00456.2003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatic uptake of bile acids is mediated by the Na(+)-taurocholate cotransporting polypeptide (NTCP; SLC10A1) of the basolateral hepatocyte membrane. Several cis-acting elements in the rat Ntcp gene promoter have been characterized. However, little is known about the mechanisms that control the expression of the human or mouse NTCP/Ntcp. We, therefore, compared the transcriptional regulation of the human and mouse NTCP/Ntcp gene with that of the rat. By computer alignment, a sequence in the 5'-regulatory region that is conserved between species was identified near the transcription start site. Huh7 cells were transfected with luciferase constructs containing the conserved region from each species. The hepatocyte nuclear factors (HNF)1alpha and -4alpha and the retinoid X receptor/retinoic acid receptor dimer (RXRalpha/RARalpha) bound and transactivated the rat but not the human or mouse NTCP/Ntcp promoters. In contrast, activation by the CCAAT/enhancer binding protein-beta was specific for human and mouse NTCP/Ntcp. The only consensus motif present in all three species was HNF3beta. HNF3beta formed a specific DNA-protein complex in electrophoretic mobility shift assays and inhibited NTCP/Ntcp promoter activity in cotransfection assays. Finally, a minor repressive effect of bile acids was only found for rat Ntcp. The transcriptional repressor small heterodimer partner (SHP) did not affect NTCP/Ntcp promoter activity. We conclude that 1) the transcriptional regulation of the conserved NTCP/Ntcp 5'-regulatory region differs considerably among human, mouse, and rat; and 2) the conserved NTCP/Ntcp regulatory region is not directly regulated by SHP. Bile acids may regulate NTCP/Ntcp indirectly by modulating the capacity of nuclear factors to activate gene expression.
Collapse
Affiliation(s)
- Diana Jung
- Division of Gastroenterology and Hepatology, Dept. of Internal Medicine, Univ. Hospital, CH-8091 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Vavricka SR, Jung D, Fried M, Grützner U, Meier PJ, Kullak-Ublick GA. The human organic anion transporting polypeptide 8 (SLCO1B3) gene is transcriptionally repressed by hepatocyte nuclear factor 3beta in hepatocellular carcinoma. J Hepatol 2004; 40:212-8. [PMID: 14739090 DOI: 10.1016/j.jhep.2003.10.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS The organic anion transporting polypeptides (OATPs) mediate the uptake of numerous amphipathic compounds into hepatocytes. Our aim was to study the expression and regulation of OATP8 (OATP1B3, SLC21A8/SLCO1B3) and OATP-C (OATP1B1, SLC21A6/SLCO1B1) in hepatocellular carcinomas (HCC). METHODS RNA and protein levels in 13 paired HCC and adjacent non-tumor liver samples were quantified by real-time polymerase chain reaction or Western blot, respectively. The OATP8 and OATP-C gene promoters were characterized by luciferase reporter assays and electrophoretic mobility shift assays (EMSA). RESULTS The expression of OATP8 was decreased in 60% of HCC compared to surrounding non-tumor liver tissue, on both the mRNA and protein levels. Expression of the liver-enriched transcription factor hepatocyte nuclear factor 3beta (HNF3beta) was increased in 70% of HCC and correlated inversely with OATP8 mRNA (r=-0.75, P<0.05) and protein. In contrast to OATP8, expression of OATP-C was not significantly decreased in HCC. In transfected Huh7 cells, OATP8 promoter activity was inhibited by 70% when HNF3beta was cotransfected. An HNF3beta binding site was located at nt -39/-23 by EMSA. The OATP-C promoter was not inhibited by HNF3beta. CONCLUSIONS HNF3beta represses transcription of the OATP8 but not the OATP-C gene, providing a mechanism for reduced expression of OATP8 in HCC.
Collapse
Affiliation(s)
- Stephan R Vavricka
- Laboratory of Molecular Gastroenterology and Hepatology, Division of Gastroenterology and Hepatology, University Hospital, CH-8091 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
15
|
Costa RH, Kalinichenko VV, Holterman AXL, Wang X. Transcription factors in liver development, differentiation, and regeneration. Hepatology 2003; 38:1331-47. [PMID: 14647040 DOI: 10.1016/j.hep.2003.09.034] [Citation(s) in RCA: 286] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Robert H Costa
- Department of Biochemistry and Molecular Genetics University of Illinois at Chicago, College of Medicine, Chicago, IL 60607-7170, USA.
| | | | | | | |
Collapse
|
16
|
Hughes DE, Stolz DB, Yu S, Tan Y, Reddy JK, Watkins SC, Diehl AM, Costa RH. Elevated hepatocyte levels of the Forkhead box A2 (HNF-3beta) transcription factor cause postnatal steatosis and mitochondrial damage. Hepatology 2003; 37:1414-24. [PMID: 12774021 DOI: 10.1053/jhep.2003.50253] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Forkhead box (Fox) transcription factor Foxa2 (HNF-3beta) and related family members Foxa1 (HNF-3alpha) and Foxa3 (HNF-3gamma) act in concert with other hepatocyte nuclear factors (HNF) to coordinately regulate liver-specific gene expression. To circumvent the hepatic functional redundancy of the Foxa proteins, we used the T-77 transgenic (TG) mouse line in which the -3-kb transthyretin (TTR) promoter functioned to increase hepatocyte expression of the Foxa2 cDNA. Adult TG mice exhibited reduced hepatic glycogen and progressive liver injury, but maintained normal serum levels of glucose, insulin, and glucagon. In this study, we further characterized the postnatal liver defect in TTR-FoxA2 TG mice. The postnatal TG mice displayed significant reduction in serum glucose levels and in hepatocyte glycogen storage without increased serum levels of ketone bodies and free fatty acid suggesting that they are not undergoing a starvation response. We show that TG liver developed a substantial transient steatosis, which reached a maximum at postnatal day 5 and is associated with increased expression of hepatic genes involved in fatty acid and triglyceride synthesis, lipid beta-oxidation, and amino acid biosynthesis. Furthermore, transmission electron microscopy analysis of postnatal TG liver revealed extensive mitochondrial membrane damage, which is likely due to reactive oxygen species generated from lipid beta-oxidation. In conclusion, our model proposes that in response to reduction in hepatocyte glycogen storage, the TTR-Foxa2 TG mice survive by maintaining sufficient serum levels of glucose through gluconeogenesis using deaminated amino acids with dicarboxylate products of peroxisomal lipid beta-oxidation shuttled through the tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Douglas E Hughes
- University of Illinois at Chicago, College of Medicine, Department of Molecular Genetics, Chicago, IL 60607-7170, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Further insights into the cellular and molecular mechanisms underlying hepatobiliary transport function and its regulation now permit a better understanding of the pathogenesis and treatment options of cholestatic liver diseases. Identification of the molecular basis of hereditary cholestatic syndromes will result in an improved diagnosis and management of these conditions. New insights into the pathogenesis of extrahepatic manifestations of cholestasis (eg, pruritus) have facilitated new treatment strategies. Important new studies have been published about the pathogenesis, clinical features, diagnosis, and treatment of primary biliary cirrhosis, primary sclerosing cholangitis, cholestasis of pregnancy, total parenteral nutrition-induced cholestasis, drug-induced cholestasis, and viral cholestatic syndromes.
Collapse
Affiliation(s)
- Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Karl-Franzens University, School of Medicine, Graz, Austria
| | | |
Collapse
|
18
|
Wang X, Bhattacharyya D, Dennewitz MB, Kalinichenko VV, Zhou Y, Lepe R, Costa RH. Rapid hepatocyte nuclear translocation of the Forkhead Box M1B (FoxM1B) transcription factor caused a transient increase in size of regenerating transgenic hepatocytes. Gene Expr 2003; 11:149-62. [PMID: 14686788 PMCID: PMC5991162 DOI: 10.3727/000000003108749044] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2003] [Indexed: 12/16/2022]
Abstract
The Forkhead Box (Fox) proteins are an extensive family of transcription factors that shares homology in the winged helix DNA binding domain. Liver regeneration studies with the -3 kb transthyretin (TTR) promoter-driven FoxM1B transgenic (TG) mice demonstrated that premature hepatocyte nuclear localization of the FoxM1B transgene protein at 16 h following partial hepatectomy (PHx) caused an 8-h acceleration in the onset of hepatocyte DNA replication (S-phase) and mitosis by stimulating earlier expression of cell cycle genes. Whether the FoxM1B transgene protein participates in immediate early events during liver regeneration remains to be determined. Here, we found that the FoxM1B transgene protein translocated to hepatocyte nuclei immediately following PHx, that its nuclear staining persisted for the first 6 h after surgery, and that this translocation was associated with an increase in size of regenerating TG hepatocytes. However, regenerating TTR-FoxM1B liver did not exhibit altered expression of proteins that have been implicated in mediating increased cell size, including serum-and-gucocorticoid-inducible protein kinase (SGK), protein kinase-B/Akt, the tumor suppresser gene PTEN (negative regulator of the PI3K/Akt pathway), c-Myc, or peroxisome proliferation. Moreover, we demonstrated that hepatocyte nuclear translocation of the FoxM1B transgene protein was rapidly induced during the hepatic acute phase response, which occurs during the immediate early stages of liver regeneration. Analysis of cDNA expression arrays identified a number of genes such as immediate early transcription factors (ID-3, Stat3, Nur77), matrix metalloproteinase-9 (MMP-9), and several glutathione S-transferase (GST) isoforms and stress response genes, whose expression is elevated in regenerating TTR-FoxM1B TG livers compared with regenerating wild-type (WT) liver. These liver regeneration studies demonstrate that hepatocyte nuclear translocation of the FoxM1B transgene protein was sustained for the first 6 h after PHx, and was associated with transient hypertrophy of regenerating TG hepatocytes and increased expression of genes that may enhance hepatocyte proliferation.
Collapse
Affiliation(s)
- Xinhe Wang
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, 900 South Ashland Ave, Chicago, IL 60607-7170
| | - Dibyendu Bhattacharyya
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, 900 South Ashland Ave, Chicago, IL 60607-7170
| | - Margaret B. Dennewitz
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, 900 South Ashland Ave, Chicago, IL 60607-7170
| | - Vladimir V. Kalinichenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, 900 South Ashland Ave, Chicago, IL 60607-7170
| | - Yan Zhou
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, 900 South Ashland Ave, Chicago, IL 60607-7170
| | - Rita Lepe
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, 900 South Ashland Ave, Chicago, IL 60607-7170
| | - Robert H. Costa
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, 900 South Ashland Ave, Chicago, IL 60607-7170
- Address correspondence to Dr. Robert H. Costa, Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois at Chicago, College of Medicine, 900 S. Ashland Ave, Rm. 2220 MBRB, Chicago, IL 60607-7170. Tel: (312) 996-0474; Fax: (312) 355-4010; E-mail:
| |
Collapse
|
19
|
Rausa FM, Tan Y, Costa RH. Association between hepatocyte nuclear factor 6 (HNF-6) and FoxA2 DNA binding domains stimulates FoxA2 transcriptional activity but inhibits HNF-6 DNA binding. Mol Cell Biol 2003; 23:437-49. [PMID: 12509444 PMCID: PMC151533 DOI: 10.1128/mcb.23.2.437-449.2003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2002] [Revised: 08/06/2002] [Accepted: 10/18/2002] [Indexed: 01/04/2023] Open
Abstract
In previous studies we used transgenic mice or recombinant adenovirus infection to increase hepatic expression of forkhead box A2 (FoxA2, previously called hepatocyte nuclear factor 3beta [HNF-3beta]), which caused diminished hepatocyte glycogen levels and reduced expression of glucose homeostasis genes. Because this diminished expression of FoxA2 target genes was associated with reduced levels of the Cut-Homeodomain HNF-6 transcription factor, we conducted the present study to determine whether there is a functional interaction between HNF-6 and FoxA2. Human hepatoma (HepG2) cotransfection assays demonstrated that HNF-6 synergistically stimulated FoxA2 but not FoxA1 or FoxA3 transcriptional activity, and protein-binding assays showed that this protein interaction required the HNF-6 Cut-Homeodomain and FoxA2 winged-helix DNA binding domains. Furthermore, we show that the HNF-6 Cut-Homeodomain sequences were sufficient to synergistically stimulate FoxA2 transcriptional activation by recruiting the p300/CBP coactivator proteins. This was supported by the fact that FoxA2 transcriptional synergy with HNF-6 was dependent on retention of the HNF-6 Cut domain LXXLL sequence, which mediated recruitment of the p300/CBP proteins. Moreover, cotransfection and DNA binding assays demonstrated that increased FoxA2 levels caused a decrease in HNF-6 transcriptional activation of the glucose transporter 2 (Glut-2) promoter by interfering with the binding of HNF-6 to its target DNA sequence. These data suggest that at a FoxA-specific site, HNF-6 serves as a coactivator protein to enhance FoxA2 transcription, whereas at an HNF-6-specific site, FoxA2 represses HNF-6 transcription by inhibiting HNF-6 DNA binding activity. This is the first reported example of a liver-enriched transcription factor (HNF-6) functioning as a coactivator protein to potentiate the transcriptional activity of another liver factor, FoxA2.
Collapse
Affiliation(s)
- Francisco M Rausa
- Department of Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | |
Collapse
|
20
|
Wang H, Hagenfeldt-Johansson K, Otten LA, Gauthier BR, Herrera PL, Wollheim CB. Experimental models of transcription factor-associated maturity-onset diabetes of the young. Diabetes 2002; 51 Suppl 3:S333-42. [PMID: 12475772 DOI: 10.2337/diabetes.51.2007.s333] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Six monogenic forms of maturity-onset diabetes of the young (MODY) have been identified to date. Except for MODY2 (glucokinase), all other MODY subtypes have been linked to transcription factors. We have established a MODY3 transgenic model through the beta-cell-targeted expression of dominant-negative HNF-1alpha either constitutively (rat insulin II promoter) or conditionally (Tet-On system). The animals display either overt diabetes or glucose intolerance. Decreased insulin secretion and reduced pancreatic insulin content contribute to the hyperglycemic state. The conditional approach in INS-1 cells helped to define new molecular targets of hepatocyte nuclear factor (HNF)-1alpha. In the cellular system, nutrient-induced insulin secretion was abolished because of impaired glucose metabolism. Conditional suppression of HNF-4alpha, the MODY1 gene, showed a similar phenotype in INS-1 cells to HNF-1alpha. The existence of a regulatory circuit between HNF-4alpha and HNF-1alpha is confirmed in these cell models. The MODY4 gene, IPF-1 (insulin promoter factor-1)/PDX-1 (pancreas duodenum homeobox-1), controls not only the transcription of insulin but also expression of enzymes involved in its processing. Suppression of Pdx-1 function in INS-1 cells does not alter glucose metabolism but rather inhibits insulin release by impairing steps distal to the generation of mitochondrial coupling factors. The presented experimental models are important tools for the elucidation of the beta-cell pathogenesis in MODY syndromes.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Internal Medicine, Division of Clinical Biochemistry, University Medical Centre, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
21
|
Wang X, Krupczak-Hollis K, Tan Y, Dennewitz MB, Adami GR, Costa RH. Increased hepatic Forkhead Box M1B (FoxM1B) levels in old-aged mice stimulated liver regeneration through diminished p27Kip1 protein levels and increased Cdc25B expression. J Biol Chem 2002; 277:44310-6. [PMID: 12221098 DOI: 10.1074/jbc.m207510200] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent liver regeneration studies indicate that maintaining hepatic Forkhead Box M1B (FoxM1B) expression in 12-month-old (old-aged) Transthyretin-FoxM1B transgenic mice increases hepatocyte proliferation and expression of cell cycle regulatory genes. Because these transgenic CD-1 mice maintain FoxM1B levels during the aging process, we conducted the current study to determine whether adenovirus delivery of the FoxM1B gene (AdFoxM1B) is sufficient to stimulate liver regeneration in old-aged Balb/c mice. Here we show that AdFoxM1B infection of old-aged mice caused a significant increase in FoxM1B expression, hepatocyte DNA replication, and mitosis following partial hepatectomy. This stimulation in hepatocyte S-phase progression was associated with diminished protein expression and perinuclear localization of cyclin-dependent kinase (Cdk) inhibitor p27(Kip1) (p27) protein following partial hepatectomy. In contrast, old-aged mice infected with control virus displayed high hepatocyte levels of p27 protein, which had been localized to the nucleus prior to S-phase. Furthermore, we found that restoring FoxM1B expression did not influence p27 mRNA levels, and this new finding implicates FoxM1B in regulation of p27 protein levels. Likewise, AdFoxM1B-infected regenerating livers displayed elevated S-phase levels of Cdk2 kinase activity compared with old-aged mice infected with control virus. Furthermore, restoring FoxM1B expression in old-aged mice caused elevated levels of Cyclin B1, Cyclin B2, Cdc25B, Cdk1, and p55CDC mRNA as well as stimulating Cdc25B nuclear localization during liver regeneration, all of which are required for mitosis. These studies indicated that an acute delivery of the FoxM1B gene in old-aged mice is sufficient to re-establish proliferation of regenerating hepatocytes, suggesting that FoxM1B can be used for therapeutic intervention to alleviate the reduction in cellular proliferation observed in the elderly.
Collapse
Affiliation(s)
- Xinhe Wang
- Department of Molecular Genetics, University of Illinois at Chicago, College of Medicine and Dentistry, 60607, USA
| | | | | | | | | | | |
Collapse
|
22
|
Holterman AXL, Tan Y, Kim W, Yoo KW, Costa RH. Diminished hepatic expression of the HNF-6 transcription factor during bile duct obstruction. Hepatology 2002; 35:1392-9. [PMID: 12029624 DOI: 10.1053/jhep.2002.33680] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Hepatocyte nuclear factor 6 (HNF-6) is a member of the one cut family of transcription factors and potentially regulates expression of numerous target genes important for hepatocyte function. In the liver, HNF-6 is expressed not only in hepatocytes, but also in biliary epithelial cells (BEC). To evaluate the in vivo function of HNF-6, we examined the hepatic expression pattern of HNF-6 messenger RNA (mRNA) and protein after bile duct ligation (BDL)-mediated liver injury. We found that HNF-6 protein levels in BEC and hepatocytes were diminished within 15 hours of BDL injury and remained suppressed through the fifth day of injury. The onset of BEC proliferation in response to bile duct obstruction was associated with diminished HNF-6 protein levels. To maintain hepatic HNF-6 protein levels during BDL liver injury, we used mouse tail vein injections with recombinant adenovirus expressing HNF-6 complementary DNA (cDNA) (AdH6). We found that maintaining hepatic HNF-6 levels with AdH6 infection resulted in significant decreases in BEC proliferation at 15 and 24 hours after biliary obstruction compared with adenovirus control. Our results showed that HNF-6 expression is diminished in BEC and hepatocytes and that maintaining hepatic HNF-6 expression hinders the normal biliary proliferative response to bile duct injury. This suggests that diminished hepatic HNF-6 levels are required for repair in response to biliary injury and that it regulates expression of genes that possess differentiation-specific function that are inhibitory to proliferation. In conclusion, we propose a biologic role for diminished HNF-6 protein levels in bile duct disease.
Collapse
Affiliation(s)
- Ai-Xuan L Holterman
- Department of Surgery, Division of Pediatric Surgery, University of Illinois at Chicago, 60607-7170, USA.
| | | | | | | | | |
Collapse
|
23
|
Wang H, Gauthier BR, Hagenfeldt-Johansson KA, Iezzi M, Wollheim CB. Foxa2 (HNF3beta ) controls multiple genes implicated in metabolism-secretion coupling of glucose-induced insulin release. J Biol Chem 2002; 277:17564-70. [PMID: 11875061 DOI: 10.1074/jbc.m111037200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The transcription factor Foxa2 is implicated in blood glucose homeostasis. Conditional expression of Foxa2 or its dominant-negative mutant DN-Foxa2 in INS-1 cells reveals that Foxa2 regulates the expression of genes important for glucose sensing in pancreatic beta-cells. Overexpression of Foxa2 results in blunted glucose-stimulated insulin secretion, whereas induction of DN-Foxa2 causes a left shift of glucose-induced insulin release. The mRNA levels of GLUT2 and glucokinase are drastically decreased after induction of Foxa2. In contrast, loss of Foxa2 function leads to up-regulation of hexokinase (HK) I and II and glucokinase (HK-IV) mRNA expression. The glucokinase and the low K(m) hexokinase activities as well as glycolysis are increased proportionally. In addition, induction of DN-Foxa2 also reduces the expression of beta-cell K(ATP) channel subunits Sur1 and Kir6.2 by 70%. Furthermore, in contrast to previous reports, induction of Foxa2 causes pronounced decreases in the HNF4alpha and HNF1alpha mRNA levels. Foxa2 fails to regulate the expression of Pdx1 transcripts. The expression of insulin and islet amyloid polypeptide is markedly suppressed after induction of Foxa2, while the glucagon mRNA levels are significantly increased. Conversely, Foxa2 is required for glucagon expression in these INS-1-derived cells. These results suggest that Foxa2 is a vital transcription factor evolved to control the expression of genes essential for maintaining beta-cell glucose sensing and glucose homeostasis.
Collapse
Affiliation(s)
- Haiyan Wang
- Division of Clinical Biochemistry, Department of Internal Medicine, University Medical Center, CH-1211 Geneva 4, Switzerland.
| | | | | | | | | |
Collapse
|
24
|
Tan Y, Adami G, Costa RH. Maintaining HNF6 expression prevents AdHNF3beta-mediated decrease in hepatic levels of Glut-2 and glycogen. Hepatology 2002; 35:790-8. [PMID: 11915024 DOI: 10.1053/jhep.2002.32482] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The hepatocyte nuclear factor 3 (HNF-3) proteins are members of the Forkhead Box (Fox) family of transcription factors that play important roles in regulating expression of genes involved in cellular proliferation, differentiation, and metabolic homeostasis. In previous studies we increased liver expression of HNF-3beta by using either transgenic mice (transthyretin HNF-3beta) or recombinant adenovirus infection (AdHNF3beta), and observed diminished hepatic levels of glycogen, and glucose transporter 2 (Glut-2), as well as the HNF-6, HNF-3, HNF-1alpha, HNF-4alpha, and C/EBPalpha transcription factors. We conducted the present study to determine whether maintaining HNF-6 protein expression during AdHNF3beta infection prevents reduction of hepatic levels of glycogen and the earlier-mentioned genes. Here, we show that AdHNF3beta- and AdHNF6-infected mouse liver displayed increased hepatic levels of glycogen, Glut-2, HNF-3gamma, HNF-1alpha, and HNF-4alpha at 2 and 3 days postinfection (PI). Furthermore, restoration of hepatic glycogen levels after AdHNF3beta and AdHNF6 coinfection was associated with increased Glut-2 expression. AdHNF6 infection alone caused a 2-fold increase in hepatic Glut-2 levels, suggesting that HNF 6 stimulates in vivo transcription of the Glut-2 gene. DNA binding assays showed that only recombinant HNF-6 protein, but not the HNF-3 proteins, binds to the mouse -185 to -144 bp Glut-2 promoter sequences. Cotransfection assays in human hepatoma (HepG2) cells with either HNF-3 or HNF-6 expression vectors show that only HNF-6 provided significant transcriptional activation of the Glut-2 promoter. In conclusion, these studies show that the hepatic Glut-2 promoter is a direct target for HNF-6 transcriptional activation.
Collapse
Affiliation(s)
- Yongjun Tan
- Department of Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607-7170, USA
| | | | | |
Collapse
|