1
|
Wilkinson AL, Hulme S, Kennedy JI, Mann ER, Horn P, Shepherd EL, Yin K, Zaki MY, Hardisty G, Lu WY, Rantakari P, Adams DH, Salmi M, Hoare M, Patten DA, Shetty S. The senescent secretome drives PLVAP expression in cultured human hepatic endothelial cells to promote monocyte transmigration. iScience 2023; 26:107966. [PMID: 37810232 PMCID: PMC10558774 DOI: 10.1016/j.isci.2023.107966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/31/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Abstract
Liver sinusoidal endothelial cells (LSEC) undergo significant phenotypic change in chronic liver disease (CLD), and yet the factors that drive this process and the impact on their function as a vascular barrier and gatekeeper for immune cell recruitment are poorly understood. Plasmalemma-vesicle-associated protein (PLVAP) has been characterized as a marker of LSEC in CLD; notably we found that PLVAP upregulation strongly correlated with markers of tissue senescence. Furthermore, exposure of human LSEC to the senescence-associated secretory phenotype (SASP) led to a significant upregulation of PLVAP. Flow-based assays demonstrated that SASP-driven leukocyte recruitment was characterized by paracellular transmigration of monocytes while the majority of lymphocytes migrated transcellularly. Knockdown studies confirmed that PLVAP selectively supported monocyte transmigration mediated through PLVAP's impact on LSEC permeability by regulating phospho-VE-cadherin expression and endothelial gap formation. PLVAP may therefore represent an endothelial target that selectively shapes the senescence-mediated immune microenvironment in liver disease.
Collapse
Affiliation(s)
- Alex L. Wilkinson
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Samuel Hulme
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - James I. Kennedy
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Emily R. Mann
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Paul Horn
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Emma L. Shepherd
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Kelvin Yin
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
| | - Marco Y.W. Zaki
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Gareth Hardisty
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Wei-Yu Lu
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Pia Rantakari
- Institute of Biomedicine, University of Turku, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - David H. Adams
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Marko Salmi
- Institute of Biomedicine, University of Turku, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Matthew Hoare
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
- University of Cambridge, Department of Medicine, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Daniel A. Patten
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Shishir Shetty
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
- National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
2
|
Constantinides CA, Tyritzis SI, Evangelou C, Kyroudi A, Liatsikos E, Karamessinis P, Zervas A, Pavlakis K. Vascular endothelial growth factor protein expression in a renal ablation rabbit model under prolonged warm and cold ischemia. Am J Nephrol 2007; 28:438-45. [PMID: 18097136 DOI: 10.1159/000112809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 11/16/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS To establish a potential correlation between renal and systemic production of vascular endothelial growth factor (VEGF) protein after prolonged ischemia in a renal ablation model under normothermic and hypothermic conditions. METHODS 38 uninephrectomized New Zealand rabbits were divided into 5 groups. The rabbits of each group underwent partial nephrectomy under 90 and 60 min of warm and 90 and 120 min of cold ischemia, except for the sham group (S), which served as control. Serum creatinine (SCr) and blood-urea-nitrogen (BUN) levels were assessed. On the 15th postoperative day (POD), the animals were euthanized and the remaining kidneys were evaluated. VEGF immunohistochemistry and serum Western blot analysis were performed. RESULTS In comparison to the control group, groups 60W, 90C and 120C showed 1.6-, 1.14- and 1.75-fold decreases, respectively, while the production of VEGF was significantly declined by 7.4-fold in group 90W (p < 0.05). Immunohistochemistry revealed prominent VEGF staining in the above-mentioned three groups, while in group 90W staining was negative. Serum biochemistry and microscopic evaluation verified the same differentiation. CONCLUSION Renal and serum VEGF seem to have an analogous expression under conditions of prolonged ischemia. VEGF is overexpressed in hypothermic conditions compared to warm ischemia exceeding 60 min. Hypothermia can be more advantageous in a procedure applying prolonged ischemia.
Collapse
|
3
|
Serrano T, Mitry RR, Terry C, Lehec SC, Dhawan A, Hughes RD. The effects of immunosuppressive agents on the function of human hepatocytes in vitro. Cell Transplant 2007; 15:777-83. [PMID: 17269448 DOI: 10.3727/000000006783981530] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Calcineurin inhibitors (tacrolimus) and steroids continue to be an important component of hepatocyte transplantation protocols, despite reports of hepatotoxicity and inhibitory effects of steroids on cell proliferation. The aim of the study was to investigate whether isolated human hepatocytes were more vulnerable to the toxicity of these agents and also to investigate their effects on hepatocyte VEGF secretion, a vascular permeability factor suggested to be involved in the cell engraftment process. Human hepatocytes were isolated from donor livers/segments rejected or unused for orthotopic liver transplantation using a collagenase perfusion technique. Hepatocytes were plated for cell function tests and to determine VEGF production. Tacrolimus (0-50 ng/ml) and methylprednisolone (0-500 ng/ml) were added to the culture media and cells incubated for 24 h. Cell metabolic activity was assessed using the MTT assay, cell number using the SRB assay, and cell attachment from hepatocyte total protein content and protein synthesis using [14C]leucine incorporation. VEGF in culture supernatants was measured by ELISA. Tacrolimus and methylprednisolone had no statistically significant inhibitory effects on metabolic activity or protein synthesis compared to controls at all concentrations of the agents tested when added after plating. There were also no significant effects on cell attachment when tacrolimus or methylprednisolone was added at the time of cell plating. There were no differences in the responses obtained when either fresh or cryopreserved hepatocytes were used. The amount of VEGF secreted by untreated hepatocytes was highly variable (0-1400 pg/10(6) cells/24 h). VEGF levels in the culture supernatant from hepatocytes isolated from < or = 20-year-old donors (687 +/- 59 pg/10(6) cells/24 h) was significantly greater than from older donors (61 +/- 7 pg/10(6) cells/24 h; p = 0.003). Tacrolimus and methylprednisolone did not significantly affect VEGF secretion by hepatocytes. Tacrolimus and methylprednisolone did not have detrimental effects on the metabolic function of human hepatocytes, cell attachment, or VEGF secretion after cell isolation.
Collapse
Affiliation(s)
- Trinidad Serrano
- King's College London School of Medicine at King's College Hospital, Institute of Liver Studies, London, UK
| | | | | | | | | | | |
Collapse
|
4
|
Cursio R, Miele C, Filippa N, Van Obberghen E, Gugenheim J. Alterations in protein tyrosine kinase pathways in rat liver following normothermic ischemia-reperfusion. Transplant Proc 2007; 38:3362-5. [PMID: 17175272 DOI: 10.1016/j.transproceed.2006.10.165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Indexed: 10/23/2022]
Abstract
The phosphoregulation of signal transduction pathways is a complex series of reactions that modulate the cellular response to ischemia-reperfusion (I-R). The aim of this study was to evaluate the effect of normothermic liver I-R on protein tyrosine phosphorylation, production of angiogenic growth factors, and activation of signal proteins in tyrosine kinase pathways. A segmental normothermic ischemia of the liver was induced in rats by occluding the blood vessels (including the bile duct) to the median and left lateral lobes for 120 minutes. Liver extracts from either ischemic or nonischemic lobes were prepared at 0, 1, 3, and 6 hours after reperfusion. Liver tyrosine phosphorylation of proteins was examined by Western blot analysis, whereas vascular endothelial growth factor (VEGF) mRNA was analyzed by Northern blot. In ischemic liver lobes, VEGF mRNA and total protein levels increased at 1 and 3 hours after reperfusion. Tyrosine phosphorylation of the VEGF receptor Flk-1 and the platelet-derived growth factor receptor (PDGF-R) was increased only at 1 hour after reperfusion, while c-Src tyrosine phosphorylation remained increased at 3 hours and remained up to 6 hours after reperfusion. In conclusion, 1-R led to alterations in protein tyrosine phosphorylation and increased expression of VEGF in rat liver.
Collapse
Affiliation(s)
- R Cursio
- Laboratoire de Recherches Chirurgicales, IFR 50, Faculté de Médecine, Université de Nice Sophia Antipolis, Nice, France.
| | | | | | | | | |
Collapse
|
5
|
Donahower B, McCullough SS, Kurten R, Lamps LW, Simpson P, Hinson JA, James LP. Vascular endothelial growth factor and hepatocyte regeneration in acetaminophen toxicity. Am J Physiol Gastrointest Liver Physiol 2006; 291:G102-9. [PMID: 16565415 DOI: 10.1152/ajpgi.00575.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
VEGF or VEGF-A is a major regulator of angiogenesis and has been recently shown to be important in organ repair. The potential role of VEGF in acetaminophen (APAP)-induced hepatotoxicity and recovery was investigated in B6C3F1 male mice. Mice were treated with APAP (300 mg/kg ip) and killed at various time points that reflect both the acute and recovery stages of toxicity. VEGF-A protein levels were increased 7-fold at 8 h and followed the development of hepatotoxicity. VEGF receptor 1, 2, and 3 (VEGFR1, VEGFR2, and VEGFR3, respectively) expression increased throughout the time course, with maximal expression at 48, 8, and 72 h, respectively. Treatment with the VEGF receptor inhibitor SU5416 (25 mg/kg ip at 3 h) had no effect on toxicity at 6 or 24 h. In further studies, the role of SU5416 on the late stages of toxicity was examined. Treatment of mice with APAP and SU5416 (25 mg/kg ip at 3 h) resulted in decreased expression of PCNA, a marker of cellular proliferation. Expression of platelet endothelial cell adhesion molecule, a measure of small vessel density, and endothelial nitric oxide synthase (NOS), a downstream target of VEGFR2, were increased at 48 and 72 h following toxic doses of APAP, and treatment with SU5416 decreased their expression. These data indicate that endogenous VEGF is critically important to the process of hepatocyte regeneration in APAP-induced hepatotoxicity in the mouse.
Collapse
Affiliation(s)
- Brian Donahower
- Department of Pharmacology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Tsurui Y, Sho M, Kuzumoto Y, Hamada K, Akashi S, Kashizuka H, Ikeda N, Nomi T, Mizuno T, Kanehiro H, Nakajima Y. Dual role of vascular endothelial growth factor in hepatic ischemia-reperfusion injury. Transplantation 2005; 79:1110-5. [PMID: 15880052 DOI: 10.1097/01.tp.0000161627.84481.5e] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF), a major angiogenic factor, mediates a variety of disease conditions through promotion of angiogenesis. It also plays a critical role as a potent proinflammatory cytokine in a variety of physiologic and pathologic immune responses. In the present study, we evaluated the expression of VEGF in hepatic warm ischemia-reperfusion (I/R) injury and examined the effect of recombinant human (rh)VEGF administration in an established murine model. METHOD The expression of VEGF in the liver was assessed by quantitative real-time polymerase chain reaction and immunohistochemistry during I/R injury using 70% partial hepatic ischemia model. The effect of rhVEGF administration on I/R injury was evaluated by measuring liver function and histology. In addition, local inducible nitric oxide synthase (iNOS) and endothelial NO synthase expressions were examined to address the underlying mechanisms. RESULTS The local expression of VEGF was significantly up-regulated at 2 hours after reperfusion after 60 minutes of ischemia compared with that in the naive liver. VEGF was expressed predominantly in CD11b+ cells infiltrating into the ischemic liver. The administration of rhVEGF had a significant protective effect on ischemic injury in the liver. This effect was associated with the up-regulation of iNOS expression in the rhVEGF-treated liver. CONCLUSION We demonstrate a dual role of VEGF in hepatic warm I/R injury. Although endogenous VEGF is expressed and functional to initiate hepatic I/R injury, exogenous rhVEGF has a beneficial effect on the ischemic liver. These data may provide new insights into the role of VEGF as well as pathophysiology of hepatic I/R injury.
Collapse
Affiliation(s)
- Yoshikazu Tsurui
- Department of Surgery, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ke B, Shen XD, Gao F, Tsuchihashi S, Farmer DG, Briscoe D, Busuttil RW, Kupiec-Weglinski JW. The CD154-CD40 T-cell co-stimulation pathway in liver ischemia and reperfusion inflammatory responses. Transplantation 2005; 79:1078-83. [PMID: 15880047 PMCID: PMC4470618 DOI: 10.1097/01.tp.0000161248.43481.a2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Ischemia-reperfusion (I/R) injury is a prime antigen-independent inflammatory factor in the dysfunction of liver transplants. The precise contribution of T cells in the mechanism of I/R injury remains to be elucidated. As the CD154-CD40 co-stimulation pathway provides essential second signal in the initiation and maintenance of T-cell-dependent immune responses, this study was designed to assess the role of CD154 signaling in the pathophysiology of liver I/R injury. METHODS A mouse model of partial 90-min warm hepatic ischemia followed by 6 hr of reperfusion was used. Three animal groups were studied: (1) wild-type (WT) mice treated with Ad-(-gal versus Ad-CD40 immunoglobulin; (2) untreated WT versus CD154 (MR1) monoclonal antibody-treated WT mice; and (3) untreated WT versus CD154 knockout mice. RESULTS The disruption of CD154 signaling in all three animal groups ameliorated otherwise fulminant liver injury, as evidenced by depressed serum glutamic oxaloacetic transaminase levels, compared with controls. These beneficial effects were accompanied by depressed hepatic T-cell sequestration, local decrease of vascular endothelial growth factor expression, inhibition of tumor necrosis factor-(and T-helper type 1 cytokine production, and induction of antiapoptotic (Bcl-2/Bcl-xl) but depression of proapoptotic (caspase-3) proteins. CONCLUSIONS By using in parallel a gene therapy approach, pharmacologic blockade, and genetically targeted mice, these findings document the benefits of disrupting CD154 to selectively modulate inflammatory responses in liver I/R injury. This study reinforces the key role of CD154-CD40 T-cell co-stimulation in the pathophysiology of liver I/R injury.
Collapse
Affiliation(s)
- Bibo Ke
- The Dumont-University of California, Los Angeles Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - Xiu-Da Shen
- The Dumont-University of California, Los Angeles Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - Feng Gao
- The Dumont-University of California, Los Angeles Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - Seiichiro Tsuchihashi
- The Dumont-University of California, Los Angeles Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - Douglas G. Farmer
- The Dumont-University of California, Los Angeles Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - David Briscoe
- Division of Nephrology, Children’s Hospital, Harvard Medical School, Boston, MA
| | - Ronald W. Busuttil
- The Dumont-University of California, Los Angeles Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - Jerzy W. Kupiec-Weglinski
- The Dumont-University of California, Los Angeles Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA
| |
Collapse
|
8
|
Payne SJ, Benjamin IS, Alexander B. Cold storage of rabbit thoracic aorta in University of Wisconsin solution attenuates P2Y(2) purine receptors. Cryobiology 2002; 44:91-102. [PMID: 12151264 DOI: 10.1016/s0011-2240(02)00010-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Post-transplantation thrombosis may occur in donor segments of iliac arteries and livers following surgical removal and storage in University of Wisconsin (UW) solution for transplantation. We have previously suggested that purine receptors are vulnerable to denaturation after UW storage. The aims of the present study were to determine what particular subtypes of purine P2Y receptors in rabbit thoracic aorta deteriorate after 8 days of UW storage by studying vascular reactivity to acetylcholine, ATP, 2MeSATP and UTP. Ring segments of aortae from male New Zealand White rabbits were mounted upon fine-wire myographs and vasodilatation to the above agents tested on fresh tissue, and after 8 days of UW storage. Vasodilatation to ATP was attenuated by 100 microM L-NAME in fresh tissue suggesting that the relaxant response was, in part, due to nitric oxide (NO). P2Y-mediated relaxation to ATP was significantly attenuated by UW storage and cholinergic responses were not. This attenuated relaxation to ATP was not further attenuated by L-NAME, suggesting a loss of the NO-dependent mechanism. De-endothelialisation indicated that UTP-mediated vasorelaxation, via P2Y(2) receptors, was endothelium-dependent. Any residual endothelium-independent relaxation to UTP was abolished by UW storage and endothelium-dependent UTP relaxation was reduced to the same level as that seen in fresh, de-endothelialised tissue. In contrast responses to 2MeSATP, via P2Y(1) receptors, were predominantly endothelium-independent and were only partially attenuated by UW storage. Responses to pyridoxalphosphate-6-azophenyl-2('),4(')-disulphonic acid (PPADS) and L-NAME suggested that vasorelaxation to 2MeSATP and UTP was mediated by P2Y(1) and P2Y(2) receptors, respectively. It is therefore concluded that UW storage predominantly decreases P2Y(2) receptor-mediated vascular reactivity.
Collapse
Affiliation(s)
- Sarah J Payne
- Liver Sciences Unit, Academic Department of Surgery, GKT School of Medicine, St. Thomas' Hospital, Lambeth Palace Road, London SE1 7EH, UK
| | | | | |
Collapse
|