1
|
Dzidzishvili L, Fernández-Valle ME, Moreno Molera D, Calvo E, López-Torres II. High-resolution magnetic resonance imaging can predict osteoarthritic progression after medial meniscus posterior root injury: randomized in vivo experimental study in a rabbit model. J ISAKOS 2024; 9:526-533. [PMID: 38583525 DOI: 10.1016/j.jisako.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Abstract
IMPORTANCE The field of meniscal root preservation has undergone significant advancement over the past decades; however, the challenge remains to fully understand whether meniscal root repair can ultimately arrest or delay osteoarthritic changes. OBJECTIVE To assess longitudinal changes in articular cartilage, subchondral bone, and progression to meniscal extrusion (ME) using high-resolution magnetic resonance imaging (MRI). METHODS Medial meniscus posterior root tear was surgically induced in 39 New Zealand white rabbits. Animals were randomly assigned into three experimental groups: partial meniscectomy after root tear (PM, n = 13); root tear left in situ (CT, n = 13); and transtibial root repair (RR, n = 13). Contralateral limbs were used as healthy controls. High resolution 4.7 Tesla MRI of the knee joint was performed at baseline, after 2-, and 4-months of post-surgery. Cartilage thickness was calculated in medial and lateral compartments. In addition, the evaluation of ME, subchondral bone edema and healing potential after root repair were assessed too. RESULTS Progressive cartilage thinning, ME, and subchondral bone edema were evident in all 3 study groups after 4-months of follow-up. The mean cartilage thickness in the PM group was 0.53 mm (±0.050), 0.57 mm (±0.05) in the CT group, and 0.60 mm (±0.08) in the RR group. The PM group exhibited significantly higher cartilage loss when compared to the CT and RR groups (p < 0.001). Moreover, progressive ME and subchondral bone edema were associated with a more severe cartilage loss at the final follow-up. CONCLUSION Meniscal root repair did not halt but rather reduced the progression of osteoarthritis (OA). Degenerative changes worsened at a rapid rate in the PM group compared to the RR and CT groups. Early cartilage swelling, persistent subchondral edema, and progressive ME predicted a more severe progression to knee OA in the CT and RR groups. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Lika Dzidzishvili
- Department of Orthopaedic Surgery and Traumatology, Hospital Universitario Fundación Jiménez Díaz, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Av. De los Reyes Católicos, 2, 28040 Madrid, Spain.
| | | | - David Moreno Molera
- Bioimaging Research Support Center- Universidad Complutense Madrid, Paseo Juan XXIII, 1, 28040 Madrid, Spain
| | - Emilio Calvo
- Department of Orthopaedic Surgery and Traumatology, Hospital Universitario Fundación Jiménez Díaz, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Av. De los Reyes Católicos, 2, 28040 Madrid, Spain
| | - Irene Isabel López-Torres
- Department of Orthopaedic Surgery and Traumatology, Hospital Universitario Fundación Jiménez Díaz, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Av. De los Reyes Católicos, 2, 28040 Madrid, Spain
| |
Collapse
|
2
|
Vlashi R, Zhang X, Li H, Chen G. Potential therapeutic strategies for osteoarthritis via CRISPR/Cas9 mediated gene editing. Rev Endocr Metab Disord 2024; 25:339-367. [PMID: 38055160 DOI: 10.1007/s11154-023-09860-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Osteoarthritis (OA) is an incapacitating and one of the most common physically degenerative conditions with an assorted etiology and a highly complicated molecular mechanism that to date lacks an efficient treatment. The capacity to design biological networks and accurately modify existing genomic sites holds an apt potential for applications across medical and biotechnological sciences. One of these highly specific genomes editing technologies is the CRISPR/Cas9 mechanism, referred to as the clustered regularly interspaced short palindromic repeats, which is a defense mechanism constituted by CRISPR associated protein 9 (Cas9) directed by small non-coding RNAs (sncRNA) that bind to target DNA through Watson-Crick base pairing rules where subsequent repair of the target DNA is initiated. Up-to-date research has established the effectiveness of the CRISPR/Cas9 mechanism in targeting the genetic and epigenetic alterations in OA by suppressing or deleting gene expressions and eventually distributing distinctive anti-arthritic properties in both in vitro and in vivo osteoarthritic models. This review aims to epitomize the role of this high-throughput and multiplexed gene editing method as an analogous therapeutic strategy that could greatly facilitate the clinical development of OA-related treatments since it's reportedly an easy, minimally invasive technique, and a comparatively less painful method for osteoarthritic patients.
Collapse
Affiliation(s)
- Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, 314001, China
| | - Haibo Li
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, China.
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Ningbo Women and Children's Hospital, Ningbo, China.
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
3
|
Jha LA, Kumar B, Jha SK, Paudel KR. Futuristic senolytic drug incorporated nanomedicine therapy to treat osteoarthritis. Nanomedicine (Lond) 2024; 19:837-840. [PMID: 38426446 DOI: 10.2217/nnm-2023-0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Affiliation(s)
- Laxmi Akhileshwar Jha
- Naraina Vidya Peeth Group of Institutions, Faculty of Pharmacy, Dr. A. P. J. Abdul Kalam Technical University, Kanpur, 0208020, Uttar Pradesh, India
| | - Bhupendra Kumar
- Department of Biological Sciences & Bioengineering (BSBE), Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India
| | - Saurav Kumar Jha
- Department of Biological Sciences & Bioengineering (BSBE), Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute & University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| |
Collapse
|
4
|
Yang Y, Koga H, Nakagawa Y, Nakamura T, Katagiri H, Takada R, Katakura M, Tsuji K, Sekiya I, Miyatake K. Characteristics of the synovial microenvironment and synovial mesenchymal stem cells with hip osteoarthritis of different bone morphologies. Arthritis Res Ther 2024; 26:17. [PMID: 38200556 PMCID: PMC10777653 DOI: 10.1186/s13075-023-03252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Variations in bone morphology in patients with hip osteoarthritis (HOA) can be broadly categorized into three types: atrophic, normotrophic, and hypertrophic. Despite the investigations examining clinical elements, such as bone morphology, pain, and range of motion, our understanding of the pathogenesis of HOA remains limited. Previous studies have suggested that osteophytes typically originate at the interface of the joint cartilage, periosteum, and synovium, potentially implicating synovial mesenchymal stem cells (SMSCs) in the process. This study aimed to investigate the potential factors that drive the development of bone morphological features in HOA by investigating the characteristics of the synovium, differentiation potential of SMSCs, and composition of synovial fluid in different types of HOA. METHODS Synovial tissue and fluid were collected from 30 patients who underwent total hip arthroplasty (THA) with the variable bone morphology of HOA patients. RNA sequencing analysis and quantitative reverse transcription-polymerase chain reaction (RT-qPCR) were performed to analyse the genes in the normotrophic and hypertrophic synovial tissue. SMSCs were isolated and cultured from the normotrophic and hypertrophic synovial tissues of each hip joint in accordance with the variable bone morphology of HOA patients. Cell differentiation potential was compared using differentiation and colony-forming unit assays. Cytokine array was performed to analyse the protein expression in the synovial fluid. RESULTS In the RNA sequencing analysis, 103 differentially expressed genes (DEGs) were identified, predominantly related to the interleukin 17 (IL-17) signalling pathway. Using a protein-protein interaction (PPI) network, 20 hub genes were identified, including MYC, CXCL8, ATF3, NR4A1, ZC3H12A, NR4A2, FOSB, and FOSL1. Among these hub genes, four belonged to the AP-1 family. There were no significant differences in the tri-lineage differentiation potential and colony-forming capacity of SMSCs. However, RT-qPCR revealed elevated SOX9 expression levels in synovial tissues from the hypertrophic group. The cytokine array demonstrated significantly higher levels of CXCL8, MMP9, and VEGF in the synovial fluid of the hypertrophic group than in the normotrophic group, with CXCL8 and MMP9 being significantly expressed in the hypertrophic synovium. CONCLUSION Upregulation of AP-1 family genes in the synovium and increased concentrations of CXCL8, MMP9, and VEGF were detected in the synovial fluid of the hypertrophic group of HOA patients, potentially stimulating the differentiation of SMSCs towards the cartilage and thereby contributing to severe osteophyte formation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Nakagawa
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomomasa Nakamura
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroki Katagiri
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Orthopaedic Surgery, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Ryohei Takada
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mai Katakura
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kunikazu Tsuji
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazumasa Miyatake
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
5
|
Li JT, Zeng N, Yan ZP, Liao T, Chen X, Ni GX. Nuclear magnetic resonance-based metabolomic study of rat serum after anterior cruciate ligament injury. Sci Rep 2023; 13:19321. [PMID: 37935794 PMCID: PMC10630467 DOI: 10.1038/s41598-023-46540-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
Anterior cruciate ligament (ACL) injury, a common sports injury, is associated with a high risk of subsequent osteoarthritis (OA), which can cause serious pain and disability. Understanding the detailed mechanism underlying the predisposition of knee with ACL injury to secondary OA at an early stage is key to preventing future degradation and progression to a clinically significant disease. A total of 56 male Sprague Dawley rats (age, 8 weeks; weight, 180-220 g) were randomly divided into three experimental groups: control, ACL transection (ACLT; where surgical procedure was performed with ACLT), and sham (where surgical procedure was performed without ACLT). The ACLT and sham groups were further divided into three subgroups based on when the rats were sacrificed: 4, 8, and 12 weeks after the surgical procedure. The control group and the aforementioned subgroups contained 8 rats each. We used nuclear magnetic resonance (NMR)-based metabolomic analysis to analyze rat serum samples for the metabolic characteristics and the underlying mechanisms. In total, 28 metabolites were identified in the NMR spectra of the rat sera. At 4 and 8 weeks postoperatively, the sham group demonstrated metabolic profiles different from those of the ACLT group. However, this difference was not observed 12 weeks postoperatively. In total, five metabolites (acetate, succinate, sn-glycero-3-phosphocholine, glucose, and phenylalanine) and five metabolic pathways (phenylalanine, tyrosine, and tryptophan biosynthesis; phenylalanine metabolism; pyruvate metabolism; starch and sucrose metabolism; and histidine metabolism) demonstrated significant differences between the ACLT and sham groups. ACL injury was noted to considerably affect biochemical homeostasis and metabolism; however, these metabolic changes persisted briefly. Moreover, glucose was a characteristic metabolite, and several energy-related metabolic pathways were significantly disturbed. Therefore, an ACL injury may lead to considerable impairments in energy metabolism. Abnormal glucose levels facilitate chondrocyte function impairment and thereby lead to OA progression. Furthermore, lactate may aid in identifying metabolic changes specific to knee trauma not related to an ACL injury. Overall, the metabolic changes in rat serum after an ACL injury were closely related to disturbances in energy metabolism and amino acid metabolism. The current results may aid in understanding the pathogenesis of posttraumatic osteoarthritis.
Collapse
Affiliation(s)
- Jie-Ting Li
- Department of Rehabilitation Medicine, Fuzhou Second Hospital, Fuzhou, China
| | - Ni Zeng
- Department of Rehabilitation Medicine, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Zhi-Peng Yan
- Department of Rehabilitation Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Tao Liao
- Department of Rehabilitation Medicine, Chengdu Second People's Hospital, Chengdu, China
| | - Xin Chen
- Department of Rehabilitation Medicine, Fuzhou Second Hospital, Fuzhou, China
| | - Guo-Xin Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
6
|
Dzidzishvili L, Calvo E, López-Torres II. Medial Meniscus Posterior Root Repair Reduces but Does Not Avoid Histologic Progression of Osteoarthritis: Randomized In Vivo Experimental Study in a Rabbit Model. Am J Sports Med 2023; 51:2964-2974. [PMID: 37589243 DOI: 10.1177/03635465231188527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
BACKGROUND The optimal treatment option for meniscus root tears is still challenging, and whether the meniscus root repair ultimately can arrest or delay osteoarthritic changes is still a concern. PURPOSE/HYPOTHESIS The purpose of this study was 2-fold: (1) to describe and compare histopathologic findings of 3 different therapeutic options for medial meniscus posterior root tear: nonoperative management, partial meniscectomy, and meniscus root repair; and (2) to test the hypothesis that meniscus root tears treated nonoperatively predispose to a lower risk of osteoarthritic progression compared with partial meniscectomy. STUDY DESIGN Controlled laboratory study. METHODS Posteromedial meniscus root tears were carried out in 39 New Zealand White rabbits. Animals were randomly assigned into 3 experimental groups: partial meniscectomy after root tear (PM; n = 13), root tears treated conservatively (CT; n = 13), and transtibial root repair (RR; n = 13). Contralateral limbs were used as healthy controls. The animals were euthanized at 16 weeks postoperatively; tissue samples of femoral and tibial articular cartilage were collected and processed for macro- and microscopic assessment to detect signs of early osteoarthritis (OA). Each sample was histopathologically assessed using the Osteoarthritis Research Society International grading and staging system. RESULTS Osteoarthritic changes were the hallmark in all 3 experimental groups. The RR group had the lowest scores for cartilage damage (mean, 2.5; range, 2-3), and the PM group exhibited higher and more severe signs of OA (mean, 16; range, 9-16) compared with the CT group (mean, 5; range, 4-6). The between-group comparison revealed significant differences, as the PM group showed a significantly higher rate of macro- and microscopic osteoarthritic changes compared with the RR (P < .001) and CT (P < .001) groups. The weightbearing area of the medial femoral condyle was the most severely affected, and tidemark disruption was evident in all tissue samples. CONCLUSION Meniscus root repair cannot completely arrest the histopathologic progression of knee OA but leads to significantly less severe degenerative changes than partial meniscectomy and nonoperative treatment. Partial meniscectomy leads to the most severe osteoarthritic progression, while stable radial tears left in situ have lower progression compared with partial meniscectomy. CLINICAL RELEVANCE Histologic assessment is an essential tool and metric for guiding and understanding osteoarthritic features, providing insight into the disease development and progression. This study provides histopathologic evidence on osteoarthritic progression after medial meniscus posterior root repair. This knowledge can help to set more realistic expectations and can lead to the future development of augmented techniques.
Collapse
Affiliation(s)
- Lika Dzidzishvili
- Department of Orthopaedic Surgery and Traumatology, Hospital Universitario Fundación Jiménez Díaz, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Emilio Calvo
- Department of Orthopaedic Surgery and Traumatology, Hospital Universitario Fundación Jiménez Díaz, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Irene Isabel López-Torres
- Department of Orthopaedic Surgery and Traumatology, Hospital Universitario Fundación Jiménez Díaz, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Gwam C, Ohanele C, Hamby J, Chughtai N, Mufti Z, Ma X. Human placental extract: a potential therapeutic in treating osteoarthritis. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:322. [PMID: 37404996 PMCID: PMC10316113 DOI: 10.21037/atm.2019.10.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/29/2019] [Indexed: 09/19/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease marked by cartilage degradation and loss of function. Recently, there have been increased efforts to attenuate and reverse OA by stimulating cartilage regeneration and preventing cartilage degradation. Human placental extract (HPE) may be an option due to its anti-inflammatory, antioxidant, and growth stimulatory properties. These properties are useful in preventing cell death and senescence, which may optimize in-situ cartilage regeneration. In this review, we discuss the anatomy and physiology of the placenta, as well as explore in vivo and in vitro studies assessing its effects on tissue regeneration. Finally, we assess the potential role of HPE in cartilage regenerative medicine and OA. The Medline database was utilized for all studies that involved the use of HPE or human placenta hydrolysate. Exclusion criteria included articles not written in English, conference reviews, editorials, letters to the editor, surveys, case reports, and case series. HPE had significant anti-inflammatory and regenerative properties in vitro and in vivo. Furthermore, HPE had a role in attenuating cellular senescence and cell apoptosis via reduction of reactive oxidative species both in vitro and in vivo. One study explored the effects of HPE in OA and demonstrated reduction in cartilage catabolic gene expression, indicating HPE's effect in attenuating OA. HPE houses favorable properties that can attenuate and reverse tissue damage. This may be a beneficial therapeutic in OA as it creates a more favorable environment for in-situ cartilage regeneration. More well designed in-vitro and in-vivo studies are needed to define the role of HPE in treating OA.
Collapse
Affiliation(s)
- Chukwuweike Gwam
- Department of Orthopedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Jacob Hamby
- Department of Orthopedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | - Xue Ma
- Department of Orthopedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
8
|
Duan Z, Jin C, Deng Y, Liu J, Gu C, Wang J, Cai X, Li S, Zhou Y. Exploring the chondroprotective effect of Chaenomeles speciosa on Glucose-6-Phosphate Isomerase model mice using an integrated approach of network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116553. [PMID: 37178981 DOI: 10.1016/j.jep.2023.116553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) has been used in China for a long time and is gradually gaining more and more recognition worldwide. Chaenomeles speciosa (CSP) (Chinese Pinyin: mugua) is a medicinal and food herb that has long been used as a folk medicine for rheumatic diseases, yet its bioactive components and therapeutic mechanisms are not clear. AIM OF THE STUDY Exploring anti-inflammatory and chondroprotective effects of CSP on rheumatoid arthritis (RA) and its possible targets of action. MATERIALS AND METHODS In this study, we performed an integrated approach of network pharmacology, molecular docking and experimental studies to explore the potential mechanism of action of CSP in the treatment of cartilage damage in RA. RESULTS Studies have shown that Quercetin, ent-Epicatechin and Mairin may be the main active compounds of CSP in the treatment of RA, while AKT1, VEGFA, IL-1β, IL-6, MMP9 etc. are considered as core target proteins to which the main active compounds in CSP bind, as further confirmed by molecular docking. In addition, the potential molecular mechanism of CSP for the treatment of cartilage damage in RA predicted by network pharmacology analysis was validated by in vivo experiments. CSP was found to downregulate the expression of AKT1, VEGFA, IL-1β, IL-6, MMP9, ICAM1, VCAM1, MMP3, MMP13 and TNF-α and increase the expression of COL-2 in the joint tissue of Glucose-6-Phosphate Isomerase (G6PI) model mice. Thus CSP contributes to the treatment of rheumatoid arthritis cartilage destruction. CONCLUSION This study showed that CSP has multi-component, multi-target and multi-pathway characteristics in treating cartilage damage in RA, which can achieve the effect of treating RA by inhibiting the expression of inflammatory factors, reducing neovascularization and alleviating the damage to cartilage caused by the diffusion of synovial vascular opacities, and reducing the degradation of cartilage by MMPs to play a protective role in RA cartilage damage. In conclusion, this study indicates that CSP is a candidate Chinese medicine for further research in treating cartilage damage in RA.
Collapse
Affiliation(s)
- Zhihao Duan
- Department of Orthopedics, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443001, Hubei, China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, 443002, China
| | - Can Jin
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, 443002, China
| | - Ying Deng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, 443002, China
| | - Jinlang Liu
- Department of Orthopedics, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443001, Hubei, China
| | - Chengyi Gu
- Department of Orthopedics, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443001, Hubei, China
| | - Jie Wang
- Department of Orthopedics, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443001, Hubei, China
| | - Xiangquan Cai
- Department of Orthopedics, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443001, Hubei, China
| | - Shigang Li
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, 443002, China.
| | - You Zhou
- Department of Orthopedics, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443001, Hubei, China.
| |
Collapse
|
9
|
Bednarczyk E. Chondrocytes In Vitro Systems Allowing Study of OA. Int J Mol Sci 2022; 23:ijms231810308. [PMID: 36142224 PMCID: PMC9499487 DOI: 10.3390/ijms231810308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA) is an extremely complex disease, as it combines both biological-chemical and mechanical aspects, and it also involves the entire joint consisting of various types of tissues, including cartilage and bone. This paper describes the methods of conducting cell cultures aimed at searching for the mechanical causes of OA development, therapeutic solutions, and methods of preventing the disease. It presents the systems for the cultivation of cartilage cells depending on the level of their structural complexity, and taking into account the most common solutions aimed at recreating the most important factors contributing to the development of OA, that is mechanical loads. In-vitro systems used in tissue engineering to investigate the phenomena associated with OA were specified depending on the complexity and purposefulness of conducting cell cultures.
Collapse
Affiliation(s)
- Ewa Bednarczyk
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524 Warsaw, Poland
| |
Collapse
|
10
|
Xie H, Ma Y, Shao M, Kong J, Zhou T, Wang F, Cai G, Xu S, Pan F. Telomere length in patients with osteoarthritis: a systematic review and meta-analysis. Aging Clin Exp Res 2022; 34:495-503. [PMID: 34313963 DOI: 10.1007/s40520-021-01944-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/21/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Telomere length (TL) as a biomarker of aging was associated with many age-related diseases. The relationship between TL and osteoarthritis (OA), the most common form of joint diseases, had been investigated in a number of studies, but with the result inconsistent. AIMS The purpose of this study was to systematically evaluate the relationship between TL and OA. METHODS Until January 1, 2021, PubMed, Web of Science and Cochrane Library were comprehensively retrieved for relevant literatures. Quality of included literature was assessed using the Newcastle-Ottawa Scale (NOS) assessment scale. The pooled standard mean difference (SMD) with 95% confidence interval (CI) of Leukocytes TL was calculated using random-effect model. Subgroup analysis and meta-regression were used to investigate the potential source of heterogeneity. RESULTS Six original studies containing 678 OA patients and 1457 healthy controls were included in this meta-analysis. All six included studies were case-control designed. Pooled results showed that patients with OA had a shorter TL in peripheral blood leukocytes (PBLs) compared with healthy controls, (SMD = - 0.32, 95% CI - 0.57 to - 0.06, Z = - 2.45, P = 0.014). Subgroup and meta-regression analysis showed that sex ratio and body mass index (BMI) were possible sources of heterogeneity. Publication bias was not observed. CONCLUSION The TL of PBLs in patients with OA was shorter than that of healthy controls, suggesting that PBLs TL may be closely associated with the pathogenesis and progression of OA.
Collapse
Affiliation(s)
- Huimin Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Ming Shao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Jiangping Kong
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Tingting Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Feier Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Guoqi Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Shenqian Xu
- Department of Rheumatism and Immunity, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
11
|
Microstructural and histomorphological features of osteophytes in late-stage human knee osteoarthritis with varus deformity. Joint Bone Spine 2022; 89:105353. [DOI: 10.1016/j.jbspin.2022.105353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/30/2021] [Accepted: 01/18/2022] [Indexed: 11/19/2022]
|
12
|
Takeuchi K, Ogawa H, Kuramitsu N, Akaike K, Goto A, Aoki H, Lassar A, Suehara Y, Hara A, Matsumoto K, Akiyama H. Colchicine protects against cartilage degeneration by inhibiting MMP13 expression via PLC-γ1 phosphorylation. Osteoarthritis Cartilage 2021; 29:1564-1574. [PMID: 34425229 PMCID: PMC8542595 DOI: 10.1016/j.joca.2021.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 07/17/2021] [Accepted: 08/10/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Low molecular weight compounds that reduce the expression of MMP13 at the mRNA level might serve as disease-modifying osteoarthritis (OA) drugs (DMOADs). The objective of this study was to identify a candidate DMOAD that targets MMP13 expression. DESIGN High-throughput screening was performed to identify compounds that suppress inflammatory cytokine-induced MMP13 expression. Ingenuity pathway analysis (IPA) using isobaric tags for relative and absolute quantification (iTRAQ)-based proteomic analysis was conducted to identify signaling pathways related to cytokines. MMP13 expression in chondrocytes was evaluated through RT-qPCR and western blotting analyses. Additionally, 10-week-old mice were subjected to destabilization of the medial meniscus (DMM) surgery to induce OA and were sacrificed 12 weeks post-surgery for pathological examination. OA was evaluated using the OARSI scoring system. RESULTS Colchicine was identified as a DMOAD candidate as it inhibited inflammatory cytokine-induced MMP13 expression in vitro, and the colchicine-administered mice with DMM presented significantly lower OARSI scores (adjusted P: 0.0242, mean difference: 1.6, 95% confidence interval (CI) of difference: 0.1651-3.035) and significantly lower synovial membrane inflammation scores (adjusted P: 0.0243, mean difference: 0.6, 95% CI of difference: 0.06158-1.138) than mice with DMM. IPA further revealed that components of the Rho signaling pathways are regulated by cytokines and colchicine. IL-1β and TNF-α activate RAC1 and SRC signals, respectively, leading to the phosphorylation of PLC-γ1 and synergistic induction of MMP13 expression. Most notably, colchicine abrogates inflammatory cytokine-induced phosphorylation of PLC-γ1, leading to the induction of MMP13 expression. CONCLUSIONS Colchicine is a potential DMOAD candidate that inhibits MMP13 expression and consequent cartilage degradation by disrupting the SRC/RAC1-phospho-PLCγ1-Ca2+ signaling pathway.
Collapse
Affiliation(s)
- K Takeuchi
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu, Gifu, 501-1194, Japan
| | - H Ogawa
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu, Gifu, 501-1194, Japan; Department of Orthopaedic Surgery, Ogaki Tokushukai Hospital, Hayashi-machi 6-85-1, Ogaki, Gifu, 503-0015, Japan.
| | - N Kuramitsu
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu, Gifu, 501-1194, Japan
| | - K Akaike
- Department of Orthopaedic Surgery, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - A Goto
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu, Gifu, 501-1194, Japan
| | - H Aoki
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu Graduate School of Medicine, Yanagido 1-1, Gifu, Gifu, 501-1194, Japan
| | - A Lassar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave., Boston, MA, 02115, USA
| | - Y Suehara
- Department of Orthopaedic Surgery, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - A Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu, Gifu, 501-1194, Japan
| | - K Matsumoto
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu, Gifu, 501-1194, Japan
| | - H Akiyama
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu, Gifu, 501-1194, Japan
| |
Collapse
|
13
|
Zhu P, Wang Z, Sun Z, Liao B, Cai Y. Recombinant platelet-derived growth factor-BB alleviates osteoarthritis in a rat model by decreasing chondrocyte apoptosis in vitro and in vivo. J Cell Mol Med 2021; 25:7472-7484. [PMID: 34250725 PMCID: PMC8335691 DOI: 10.1111/jcmm.16779] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/08/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a common joint disease that mainly affects the diarthrodial joints. Treatments for OA include non‐pharmacological interventions, topical and oral therapies, intra‐articular therapies and joint surgery. However, all the treatments mentioned above mainly aim to control the symptoms instead of improving or reversing the joint condition. In this research, we observed the effect of recombinant platelet‐derived growth factor (PDGF)‐BB on OA in a monosodium iodoacetate (MIA)–induced rat model and revealed the possible mechanisms. In vitro, the level of inflammation in the chondrocytes was gradually alleviated, and the apoptosis rate was gradually decreased by PDGF‐BB at increasing concentrations. The levels of p‐p38, Bax and caspase‐3 decreased, and the level of p‐Erk increased with increasing PDGF‐BB concentration. In vivo, PDGF‐BB could significantly reverse chondrocyte and matrix loss. Furthermore, high concentrations of PDGF‐BB could alleviate cartilage hyperplasia to remodel the tissue. The level of collagen II was up‐regulated, and the levels of collagen X and apoptosis were down‐regulated by increasing concentrations of PDGF‐BB. In conclusion, recombinant PDGF‐BB alleviated OA by down‐regulating caspase‐3‐dependent apoptosis. The effects of PDGF‐BB on OA mainly include inhibiting chondrocyte loss, reducing cartilage hyperplasia and osteophyte formation, and regulating collagen anabolism.
Collapse
Affiliation(s)
- Pengfei Zhu
- Department of Cardiology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengchao Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenxing Sun
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bokai Liao
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Yu Cai
- Department of Rehabilitation, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Bevacizumab Arrests Osteoarthritis Progression in a Rabbit Model: A Dose-Escalation Study. J Clin Med 2021; 10:jcm10132825. [PMID: 34206900 PMCID: PMC8268196 DOI: 10.3390/jcm10132825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023] Open
Abstract
Cartilage neoangiogenesis holds a prominent role in osteoarthritis (OA) pathogenesis. This study aimed to assess the efficacy bevacizumab, an antibody against vascular endothelial growth factor and inhibitor of angiogenesis, in a rabbit OA model. Animals were divided into four groups: one receiving a sham intra-articular knee injection and three groups undergoing 5, 10, and 20 mg intra-articular bevacizumab injections. The effect of the antibody on articular cartilage and synovium was assessed through histology and quantified with the Osteoarthritis Research Society International (OARSI) scores. Immunohistochemistry was performed to investigate type 2 collagen, aggrecan, and matrix metalloproteinase 13 (MMP-13) expression. Bevacizumab treatment led to a significant reduction of cartilage degeneration and synovial OA changes. Immunohistochemistry revealed significantly lower cartilage MMP-13 expression levels in all experimental groups, with the one receiving 20 mg bevacizumab showing the lowest. The antibody also resulted in increased production of aggrecan and type 2 collagen after administration of 5, 10, and 20 mg. The group treated with 20 mg showed the highest levels of type 2 collagen, while aggrecan content was even higher than in the healthy cartilage. Intra-articular bevacizumab has been demonstrated to effectively arrest OA progression in our model, with 20 mg being the most efficacious dose.
Collapse
|
15
|
Watkins L, MacKay J, Haddock B, Mazzoli V, Uhlrich S, Gold G, Kogan F. Assessment of quantitative [ 18F]Sodium fluoride PET measures of knee subchondral bone perfusion and mineralization in osteoarthritic and healthy subjects. Osteoarthritis Cartilage 2021; 29:849-858. [PMID: 33639259 PMCID: PMC8159876 DOI: 10.1016/j.joca.2021.02.563] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/06/2021] [Accepted: 02/01/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Molecular information derived from dynamic [18F]sodium fluoride ([18F]NaF) PET imaging holds promise as a quantitative marker of bone metabolism. The objective of this work was to evaluate physiological mechanisms of [18F]NaF uptake in subchondral bone of individuals with and without knee osteoarthritis (OA). METHODS Eleven healthy volunteers and twenty OA subjects were included. Both knees of all subjects were scanned simultaneously using a 3T hybrid PET/MRI system. MRI MOAKS assessment was performed to score the presence and size of osteophytes, bone marrow lesions, and cartilage lesions. Subchondral bone kinetic parameters of bone perfusion (K1), tracer extraction fraction, and total tracer uptake into bone (Ki) were evaluated using the Hawkins 3-compartment model. Measures were compared between structurally normal-appearing bone regions and those with structural findings. RESULTS Mean and maximum SUV and kinetic parameters Ki, K1, and extraction fraction were significantly different between Healthy subjects and subjects with OA. Between-group differences in metabolic parameters were observed both in regions where the OA group had degenerative changes as well as in regions that appeared structurally normal. CONCLUSIONS Results suggest that bone metabolism is altered in OA subjects, including bone regions with and without structural findings, compared to healthy subjects. Kinetic parameters of [18F]NaF uptake in subchondral bone show potential to quantitatively evaluate the role of bone physiology in OA initiation and progression. Objective measures of bone metabolism from [18F]NaF PET imaging can complement assessments of structural abnormalities observed on MRI.
Collapse
Affiliation(s)
- L Watkins
- Department of Bioengineering, Stanford University, Stanford CA, USA; Department of Radiology, Stanford University, Stanford CA, USA.
| | - J MacKay
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom; Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | | | - V Mazzoli
- Department of Radiology, Stanford University, Stanford CA, USA
| | - S Uhlrich
- Department of Mechanical Engineering, Stanford University, Stanford CA, USA
| | - G Gold
- Department of Bioengineering, Stanford University, Stanford CA, USA; Department of Radiology, Stanford University, Stanford CA, USA
| | - F Kogan
- Department of Radiology, Stanford University, Stanford CA, USA
| |
Collapse
|
16
|
Barton KI, Heard BJ, Kroker A, Sevick JL, Raymond DA, Chung M, Achari Y, Martin CR, Frank CB, Boyd SK, Shrive NG, Hart DA. Structural Consequences of a Partial Anterior Cruciate Ligament Injury on Remaining Joint Integrity: Evidence for Ligament and Bone Changes Over Time in an Ovine Model. Am J Sports Med 2021; 49:637-648. [PMID: 33523721 DOI: 10.1177/0363546520985279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Severe injury to the knee joint often results in accelerated posttraumatic osteoarthritis (PTOA). In an ovine knee injury model, altered kinematics and degradation of the cartilage have been observed at 20 and 40 weeks after partial anterior cruciate ligament (ACL) transection (p-ACL Tx) surgery. However, changes to the integrity of the remaining intact intra-articular ligaments (posterolateral [PL] band and posterior cruciate ligament [PCL]) as well as the subchondral bone after anteromedial (AM) band Tx remain to be characterized. PURPOSE (1) To investigate histological alterations to the remaining intact intra-articular ligaments, the synovium, and the infrapatellar fat pad (IPFP) and (2) to quantify subchondral bone changes at the contact surfaces of the proximal tibia at 20 and 40 weeks after AM band Tx. STUDY DESIGN Descriptive laboratory study. METHODS Mature female Suffolk cross sheep were allocated into 3 groups: nonoperative controls (n = 6), 20 weeks after partial ACL transection (p-ACL Tx; n = 5), and 40 weeks after p-ACL Tx (n = 6). Ligament, synovium, and IPFP sections were stained and graded. Tibial subchondral bone microarchitecture was assessed using high-resolution peripheral quantitative computed tomography. RESULTS p-ACL Tx of the AM band led to significant change in histological scores of the PL band and the PCL at 20 weeks after p-ACL Tx (P = .031 and P = .033, respectively) and 40 weeks after p-ACL Tx (P = .011 and P = .029) as compared with nonoperative controls. Alterations in inflammatory cells and collagen fiber orientation contributed to the greatest extent of the combined histological score in the PL band and PCL. p-ACL Tx did not lead to chronic activation of the synovium or IPFP. Trabecular bone mineral density was strongly inversely correlated with combined gross morphological damage in the top and middle layers of the subchondral bone in the lateral tibial plateau for animals at 40 weeks after p-ACL Tx. CONCLUSION p-ACL Tx influences the integrity (biology and structure) of remaining intact intra-articular ligaments and bone microarchitecture in a partial knee injury ovine model. CLINICAL RELEVANCE p-ACL Tx leads to alterations in structural integrity of the remaining intact ligaments and degenerative changes in the trabecular bone mineral density, which may be detrimental to the injured athlete's knee joint in the long term.
Collapse
Affiliation(s)
- Kristen I Barton
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Bryan J Heard
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Andres Kroker
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Schulich School of Engineering, University of Calgary, Calgary, Canada
| | - Johnathan L Sevick
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Schulich School of Engineering, University of Calgary, Calgary, Canada
| | - Duncan A Raymond
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - May Chung
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Yamini Achari
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - C Ryan Martin
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Section of Orthopaedics, Foothills Hospital, Calgary, Canada
| | | | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Schulich School of Engineering, University of Calgary, Calgary, Canada
| | - Nigel G Shrive
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Schulich School of Engineering, University of Calgary, Calgary, Canada
| | - David A Hart
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, Canada.,Bone and Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, Canada
| |
Collapse
|
17
|
Arthur A, Gronthos S. Eph-Ephrin Signaling Mediates Cross-Talk Within the Bone Microenvironment. Front Cell Dev Biol 2021; 9:598612. [PMID: 33634116 PMCID: PMC7902060 DOI: 10.3389/fcell.2021.598612] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Skeletal integrity is maintained through the tightly regulated bone remodeling process that occurs continuously throughout postnatal life to replace old bone and to repair skeletal damage. This is maintained primarily through complex interactions between bone resorbing osteoclasts and bone forming osteoblasts. Other elements within the bone microenvironment, including stromal, osteogenic, hematopoietic, endothelial and neural cells, also contribute to maintaining skeletal integrity. Disruption of the dynamic interactions between these diverse cellular systems can lead to poor bone health and an increased susceptibility to skeletal diseases including osteopenia, osteoporosis, osteoarthritis, osteomalacia, and major fractures. Recent reports have implicated a direct role for the Eph tyrosine kinase receptors and their ephrin ligands during bone development, homeostasis and skeletal repair. These membrane-bound molecules mediate contact-dependent signaling through both the Eph receptors, termed forward signaling, and through the ephrin ligands, referred to as reverse signaling. This review will focus on Eph/ ephrin cross-talk as mediators of hematopoietic and stromal cell communication, and how these interactions contribute to blood/ bone marrow function and skeletal integrity during normal steady state or pathological conditions.
Collapse
Affiliation(s)
- Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
18
|
Tang J, Liu T, Wen X, Zhou Z, Yan J, Gao J, Zuo J. Estrogen-related receptors: novel potential regulators of osteoarthritis pathogenesis. Mol Med 2021; 27:5. [PMID: 33446092 PMCID: PMC7809777 DOI: 10.1186/s10020-021-00270-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/08/2021] [Indexed: 12/26/2022] Open
Abstract
Osteoarthritis (OA) is a chronic inflammatory disease that is associated with articular cartilage destruction, subchondral bone alterations, synovitis, and even joint deformity and the loss of joint function. Although current basic research on the pathogenesis of OA has made remarkable progress, our understanding of this disease still needs to be further improved. Recent studies have shown that the estrogen-related receptor (ERR) family members ERRα and ERRγ may play significant roles in the pathogenesis of OA. In this review, we refer to the latest research on ERRs and the pathogenesis of OA, elucidate the structure and physiopathological functions of the ERR orphan nuclear receptor family, and systematically examine the relationship between ERRs and OA at the molecular level. Moreover, we also discuss and predict the capacity of ERRs as potential targets in the clinical treatment of OA.
Collapse
Affiliation(s)
- Jinshuo Tang
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Tong Liu
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Xinggui Wen
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Zhongsheng Zhou
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Jingtong Yan
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Jianpeng Gao
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Jianlin Zuo
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.
| |
Collapse
|
19
|
Dixit M, Poudel SB, Yakar S. Effects of GH/IGF axis on bone and cartilage. Mol Cell Endocrinol 2021; 519:111052. [PMID: 33068640 PMCID: PMC7736189 DOI: 10.1016/j.mce.2020.111052] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Growth hormone (GH) and its mediator, the insulin-like growth factor-1 (IGF-1) regulate somatic growth, metabolism and many aspects of aging. As such, actions of GH/IGF have been studied in many tissues and organs over decades. GH and IGF-1 are part of the hypothalamic/pituitary somatotrophic axis that consists of many other regulatory hormones, receptors, binding proteins, and proteases. In humans, GH/IGF actions peak during pubertal growth and regulate skeletal acquisition through stimulation of extracellular matrix production and increases in bone mineral density. During aging the activity of these hormones declines, a state called somatopaguss, which associates with deleterious effects on the musculoskeletal system. In this review, we will focus on GH/IGF-1 action in bone and cartilage. We will cover many studies that have utilized congenital ablation or overexpression of members of this axis, as well as cell-specific gene-targeting approaches used to unravel the nature of the GH/IGF-1 actions in the skeleton in vivo.
Collapse
Affiliation(s)
- Manisha Dixit
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, NY, 10010, USA
| | - Sher Bahadur Poudel
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, NY, 10010, USA
| | - Shoshana Yakar
- David B. Kriser Dental Center, Department of Molecular Pathobiology, New York University College of Dentistry, NY, 10010, USA.
| |
Collapse
|
20
|
Lombardi AF, Tang Q, Wong JH, Williams JL, Jerban S, Ma Y, Jang H, Du J, Chang EY. High-Density Mineralized Protrusions and Central Osteophytes: Associated Osteochondral Junction Abnormalities in Osteoarthritis. Diagnostics (Basel) 2020; 10:diagnostics10121051. [PMID: 33291470 PMCID: PMC7762145 DOI: 10.3390/diagnostics10121051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to determine the association between high-density mineralized protrusions (HDMPs) and central osteophytes (COs), and describe the varying appearance of these lesions using advanced clinical imaging and a novel histological protocol. Seventeen consecutive patients with clinically advanced knee osteoarthritis undergoing knee arthroplasty were included. Surgical tissues containing the osteochondral region were investigated using computed tomography (CT); a subset was evaluated using confocal microscopy with fluorescence. Tissues from seven subjects (41.2%) contained HDMPs, and tissues from seven subjects (41.2%) contained COs. A significant association between HDMPs and COs was present (p = 0.003), with 6 subjects (35.2%) demonstrating both lesions. In total, 30 HDMPs were found, most commonly at the posterior medial femoral condyle (13/30, 43%), and 19 COs were found, most commonly at the trochlea (5/19, 26.3%). The HDMPs had high vascularity at their bases in cartilaginous areas (14/20, 70%), while the surrounding areas had elevated levels of long vascular channels penetrating beyond the zone of calcified cartilage (p = 0.012) compared to HDMP-free areas. Both COs and HDMPs had noticeable bone-resorbing osteoclasts amassing at the osteochondral junction and in vascular channels entering cartilage. In conclusion, HDMPs and COs are associated lesions in patients with advanced knee osteoarthritis, sharing similar histologic features, including increased vascularization and metabolic bone activity at the osteochondral junction. Future studies are needed to determine the relationship of these lesions with osteoarthritis progression and symptomatology.
Collapse
Affiliation(s)
- Alecio F. Lombardi
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (J.H.W.); (J.L.W.); (S.J.); (Y.M.); (H.J.); (J.D.); (E.Y.C.)
- Department of Radiology, University of California, San Diego, CA 92122, USA
- Correspondence:
| | - Qingbo Tang
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (J.H.W.); (J.L.W.); (S.J.); (Y.M.); (H.J.); (J.D.); (E.Y.C.)
- Department of Radiology, University of California, San Diego, CA 92122, USA
| | - Jonathan H. Wong
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (J.H.W.); (J.L.W.); (S.J.); (Y.M.); (H.J.); (J.D.); (E.Y.C.)
- Department of Radiology, University of California, San Diego, CA 92122, USA
| | - Judith L. Williams
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (J.H.W.); (J.L.W.); (S.J.); (Y.M.); (H.J.); (J.D.); (E.Y.C.)
| | - Saeed Jerban
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (J.H.W.); (J.L.W.); (S.J.); (Y.M.); (H.J.); (J.D.); (E.Y.C.)
- Department of Radiology, University of California, San Diego, CA 92122, USA
| | - Yajun Ma
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (J.H.W.); (J.L.W.); (S.J.); (Y.M.); (H.J.); (J.D.); (E.Y.C.)
- Department of Radiology, University of California, San Diego, CA 92122, USA
| | - Hyungseok Jang
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (J.H.W.); (J.L.W.); (S.J.); (Y.M.); (H.J.); (J.D.); (E.Y.C.)
- Department of Radiology, University of California, San Diego, CA 92122, USA
| | - Jiang Du
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (J.H.W.); (J.L.W.); (S.J.); (Y.M.); (H.J.); (J.D.); (E.Y.C.)
- Department of Radiology, University of California, San Diego, CA 92122, USA
| | - Eric Y. Chang
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (J.H.W.); (J.L.W.); (S.J.); (Y.M.); (H.J.); (J.D.); (E.Y.C.)
- Department of Radiology, University of California, San Diego, CA 92122, USA
| |
Collapse
|
21
|
Vasilceac FA, Marqueti RDC, Neto IVDS, Nascimento DDC, Souza MCD, Durigan JLQ, Mattiello SM. Resistance training decreases matrix metalloproteinase-2 activity in quadriceps tendon in a rat model of osteoarthritis. Braz J Phys Ther 2020; 25:147-155. [PMID: 32276877 DOI: 10.1016/j.bjpt.2020.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/05/2019] [Accepted: 02/28/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative disease that induces peri-articular tissue degradation. OA induces an imbalance between synthesis and degradation of the extracellular matrix components in favor of catabolic events, promoting pathological remodeling and involving degradative enzymes, such as matrix metalloproteinases (MMPs). OBJECTIVE This study aimed to investigate the effects of 8-weeks resistance training (RT) on MMP-2 activity in the quadriceps tendon and patellar tendon in an OA model. METHODS Twenty-four Wistar rats were randomly divided into six groups: Control, Exercise, Sham, Sham with Exercise, OA, and OA with Exercise (OAE). The OA model was performed by anterior cruciate ligament transection surgery on the left knee. The 8-week RT consisted of climbing a 1.1-m vertical ladder three times per week with progressive weights secured to the animals' tails. MMP-2 activity was analyzed by zymography. RESULTS The OAE group displayed lower pro, intermediate, and active MMP-2 activity in the quadriceps tendon compared with the OA group (p<0.05). For the patellar tendon, there was no significant difference between the OAE group compared with the other groups (p>0.05) for pro, intermediate, and active MMP-2 activity. Moreover, MMP-2 activity differed between tissues, the OA and OAE groups presented lower pro, intermediate, and active MMP-2 activity in the quadriceps tendon compared to the patellar tendon. CONCLUSION RT induced down-regulated MMP-2 activity in the quadriceps tendon. RT is a potential therapeutic approach to minimize the deleterious effects of extracellular matrix degeneration.
Collapse
Affiliation(s)
- Fernando Augusto Vasilceac
- Graduate Program of Physical Therapy, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Rita de Cássia Marqueti
- Graduate Program of Sciences and Technology of Health, Universidade de Brasília (UnB), Brasília, Distrito Federal, Brazil; Graduate Program in Rehabilitation Sciences, Universidade de Brasília (UnB), Brasília, Distrito Federal, Brazil.
| | - Ivo Vieira de Sousa Neto
- Graduate Program of Sciences and Technology of Health, Universidade de Brasília (UnB), Brasília, Distrito Federal, Brazil
| | - Dahan da Cunha Nascimento
- Graduate Program of Physical Education, Universidade Católica de Brasília (UCB), Brasília, Distrito Federal, Brazil; Department of Physical Education, Centro Universitário do Distrito Federal, Brasília, Distrito Federal, Brazil
| | - Mariana Carvalho de Souza
- Graduate Program of Physical Therapy, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - João Luiz Quaglioti Durigan
- Graduate Program of Sciences and Technology of Health, Universidade de Brasília (UnB), Brasília, Distrito Federal, Brazil; Graduate Program in Rehabilitation Sciences, Universidade de Brasília (UnB), Brasília, Distrito Federal, Brazil
| | - Stela Márcia Mattiello
- Graduate Program of Physical Therapy, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| |
Collapse
|
22
|
COL2A1 and Caspase-3 as Promising Biomarkers for Osteoarthritis Prognosis in an Equus asinus Model. Biomolecules 2020; 10:biom10030354. [PMID: 32111016 PMCID: PMC7175237 DOI: 10.3390/biom10030354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 01/06/2023] Open
Abstract
Osteoarthritis (OA) is one of the most degenerative joint diseases in both human and veterinary medicine. The objective of the present study was the early diagnosis of OA in donkeys using a reliable grading of the disease based on clinical, chemical, and molecular alterations. OA was induced by intra-articular injection of 25 mg monoiodoacetate (MIA) as a single dose into the left radiocarpal joint of nine donkeys. Animals were clinically evaluated through the assessment of lameness score, radiographic, and ultrasonographic findings for seven months. Synovial fluid and cartilage samples were collected from both normal and diseased joints for the assessment of matrix metalloproteinases (MMPs) activity, COL2A1 protein expression level, and histopathological and immunohistochemical analysis of Caspase-3. Animals showed the highest lameness score post-induction after one week then decreased gradually with the progression of radiographical and ultrasonographic changes. MMP activity and COL2A1 and Caspase-3 expression increased, accompanied by articular cartilage degeneration and loss of proteoglycan. OA was successfully graded in Egyptian donkeys, with the promising use of COL2A1and Caspase-3 for prognosis. However, MMPs failed to discriminate between early and late grades of OA.
Collapse
|
23
|
Haraden CA, Huebner JL, Hsueh MF, Li YJ, Kraus VB. Synovial fluid biomarkers associated with osteoarthritis severity reflect macrophage and neutrophil related inflammation. Arthritis Res Ther 2019; 21:146. [PMID: 31196179 PMCID: PMC6567574 DOI: 10.1186/s13075-019-1923-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/22/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND To identify a synovial fluid (SF) biomarker profile characteristic of individuals with an inflammatory osteoarthritis (OA) endotype. METHODS A total of 48 knees (of 25 participants) were characterized for an extensive array of SF biomarkers quantified by Rules Based Medicine using the high-sensitivity multiplex immunoassay, Myriad Human InflammationMAP® 1.0, which included 47 different cytokines, chemokines, and growth factors related to inflammation. Multivariable regression with generalized estimating equations (GEE) and false discovery rate (FDR) correction was used to assess associations of SF RBM biomarkers with etarfolatide imaging scores reflecting synovial inflammation; radiographic knee OA severity (based on Kellgren-Lawrence (KL) grade, joint space narrowing, and osteophyte scores); knee joint symptoms; and SF biomarkers associated with activated macrophages and knee OA progression including CD14 and CD163 (shed by activated macrophages) and elastase (shed by activated neutrophils). RESULTS Significant associations of SF biomarkers meeting FDR < 0.05 included soluble (s)VCAM-1 and MMP-3 with synovial inflammation (FDR-adjusted p = 0.025 and 1.06 × 10-7); sVCAM-1, sICAM-1, TIMP-1, and VEGF with radiographic OA severity (p = 1.85 × 10-5 to 3.97 × 10-4); and VEGF, MMP-3, TIMP-1, sICAM-1, sVCAM-1, and MCP-1 with OA symptoms (p = 2.72 × 10-5 to 0.050). All these SF biomarkers were highly correlated with macrophage markers CD163 and CD14 in SF (r = 0.43 to 0.90, FDR < 0.05); all but MCP-1 were also highly correlated with neutrophil elastase in SF (r = 0.62 to 0.89, FDR < 0.05). CONCLUSIONS A subset of six SF biomarkers was related to synovial inflammation in OA, as well as radiographic and symptom severity. These six OA-related SF biomarkers were specifically linked to indicators of activated macrophages and neutrophils. These results attest to an inflammatory OA endotype that may serve as the basis for therapeutic targeting of a subset of individuals at high risk for knee OA progression. TRIAL REGISTRATION Written informed consent was received from participants prior to inclusion in the study; the study was registered at ClinicalTrials.gov ( NCT01237405 ) on November 9, 2010, prior to enrollment of the first participant.
Collapse
Affiliation(s)
- Collin A Haraden
- Duke Molecular Physiology Institute, Duke University School of Medicine, Box 104775, 300 North Duke St, Durham, NC, 27701, USA
| | - Janet L Huebner
- Duke Molecular Physiology Institute, Duke University School of Medicine, Box 104775, 300 North Duke St, Durham, NC, 27701, USA
| | - Ming-Feng Hsueh
- Duke Molecular Physiology Institute, Duke University School of Medicine, Box 104775, 300 North Duke St, Durham, NC, 27701, USA
| | - Yi-Ju Li
- Duke Molecular Physiology Institute, Duke University School of Medicine, Box 104775, 300 North Duke St, Durham, NC, 27701, USA.,Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Box 104775, 300 North Duke St, Durham, NC, 27701, USA. .,Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
24
|
Jaswal AP, Bandyopadhyay A. Re-examining osteoarthritis therapy from a developmental biologist's perspective. Biochem Pharmacol 2019; 165:17-23. [PMID: 30922620 DOI: 10.1016/j.bcp.2019.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/13/2019] [Indexed: 01/25/2023]
Abstract
Osteoarthritis is the most prevalent musculoskeletal disorder and one for which there is no disease modifying therapy available at present. Our current understanding of the disease mechanism of osteoarthritis is limited owing to a lacuna of knowledge about the development and maintenance of articular cartilage that is affected during osteoarthritis. All current therapeutic strategies aim at countering inflammation which though mitigates pain but does not arrest the progressive degeneration of articular cartilage. During osteoarthritis, articular cartilage expresses markers for transient cartilage differentiation. Moreover, blocking transient cartilage differentiation is sufficient for halting the progression of experimental osteoarthritis. A developmental biology inspired approach that combines restoration of tissue microenvironment, supplementation with engineered cartilage and built in mechanism to prevent transient cartilage differentiation could be an avenue for developing a disease modifying therapy for osteoarthritis.
Collapse
Affiliation(s)
- Akrit Pran Jaswal
- Lab 10, Department of Biological Sciences and Bio-engineering, IIT, Kanpur, India.
| | | |
Collapse
|
25
|
Regional gene expression analysis of multiple tissues in an experimental animal model of post-traumatic osteoarthritis. Osteoarthritis Cartilage 2019; 27:294-303. [PMID: 30448533 DOI: 10.1016/j.joca.2018.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 09/04/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To characterize local disease progression of the medial meniscus transection (MMT) model of post-traumatic osteoarthritis (OA) at the molecular level, in order to establish a baseline for therapeutic testing at the preclinical stage. DESIGN Weight-matched male Lewis rats underwent MMT or sham surgery on the left limb with the right leg as contralateral control. At 1 and 3 weeks post-surgery, tissues were harvested from different areas of the articular cartilage (medial and lateral tibial plateaus, and medial osteophyte region) and synovium (medial and lateral), and analyzed separately. RNA was extracted and used for microarray (RT-PCR) analysis. RESULTS Gene expression changes due to surgery were isolated to the medial side of the joint. Gene changes in chondrocyte phenotype of the medial tibial plateau cartilage preceded changes in tissue composition genes. Differences in inflammatory markers were only observed at the osteophyte region at 3 weeks post-surgery. There was surgical noise in the synovium at week 1, which dissipated at week 3. At this later timepoint, meniscal instability resulted in elevated expression of matrix degradation proteins and osteogenic markers in the synovium and cartilage. CONCLUSION These results suggest feedback interactions between joint tissues during disease progression. Regional tissue expression differences found in MMT joints indicated similar pathophysiology to human OA, and provided novel insights about this degeneration model. The examination of gene expression at a localized level in multiple tissues provides a well-characterized baseline to evaluate mechanistic effects of potential therapeutic agents on OA disease progression in the MMT model.
Collapse
|
26
|
Murata K, Kokubun T, Morishita Y, Onitsuka K, Fujiwara S, Nakajima A, Fujino T, Takayanagi K, Kanemura N. Controlling Abnormal Joint Movement Inhibits Response of Osteophyte Formation. Cartilage 2018; 9:391-401. [PMID: 28397529 PMCID: PMC6139594 DOI: 10.1177/1947603517700955] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective Osteoarthritis (OA) is induced by accumulated mechanical stress to joints; however, little has been reported regarding the cause among detailed mechanical stress on cartilage degeneration. This study investigated the influence of the control of abnormal joint movement induced by anterior cruciate ligament (ACL) injury in the articular cartilage. Design The animals were divided into 3 experimental groups: CAJM group ( n = 22: controlling abnormal joint movement), ACL-T group ( n = 22: ACL transection or knee anterior instability increased), and INTACT group ( n = 12: no surgery). After 2 and 4 weeks, the knees were harvested for digital microscopic observation, soft X-ray analysis, histological analysis, and synovial membrane molecular evaluation. Results The 4-week OARSI scores showed that cartilage degeneration was significantly inhibited in the CAJM group as compared with the ACL-T group ( P < 0.001). At 4 weeks, the osteophyte formation had also significantly increased in the ACL-T group ( P < 0.001). These results reflected the microscopic scoring and soft X-ray analysis findings at 4 weeks. Real-time synovial membrane polymerase chain reaction analysis for evaluation of the osteophyte formation-associated factors showed that the mRNA expression of BMP-2 and VEGF in the ACL-T group had significantly increased after 2 weeks. Conclusions Typically, abnormal mechanical stress induces osteophyte formation; however, our results demonstrated that CAJM group inhibited osteophyte formation. Therefore, controlling abnormal joint movement may be a beneficial precautionary measure for OA progression in the future.
Collapse
Affiliation(s)
- Kenji Murata
- Department of Physical Therapy, School
of Health and Social Services, Saitama Prefectural University, Saitama, Japan,Department of Health and Social
Services, Course of Health and Social Services, Graduate School of Saitama
Prefectural University, Saitama, Japan
| | - Takanori Kokubun
- Department of Physical Therapy, School
of Health and Social Services, Saitama Prefectural University, Saitama, Japan
| | - Yuri Morishita
- Department of Health and Social
Services, Course of Health and Social Services, Graduate School of Saitama
Prefectural University, Saitama, Japan
| | - Katsuya Onitsuka
- Department of Health and Social
Services, Course of Health and Social Services, Graduate School of Saitama
Prefectural University, Saitama, Japan
| | - Shuhei Fujiwara
- Department of Health and Social
Services, Course of Health and Social Services, Graduate School of Saitama
Prefectural University, Saitama, Japan
| | - Aya Nakajima
- Department of Health and Social
Services, Course of Health and Social Services, Graduate School of Saitama
Prefectural University, Saitama, Japan
| | - Tsutomu Fujino
- Department of Health and Social
Services, Course of Health and Social Services, Graduate School of Saitama
Prefectural University, Saitama, Japan
| | - Kiyomi Takayanagi
- Department of Physical Therapy, School
of Health and Social Services, Saitama Prefectural University, Saitama, Japan
| | - Naohiko Kanemura
- Department of Physical Therapy, School
of Health and Social Services, Saitama Prefectural University, Saitama, Japan,Naohiko Kanemura, Department of Physical
Therapy, School of Health and Social Services, Saitama Prefectural University,
Saitama, Japan.
| |
Collapse
|
27
|
Molecular characterization of mesenchymal stem cells in human osteoarthritis cartilage reveals contribution to the OA phenotype. Sci Rep 2018; 8:7044. [PMID: 29728632 PMCID: PMC5935742 DOI: 10.1038/s41598-018-25395-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 04/16/2018] [Indexed: 11/10/2022] Open
Abstract
Adult human articular cartilage harbors a population of CD166+ mesenchymal stem cell-like progenitors that become more numerous during osteoarthritis (OA). While their role is not well understood, here we report that they are indeed part of cellular clusters formed in OA cartilage, which is a pathological hallmark of this disease. We hypothesize that these cells, termed OA mesenchymal stem cells (OA-MSCs), contribute to OA pathogenesis. To test this hypothesis, we generated and characterized multiple clonally derived stable/immortalized human OA-MSC cell lines, which exhibited the following properties. Firstly, two mesenchymal stem cell populations exist in human OA cartilage. While both populations are multi-potent, one preferentially undergoes chondrogenesis while the other exhibits higher osteogenesis potential. Secondly, both OA-MSCs exhibit significantly higher expression of hypertrophic OA cartilage markers COL10A1 and RUNX2, compared to OA chondrocytes. Induction of chondrogenesis in OA-MSCs further stimulated COL10A1 expression and MMP-13 release, suggesting that they contribute to OA phenotypes. Finally, knocking down RUNX2 is insufficient to inhibit COL10A1 in OA-MSCs and also requires simultaneous knockdown of NOTCH1 thereby suggesting altered gene regulation in OA stem cells in comparison to chondrocytes. Overall, our findings suggest that OA-MSCs may drive pathogenesis of cartilage degeneration and should therefore be a novel cell target for OA therapy.
Collapse
|
28
|
Yu C, Liu J, Lu G, Xie Y, Sun Y, Wang Q, Liang J, Fan Y, Zhang X. Repair of osteochondral defects in a rabbit model with artificial cartilage particulates derived from cultured collagen-chondrocyte microspheres. J Mater Chem B 2018; 6:5164-5173. [DOI: 10.1039/c8tb01185k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sketch of fabrication, filling up and repair of rabbit osteochondral defects using artificial cartilage particulates (ACPs) based on collagen I hydrogel microspheres with chondrocytes.
Collapse
Affiliation(s)
- Cheng Yu
- National Engineering Research Center for Biomaterials, Sichuan University
- Chengdu 610064
- China
| | - Jun Liu
- National Engineering Research Center for Biomaterials, Sichuan University
- Chengdu 610064
- China
| | - Gonggong Lu
- National Engineering Research Center for Biomaterials, Sichuan University
- Chengdu 610064
- China
| | - Yuxing Xie
- National Engineering Research Center for Biomaterials, Sichuan University
- Chengdu 610064
- China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University
- Chengdu 610064
- China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University
- Chengdu 610064
- China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University
- Chengdu 610064
- China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University
- Chengdu 610064
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
29
|
Bajpayee AG, De la Vega RE, Scheu M, Varady NH, Yannatos IA, Brown LA, Krishnan Y, Fitzsimons TJ, Bhattacharya P, Frank EH, Grodzinsky AJ, Porter RM. Sustained intra-cartilage delivery of low dose dexamethasone using a cationic carrier for treatment of post traumatic osteoarthritis. Eur Cell Mater 2017; 34:341-364. [PMID: 29205258 PMCID: PMC5744663 DOI: 10.22203/ecm.v034a21] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Disease-modifying osteoarthritis drugs (DMOADs) should reach their intra-tissue target sites at optimal doses for clinical efficacy. The dense, negatively charged matrix of cartilage poses a major hindrance to the transport of potential therapeutics. In this work, electrostatic interactions were utilised to overcome this challenge and enable higher uptake, full-thickness penetration and enhanced retention of dexamethasone (Dex) inside rabbit cartilage. This was accomplished by using the positively charged glycoprotein avidin as nanocarrier, conjugated to Dex by releasable linkers. Therapeutic effects of a single intra-articular injection of low dose avidin-Dex (0.5 mg Dex) were evaluated in rabbits 3 weeks after anterior cruciate ligament transection (ACLT). Immunostaining confirmed that avidin penetrated the full cartilage thickness and was retained for at least 3 weeks. Avidin-Dex suppressed injury-induced joint swelling and catabolic gene expression to a greater extent than free Dex. It also significantly improved the histological score of cell infiltration and morphogenesis within the periarticular synovium. Micro-computed tomography confirmed the reduced incidence and volume of osteophytes following avidin-Dex treatment. However, neither treatment restored the loss of cartilage stiffness following ACLT, suggesting the need for a combinational therapy with a pro-anabolic factor for enhancing matrix biosynthesis. The avidin dose used caused significant glycosaminoglycan (GAG) loss, suggesting the use of higher Dex : avidin ratios in future formulations, such that the delivered avidin dose could be much less than that shown to affect GAGs. This charge-based delivery system converted cartilage into a drug depot that could also be employed for delivery to nearby synovium, menisci and ligaments, enabling clinical translation of a variety of DMOADs.
Collapse
Affiliation(s)
- Ambika G. Bajpayee
- Departments of Bioengineering and Mechanical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA,Centre for Biomedical Engineering, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Rodolfo E. De la Vega
- Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Centre (BIDMC), Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA,Current affiliation: Rehabilitation Medicine Research Centre, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Maximiliano Scheu
- Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Centre (BIDMC), Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA,Department of Orthopaedic Surgery, Clínica Alemana de Santiago, Avenida Vitacura 5951, Vitacura, Chile
| | - Nathan H. Varady
- Centre for Biomedical Engineering, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Isabel A. Yannatos
- Centre for Biomedical Engineering, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Lennart A. Brown
- Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Centre (BIDMC), Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Yamini Krishnan
- Centre for Biomedical Engineering, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Tomas J. Fitzsimons
- Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Centre (BIDMC), Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Paulomi Bhattacharya
- Centre for Biomedical Engineering, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Eliot H. Frank
- Centre for Biomedical Engineering, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Alan J. Grodzinsky
- Centre for Biomedical Engineering, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA,Departments of Biological, Mechanical and Electrical Engineering, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Ryan M. Porter
- Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Centre (BIDMC), Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA,Address for correspondence: Ryan M. Porter, University of Arkansas for Medical Sciences, Division of Endocrinology and Metabolism, 4301 W. Markham Street, Mail Slot #587, Little Rock, AR 72205, Telephone : +1 5015266990,
| |
Collapse
|
30
|
Oral administration of undenatured native chicken type II collagen (UC-II) diminished deterioration of articular cartilage in a rat model of osteoarthritis (OA). Osteoarthritis Cartilage 2017; 25:2080-2090. [PMID: 28888901 DOI: 10.1016/j.joca.2017.08.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of this study was to determine the ability of undenatured native chicken type II collagen (UC-II) to prevent excessive articular cartilage deterioration in a rat model of osteoarthritis (OA). METHODS Twenty male rats were subjected to partial medial meniscectomy tear (PMMT) surgery to induce OA. Immediately after the surgery 10 rats received vehicle and another 10 rats oral daily dose of UC-II at 0.66 mg/kg for a period of 8 weeks. In addition 10 naïve rats were used as an intact control and another 10 rats received sham surgery. Study endpoints included a weight-bearing capacity of front and hind legs, serum biomarkers of bone and cartilage metabolism, analyses of subchondral and cancellous bone at the tibial epiphysis and metaphysis, and cartilage pathology at the medial tibial plateau using histological methods. RESULTS PMMT surgery produced moderate OA at the medial tibial plateau. Specifically, the deterioration of articular cartilage negatively impacted the weight bearing capacity of the operated limb. Immediate treatment with the UC-II preserved the weight-bearing capacity of the injured leg, preserved integrity of the cancellous bone at tibial metaphysis and limited the excessive osteophyte formation and deterioration of articular cartilage. CONCLUSION Study results demonstrate that a clinically relevant daily dose of UC-II when applied immediately after injury can improve the mechanical function of the injured knee and prevent excessive deterioration of articular cartilage.
Collapse
|
31
|
Zhao C, Liu Q, Wang K. Artesunate attenuates ACLT-induced osteoarthritis by suppressing osteoclastogenesis and aberrant angiogenesis. Biomed Pharmacother 2017; 96:410-416. [DOI: 10.1016/j.biopha.2017.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/18/2017] [Accepted: 10/02/2017] [Indexed: 01/22/2023] Open
|
32
|
Wang S, Zhou C, Zheng H, Zhang Z, Mei Y, Martin JA. Chondrogenic progenitor cells promote vascular endothelial growth factor expression through stromal-derived factor-1. Osteoarthritis Cartilage 2017; 25:742-749. [PMID: 27989872 PMCID: PMC6367939 DOI: 10.1016/j.joca.2016.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/14/2016] [Accepted: 10/18/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Vascular endothelial growth factor (VEGF) is elevated in joint fluids from patients diagnosed with osteoarthritis (OA). VEGF is known to contribute to vascular tidemark invasion and osteophyte formation, which are classic features of advanced OA. Among the factors that may drive VEGF accumulation in diseased joints, stromal cell-derived factor-1α (SDF-1α) is a likely culprit, as it is enriched in synovial fluids from osteoarthritic joints and is a potent inducer of VEGF expression. Chondrogenic progenitor cells (CPCs) that overexpress SDF-1α are abundant in osteoarthritic cartilage, implicating them in elevating synovial SDF-1α levels. Here we conducted a series of experiments to determine the potential for CPCs to stimulate VEGF expression via autocrine and paracrine mechanisms. DESIGN Immunohistochemistry, immunoblotting, and PCR were used to evaluate the effects of SDF-1α on VEGF expression in CPCs and chondrocytes, and the effects of CPC-conditioned medium on chondrocytes. An SDF-1α receptor antagonist and inhibitors of mitogen-activated protein kinases (MAPKs) were used to probe the pathway linking SDF-1 with VEGF expression in CPCs. RESULTS SDF-1α and CPC-conditioned medium stimulated VEGF expression in chondrocytes. In both chondrocytes and CPCs, SDF-1α stimulated increased VEGF expression via C-X-C chemokine receptor type 4 (CXCR4), a cell-surface SDF-1α receptor. This response in CPCs is dependent on p38 MAPK activation, but not on ERK or c-Jun N-terminal kinase (JNK) activation. CONCLUSIONS By secreting SDF-1α, CPCs stimulate VEGF expression in nearby cells. The co-expression of SDF-1 and its receptor by CPCs indicates they are capable of self-sustained VEGF expression via an autocrine mechanism.
Collapse
Affiliation(s)
- Shuya Wang
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, Harbin China, 150001
| | - Cheng Zhou
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA,Department of Biomedical Engineering, University of Iowa, Iowa City, IA
| | - Hongjun Zheng
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO
| | - Zhiyi Zhang
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, Harbin China, 150001
| | - YiFang Mei
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, Harbin China, 150001
| | - James A. Martin
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA,Department of Biomedical Engineering, University of Iowa, Iowa City, IA
| |
Collapse
|
33
|
Grässel S, Muschter D. Peripheral Nerve Fibers and Their Neurotransmitters in Osteoarthritis Pathology. Int J Mol Sci 2017; 18:ijms18050931. [PMID: 28452955 PMCID: PMC5454844 DOI: 10.3390/ijms18050931] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 12/21/2022] Open
Abstract
The importance of the nociceptive nervous system for maintaining tissue homeostasis has been known for some time, and it has also been suggested that organogenesis and tissue repair are under neuronal control. Changes in peripheral joint innervation are supposed to be partly responsible for degenerative alterations in joint tissues which contribute to development of osteoarthritis. Various resident cell types of the musculoskeletal system express receptors for sensory and sympathetic neurotransmitters, allowing response to peripheral neuronal stimuli. Among them are mesenchymal stem cells, synovial fibroblasts, bone cells and chondrocytes of different origin, which express distinct subtypes of adrenoceptors (AR), receptors for vasoactive intestinal peptide (VIP), substance P (SP) and calcitonin gene-related peptide (CGRP). Some of these cell types synthesize and secrete neuropeptides such as SP, and they are positive for tyrosine-hydroxylase (TH), the rate limiting enzyme for biosynthesis of catecholamines. Sensory and sympathetic neurotransmitters are involved in the pathology of inflammatory diseases such as rheumatoid arthritis (RA) which manifests mainly in the joints. In addition, they seem to play a role in pathogenesis of priori degenerative joint disorders such as osteoarthritis (OA). Altogether it is evident that sensory and sympathetic neurotransmitters have crucial trophic effects which are critical for joint tissue and bone homeostasis. They modulate articular cartilage, subchondral bone and synovial tissue properties in physiological and pathophysiological conditions, in addition to their classical neurological features.
Collapse
Affiliation(s)
- Susanne Grässel
- Department of Orthopedic Surgery, Exp. Orthopedics, ZMB/Biopark 1, University of Regensburg, 93053 Regensburg, Germany.
| | - Dominique Muschter
- Department of Orthopedic Surgery, Exp. Orthopedics, ZMB/Biopark 1, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
34
|
McCulloch K, Litherland GJ, Rai TS. Cellular senescence in osteoarthritis pathology. Aging Cell 2017; 16:210-218. [PMID: 28124466 PMCID: PMC5334539 DOI: 10.1111/acel.12562] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2016] [Indexed: 12/19/2022] Open
Abstract
Cellular senescence is a state of stable proliferation arrest of cells. The senescence pathway has many beneficial effects and is seen to be activated in damaged/stressed cells, as well as during embryonic development and wound healing. However, the persistence and accumulation of senescent cells in various tissues can also impair function and have been implicated in the pathogenesis of many age‐related diseases. Osteoarthritis (OA), a severely debilitating chronic condition characterized by progressive tissue remodeling and loss of joint function, is the most prevalent disease of the synovial joints, and increasing age is the primary OA risk factor. The profile of inflammatory and catabolic mediators present during the pathogenesis of OA is strikingly similar to the secretory profile observed in ‘classical’ senescent cells. During OA, chondrocytes (the sole cell type present within articular cartilage) exhibit increased levels of various senescence markers, such as senescence‐associated beta‐galactosidase (SAβGal) activity, telomere attrition, and accumulation of p16ink4a. This suggests the hypothesis that senescence of cells within joint tissues may play a pathological role in the causation of OA. In this review, we discuss the mechanisms by which senescent cells may predispose synovial joints to the development and/or progression of OA, as well as touching upon various epigenetic alterations associated with both OA and senescence.
Collapse
Affiliation(s)
- Kendal McCulloch
- Institute of Biomedical and Environmental Health Research; University of the West of Scotland; Paisley PA1 2BE UK
| | - Gary J. Litherland
- Institute of Biomedical and Environmental Health Research; University of the West of Scotland; Paisley PA1 2BE UK
| | - Taranjit Singh Rai
- Institute of Biomedical and Environmental Health Research; University of the West of Scotland; Paisley PA1 2BE UK
| |
Collapse
|
35
|
|
36
|
Articular cartilage degeneration following anterior cruciate ligament injury: a comparison of surgical transection and noninvasive rupture as preclinical models of post-traumatic osteoarthritis. Osteoarthritis Cartilage 2016; 24:1918-1927. [PMID: 27349462 DOI: 10.1016/j.joca.2016.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Post-traumatic osteoarthritis (PTOA) is commonly studied using animal models. Surgical ACL transection is an established model, but noninvasive models may mimic human injury more closely. The purpose of this study was to quantify and compare changes in 3D articular cartilage (AC) morphology following noninvasive ACL rupture and surgical ACL transection. METHODS Thirty-six rats were randomized to uninjured control, noninvasive ACL rupture (Rupture), and surgical ACL transection (Transection), and 4 and 10 week time points (n = 6 per group). Contrast-enhanced micro-computed tomography (CE-μCT) was employed for AC imaging. Femoral and tibial AC were segmented and converted into thickness maps. Compartmental and sub-compartmental AC thickness and surface roughness (Sa) were computed. OARSI histologic scoring was performed. RESULTS In both injury groups, zones of adjacent thickening and thinning were evident on the medial femoral condyle, along with general thickening and roughening of femoral and tibial AC. The posterior tibia exhibited drastic thickening and surface degeneration, and this was worse in Transection. Both injury groups had increased AC thickness and Sa compared to Control at both time points, and Transection exhibited significantly higher Sa in every tibial compartment compared to Rupture. Histologic score was elevated in both groups, and the medial femur exhibited the most severe histologic degeneration. CONCLUSIONS This is the first 3D quantification of preclinical AC remodeling after ACL injury. Both injury models induced similar changes in AC morphology, but Transection exhibited higher tibial Sa and a greater degree of posterior tibial degeneration. We conclude that AC degeneration is a time-, compartment-, and injury-dependent cascade.
Collapse
|
37
|
Sakata R, Reddi AH. Platelet-Rich Plasma Modulates Actions on Articular Cartilage Lubrication and Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:408-419. [DOI: 10.1089/ten.teb.2015.0534] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ryosuke Sakata
- Department of Orthopedic Surgery, Center for Tissue Regeneration and Repair, University of California, Davis, Sacramento, California
| | - A. Hari Reddi
- Department of Orthopedic Surgery, Center for Tissue Regeneration and Repair, University of California, Davis, Sacramento, California
| |
Collapse
|
38
|
Hamilton JL, Nagao M, Levine BR, Chen D, Olsen BR, Im HJ. Targeting VEGF and Its Receptors for the Treatment of Osteoarthritis and Associated Pain. J Bone Miner Res 2016; 31:911-24. [PMID: 27163679 PMCID: PMC4863467 DOI: 10.1002/jbmr.2828] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 01/15/2023]
Abstract
Increased vascular endothelial growth factor (VEGF) levels are associated with osteoarthritis (OA) progression. Indeed, VEGF appears to be involved in OA-specific pathologies including cartilage degeneration, osteophyte formation, subchondral bone cysts and sclerosis, synovitis, and pain. Moreover, a wide range of studies suggest that inhibition of VEGF signaling reduces OA progression. This review highlights both the potential significance of VEGF in OA pathology and pain, as well as potential benefits of inhibition of VEGF and its receptors as an OA treatment. With the emergence of the clinical use of anti-VEGF therapy outside of OA, both as high-dose systemic treatments and low-dose local treatments, these particular therapies are now more widely understood. Currently, there is no established disease-modifying drug available for patients with OA, which warrants continued study of the inhibition of VEGF signaling in OA, as stand-alone or adjuvant therapy. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- John L. Hamilton
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Masashi Nagao
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, 02115, USA
| | - Brett R. Levine
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Bjorn R. Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, 02115, USA
| | - Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
- Internal Medicine Section of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Bioengineering, University of Illinois, Chicago, IL, 60612, USA
- Jesse Brown Veterans Affairs, Chicago, IL 60612, USA
| |
Collapse
|
39
|
Antony CD, George J, Ng WM, Subramaniam MSN. Correlation between Focal Nodular Low Signal Changes in Hoffa's Fat Pad Adjacent to Anterior Femoral Cartilage and Focal Cartilage Defect Underlying This Region and Its Possible Implication. SCIENTIFICA 2016; 2016:8675160. [PMID: 27213085 PMCID: PMC4860219 DOI: 10.1155/2016/8675160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
Purpose. This study investigates the association between focal nodular mass with low signal in Hoffa's fat pad adjacent to anterior femoral cartilage of the knee (FNMHF) and focal cartilage abnormality in this region. Method. The magnetic resonance fast imaging employing steady-state acquisition sequence (MR FIESTA) sagittal and axial images of the B1 and C1 region (described later) of 148 patients were independently evaluated by two reviewers and categorized into four categories: normal, FNMHF with underlying focal cartilage abnormality, FNMHF with normal cartilage, and cartilage abnormality with no FNMHF. Results. There was a significant association (p = 0.00) between FNMHF and immediate adjacent focal cartilage abnormality with high interobserver agreement. The absence of focal nodular lesions next to the anterior femoral cartilage has a very high negative predictive value for chondral injury (97.8%). Synovial biopsy of focal nodular lesion done during arthroscopy revealed some fibrocollagenous tissue and no inflammatory cells. Conclusion. We postulate that the FNMHF adjacent to the cartilage defects is a form of normal healing response to the cartilage damage. One patient with FHMHF and underlying cartilage abnormality was rescanned six months later. In this patient, the FNMHF disappeared and normal cartilage was observed in the adjacent region which may support this theory.
Collapse
Affiliation(s)
- Chermaine Deepa Antony
- University of Malaya Research Imaging Centre, Faculty of Medicine, University of Malaya, 59100 Kuala Lumpur, Malaysia
| | - John George
- University of Malaya Research Imaging Centre, Faculty of Medicine, University of Malaya, 59100 Kuala Lumpur, Malaysia
| | - Wuey Min Ng
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 59100 Kuala Lumpur, Malaysia
| | | |
Collapse
|
40
|
Subchondral and epiphyseal bone remodeling following surgical transection and noninvasive rupture of the anterior cruciate ligament as models of post-traumatic osteoarthritis. Osteoarthritis Cartilage 2016; 24:698-708. [PMID: 26620090 DOI: 10.1016/j.joca.2015.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/03/2015] [Accepted: 11/06/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Animal models are frequently used to study post-traumatic osteoarthritis (PTOA). A common anterior cruciate ligament (ACL) injury model is surgical transection, which may introduce confounding factors from surgery. Noninvasive models could model human injury more closely. The purpose of this study was to compare subchondral and epiphyseal trabecular bone remodeling after surgical transection and noninvasive rupture of the ACL. METHODS Thirty-six rats were randomized to an uninjured control, surgical transection (Transection), or noninvasive rupture (Rupture). Animals were randomized to 4 or 10 week time points (n = 6 per group). Micro computed tomography (μCT) imaging was performed with an isotropic voxel size of 12 μm. Subchondral and epiphyseal bone was segmented semi-automatically, and morphometric analysis was performed. RESULTS Transection caused a greater decrease in subchondral bone volume fraction (BV/TV) than Rupture in the femur and tibia. Rupture had greater subchondral bone tissue mineral density (TMD) at 4 and 10 weeks in the femur and tibia. Subchondral bone thickness (SCB.Th) was decreased in the femur in Transection only. Epiphyseal BV/TV was decreased in Transection only, and Rupture exhibited increased femoral epiphyseal TMD compared to both Control and Transection. Rupture exhibited greater femoral epiphyseal trabecular thickness (Tb.Th.) compared to Control and Transection at 4 weeks, and both Rupture and Transection had increased femoral epiphyseal Tb.Th. at 10 weeks. Epiphyseal trabecular number (Tb.N) was decreased in both injury groups at both time points. Femoral and tibial epiphyseal structure model index (SMI) increased in both groups. CONCLUSIONS The two injury models cause differences in post-injury bone morphometry, and surgical transection may be introducing confounding factors that affect downstream bony remodeling.
Collapse
|
41
|
Akkiraju H, Nohe A. Role of Chondrocytes in Cartilage Formation, Progression of Osteoarthritis and Cartilage Regeneration. J Dev Biol 2015; 3:177-192. [PMID: 27347486 PMCID: PMC4916494 DOI: 10.3390/jdb3040177] [Citation(s) in RCA: 258] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Articular cartilage (AC) covers the diarthrodial joints and is responsible for the mechanical distribution of loads across the joints. The majority of its structure and function is controlled by chondrocytes that regulate Extracellular Matrix (ECM) turnover and maintain tissue homeostasis. Imbalance in their function leads to degenerative diseases like Osteoarthritis (OA). OA is characterized by cartilage degradation, osteophyte formation and stiffening of joints. Cartilage degeneration is a consequence of chondrocyte hypertrophy along with the expression of proteolytic enzymes. Matrix Metalloproteinases (MMPs) and A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) are an example of these enzymes that degrade the ECM. Signaling cascades involved in limb patterning and cartilage repair play a role in OA progression. However, the regulation of these remains to be elucidated. Further the role of stem cells and mature chondrocytes in OA progression is unclear. The progress in cell based therapies that utilize Mesenchymal Stem Cell (MSC) infusion for cartilage repair may lead to new therapeutics in the long term. However, many questions are unanswered such as the efficacy of MSCs usage in therapy. This review focuses on the role of chondrocytes in cartilage formation and the progression of OA. Moreover, it summarizes possible alternative therapeutic approaches using MSC infusion for cartilage restoration.
Collapse
Affiliation(s)
| | - Anja Nohe
- Author to whom correspondence should be addressed; ; Tel.: +1-302-831-2959; Fax: +1-302-831-2281
| |
Collapse
|
42
|
Scotti C, Gobbi A, Karnatzikos G, Martin I, Shimomura K, Lane JG, Peretti GM, Nakamura N. Cartilage Repair in the Inflamed Joint: Considerations for Biological Augmentation Toward Tissue Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2015; 22:149-59. [PMID: 26467024 DOI: 10.1089/ten.teb.2015.0297] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cartilage repair/regeneration procedures (e.g., microfracture, autologous chondrocyte implantation [ACI]) typically result in a satisfactory outcome in selected patients. However, the vast majority of patients with chronic symptoms and, in general, a more diseased joint, do not benefit from these surgical techniques. The aims of this work were to (1) review factors negatively influencing the joint environment; (2) review current adjuvant therapies that can be used to improve results of cartilage repair/regeneration procedures in patients with more diseased joints, (3) outline future lines of research and promising experimental approaches. Chronicity of symptoms and advancing patient age appear to be the most relevant factors negatively affecting clinical outcome of cartilage repair/regeneration. Preliminary experience with hyaluronic acid, platelet-rich plasma, and mesenchymal stem cell has been positive but there is no strong evidence supporting the use of these products and this requires further assessment with high-quality, prospective clinical trials. The use of a Tissue Therapy strategy, based on more mature engineered tissues, holds promise to tackle limitations of standard ACI procedures. Current research has highlighted the need for more targeted therapies, and (1) induction of tolerance with granulocyte colony-stimulating factor (G-CSF) or by preventing IL-6 downregulation; (2) combined IL-4 and IL-10 local release; and (3) selective activation of the prostaglandin E2 (PGE2) signaling appear to be the most promising innovative strategies. For older patients and for those with chronic symptoms, adjuvant therapies are needed in combination with microfracture and ACI.
Collapse
Affiliation(s)
| | - Alberto Gobbi
- 2 Orthopedic Arthroscopic Surgery International (O.A.S.I.) Bioresearch Foundation , Gobbi Onlus, Milan, Italy
| | - Georgios Karnatzikos
- 2 Orthopedic Arthroscopic Surgery International (O.A.S.I.) Bioresearch Foundation , Gobbi Onlus, Milan, Italy
| | - Ivan Martin
- 3 Departments of Surgery and of Biomedicine, University Hospital Basel, University of Basel , Basel, Switzerland
| | - Kazunori Shimomura
- 4 Department of Orthopedics, Osaka University Graduate School of Medicine , Osaka, Japan
| | - John G Lane
- 5 COAST Surgery Center, University of California , San Diego, California
| | - Giuseppe Michele Peretti
- 1 IRCCS Istituto Ortopedico Galeazzi , Milan, Italy .,6 Department of Biomedical Sciences for Health, University of Milan , Milan, Italy
| | - Norimasa Nakamura
- 7 Institute for Medical Science in Sports, Osaka Health Science University , Osaka, Japan .,8 Center for Advanced Medical Engineering and Informatics, Osaka University , Osaka, Japan
| |
Collapse
|
43
|
Shikonin inhibits inflammatory responses in rabbit chondrocytes and shows chondroprotection in osteoarthritic rabbit knee. Int Immunopharmacol 2015; 29:656-662. [DOI: 10.1016/j.intimp.2015.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/10/2015] [Accepted: 09/15/2015] [Indexed: 01/15/2023]
|
44
|
Tatman PD, Gerull W, Sweeney-Easter S, Davis JI, Gee AO, Kim DH. Multiscale Biofabrication of Articular Cartilage: Bioinspired and Biomimetic Approaches. TISSUE ENGINEERING PART B-REVIEWS 2015. [PMID: 26200439 DOI: 10.1089/ten.teb.2015.0142] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Articular cartilage is the load-bearing tissue found inside all articulating joints of the body. It vastly reduces friction and allows for smooth gliding between contacting surfaces. The structure of articular cartilage matrix and cellular composition is zonal and is important for its mechanical properties. When cartilage becomes injured through trauma or disease, it has poor intrinsic healing capabilities. The spectrum of cartilage injury ranges from isolated areas of the joint to diffuse breakdown and the clinical appearance of osteoarthritis. Current clinical treatment options remain limited in their ability to restore cartilage to its normal functional state. This review focuses on the evolution of biomaterial scaffolds that have been used for functional cartilage tissue engineering. In particular, we highlight recent developments in multiscale biofabrication approaches attempting to recapitulate the complex 3D matrix of native articular cartilage tissue. Additionally, we focus on the application of these methods to engineering each zone of cartilage and engineering full-thickness osteochondral tissues for improved clinical implantation. These methods have shown the potential to control individual cell-to-scaffold interactions and drive progenitor cell differentiation into a chondrocyte lineage. The use of these bioinspired nanoengineered scaffolds hold promise for recreation of structure and function on the whole tissue level and may represent exciting new developments for future clinical applications for cartilage injury and restoration.
Collapse
Affiliation(s)
- Philip David Tatman
- 1 Department of Bioengineering, University of Washington , Seattle, Washington
| | - William Gerull
- 1 Department of Bioengineering, University of Washington , Seattle, Washington
| | - Sean Sweeney-Easter
- 1 Department of Bioengineering, University of Washington , Seattle, Washington
| | - Jeffrey Isaac Davis
- 1 Department of Bioengineering, University of Washington , Seattle, Washington
| | - Albert O Gee
- 2 Department of Orthopedics and Sports Medicine, University of Washington , Seattle, Washington
| | - Deok-Ho Kim
- 1 Department of Bioengineering, University of Washington , Seattle, Washington.,3 Institute for Stem Cell and Regenerative Medicine, University of Washington , Seattle, Washington
| |
Collapse
|
45
|
Herdan CL, Nicholson CL, Firth EC. Influence of Exercise and Intra-articular Site on Canals in Articular Calcified Cartilage of Equine Third Carpal Bones. Vet Pathol 2015; 53:594-601. [DOI: 10.1177/0300985815594849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The third carpal bone (C3) responds to exercise by adaptive modeling of bone and articular calcified cartilage along the dorsal load path. Canals penetrating articular calcified cartilage, thought to contain vascular tissue, are reported in numerous species. Their significance remains unclear. Our objective was to determine if the number of canals was significantly different in strenuously exercised and control young horses and in a site of intermittent high loading compared to sites sustaining lower habitual loads. Volumetric bone mineral density in the radial facet of C3 of strenuously exercised and gently exercised (control) 19-month-old thoroughbred horses ( n = 6/group) was determined by peripheral quantitative computed tomography. The hyaline cartilage was corroded to expose the surface of articular calcified cartilage. The number of canals penetrating the articular calcified cartilage surface in en face scanning electron microscopy images was compared in 4 regions. Volumetric bone mineral density of C3 was significantly greater ( P = .004) in strenuously exercised horses. There were 2 morphologically distinct groups of canals and significantly fewer ( P = .006) large canals in the dorsal than in the palmar aspect of C3 in control but not in exercised horses. Roughly circular depressions in the articular calcified cartilage surface around apparently forming canals were visible in some samples and have not been previously described in the literature. The canals may be evidence of chondroclastic activity reaching the interface of hyaline and calcified cartilage. Further work is needed to elucidate the relationships between presence of canals and the responses to exercise and to joint disease.
Collapse
Affiliation(s)
- C. L. Herdan
- Institute of Veterinary, Animal and Biological Sciences, Massey University, Palmerston North, New Zealand
- University College Dublin College of Agriculture, Food Science and Veterinary Medicine, Belfield, Dublin, Ireland
| | - C. L. Nicholson
- Institute of Veterinary, Animal and Biological Sciences, Massey University, Palmerston North, New Zealand
| | - E. C. Firth
- Department of Sport and Exercise Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
46
|
Differentiation of osteophyte types in osteoarthritis - proposal of a histological classification. Joint Bone Spine 2015; 83:63-7. [PMID: 26076655 DOI: 10.1016/j.jbspin.2015.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 04/27/2015] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Osteoarthritis is not only characterized by cartilage degradation but also involves subchondral bone remodeling and osteophyte formation. Osteophytes are fibrocartilage-capped bony outgrowths originating from the periosteum. The pathophysiology of osteophyte formation is not completely understood. Yet, different research approaches are under way. Therefore, a histological osteophyte classification to achieve comparable results in osteophyte research was established for application to basic science research questions. METHODS The osteophytes were collected from knee joints of osteoarthritis patients (n=10, 94 osteophytes in total) after joint replacement surgery. Their size and origin in the respective joint were photo-documented. To develop an osteophyte classification, serial tissue sections were evaluated using histological (hematoxylin and eosin, Masson's trichrome, toluidine blue) and immunohistochemical staining (collagen type II). RESULTS Based on the histological and immunohistochemical evaluation, osteophytes were categorized into four different types depending on the degree of ossification and the percentage of mesenchymal connective tissue. Size and localization of osteophytes were independent from the histological stages. CONCLUSION This histological classification system of osteoarthritis osteophytes provides a helpful tool for analyzing and monitoring osteophyte development and for characterizing osteophyte types within a single human joint and may therefore contribute to achieve comparable results when analyzing histological findings in osteophytes.
Collapse
|
47
|
Biomechanical Characterization of a Model of Noninvasive, Traumatic Anterior Cruciate Ligament Injury in the Rat. Ann Biomed Eng 2015; 43:2467-76. [PMID: 25777293 DOI: 10.1007/s10439-015-1292-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/25/2015] [Indexed: 01/12/2023]
Abstract
The onset of post-traumatic osteoarthritis (PTOA) remains prevalent following traumatic joint injury such as anterior cruciate ligament (ACL) rupture, and animal models are important for studying the pathomechanisms of PTOA. Noninvasive ACL injury using the tibial compression model in the rat has not been characterized, and it may represent a more clinically relevant model than the common surgical ACL transection model. This study employed four loading profiles to induce ACL injury, in which motion capture analysis was performed, followed by quantitative joint laxity testing. High-speed, high-displacement loading repeatedly induces complete ACL injury, which causes significant increases in anterior-posterior and varus laxity. No loading protocol induced valgus laxity. Tibial internal rotation and anterior subluxation occurs up to the point of ACL failure, after which the tibia rotates externally as it subluxes over the femoral condyles. High displacement was more determinative of ACL injury compared to high speed. Low-speed protocols induced ACL avulsion from the femoral footprint whereas high-speed protocols caused either midsubstance rupture, avulsion, or a combination injury of avulsion and midsubstance rupture. This repeatable, noninvasive ACL injury protocol can be utilized in studies assessing PTOA or ACL reconstruction in the rat.
Collapse
|
48
|
Van Spil WE, Nair SC, Kinds MB, Emans PJ, Hilberdink WKHA, Welsing PMJ, Lafeber FPJG. Systemic biochemical markers of joint metabolism and inflammation in relation to radiographic parameters and pain of the knee: data from CHECK, a cohort of early-osteoarthritis subjects. Osteoarthritis Cartilage 2015; 23:48-56. [PMID: 25205017 DOI: 10.1016/j.joca.2014.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/07/2014] [Accepted: 09/01/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate associations of biochemical markers of joint metabolism and inflammation with minimum joint space width (JSW) and osteophyte area (OP area) of knees showing no or doubtful radiographic osteoarthritis (OA) and to investigate whether these differed between painful and non-painful knees. DESIGN Serum (s-) and urinary (u-) levels of the cartilage markers uCTX-II, sCOMP, sPIIANP, and sCS846, bone markers uCTX-I, uNTX-I, sPINP, and sOC, synovial markers sPIIINP and sHA, and inflammation markers hsCRP and erythrocyte sedimentation rate (ESR) were assessed in subjects from CHECK (Cohort Hip and Cohort Knee) demonstrating Kellgren and Lawrence grade ≤1 OA on knee radiographs. Minimum JSW and OP area of these knees were quantified in detail using Knee Images Digital Analysis (KIDA). RESULTS uCTX-II levels showed negative associations with minimum JSW and positive associations with OP area. sCOMP and sHA levels showed positive associations with OP area, but not with minimum JSW. uCTX-I and uNTX-I levels showed negative associations with minimum JSW and OP area. Associations of biochemical marker levels with minimum JSW were similar between painful and non-painful knees, associations of uCTX-II, sCOMP, and sHA with OP area were only observed in painful knees. CONCLUSIONS In these subjects with no or doubtful radiographic knee OA, uCTX-II might not only reflect articular cartilage degradation but also endochondral ossification in osteophytes. Furthermore, sCOMP and sHA relate to osteophytes, maybe because synovitis drives osteophyte development. High bone turnover may aggravate articular cartilage loss. Metabolic activity in osteophytes and synovial tissue, but not in articular cartilage may be related to knee pain.
Collapse
Affiliation(s)
- W E Van Spil
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands.
| | - S C Nair
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands.
| | - M B Kinds
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands.
| | - P J Emans
- Department of Orthopaedic Surgery, Maastricht University Medical Center, PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
| | - W K H A Hilberdink
- Allied Health Care Center for Rheumatology and Rehabilitation Groningen, Helpermolenstraat 25, 9721 BT, Groningen, The Netherlands.
| | - P M J Welsing
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands.
| | - F P J G Lafeber
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands.
| |
Collapse
|
49
|
Yuan Q, Sun L, Li JJ, An CH. Elevated VEGF levels contribute to the pathogenesis of osteoarthritis. BMC Musculoskelet Disord 2014; 15:437. [PMID: 25515407 PMCID: PMC4391471 DOI: 10.1186/1471-2474-15-437] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/11/2014] [Indexed: 12/23/2022] Open
Abstract
Background The aim of our meta-analysis is to understand the relationship between the pathogenesis of osteoarthritis and the expression levels of vascular endothelial growth factor (VEGF) in multiple disease tissues in osteoarthritis patients. Methods The following electronic databases were searched, without language restrictions, to retrieve published studies relevant to VEGF and osteoarthritis: MEDLINE (1966 ~ 2013), the Cochrane Library Database (Issue 12, 2013), EMBASE (1980 ~ 2013), CINAHL (1982 ~ 2013), Web of Science (1945 ~ 2013) and the Chinese Biomedical Database (CBM) (1982 ~ 2013). Meta-analysis of the extracted data was performed using the STATA statistical software. Standardized mean difference (SMD) with its corresponding 95% confidence interval (95% CI) was calculated. Results A total of 11 case–control studies, containing 302 osteoarthritis patients and 195 healthy controls, met our selection criteria for this meta-analysis. Our analyses of the data available from multiple disease tissues demonstrate that VEGF expression levels in osteoarthritis patients are significantly higher than healthy controls (SMD = 1.18, 95% CI: 4.91 ~ 9.11, P < 0.001). A subgroup analysis based on ethnicity revealed that both Asian and Caucasian osteoarthritis patients had higher levels of VEGF expression compared to their respective healthy counterparts (Asians: SMD = 5.49, 95% CI: 3.44 ~ 7.54, P < 0.001; Caucasians: SMD = 15.17, 95% CI: 5.21 ~ 25.13, P = 0.003; respectively). We also performed other subgroup analyses based on country, language and sample source, and the results showed that, in all these subgroups, osteoarthritis patients had higher levels of VEGF expression than healthy controls (all P > 0.05). Conclusion Our meta-analysis provides evidence that higher VEGF expression levels strongly correlate with the pathogenesis of osteoarthritis. Electronic supplementary material The online version of this article (doi:10.1186/1471-2474-15-437) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Quan Yuan
- Department of Orthopedics, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Heping District, Shenyang, 110004, P.R. China.
| | - Li Sun
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, P.R. China.
| | - Jian-Jun Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Heping District, Shenyang, 110004, P.R. China.
| | - Chun-Hou An
- Department of Orthopedics, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Heping District, Shenyang, 110004, P.R. China.
| |
Collapse
|
50
|
Jia L, Chen J, Wang Y, Liu Y, Zhang Y, Chen W. Magnetic resonance imaging of osteophytic, chondral, and subchondral structures in a surgically-induced osteoarthritis rabbit model. PLoS One 2014; 9:e113707. [PMID: 25438155 PMCID: PMC4249955 DOI: 10.1371/journal.pone.0113707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/28/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE This study aimed to assess changes in osteophytic, chondral, and subchondral structures in a surgically-induced osteoarthritis (OA) rabbit model in order to correlate MRI findings with the macroscopic progress of OA and to define the timepoint for disease status in this OA model. METHODS The OA model was constructed by surgery in thirty rabbits with ten normal rabbits serving as controls (baseline). High-resolution three-dimensional MRI using a 1.5-T coil was performed at baseline, two, four, and eight weeks post-surgery. MRIs of cartilage lesions, subchondral bone lesions, and osteophyte formations were independently assessed by two blinded radiologists. Ten rabbits were sacrificed at baseline, two, four, and eight weeks post-surgery, and macroscopic evaluation was independently performed by two blinded orthopedic surgeons. RESULTS The signal intensities and morphologies of chondral and subchondral structures by MRI accurately reflected the degree of OA. Cartilage defects progressed from a grade of 0.05-0.15 to 1.15-1.30 to 1.90-1.97 to 3.00-3.35 at each successive time point, respectively (p<0.05). Subchondral bone lesions progressed from a grade of 0.00 to 0.78-0.90 to 1.27-1.58 to 1.95-2.23 at each successive time point, respectively (p = 0.000). Osteophytes progressed from a size (mm) of 0.00 to 0.87-1.06 to 1.24-1.87 to 2.21-3.21 at each successive time point, respectively (p = 0.000). CONCLUSIONS Serial observations revealed that MRI can accurately detect the progression of cartilage lesions and subchondral bone edema over an eight-week period but may not be accurate in detecting osteophyte sizes. Week four post-surgery was considered the timepoint between OA-negative and OA-positive status in this OA model. The combination of this OA model with MRI evaluation should provide a promising tool for the pre-clinical evaluation of new disease-modifying osteoarthritis drugs.
Collapse
Affiliation(s)
- Lang Jia
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jinyun Chen
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yan Wang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yingjiang Liu
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yu Zhang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Wenzhi Chen
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|