1
|
Gomes MLNP, Krijnen PAJ, Middelkoop E, Niessen HWM, Boekema BKHL. Fetal Skin Wound Healing: Key Extracellular Matrix Components and Regulators in Scarless Healing. J Invest Dermatol 2024:S0022-202X(24)01863-3. [PMID: 39152955 DOI: 10.1016/j.jid.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 08/19/2024]
Abstract
Fetal skin at early gestational stage is able to regenerate and heal rapidly after wounding. The exact mechanisms and molecular pathways involved in this process are however still largely unknown. The numerous differences in the skin of the early fetus versus skin in later developmental stages might provide clues for the mechanisms of scarless healing. This review summarizes the differences between mammalian fetal skin and the skin at later developmental phases in healthy and wounded conditions, focusing on extracellular matrix components, which are crucial factors in the microenvironment that direct cells and tissue functions and hence the wound healing process.
Collapse
Affiliation(s)
- Madalena Lopes Natário Pinto Gomes
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Pathology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands; Tissue Function & Regeneration, Amsterdam Movement Sciences, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands
| | - Paul A J Krijnen
- Department of Pathology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Esther Middelkoop
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Tissue Function & Regeneration, Amsterdam Movement Sciences, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Burn Centre, Red Cross Hospital, Beverwijk, The Netherlands
| | - Hans W M Niessen
- Department of Pathology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences Institute, Amsterdam UMC, Amsterdam, The Netherlands; Department of Cardio-thoracic Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands
| | - Bouke K H L Boekema
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands.
| |
Collapse
|
2
|
Suzdaltseva Y, Kiselev SL. Mesodermal Derivatives of Pluripotent Stem Cells Route to Scarless Healing. Int J Mol Sci 2023; 24:11945. [PMID: 37569321 PMCID: PMC10418846 DOI: 10.3390/ijms241511945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Scar formation during normal tissue regeneration in adults may result in noticeable cosmetic and functional defects and have a significant impact on the quality of life. In contrast, fetal tissues in the mid-gestation period are known to be capable of complete regeneration with the restitution of the initial architecture, organization, and functional activity. Successful treatments that are targeted to minimize scarring can be realized by understanding the cellular and molecular mechanisms of fetal wound regeneration. However, such experiments are limited by the inaccessibility of fetal material for comparable studies. For this reason, the molecular mechanisms of fetal regeneration remain unknown. Mesenchymal stromal cells (MSCs) are central to tissue repair because the molecules they secrete are involved in the regulation of inflammation, angiogenesis, and remodeling of the extracellular matrix. The mesodermal differentiation of human pluripotent stem cells (hPSCs) recapitulates the sequential steps of embryogenesis in vitro and provides the opportunity to generate the isogenic cell models of MSCs corresponding to different stages of human development. Further investigation of the functional activity of cells from stromal differon in a pro-inflammatory microenvironment will procure the molecular tools to better understand the fundamental mechanisms of fetal tissue regeneration. Herein, we review recent advances in the generation of clonal precursors of primitive mesoderm cells and MSCs from hPSCs and discuss critical factors that determine the functional activity of MSCs-like cells in a pro-inflammatory microenvironment in order to identify therapeutic targets for minimizing scarring.
Collapse
Affiliation(s)
- Yulia Suzdaltseva
- Department of Epigenetics, Vavilov Institute of General Genetics of the Russian Academy of Sciences, 119333 Moscow, Russia;
| | | |
Collapse
|
3
|
Kosykh AV, Tereshina MB, Gurskaya NG. Potential Role of AGR2 for Mammalian Skin Wound Healing. Int J Mol Sci 2023; 24:ijms24097895. [PMID: 37175601 PMCID: PMC10178616 DOI: 10.3390/ijms24097895] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The limited ability of mammals to regenerate has garnered significant attention, particularly in regard to skin wound healing (WH), which is a critical step for regeneration. In human adults, skin WH results in the formation of scars following injury or trauma, regardless of severity. This differs significantly from the scarless WH observed in the fetal skin of mammals or anamniotes. This review investigates the role of molecular players involved in scarless WH, which are lost or repressed in adult mammalian WH systems. Specifically, we analyze the physiological role of Anterior Gradient (AGR) family proteins at different stages of the WH regulatory network. AGR is activated in the regeneration of lower vertebrates at the stage of wound closure and, accordingly, is important for WH. Mammalian AGR2 is expressed during scarless WH in embryonic skin, while in adults, the activity of this gene is normally inhibited and is observed only in the mucous epithelium of the digestive tract, which is capable of full regeneration. The combination of AGR2 unique potencies in postnatal mammals makes it possible to consider it as a promising candidate for enhancing WH processes.
Collapse
Affiliation(s)
- Anastasiya V Kosykh
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Maria B Tereshina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Nadya G Gurskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| |
Collapse
|
4
|
Dermal extracellular matrix molecules in skin development, homeostasis, wound regeneration and diseases. Semin Cell Dev Biol 2022; 128:137-144. [PMID: 35339360 DOI: 10.1016/j.semcdb.2022.02.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
The extracellular matrix (ECM) is a dynamic structure that surrounds and anchors cellular components in tissues. In addition to functioning as a structural scaffold for cellular components, ECMs also regulate diverse biological functions, including cell adhesion, proliferation, differentiation, migration, cell-cell interactions, and intracellular signaling events. Dermal fibroblasts (dFBs), the major cellular source of skin ECM, develop from a common embryonic precursor to the highly heterogeneous subpopulations during development and adulthood. Upon injury, dFBs migrate into wound granulation tissue and transdifferentiate into myofibroblasts, which play a critical role in wound contraction and dermal ECM regeneration and deposition. In this review, we describe the plasticity of dFBs during development and wound healing and how various dFB-derived ECM molecules, including collagen, proteoglycans, glycosaminoglycans, fibrillins and matricellular proteins are expressed and regulated, and in turn how these ECM molecules play a role in regulating the function of dFBs and immune cells. Finally, we describe how dysregulation of ECM matrix is associated the pathogenesis of wound healing related skin diseases, including chronic wounds and keloid.
Collapse
|
5
|
Decorin Inhibits Dermal Mesenchymal Cell Migration and Induces Scar Formation. Plast Reconstr Surg Glob Open 2022; 10:e4245. [PMID: 35425688 PMCID: PMC9000046 DOI: 10.1097/gox.0000000000004245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/07/2022] [Indexed: 11/27/2022]
Abstract
Background Variations in skin healing capacities are observed during different murine embryonic developmental stages. Through embryonic day 16 (E16), embryos are able to regenerate dermal architecture following flank skin wounding; however, after E17, wounds heal incompletely, inducing scar formation. The regenerative ability of the E16 fetal dermis depends on the migration of dermal mesenchymal cells. Decorin is a small molecule known to affect tissue tensile strength, cell phenotype, and tissue repair, including skin wound healing. In the current study, we evaluated the expression and roles of decorin in wound healing. Methods Surgical injury was induced at E16 and E17 in ICR mouse embryos. Decorin expression was evaluated in tissue samples from these embryos using immunohistochemistry and reverse transcription quantitative polymerase chain reaction. Cell migration assays were used to evaluate wound healing capability of separated dermal and fascial tissues. Results Our results showed that decorin exhibited distinct expression patterns during wound healing at E16 versus E17. Additionally, decorin expression altered cell migration in vitro. Dermal and fascial mesenchymal cells were found to exhibit distinct migration patterns concomitant with altered decorin expression. Specifically, decorin inhibited migration and favored scar formation. Conclusion Decorin expression may contribute to scar formation in the late stage of mouse embryos by inhibiting the migration of dermal mesenchymal cells.
Collapse
|
6
|
Kemaloğlu CA, Özyazgan İ, Gönen ZB. Immediate fat and nanofat-enriched fat grafting in breast reduction for scar management. J Plast Surg Hand Surg 2020; 55:173-180. [PMID: 33315503 DOI: 10.1080/2000656x.2020.1856678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Reduction mammoplasty can be successful but surgical scars may continue to be a most undesirable and unavoidable outcome. Various medical and non-invasive methods are available to minimize scar formation but as yet no methods have been discovered to eliminate them. We hypothesize that immediate fat and nanofat-enriched fat graft transfer may improve the scar quality and optimize results. MATERIALS AND METHODS This prospective study comprised 45 superomedial pedicle wise-pattern breast reduction patients divided into three groups of 15 in a randomized fashion. The control group had no additional injections whereas the other two groups received injections of fat and nanofat-enriched fat grafts immediately under their surgery scars, respectively. Surgical scar formation was evaluated at six months and scars were scored using the Vancouver scar scale and a visual analogue scale. RESULTS Fat and nanofat-enriched fat graft-injected groups scored significantly better on all items of the Vancouver scar scale, except for scar height, compared to the control group (p < 0.05). Visual analogue scores were significantly lower in the fat and nanofat-enriched fat graft-injected groups compared to the control group (p < 0.05). CONCLUSIONS In breast reduction patients, simultaneous fat and nanofat-enriched fat grafting appears to be a safe and promising strategy for scar management.
Collapse
Affiliation(s)
- Cemal Alper Kemaloğlu
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - İrfan Özyazgan
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | | |
Collapse
|
7
|
Korntner S, Lehner C, Gehwolf R, Wagner A, Grütz M, Kunkel N, Tempfer H, Traweger A. Limiting angiogenesis to modulate scar formation. Adv Drug Deliv Rev 2019; 146:170-189. [PMID: 29501628 DOI: 10.1016/j.addr.2018.02.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/22/2018] [Accepted: 02/26/2018] [Indexed: 02/06/2023]
Abstract
Angiogenesis, the process of new blood vessel formation from existing blood vessels, is a key aspect of virtually every repair process. During wound healing an extensive, but immature and leaky vascular plexus forms which is subsequently reduced by regression of non-functional vessels. More recent studies indicate that uncontrolled vessel growth or impaired vessel regression as a consequence of an excessive inflammatory response can impair wound healing, resulting in scarring and dysfunction. However, in order to elucidate targetable factors to promote functional tissue regeneration we need to understand the molecular and cellular underpinnings of physiological angiogenesis, ranging from induction to resolution of blood vessels. Especially for avascular tissues (e.g. cornea, tendon, ligament, cartilage, etc.), limiting rather than boosting vessel growth during wound repair potentially is beneficial to restore full tissue function and may result in favourable long-term healing outcomes.
Collapse
|
8
|
Walimbe T, Calve S, Panitch A, Sivasankar MP. Incorporation of types I and III collagen in tunable hyaluronan hydrogels for vocal fold tissue engineering. Acta Biomater 2019; 87:97-107. [PMID: 30708064 DOI: 10.1016/j.actbio.2019.01.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 11/28/2022]
Abstract
Vocal fold scarring is the fibrotic manifestation of a variety of voice disorders, and is difficult to treat. Tissue engineering therapies provide a potential strategy to regenerate the native tissue microenvironment in order to restore vocal fold functionality. However, major challenges remain in capturing the complexity of the native tissue and sustaining regeneration. We hypothesized that hydrogels with tunable viscoelastic properties that present relevant biological cues to cells might be better suited as therapeutics. Herein, we characterized the response of human vocal fold fibroblasts to four different biomimetic hydrogels: thiolated hyaluronan (HA) crosslinked with poly(ethylene glycol) diacrylate (PEGDA), HA-PEGDA with type I collagen (HA-Col I), HA-PEGDA with type III collagen (HA-Col III) and HA-PEGDA with type I and III collagen (HA-Col I-Col III). Collagen incorporation allowed for interpenetrating fibrils of collagen within the non-fibrillar HA network, which increased the mechanical properties of the hydrogels. The addition of collagen fibrils also reduced hyaluronidase degradation of HA and hydrogel swelling ratio. Fibroblasts encapsulated in the HA-Col gels adopted a spindle shaped fibroblastic morphology by day 7 and exhibited extensive cytoskeletal networks by day 21, suggesting that the incorporation of collagen was essential for cell adhesion and spreading. Cells remained viable and synthesized new DNA throughout 21 days of culture. Gene expression levels significantly differed between the cells encapsulated in the different hydrogels. Relative fold changes in gene expression of MMP1, COL1A1, fibronectin and decorin suggest higher degrees of remodeling in HA-Col I-Col III gels in comparison to HA-Col I or HA-Col III hydrogels, suggesting that the former may better serve as a natural biomimetic hydrogel for tissue engineering applications. STATEMENT OF SIGNIFICANCE: Voice disorders affect about 1/3rd of the US population and significantly reduce quality of life. Patients with vocal fold fibrosis have few treatment options. Tissue engineering therapies provide a potential strategy to regenerate the native tissue microenvironment in order to restore vocal fold functionality. Various studies have used collagen or thiolated hyaluronan (HA) with gelatin as potential tissue engineering therapies. However, there is room for improvement in providing cells with more relevant biological cues that mimic the native tissue microenvironment and sustain regeneration. The present study introduces the use of type I collagen and type III collagen along with thiolated HA as a natural biomimetic hydrogel for vocal fold tissue engineering applications.
Collapse
Affiliation(s)
- Tanaya Walimbe
- Weldon School of Biomedical Engineering, Purdue University, United States
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, United States
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California, Davis, United States.
| | - M Preeti Sivasankar
- Weldon School of Biomedical Engineering, Purdue University, United States; Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
9
|
Vu TT, Marquez J, Le LT, Nguyen ATT, Kim HK, Han J. The role of decorin in cardiovascular diseases: more than just a decoration. Free Radic Res 2018; 52:1210-1219. [PMID: 30468093 DOI: 10.1080/10715762.2018.1516285] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Decorin (DCN) is a proteoglycan constituent of the extracellular matrix (ECM) possessing powerful antifibrotic, anti-inflammation, antioxidant, and antiangiogenic properties. By attaching to receptors in the cell surface or to several ECM molecules, it regulates plenty of cellular functions, consequently influencing cell differentiation, proliferation, and apoptosis. These processes are dependent on cell types, biological contexts, and interfere with pathological processes such as cardiovascular diseases. In this review, we briefly discuss the potential of DCN targeting in addressing cardiovascular diseases (CVD). We dive into its interactome and discuss how its interaction with the proteins can affect disease progression, and how DCN can be a possible target for CVD therapeutics.
Collapse
Affiliation(s)
- Thu Thi Vu
- a Faculty of Biology, National Key Laboratory of Enzyme and Protein Technology , VNU University of Science , Hanoi , Vietnam
| | - Jubert Marquez
- b National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,c National Research Laboratory for Mitochondrial Signaling, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea
| | - Long Thanh Le
- b National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,c National Research Laboratory for Mitochondrial Signaling, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea
| | - Anh Thi Tuyet Nguyen
- b National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,c National Research Laboratory for Mitochondrial Signaling, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea
| | - Hyoung Kyu Kim
- b National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,c National Research Laboratory for Mitochondrial Signaling, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,d Department of Integrated Biomedical Science , College of Medicine, Inje University , Busan , Korea
| | - Jin Han
- b National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea.,c National Research Laboratory for Mitochondrial Signaling, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center , College of Medicine, Inje University , Busan , Korea
| |
Collapse
|
10
|
|
11
|
Chen Q, Zhao T, Xie X, Yu D, Wu L, Yu W, Sun W. MicroRNA-663 regulates the proliferation of fibroblasts in hypertrophic scars via transforming growth factor-β1. Exp Ther Med 2018; 16:1311-1317. [PMID: 30116380 PMCID: PMC6090240 DOI: 10.3892/etm.2018.6350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 05/15/2017] [Indexed: 12/11/2022] Open
Abstract
The present study determined the expression of microRNA (miR)-663 in hypertrophic scar (HS) tissues and investigate the regulatory mechanisms of miR-663 in HS. A total of 51 patients diagnosed with HS between December 2013 and February 2016 were included in the present study. HS tissues (experimental group) and HS-adjacent tissues (control group) were collected. Primary fibroblasts were obtained from HS tissue and transfected with small-interfering RNA against transforming growth factor (TGF)-β1 or miR-663 mimics. Reverse-transcription quantitative PCR was used to determine the levels of TGF-β1 mRNA and miR-663. Western blot analysis was performed to determine TGF-β1 protein expression. An MTT assay was employed to detect the proliferation of fibroblasts, and a dual luciferase reporter assay was performed to identify the binding of miR-663 with TGF-β1 mRNA. TGF-β1 was found to have a regulatory role in HS at the transcriptional level. The expression of TGF-β1 was upregulated in HS tissues, and knockdown of TGF-β1 in cultured fibroblasts led to inhibition of proliferation. The expression of miR-663 was downregulated in HS. miR-663 was revealed to regulate the expression of TGF-β1 by binding with the 3′-untranslated region of TGF-β1 mRNA. Elevated expression of miR-663 inhibited the proliferation of fibroblasts by regulating TGF-β1 expression. The present study demonstrated that upregulation of TGF-β1 in HS tissues is associated with the downregulation of miR-663 expression. miR-663 may regulate the proliferation of fibroblasts in HS and the expression of associated proteins.
Collapse
Affiliation(s)
- Qi Chen
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Tianlan Zhao
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Xiaoming Xie
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Daojiang Yu
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Lijun Wu
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Wenyuan Yu
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Wei Sun
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
12
|
The inhibition of 5-Lipoxygenase (5-LO) products leukotriene B4 (LTB 4 ) and cysteinyl leukotrienes (cysLTs) modulates the inflammatory response and improves cutaneous wound healing. Clin Immunol 2018; 190:74-83. [DOI: 10.1016/j.clim.2017.08.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 12/21/2022]
|
13
|
Hu MS, Borrelli MR, Hong WX, Malhotra S, Cheung ATM, Ransom RC, Rennert RC, Morrison SD, Lorenz HP, Longaker MT. Embryonic skin development and repair. Organogenesis 2018; 14:46-63. [PMID: 29420124 PMCID: PMC6150059 DOI: 10.1080/15476278.2017.1421882] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022] Open
Abstract
Fetal cutaneous wounds have the unique ability to completely regenerate wounded skin and heal without scarring. However, adult cutaneous wounds heal via a fibroproliferative response which results in the formation of a scar. Understanding the mechanism(s) of scarless wound healing leads to enormous clinical potential in facilitating an environment conducive to scarless healing in adult cutaneous wounds. This article reviews the embryonic development of the skin and outlines the structural and functional differences in adult and fetal wound healing phenotypes. A review of current developments made towards applying this clinical knowledge to promote scarless healing in adult wounds is addressed.
Collapse
Affiliation(s)
- Michael S. Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Mimi R. Borrelli
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Wan Xing Hong
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Samir Malhotra
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Alexander T. M. Cheung
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Ryan C. Ransom
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Robert C. Rennert
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Shane D. Morrison
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - H. Peter Lorenz
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
14
|
Cohen DJ, Oliveira AV, Theodoro TR, Petri G, Melo CM, Cavalheiro RP, Nader HB, Mader AM, Pinhal MAS, Glina S. Extracellular matrix alterations after blood instillation in tunica albuginea of rats. Int J Impot Res 2017; 30:85-92. [PMID: 29242634 DOI: 10.1038/s41443-017-0015-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/03/2017] [Accepted: 11/06/2017] [Indexed: 12/16/2022]
Abstract
The cause of Peyronie's disease (PD) is still not completely understood. The objective of this study, therefore, was to analyze the histological and biochemical alterations that occur after the instillation of blood in the tunica albuginea (TA) of rats with an emphasis on the remodeling process of ECM. Thirty male Wistar rats were divided into 4 groups: two control groups with instillation of distilled water in TA followed by penectomy after 15 days or 45 days, respectively and two experimental groups with instillation of blood in TA followed by penectomy after 15 days or 45 days, respectively. Histological, immunofluorescent and immunohistochemical analyses were performed. The higher presence of fibrotic tissue in rats injected with blood demonstrated alterations in TA similar to inflammation found in PD. The increased expression of TGF-β, MMP9, HPSE, and biglycan associated with the decreased expression of syndecan-1 and aggrecan in the experimental groups suggested an enhancement in the remodeling of ECM. The results contribute to show that blood instillation on TA appears to trigger alterations in the ECM similar to the ones found in inflammatory diseases such as PD.
Collapse
Affiliation(s)
- David J Cohen
- Faculdade de Medicina do ABC, Urology Department, Santo André, Brazil
| | - André V Oliveira
- Faculdade de Medicina ABC, Urology Department, Santo André, Brazil
| | | | - Giuliana Petri
- Faculdade de Medicina ABC, Animal House Facility, São Paulo, Brazil
| | - Carina M Melo
- Faculdade de Medicina ABC, Biochemistry Department, Santo André, Brazil.,Biochemistry Department, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Renan P Cavalheiro
- Faculdade de Medicina ABC, Biochemistry Department, Santo André, Brazil.,Biochemistry Department, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Helena B Nader
- Biochemistry Department, Universidade Federal do ABC, São Paulo, Brazil
| | - Ana M Mader
- Faculdade de Medicina ABC, Pathology Department, Santo André, Brazil
| | - Maria A S Pinhal
- Faculdade de Medicina ABC, Biochemistry Department, Santo André, Brazil.,Biochemistry Department, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sidney Glina
- Faculdade de Medicina ABC, Urology Department, Santo André, Brazil.
| |
Collapse
|
15
|
Zhou H, You C, Wang X, Jin R, Wu P, Li Q, Han C. The progress and challenges for dermal regeneration in tissue engineering. J Biomed Mater Res A 2017; 105:1208-1218. [PMID: 28063210 DOI: 10.1002/jbm.a.35996] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Hanlei Zhou
- Department of Burns; 2nd Affiliated Hospital of Zhejiang University, College of Medicine; Hangzhou 310009 China
| | - Chuangang You
- Department of Burns; 2nd Affiliated Hospital of Zhejiang University, College of Medicine; Hangzhou 310009 China
| | - Xingang Wang
- Department of Burns; 2nd Affiliated Hospital of Zhejiang University, College of Medicine; Hangzhou 310009 China
| | - Ronghua Jin
- Department of Burns; 2nd Affiliated Hospital of Zhejiang University, College of Medicine; Hangzhou 310009 China
| | - Pan Wu
- Department of Burns; 2nd Affiliated Hospital of Zhejiang University, College of Medicine; Hangzhou 310009 China
| | - Qiong Li
- Department of Burns; 2nd Affiliated Hospital of Zhejiang University, College of Medicine; Hangzhou 310009 China
| | - Chunmao Han
- Department of Burns; 2nd Affiliated Hospital of Zhejiang University, College of Medicine; Hangzhou 310009 China
| |
Collapse
|
16
|
Yabe Y, Hagiwara Y, Tsuchiya M, Honda M, Hatori K, Sonofuchi K, Kanazawa K, Koide M, Sekiguchi T, Itaya N, Itoi E. Decreased elastic fibers and increased proteoglycans in the ligamentum flavum of patients with lumbar spinal canal stenosis. J Orthop Res 2016; 34:1241-7. [PMID: 26679090 DOI: 10.1002/jor.23130] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/14/2015] [Indexed: 02/04/2023]
Abstract
Elastic fibers and proteoglycans are major components of the extracellular matrix and their changes have been reported in some pathological conditions. Further, recent studies have indicated that some glycosaminoglycans and proteoglycans inhibit elastic fiber assembly. The purpose of this study was to investigate changes of the elastic fibers and proteoglycans in the ligamentum flavum and analyze their relationships to thickening of the ligamentum flavum from lumbar spinal canal stenosis (LSCS). Ligamentum flavum samples were collected from 20 patients with LSCS (thickened flavum group) and 10 patients with lumbar disc herniation (non-thickened flavum group) as a control. Elastica-Masson staining and alcian blue staining were used to compare the relationship between the changes in the elastic fibers and proteoglycans. Gene and protein expressions of the elastic fibers and proteoglycans were analyzed by quantitative reverse transcription polymerase chain reaction and immunohistochemistry. Histological changes indicated that proteoglycans mainly increased on the dorsal side of the ligamentum flavum in accordance with the decreased elastic fibers in the thickened flavum group. The gene and protein expressions of fibrillin-2 and DANCE were significantly lower and decorin, lumican, osteoglycin, and versican were significantly higher in the thickened flavum group. Our study shows that elastic fibers decrease and proteoglycans increase in the thickened ligamentum flavum. Decreased gene expression of elastogenesis and disrupted elastic fiber assembly caused by increased proteoglycans may lead to a loss of elasticity in the thickened ligamentum flavum. Decreased elasticity may cause buckling of the tissue, which leads to thickening of the ligamentum flavum. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1241-1247, 2016.
Collapse
Affiliation(s)
- Yutaka Yabe
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yoshihiro Hagiwara
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | - Masahito Honda
- Department of Otrhopaedic Surgery, Takeda General Hospital, Aizuwakamatsu, Japan
| | - Kouki Hatori
- Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Kazuaki Sonofuchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kenji Kanazawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masashi Koide
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Takuya Sekiguchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Nobuyuki Itaya
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
17
|
Thu VT, Kim HK, Long LT, Thuy TT, Huy NQ, Kim SH, Kim N, Ko KS, Rhee BD, Han J. NecroX-5 exerts anti-inflammatory and anti-fibrotic effects via modulation of the TNFα/Dcn/TGFβ1/Smad2 pathway in hypoxia/reoxygenation-treated rat hearts. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:305-14. [PMID: 27162485 PMCID: PMC4860373 DOI: 10.4196/kjpp.2016.20.3.305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 12/12/2022]
Abstract
Inflammatory and fibrotic responses are accelerated during the reperfusion period, and excessive fibrosis and inflammation contribute to cardiac malfunction. NecroX compounds have been shown to protect the liver and heart from ischemia-reperfusion injury. The aim of this study was to further define the role and mechanism of action of NecroX-5 in regulating infl ammation and fi brosis responses in a model of hypoxia/reoxygenation (HR). We utilized HR-treated rat hearts and lipopolysaccharide (LPS)-treated H9C2 culture cells in the presence or absence of NecroX-5 (10 µmol/L) treatment as experimental models. Addition of NecroX-5 signifi cantly increased decorin (Dcn) expression levels in HR-treated hearts. In contrast, expression of transforming growth factor beta 1 (TGFβ1) and Smad2 phosphorylation (pSmad2) was strongly attenuated in NecroX-5-treated hearts. In addition, signifi cantly increased production of tumor necrosis factor alpha (TNFα), TGFβ1, and pSmad2, and markedly decreased Dcn expression levels, were observed in LPS-stimulated H9C2 cells. Interestingly, NecroX-5 supplementation effectively attenuated the increased expression levels of TNFα, TGFβ1, and pSmad2, as well as the decreased expression of Dcn. Thus, our data demonstrate potential antiinflammatory and anti-fibrotic effects of NecroX-5 against cardiac HR injuries via modulation of the TNFα/Dcn/TGFβ1/Smad2 pathway.
Collapse
Affiliation(s)
- Vu Thi Thu
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea.; VNU University of Science, Hanoi 120036, Vietnam
| | - Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea.; Department of Integrated Biomedical Science, College of Medicine, Inje University, Busan 47392, Korea
| | - Le Thanh Long
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | | | | | - Soon Ha Kim
- Product Strategy and Development, LG Life Sciences Ltd., Seoul 03184, Korea
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| |
Collapse
|
18
|
Chuang J, Barnes C, Wong BJF. Overview of Facial Plastic Surgery and Current Developments. Surg J (N Y) 2016; 2:e17-e28. [PMID: 28824978 PMCID: PMC5553462 DOI: 10.1055/s-0036-1572360] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/05/2016] [Indexed: 11/01/2022] Open
Abstract
Facial plastic surgery is a multidisciplinary specialty largely driven by otolaryngology but includes oral maxillary surgery, dermatology, ophthalmology, and plastic surgery. It encompasses both reconstructive and cosmetic components. The scope of practice for facial plastic surgeons in the United States may include rhinoplasty, browlifts, blepharoplasty, facelifts, microvascular reconstruction of the head and neck, craniomaxillofacial trauma reconstruction, and correction of defects in the face after skin cancer resection. Facial plastic surgery also encompasses the use of injectable fillers, neural modulators (e.g., BOTOX Cosmetic, Allergan Pharmaceuticals, Westport, Ireland), lasers, and other devices aimed at rejuvenating skin. Facial plastic surgery is a constantly evolving field with continuing innovative advances in surgical techniques and cosmetic adjunctive technologies. This article aims to give an overview of the various procedures that encompass the field of facial plastic surgery and to highlight the recent advances and trends in procedures and surgical techniques.
Collapse
Affiliation(s)
- Jessica Chuang
- Beckman Laser Institute and Medical Clinic, University of California Irvine, Irvine, California
| | - Christian Barnes
- Beckman Laser Institute and Medical Clinic, University of California Irvine, Irvine, California.,Department of Otolaryngology-Head and Neck Surgery, University of California Irvine, Irvine, California
| | - Brian J F Wong
- Beckman Laser Institute and Medical Clinic, University of California Irvine, Irvine, California.,Department of Otolaryngology-Head and Neck Surgery, University of California Irvine, Irvine, California
| |
Collapse
|
19
|
Nandi P, Siddiqui MF, Lala PK. Restraint of Trophoblast Invasion of the Uterus by Decorin: Role in Pre-eclampsia. Am J Reprod Immunol 2015; 75:351-60. [DOI: 10.1111/aji.12449] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/16/2015] [Indexed: 11/28/2022] Open
Affiliation(s)
- Pinki Nandi
- Departments of Anatomy and Cell biology; Schulich School of Medicine and Dentistry; The University of Western Ontario; London ON Canada
| | - Mohammad Fyyaz Siddiqui
- Departments of Anatomy and Cell biology; Schulich School of Medicine and Dentistry; The University of Western Ontario; London ON Canada
| | - Peeyush K Lala
- Departments of Anatomy and Cell biology; Schulich School of Medicine and Dentistry; The University of Western Ontario; London ON Canada
- Department of Oncology; Schulich School of Medicine and Dentistry; The University of Western Ontario; London ON Canada
- Children's Health Research Institute; Schulich School of Medicine and Dentistry; The University of Western Ontario; London ON Canada
| |
Collapse
|
20
|
Walraven M, Beelen RHJ, Ulrich MMW. Transforming growth factor-β (TGF-β) signaling in healthy human fetal skin: a descriptive study. J Dermatol Sci 2015; 78:117-24. [PMID: 25795202 DOI: 10.1016/j.jdermsci.2015.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND TGF-β plays an important role in growth and development but is also involved in scarring and fibrosis. Differences for this growth factor are known between scarless fetal wound healing and adult wound healing. Nonetheless, most of the data in this area are from animal studies or in vitro studies and, thus, information about the human situation is incomplete and scarce. OBJECTIVE The aim of this study was to compare the canonical TGF-β signaling in unwounded human fetal and adult skin. METHODS Q-PCR, immunohistochemistry, Western Blot and Luminex assays were used to determine gene expression, protein levels and protein localization of components of this pathway in healthy skin. RESULTS All components of the canonical TGF-β pathway were present in unwounded fetal skin. Compared to adult skin, fetal skin had differential concentrations of the TGF-β isoforms, had high levels of phosphorylated receptor-Smads, especially in the epidermis, and had low expression of several fibrosis-associated target genes. Further, the results indicated that the processes of receptor endocytosis might also differ between fetal and adult skin. CONCLUSION This descriptive study showed that there are differences in gene expression, protein concentrations and protein localization for most components of the canonical TGF-β pathway between fetal and adult skin. The findings of this study can be a starting point for further research into the role of TGF-β signaling in scarless healing.
Collapse
Affiliation(s)
- M Walraven
- Dept. of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| | - R H J Beelen
- Dept. of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - M M W Ulrich
- Dept. of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands; Association of Dutch Burn Centres, Beverwijk, The Netherlands
| |
Collapse
|
21
|
Yates CC, Hebda P, Wells A. Skin wound healing and scarring: fetal wounds and regenerative restitution. ACTA ACUST UNITED AC 2014; 96:325-33. [PMID: 24203921 DOI: 10.1002/bdrc.21024] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/12/2012] [Indexed: 12/31/2022]
Abstract
The adverse physiological and psychological effects of scars formation after healing of wounds are broad and a major medical problem for patients. In utero, fetal wounds heal in a regenerative manner, though the mechanisms are unknown. Differences in fetal scarless regeneration and adult repair can provide key insight into reduction of scarring therapy. Understanding the cellular and extracellular matrix alterations in excessive adult scarring in comparison to fetal scarless healing may have important implications. Herein, we propose that matrix can be controlled via cellular therapy to resemble a fetal-like matrix that will result in reduced scarring.
Collapse
Affiliation(s)
- Cecelia C Yates
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
22
|
Tissue engineering and regenerative repair in wound healing. Ann Biomed Eng 2014; 42:1494-507. [PMID: 24788648 DOI: 10.1007/s10439-014-1010-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/05/2014] [Indexed: 12/14/2022]
Abstract
Wound healing is a highly evolved defense mechanism against infection and further injury. It is a complex process involving multiple cell types and biological pathways. Mammalian adult cutaneous wound healing is mediated by a fibroproliferative response leading to scar formation. In contrast, early to mid-gestational fetal cutaneous wound healing is more akin to regeneration and occurs without scar formation. This early observation has led to extensive research seeking to unlock the mechanism underlying fetal scarless regenerative repair. Building upon recent advances in biomaterials and stem cell applications, tissue engineering approaches are working towards a recapitulation of this phenomenon. In this review, we describe the elements that distinguish fetal scarless and adult scarring wound healing, and discuss current trends in tissue engineering aimed at achieving scarless tissue regeneration.
Collapse
|
23
|
Lorda-Diez CI, García-Porrero JA, Hurlé JM, Montero JA. Decorin gene expression in the differentiation of the skeletal connective tissues of the developing limb. Gene Expr Patterns 2014; 15:52-60. [DOI: 10.1016/j.gep.2014.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 11/28/2022]
|
24
|
Lo DD, Zimmermann AS, Nauta A, Longaker MT, Lorenz HP. Scarless fetal skin wound healing update. ACTA ACUST UNITED AC 2013; 96:237-47. [PMID: 23109319 DOI: 10.1002/bdrc.21018] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Scar formation, a physiologic process in adult wound healing, can have devastating effects for patients; a multitude of pathologic outcomes, affecting all organ systems, stems from an amplification of this process. In contrast to adult wound repair, the early-gestation fetal skin wound heals without scar formation, a phenomenon that appears to be intrinsic to fetal skin. An intensive research effort has focused on unraveling the mechanisms that underlie scarless fetal wound healing in an attempt to improve the quality of healing in both children and adults. Unique properties of fetal cells, extracellular matrix, cytokine profile, and gene expression contribute to this scarless repair. Despite the great increase in knowledge gained over the past decades, the precise mechanisms regulating scarless fetal healing remain unknown. Herein, we describe the current proposed mechanisms underlying fetal scarless wound healing in an effort to recapitulate the fetal phenotype in the postnatal environment.
Collapse
Affiliation(s)
- David D Lo
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford, California, USA
| | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Meir D. Hershcovitch
- Division of Facial Plastic and Reconstructive Surgery, Department of Otolaryngology–Head and Neck Surgery, University of Cincinnati College of Medicine, and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - David B. Hom
- Division of Facial Plastic and Reconstructive Surgery, Department of Otolaryngology–Head and Neck Surgery, University of Cincinnati College of Medicine, and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
26
|
Naraoka T, Ishibashi Y, Tsuda E, Yamamoto Y, Kusumi T, Kakizaki I, Toh S. Time-dependent gene expression and immunohistochemical analysis of the injured anterior cruciate ligament. Bone Joint Res 2012; 1:238-44. [PMID: 23610654 PMCID: PMC3626253 DOI: 10.1302/2046-3758.110.2000118] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 07/30/2012] [Indexed: 11/20/2022] Open
Abstract
Objectives This study aimed to investigate time-dependent gene expression
of injured human anterior cruciate ligament (ACL), and to evaluate
the histological changes of the ACL remnant in terms of cellular
characterisation. Methods Injured human ACL tissues were harvested from 105 patients undergoing
primary ACL reconstruction and divided into four phases based on
the period from injury to surgery. Phase I was < three weeks,
phase II was three to eight weeks, phase III was eight to 20 weeks,
and phase IV was ≥ 21 weeks. Gene expressions of these tissues were
analysed in each phase by quantitative real-time polymerase chain
reaction using selected markers (collagen types 1 and 3, biglycan,
decorin, α-smooth muscle actin, IL-6, TGF-β1, MMP-1, MMP-2 and TIMP-1).
Immunohistochemical staining was also performed using primary antibodies
against CD68, CD55, Stat3 and phosphorylated-Stat3 (P-Stat3). Results Expression of IL-6 was mainly seen in phases I, II and III, collagen
type 1 in phase II, MMP-1, 2 in phase III, and decorin, TGF-β1 and α-smooth
muscle actin in phase IV. Histologically, degradation and scar formation
were seen in the ACL remnant after phase III. The numbers of CD55
and P-Stat3 positive cells were elevated from phase II to phase
III. Conclusions Elevated cell numbers including P-Stat3 positive cells were not
related to collagens but to MMPs’ expressions.
Collapse
Affiliation(s)
- T Naraoka
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Tissue-engineered fetal dermal matrices. In Vitro Cell Dev Biol Anim 2012; 48:493-506. [PMID: 22956043 DOI: 10.1007/s11626-012-9541-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/31/2012] [Indexed: 10/27/2022]
Abstract
In the early to mid-gestation fetus, skin wounds heal with no scar formation and perfect restoration of dermal architecture. This phenomenon is intrinsic to fetal skin. The intrinsic phenotypic properties of the fetal fibroblast are believed to be "the effector of scarless repair". We sought to prepare dermal matrices with high similarity to the mid-gestation fetal dermis using the technology of "self-assembly" with fetal dermal cells of 18, 20, and 22 wk gestation. Comparison of these dermal constructs to those prepared with neonatal dermal cells, adult skin, neonatal foreskin, and mid-gestation fetal skin demonstrates that these fetal dermal matrices bear marked morphological and biochemical resemblance to the mid-gestation fetal dermis. In order to shed further light on the genes involved in scarless wound healing, we conducted a differential gene array analysis of the neonatal and fetal dermal matrices. Using a gene chip (GLYCOv4 gene chip) of approximately 1,260 human genes, we observed differential expression of 67 genes. A number of fibrotic genes were observed to be downregulated and anti-fibrotic genes upregulated.
Collapse
|
28
|
Ratajczak-Wielgomas K, Gosk J, Rabczyński J, Augoff K, Podhorska-Okołów M, Gamian A, Rutowski R. Expression of MMP-2, TIMP-2, TGF-β1, and decorin in Dupuytren's contracture. Connect Tissue Res 2012; 53:469-77. [PMID: 22512703 DOI: 10.3109/03008207.2012.686542] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To investigate the mechanisms underlying matrix deposition in Dupuytren's disease, the expression of gelatinase A (MMP-2), the tissue inhibitor of metalloproteinase-2 (TIMP-2), transforming growth factor beta 1 (TGF-β1), decorin (DCN), and periostin was studied. The level of relative MMP-2 activation was investigated using zymography. The mRNA expression of MMP-2, TIMP-2, TGF-β1, and DCN was detected using reverse transcription polymerase chain reaction (RT-PCR), while the presence of protein was detected using immunohistochemical (IHC) and Western blot techniques. The level of MMP-2 activation was significantly elevated in tissues with Dupuytren's contracture. RT-PCR demonstrated significantly higher expression of MMP-2, TIMP-2, TGF-β1, and DCN mRNA in the pathological tissues; and the IHC and immunoblotting studies revealed elevated expression of TGF-β1, DCN, and periostin. The balance between MMP-2 and TIMP-2 was disrupted in patients with Dupuytren's disease. TGF-β1, DCN, and periostin are involved in extracellular matrix (ECM) homeostasis in Dupuytren's contracture.
Collapse
|
29
|
Reinke JM, Sorg H. Wound repair and regeneration. ACTA ACUST UNITED AC 2012; 49:35-43. [PMID: 22797712 DOI: 10.1159/000339613] [Citation(s) in RCA: 1097] [Impact Index Per Article: 91.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 04/28/2012] [Indexed: 12/12/2022]
Abstract
The skin is the biggest organ of the human being and has many functions. Therefore, the healing of a skin wound displays an extraordinary mechanism of cascading cellular functions which is unique in nature. As healing and regeneration processes take place in all parts of the human body, this review focuses on the healing processes of the skin and highlights the classical wound healing phases. While regeneration describes the specific substitution of the tissue, i.e. the superficial epidermis, mucosa or fetal skin, skin repair displays an unspecific form of healing in which the wound heals by fibrosis and scar formation. The first stage of acute wound healing is dedicated to hemostasis and the formation of a provisional wound matrix, which occurs immediately after injury and is completed after some hours. Furthermore, this phase initiates the inflammatory process. The inflammatory phase of the wound healing cascade gets activated during the coagulation phase and can roughly be divided into an early phase with neutrophil recruitment and a late phase with the appearance and transformation of monocytes. In the phase of proliferation the main focus of the healing process lies in the recovering of the wound surface, the formation of granulation tissue and the restoration of the vascular network. Therefore, next to the immigration of local fibroblasts along the fibrin network and the beginning of reepithelialization from the wound edges, neovascularization and angiogenesis get activated by capillary sprouting. The formation of granulation tissue stops through apoptosis of the cells, characterizing a mature wound as avascular as well as acellular. During the maturation of the wound the components of the extracellular matrix undergo certain changes. The physiological endpoint of mammalian wound repair displays the formation of a scar, which is directly linked to the extent of the inflammatory process throughout wound healing.
Collapse
Affiliation(s)
- J M Reinke
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
30
|
Rolfe KJ, Grobbelaar AO. A review of fetal scarless healing. ISRN DERMATOLOGY 2012; 2012:698034. [PMID: 22675640 PMCID: PMC3362931 DOI: 10.5402/2012/698034] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/13/2012] [Indexed: 12/12/2022]
Abstract
Wound healing is a complex process involving a number of processes. Fetal regeneration has been shown to have a number of differences compared to scar-forming healing. This review discusses the number of differences identified in fetal regeneration. Understanding these differences may result in new therapeutic targets which may reduce or even prevent scarring in adult healing.
Collapse
Affiliation(s)
- K J Rolfe
- Institute for Plastic Surgery Research and Education, The Royal Free Hospital, Pond Street, Hampstead, London NW3 2QG, UK
| | | |
Collapse
|
31
|
Sidgwick GP, Bayat A. Extracellular matrix molecules implicated in hypertrophic and keloid scarring. J Eur Acad Dermatol Venereol 2011; 26:141-52. [PMID: 21838832 DOI: 10.1111/j.1468-3083.2011.04200.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tissue regeneration repairs the fabric of the skin to maintain homeostasis after injury. The expression and proliferation of extracellular matrix (ECM) molecules in the dermis, mediated by a range of growth factors and cytokines, is a fundamental element of wound repair. Previous work focused on how these complex molecular mechanisms relate to the formation of raised dermal scars, including keloid and hypertrophic scars, characterized by excessive deposition of ECM molecules. However, the mechanisms in the wound repair pathway which lead to the differential expression and organization of ECM molecules observed in different types of scar tissue are not fully understood. To summarize what is known about the expression and composition of ECM molecules in abnormal scarring, an extensive search of the literature was conducted, focusing on keywords connected to skin scarring, hypertrophic scars and keloid disease. The transcription and translation of collagen I and III, fibronectin, laminin, periostin and tenascin are all increased in raised dermal scar tissue. However, hyaluronic acid, dermatopontin and decorin are decreased, and the expression and localisation of fibrillin and elastin fibres in the dermis are altered compared with normal skin and scars. Recent whole genome profiling and proteomic studies have led to the identification of regulatory elements with different expression profiles in hypertrophic and keloid tissue. If the mechanisms of raised dermal scar formation are to be elucidated and effective therapeutic treatments developed, an integrated approach to research is required, focussing on the interactions between ECM molecules, regulatory elements and pathways.
Collapse
Affiliation(s)
- G P Sidgwick
- Plastic and Reconstructive Surgery Research, School of Translational Medicine, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, UK
| | | |
Collapse
|
32
|
Kovacevic D, Fox AJ, Bedi A, Ying L, Deng XH, Warren RF, Rodeo SA. Calcium-phosphate matrix with or without TGF-β3 improves tendon-bone healing after rotator cuff repair. Am J Sports Med 2011; 39:811-9. [PMID: 21406666 DOI: 10.1177/0363546511399378] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Rotator cuff tendon heals by formation of an interposed zone of fibrovascular scar tissue. Recent studies demonstrate that transforming growth factor-beta 3 (TGF-β(3)) is associated with tissue regeneration and "scarless" healing, in contrast to scar-mediated healing that occurs with TGF-β(1). HYPOTHESIS Delivery of TGF-β(3) in an injectable calcium-phosphate matrix to the healing tendon-bone interface after rotator cuff repair will result in increased attachment strength secondary to improved bone formation and collagen organization and reduced scar formation of the healing enthesis. STUDY DESIGN Controlled laboratory study. METHODS Ninety-six male Sprague-Dawley rats underwent unilateral detachment of the supraspinatus tendon followed by acute repair using transosseous suture fixation. Animals were allocated into 1 of 3 groups: (1) repair alone (controls, n = 32), (2) repair augmented by application of an osteoconductive calcium-phosphate (Ca-P) matrix only (n = 32), or (3) repair augmented with Ca-P matrix + TGF-β(3) (2.75 µg) at the tendon-bone interface (n = 32). Animals were euthanized at either 2 weeks or 4 weeks postoperatively. Biomechanical testing of the supraspinatus tendon-bone complex was performed at 2 and 4 weeks (n = 8 per group). Microcomputed tomography was utilized to quantitate bone microstructure at the repair site. The healing tendon-bone interface was evaluated with histomorphometry and immunohistochemical localization of collagen types I (COLI) and III (COLIII). Statistical analysis was performed using 2-way analysis of variance with significance set at P < .05. RESULTS There was significantly greater load to failure of the Ca-P matrix + TGF-β(3) group compared with matrix alone or untreated controls at 4 weeks postoperatively (P = .04). At 2 weeks, microcomputed tomography revealed a larger volume of newly formed bone present at the healing enthesis in both experimental groups compared with the control group. By 4 weeks, this newly formed, woven bone had matured into calcified, lamellar bone. Histomorphometric analysis demonstrated significantly greater fibrocartilage and increased collagen organization at the healing tendon-bone insertion site in both experimental groups compared with the control group at 2 weeks (P = .04). Over time, TGF-β(3) delivery led to greater COLI expression compared with COLIII at the healing enthesis, indicating a more favorable COLI to COLIII ratio with administration of TGF-β(3). CONCLUSION Augmentation with an osteoconductive Ca-P matrix at the tendon-bone repair site is associated with new bone formation, increased fibrocartilage, and improved collagen organization at the healing tendon-bone interface in the early postoperative period after rotator cuff repair. The addition of TGF-β(3) significantly improved strength of the repair at 4 weeks postoperatively and resulted in a more favorable COLI/COLIII ratio. CLINICAL RELEVANCE The delivery of TGF-β(3) with an injectable Ca-P matrix at the supraspinatus tendon footprint has promise to improve healing after soft tissue repair.
Collapse
Affiliation(s)
- David Kovacevic
- Laboratory for Soft Tissue Research, Hospital for Special Surgery, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Cellular and Molecular Characteristics of Scarless versus Fibrotic Wound Healing. Dermatol Res Pract 2010; 2010:790234. [PMID: 21253544 PMCID: PMC3021858 DOI: 10.1155/2010/790234] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Accepted: 11/24/2010] [Indexed: 01/04/2023] Open
Abstract
The purpose of this paper is to compare and contrast the discrete biology differentiating fetal wound repair from its adult counterpart. Integumentary wound healing in mammalian fetuses is essentially different from wound healing in adult skin. Adult (postnatal) skin wound healing is a complex and well-orchestrated process spurred by attendant inflammation that leads to wound closure with scar formation. In contrast, fetal wound repair occurs with minimal inflammation, faster re-epithelialization, and without the accumulation of scar. Although research into scarless healing began decades ago, the critical molecular mechanisms driving the process of regenerative fetal healing remain uncertain. Understanding the molecular and cellular events during regenerative healing may provide clues that one day enable us to modulate adult wound healing and consequently reduce scarring.
Collapse
|
34
|
Abstract
SUMMARY Scar formation is a major medical problem that can have devastating consequences for patients. The adverse physiological and psychological effects of scars are broad, and there are currently no reliable treatments to prevent scarring. In contrast to adult wounds, early gestation fetal skin wounds repair rapidly and in the absence of scar formation. Despite extensive investigation, the exact mechanisms of scarless fetal wound healing remain largely unknown. For some time, it has been known that significant differences exist among the extracellular matrix, inflammatory response, cellular mediators, and gene expression profiles of fetal and postnatal wounds. These differences may have important implications in scarless wound repair.
Collapse
Affiliation(s)
- Barrett J Larson
- Stanford, Calif. From the Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine
| | | | | |
Collapse
|
35
|
Yamashita M, Bless DM, Welham NV. Morphological and extracellular matrix changes following vocal fold injury in mice. Cells Tissues Organs 2010; 192:262-71. [PMID: 20516667 PMCID: PMC3114089 DOI: 10.1159/000315476] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2010] [Indexed: 01/20/2023] Open
Abstract
Mouse experimental models are commonly utilized tools in biomedical research but remain underrepresented in vocal fold biology, presumably due to the small size of the larynx and limited description of the anatomical, cellular and extracellular composition of the vocal folds. In this study, we provide a whole-mount serial section-based histological description of vocal fold morphology of wild-type FVB strain mice, alongside a histological and immunohistochemical (IHC)-based quantitative analysis of extracellular matrix (ECM) alteration 1, 7, 14, 28, 42 and 56 days following unilateral vocal fold injury. IHC was specific for procollagen type I, collagen type I, collagen type III, collagen type IV, elastin, decorin, fibronectin and hyaluronic acid binding protein 2. The histological description confirmed the presence of a laryngeal alar structural complex in the mouse, which appears to be a morphological feature unique to rodents. The lamina propria appeared uniform without evidence of a distinct layer structure as has been reported in larger animals and humans. Time-dependent alterations in vocal fold morphology, ECM organization and ECM protein/glycoconjugate abundance were observed in injured vocal folds compared to control. The presence of a mature scar was observed between 28 and 42 days postinjury. Morphological and ECM changes following vocal fold injury in the mouse were generally consistent with those reported in other animal models, particularly the rat, although wound repair in the mouse appears to occur at a faster rate. Copyright © 2010 S. Karger AG, Basel
Collapse
Affiliation(s)
- Masaru Yamashita
- Division of Otolaryngology - Head and Neck Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | | | | |
Collapse
|
36
|
Abstract
The developing fetus has the ability to heal wounds by regenerating normal epidermis and dermis with restoration of the extracellular matrix (ECM) architecture, strength, and function. In contrast, adult wounds heal with fibrosis and scar. Scar tissue remains weaker than normal skin with an altered ECM composition. Despite extensive investigation, the mechanism of fetal wound healing remains largely unknown. We do know that early in gestation, fetal skin is developing at a rapid pace and the ECM is a loose network facilitating cellular migration. Wounding in this unique environment triggers a complex cascade of tightly controlled events culminating in a scarless wound phenotype of fine reticular collagen and abundant hyaluronic acid. Comparison between postnatal and fetal wound healing has revealed differences in inflammatory response, cellular mediators, cytokines, growth factors, and ECM modulators. Investigation into cell signaling pathways and transcription factors has demonstrated differences in secondary messenger phosphorylation patterns and homeobox gene expression. Further research may reveal novel genes essential to scarless repair that can be manipulated in the adult wound and thus ameliorate scar.
Collapse
Affiliation(s)
- Edward P Buchanan
- Division Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | |
Collapse
|
37
|
Ramelet AA, Hirt-Burri N, Raffoul W, Scaletta C, Pioletti DP, Offord E, Mansourian R, Applegate LA. Chronic wound healing by fetal cell therapy may be explained by differential gene profiling observed in fetal versus old skin cells. Exp Gerontol 2008; 44:208-18. [PMID: 19049860 DOI: 10.1016/j.exger.2008.11.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 10/03/2008] [Accepted: 11/04/2008] [Indexed: 12/16/2022]
Abstract
Engineering of fetal tissue has a high potential for the treatment of acute and chronic wounds of the skin in humans as these cells have high expansion capacity under simple culture conditions and one organ donation can produce Master Cell Banks which can fabricate over 900 million biological bandages (9 x 12cm). In a Phase 1 clinical safety study, cases are presented for the treatment of therapy resistant leg ulcers. All eight patients, representing 13 ulcers, tolerated multiple treatments with fetal biological bandages showing no negative secondary effects and repair processes similar to that seen in 3rd degree burns. Differential gene profiling using Affymetrix gene chips (analyzing 12,500 genes) were accomplished on these banked fetal dermal skin cells compared to banked dermal skin cells of an aged donor in order to point to potential indicators of wound healing. Families of genes involved in cell adhesion and extracellular matrix, cell cycle, cellular signaling, development and immune response show significant differences in regulation between banked fetal and those from banked old skin cells: with approximately 47.0% of genes over-expressed in fetal fibroblasts. It is perhaps these differences which contribute to efficient tissue repair seen in the clinic with fetal cell therapy.
Collapse
|
38
|
A Basic Fibroblast Growth Factor Improves Lower Extremity Wound Healing With a Porcine-Derived Skin Substitute. ACTA ACUST UNITED AC 2008; 64:809-15. [DOI: 10.1097/ta.0b013e31802c8247] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Abstract
Open spina bifida remains a major source of disability despite an overall decrease in incidence. It is frequently diagnosed prenatally and can thus - potentially - be treated by fetal surgery. Animal studies and preliminary human studies strongly suggest that at least a portion of the neurological abnormalities seen in these patients are secondary, and occur in mid-gestation. It is estimated that approximately 400 fetal operations have now been performed for myelomeningocele world wide. Despite this large experience, the technique remains of unproven benefit. Preliminary results suggest that fetal surgery results in reversal of hindbrain herniation (the Chiari II malformation), a decrease in shunt-dependent hydrocephalus, and possibly improvement in leg function, but these findings might be explained by selection bias and changing management indications. A randomized prospective trial (the MOMS trial) is currently being conducted by three centers in the United States, and is estimated to be completed in 2009.
Collapse
Affiliation(s)
- Leslie N Sutton
- Department of Neurosurgery, Children's Hospital of Philadelphia, 6th Floor Wood Bldg, 34th St. and Civic Center Blvd., Philadelphia, PA 19104, USA.
| |
Collapse
|
40
|
Yannas IV, Kwan MD, Longaker MT. Early Fetal Healing as a Model for Adult Organ Regeneration. ACTA ACUST UNITED AC 2007; 13:1789-98. [PMID: 17518739 DOI: 10.1089/ten.2006.0054] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Evidence is provided pointing out certain basic similarities, though not an identity, between the mechanisms of early fetal regeneration and induced organ regeneration in adults. These similarities favor a model of induced organ regeneration in which biologically active scaffolds block wound contraction and scar formation.
Collapse
Affiliation(s)
- Ioannis V Yannas
- Department of Mechanical Engineering, Materials Science Engineering, and Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
41
|
Jahanyar J, Joyce DL, Southard RE, Loebe M, Noon GP, Koerner MM, Torre-Amione G, Youker KA. Decorin-mediated Transforming Growth Factor-β Inhibition Ameliorates Adverse Cardiac Remodeling. J Heart Lung Transplant 2007; 26:34-40. [PMID: 17234515 DOI: 10.1016/j.healun.2006.10.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 09/29/2006] [Accepted: 10/17/2006] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Implantation of a left ventricular assist device (LVAD) has been shown to induce regression of fibrosis in patients with congestive heart failure (CHF) and improve myocardial function. The mechanism of reverse remodeling after mechanical circulatory support (MCS), however, has not been fully characterized. In this study we examined the anti-fibrotic effects of decorin, an extracellular matrix (ECM) proteoglycan, on the transforming growth factor-beta (TGF-beta) pathway. METHODS Human myocardial tissue samples were obtained from patients undergoing LVAD implantation and again following subsequent transplantation after a sustained period of MCS. The specimens were examined by utilizing different molecular and histologic techniques, including human cardiac fibroblast in vitro studies. We assessed gene expression, mRNA and protein levels. RESULTS We found a significant decrease in interstitial fibrosis after MCS, with a decrease in collagen mRNA transcription rates, serving as an indirect measurement of collagen synthesis. Both the mRNA and protein levels of decorin were significantly increased after a period of MCS. Decorin mRNA was up-regulated by 44% after MCS (p < 0.01), which paralleled the increase in interstitial decorin deposition (p < 0.001). In addition, p-SMAD2, a molecular marker downstream of the TGF-beta pathway, was found to be inactivated after MCS (p < 0.02). Moreover, cultured human cardiac fibroblasts exposed to TGF-beta demonstrated decreased collagen production when exogenous decorin was added (p < 0.03). CONCLUSIONS The decorin molecule is potentially involved in reverse cardiac remodeling, by directly inhibiting the TGF-beta pathway and its pro-fibrotic effects on the failing human heart.
Collapse
Affiliation(s)
- Jama Jahanyar
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Colwell AS, Krummel TM, Longaker MT, Lorenz HP. Early-gestation fetal scarless wounds have less lysyl oxidase expression. Plast Reconstr Surg 2006; 118:1125-1129. [PMID: 17016177 DOI: 10.1097/01.prs.0000221056.27536.db] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lysyl oxidase cross-links collagen and elastin. Because cross-linking likely influences collagen architecture, the authors compared lysyl oxidase expression during scarless and scarring fetal dermal wound repair. METHODS Excisional dermal wounds were made on E17 (gestational day 16.5) and E19 (gestational day 18.5) mouse fetuses. Skin and wound RNA was collected at 8, 12, and 24 hours. Quantitative real-time polymerase chain reaction was performed for lysyl oxidase. The effect of transforming growth factor (TGF)-beta1 on lysyl oxidase expression in fetal fibroblasts was tested. Confluent primary fetal and postnatal fibroblast cultures were stimulated with TGF-beta1 for 24 hours, and lysyl oxidase expression was quantitated by performing real-time polymerase chain reaction. Lysyl oxidase expression was also quantitated in unwounded fetal skin to determine its expression profile during development. RESULTS E17 and E19 fetal skin had approximately 2-fold greater lysyl oxidase expression than postnatal skin (p < 0.01), and fetal fibroblasts had greater baseline lysyl oxidase expression than postnatal fibroblasts. After TGF-beta1 stimulation, fetal and postnatal fibroblasts responded with increases in lysyl oxidase expression. In E17 early-gestation scarless fetal wounds, lysyl oxidase had small increases (<1.5-fold) in expression from 1 to 12 hours. In late-gestation E19 scarring fetal wounds, lysyl oxidase increased 1.8-fold at 8 hours and 2-fold at 12 hours, which was significantly greater than the changes observed in E17 scarless wounds (p < 0.01 for each). CONCLUSIONS Lysyl oxidase has greater expression in E19 late-gestation wounds that heal with scar compared with E17 early-gestation scarless wounds. This suggests a role for lysyl oxidase in scar formation.
Collapse
Affiliation(s)
- Amy S Colwell
- Stanford, Calif. From the Department of Surgery, Division of Plastic Surgery, Children's Surgical Research Program, Tissue Regeneration Laboratory
| | | | | | | |
Collapse
|
43
|
Kathju S, Satish L, Rabik C, Rupert T, Oswald D, Johnson S, Hu FZ, Post JC, Ehrlich GD. Identification of differentially expressed genes in scarless wound healing utilizing polymerase chain reaction- suppression subtractive hybridization. Wound Repair Regen 2006; 14:413-20. [PMID: 16939568 DOI: 10.1111/j.1743-6109.2006.00140.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Wound healing in fetal skin is well known to proceed without scarring, whereas adult (postnatal) skin wound healing is accompanied by scar formation. To identify differentially expressed genes during fetal wound (FW) healing, we have used polymerase chain reaction-suppression subtractive hybridization. This technique allows for a comparative analysis across the entire transcriptome of FW vs. unwounded fetal control tissue, including even potentially novel sequences. Our subtractive hybridization protocol identified 15 clones that are overexpressed in healing FWs, and 20 clones that are underexpressed. These include genes with both known and unknown functions. We have confirmed the differential pattern of expression for four of these candidate genes: elongation factor 1 alpha, elongation initiation factor 4e, and two transcripts thus far known only as an expressed sequence tags. With this approach, we have also identified novel genes potentially involved in scarless wound healing.
Collapse
Affiliation(s)
- Sandeep Kathju
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212-4772, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Järveläinen H, Puolakkainen P, Pakkanen S, Brown EL, Höök M, Iozzo RV, Sage EH, Wight TN. A role for decorin in cutaneous wound healing and angiogenesis. Wound Repair Regen 2006; 14:443-52. [PMID: 16939572 DOI: 10.1111/j.1743-6109.2006.00150.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Decorin is known to influence tissue tensile strength and cellular phenotype. Therefore, decorin is likely to have an impact on tissue repair, including cutaneous wound healing. In this study, cutaneous healing of both excisional and incisional full-thickness dermal wounds was studied in decorin-deficient (Dcn(-/-)) animals. A statistically significant delay in excisional wound healing in the Dcn(-/-) mice occurred at 4 and 10 days postwounding and, in incisional wounds at 4, 10, and 18 days when compared with wild-type (Dcn(-/-)) controls. Fibrovascular invasion into polyvinylalcohol sponges was significantly increased by day 18 in Dcn(-/-) mice relative to Dcn(+/+) mice. The 18-day sponge implants in the Dcn(-/-) mice showed a marked accumulation of biglycan when compared with the corresponding implants in Dcn(+/+) mice. Thus, regulated production of decorin may serve as an excellent therapeutic approach for modifying impaired wound healing and harmful foreign body reactions.
Collapse
|
45
|
Colwell AS, Krummel TM, Longaker MT, Lorenz HP. Fetal and adult fibroblasts have similar TGF-beta-mediated, Smad-dependent signaling pathways. Plast Reconstr Surg 2006; 117:2277-83. [PMID: 16772929 DOI: 10.1097/01.prs.0000224299.16523.76] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The scarless fetal skin-healing mechanism is mediated in part by the fibroblast and involves differential expression of transforming growth factor (TGF)-beta isoforms 1 and 3. The authors hypothesized that fetal and adult fibroblasts respond differently to TGF-beta isoform-specific stimulation, which may influence whether wounds scar. Connective tissue growth factor (CTGF), Smad3, and Smad7 are TGF-beta target genes. Expression of these targets was quantitated after TGF-beta1 and -beta3 stimulation of fetal and adult fibroblasts. METHODS Primary mouse fibroblast cultures at gestational day 16.5 (E17), 18.5 (E19), and 6 weeks (adult) were stimulated with TGF-beta1 or TGF-beta3. Quantitative polymerase chain reaction was performed for CTGF, Smad3, and Smad7 expression. RESULTS CTGF was reduced four-fold in E17 and E19 compared with adult fibroblasts (p < 0.005). After TGF-beta1 stimulation, CTGF expression increased more than 60-fold in both E17 and E19 (p < 0.01), which was three-fold greater than that in adult fibroblasts (p < 0.005). TGF-beta3 induced more than 70-fold, 50-fold, and 20-fold increases in CTGF expression in E17, E19, and adult fibroblasts, respectively (p < 0.01 for each). Both TGF-beta1 and -beta3 decreased Smad3 expression and increased Smad7 expression in each fibroblast type, suggesting that intact TGF-beta-mediated signaling pathways were present. CONCLUSIONS Fetal (E17 and E19) fibroblasts have lower CTGF expression compared with adult fibroblasts. However, fetal fibroblasts have larger increases in CTGF expression after TGF-beta1 or -beta3 stimulation. Fetal and adult mouse fibroblasts have similar TGF-beta1 and TGF-beta3 transcriptional regulation of Smad3 and Smad7. This suggests that scarless healing is likely not mediated by different Smad-dependent transcriptional responses to TGF-beta isoforms in the fetal E17 fibroblast.
Collapse
Affiliation(s)
- Amy S Colwell
- Department of Surgery, Division of Plastic Surgery, Children's Surgical Research Program, Tissue Regeneration Laboratory, Stanford, Calif. 94305-5148, USA
| | | | | | | |
Collapse
|
46
|
Abstract
Understanding wound healing today involves much more than simply stating that there are three phases: inflammation, proliferation, and maturation. Wound healing is a complex series of reactions and interactions among cells and "mediators." Each year, new mediators are discovered and our understanding of inflammatory mediators and cellular interactions grows. This article will attempt to provide a concise overview on wound healing and wound management.
Collapse
Affiliation(s)
- George Broughton
- Department of Plastic Surgery, Nancy L & Perry Bass Advanced Wound Healing Laboratory, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9132, USA.
| | | | | |
Collapse
|
47
|
Cattaruzza S, Perris R. Proteoglycan control of cell movement during wound healing and cancer spreading. Matrix Biol 2005; 24:400-17. [PMID: 16055321 DOI: 10.1016/j.matbio.2005.06.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/20/2005] [Indexed: 12/21/2022]
Abstract
By virtue of their multifunctional nature, proteoglycans (PGs) are thought to govern the process of cell movement in numerous physiological and pathological contexts, spanning from early embryonic development to tumour invasion and metastasis. The precise mode by which they influence this process is still fragmentary, but evidence is accruing that they may affect it in a multifaceted manner. PGs bound to the plasma membrane mediate the polyvalent interaction of the cell with matrix constituents and with molecules of the neighbouring cells' surfaces; they modulate the activity of receptors implicated in the recognition of these components; and they participate in the perception and convergence of growth- and motility-promoting cues contributed by soluble factors. Through some of these interactions several PGs transduce to pro-motile cells crucial intracellular signals that are likely to be essential for their mobility. A regulated shedding of certain membrane-intercalated PGs seems to provide an additional level of control of cell movement. Coincidentally, matrix-associated PGs may govern cell migration by structuring permissive and non-permissive migratory paths and, when directly secreted by the moving cells, may alternatively create favourable or hostile microenvironments. To exert this latter, indirect effect on cell movement, matrix PGs strongly rely upon their primary molecular partners, such as hyaluronan, link proteins, tenascins, collagens and low-affinity cell surface receptors, whereas a further finer control is provided by a highly regulated proteolytic processing of the PGs accounted by both the migrating cells themselves and cells of their surrounding tissues. Overall, PGs seem to play an important role in determining the migratory phenotype of a cell by initiating, directing and terminating cell movement in a spatio-temporally controlled fashion. This implies that the "anti-adhesive and/or "anti-migratory" properties that have previously been assigned to certain PGs may be re-interpreted as being a means by which these macromolecules elaborate haptotaxis-like mechanisms imposing directionality upon the moving cells. Since these conditions would allow cells to be led to given tissue locations and become immobilized at these sites, a primary function may be ascribed to PGs in the dictation of a "stop or go" choice of the migrating cells.
Collapse
Affiliation(s)
- Sabrina Cattaruzza
- Department of Evolutionary and Functional Biology University of Parma, Viale delle Scienze 11/A PARMA 43100, Italy
| | | |
Collapse
|
48
|
Affiliation(s)
- Abelardo Medina
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, 8440-112 Street, Edmonton, Alberta, Canada T6G 2B7
| | | | | | | |
Collapse
|
49
|
Ferreira AM, Rollins BJ, Faunce DE, Burns AL, Zhu X, Dipietro LA. The effect of MCP-1 depletion on chemokine and chemokine-related gene expression: evidence for a complex network in acute inflammation. Cytokine 2005; 30:64-71. [PMID: 15804597 DOI: 10.1016/j.cyto.2004.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 11/04/2004] [Accepted: 12/02/2004] [Indexed: 11/28/2022]
Abstract
The expression of chemokines has been suggested to involve an interdependent network, with the absence of a single chemokine affecting the expression of multiple other chemokines. Monocyte chemoattractant protein (MCP-1), a member of C-C chemokine superfamily, plays a critical role in the recruitment and activation of leukocytes during acute inflammation. To examine the effect of the loss of MCP-1 on expression of the chemokine network, we compared the mRNA expression profiles of MCP-1(-/-) and wild type mice during the acute inflammatory phase of excisional wounds. Utilizing a mouse cDNA array containing 514 chemokine and chemokine related genes, the loss of MCP-1 was observed to cause a significant upregulation of nine genes (Decorin, Persephin, IL-1beta, MIP-2, MSP, IL1ra, CCR5, CCR3, IL-11) and significant downregulation of two genes (CCR4 and CD3Z) in acute wounds. The array data was confirmed by semi-quantitative RT-PCR. The effect of MCP-1 deletion on chemokine expression was further examined in isolated macrophages. Compared to wild type, LPS-stimulated peritoneal macrophages from MCP-1(-/-) mice showed a significant increase in the expression of RANTES, MIP-1beta, MIP-1alpha and MIP-2 mRNA. The data suggest that loss of a single chemokine perturbs the chemokine network not only in the setting of acute inflammation but even in an isolated inflammatory cell, the macrophage.
Collapse
Affiliation(s)
- Ahalia M Ferreira
- Burn and Shock Trauma Institute, Department of Surgery, Loyola Medical Center, Maywood, IL 60153, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Cutaneous wounds inevitably heal with scars, which can be disfiguring and compromise function. In general, the greater the insult, the worse the scarring, although genetic make up, regional variations and age can influence the final result. Excessive scarring manifests as hypertrophic and keloid scars. At the other end of the spectrum are poorly healing chronic wounds, such as foot ulcers in diabetic patients and pressure sores. Current therapies to minimize scarring and accelerate wound healing rely on the optimization of systemic conditions, early wound coverage and closure of lacerations, and surgical incisions with minimal trauma to the surrounding skin. The possible benefits of topical therapies have also been assessed. Further major improvements in wound healing and scarring require an understanding of the molecular basis of this process. Promising strategies for modulating healing include the local administration of platelet derived growth factor (PDGF)-BB to accelerate the healing of chronic ulcers, and increasing the relative ratio of transforming growth factor (TGF)beta-3 to TGFbeta-1 and TGFbeta-2 in order to minimize scarring.
Collapse
|