1
|
Wagner R, Montalva L, Zani A, Keijzer R. Basic and translational science advances in congenital diaphragmatic hernia. Semin Perinatol 2020; 44:151170. [PMID: 31427115 DOI: 10.1053/j.semperi.2019.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Congenital Diaphragmatic Hernia (CDH) is a birth defect that is characterized by lung hypoplasia, pulmonary hypertension and a diaphragmatic defect that allows herniation of abdominal organs into the thoracic cavity. Although widely unknown to the public, it occurs as frequently as cystic fibrosis (1:2500). There is no monogenetic cause, but different animal models revealed various biological processes and epigenetic factors involved in the pathogenesis. However, the pathobiology of CDH is not sufficiently understood and its mortality still ranges between 30 and 50%. Future collaborative initiatives are required to improve our basic knowledge and advance novel strategies to (prenatally) treat the abnormal lung development. This review focusses on the genetic, epigenetic and protein background and the latest advances in basic and translational aspects of CDH research.
Collapse
Affiliation(s)
- Richard Wagner
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology & Pathophysiology (Adjunct), University of Manitoba and Children's Hospital Research Institute of Manitoba, Biology of Breathing Theme, Winnipeg, Manitoba, Canada; Department of Pediatric Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Louise Montalva
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Canada and Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada; Department of Pediatric Surgery, Hospital Robert Debré, Paris, France
| | - Augusto Zani
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Canada and Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Richard Keijzer
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology & Pathophysiology (Adjunct), University of Manitoba and Children's Hospital Research Institute of Manitoba, Biology of Breathing Theme, Winnipeg, Manitoba, Canada.
| |
Collapse
|
2
|
Nguyen TM, Jimenez J, Rendin LE, Müller C, Westergren-Thorsson G, Deprest J, Toelen J. The proportion of alveolar type 1 cells decreases in murine hypoplastic congenital diaphragmatic hernia lungs. PLoS One 2019; 14:e0214793. [PMID: 30995255 PMCID: PMC6469843 DOI: 10.1371/journal.pone.0214793] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/20/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pulmonary hypoplasia, characterized by incomplete alveolar development, remains a major cause of mortality and morbidity in congenital diaphragmatic hernia. Recently demonstrated to differentiate from a common bipotent progenitor during development, the two cell types that line the alveoli type 1 and type 2 alveolar cells have shown to alter their relative ratio in congenital diaphragmatic hernia lungs. OBJECTIVE We used the nitrofen/bisdiamine mouse model to induce congenital diaphragmatic hernia and accurately assess the status of alveolar epithelial cell differentiation in relation to the common bipotent progenitors. STUDY DESIGN Pregnant Swiss mice were gavage-fed with nitrofen/bisdiamine or vehicle at embryonic day 8.5. The administered dose was optimized by assessing the survival, congenital diaphragmatic hernia and facial abnormality rates of the exposed mouse pups. NanoCT was performed on embryonic day 11.5 and 16.5 to assess the embryonic and early canalicular stages of lung development. At embryonic day 17.5 corresponding to late canalicular stage, congenital diaphragmatic hernia lungs were characterized by measuring the lung weight/body weight ratio, morphometry, epithelial cell marker gene expression levels and alveolar cell type quantification. RESULTS Nitrofen/bisdiamine associated congenital diaphragmatic hernia lungs showed delayed development, hypoplasia with morphologic immaturity and thickened alveolar walls. Expression levels of distal epithelial progenitor marker Id2 increased, alveolar type 1 cell markers Pdpn and Hopx decreased, while type 2 cell markers pro-SPC and Muc1 remained constant during the canalicular stage. The number of Pdpn+ type 1 alveolar cells also decreased in congenital diaphragmatic hernia lungs. CONCLUSION The mouse nitrofen/bisdiamine model is a potential model allowing the study of congenital diaphragmatic hernia lung development from early stages using a wide array of methods. Based on this model, the alveolar epithelium showed a decrease in the number of alveolar type 1 cell in congenital diaphragmatic hernia lungs while type 2 cell population remains unchanged.
Collapse
Affiliation(s)
- Tram Mai Nguyen
- Department of Development and Regeneration, Division Organ Systems, KU Leuven, Leuven, Belgium
| | - Julio Jimenez
- Department of Development and Regeneration, Division Organ Systems, KU Leuven, Leuven, Belgium
| | - Linda Elowsson Rendin
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Catharina Müller
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Jan Deprest
- Department of Development and Regeneration, Division Organ Systems, KU Leuven, Leuven, Belgium.,Department of Obstetrics and Gynaecology, Division Woman and Child, University Hospitals Leuven, Leuven, Belgium.,Institute for Women's Health, University College London, London, United Kingdom
| | - Jaan Toelen
- Department of Development and Regeneration, Division Organ Systems, KU Leuven, Leuven, Belgium.,Department of Paediatrics, Division Woman and Child, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Takahashi T, Zimmer J, Friedmacher F, Puri P. Follistatin-like 1 expression is decreased in the alveolar epithelium of hypoplastic rat lungs with nitrofen-induced congenital diaphragmatic hernia. J Pediatr Surg 2017; 52:706-709. [PMID: 28188034 DOI: 10.1016/j.jpedsurg.2017.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 01/23/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND/PURPOSE Pulmonary hypoplasia (PH), characterized by incomplete alveolar development, remains a major therapeutic challenge associated with congenital diaphragmatic hernia (CDH). Follistatin-like 1 (Fstl1) is a crucial regulator of alveolar formation and maturation, which is strongly expressed in distal airway epithelium. Fstl1-deficient mice exhibit reduced airspaces, impaired alveolar epithelial cell differentiation, and insufficient production of surfactant proteins similar to PH in human CDH. We hypothesized that pulmonary Fstl1 expression is decreased during alveolarization in the nitrofen-induced CDH model. METHODS Timed-pregnant rats received nitrofen or vehicle on gestational day 9 (D9). Fetal lungs were harvested on D18 and D21 and divided into control-/nitrofen-exposed specimens. Alveolarization was assessed using morphometric analysis techniques. Pulmonary gene expression of Fstl1 was determined by qRT-PCR. Immunofluorescence-double-staining for Fstl1 and alveolar epithelial marker surfactant protein C (SP-C) was performed to evaluate protein expression/localization. RESULTS Radial alveolar count was significantly reduced in hypoplastic lungs of nitrofen-exposed fetuses with significant down regulation of Fstl1 mRNA expression on D18 and D21 compared to controls. Confocal-laser-scanning-microscopy revealed strikingly diminished Fstl1 immunofluorescence and SP-C expression in distal alveolar epithelium of nitrofen-exposed fetuses with CDH-associated PH on D18 and D21 compared to controls. CONCLUSIONS Decreased expression of Fstl1 in alveolar epithelium may disrupt alveolarization and pulmonary surfactant production, thus contributing to the development of PH in the nitrofen-induced CDH model. LEVEL OF EVIDENCE 2b (Centre for Evidence-Based Medicine, Oxford).
Collapse
Affiliation(s)
- Toshiaki Takahashi
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Gate 5, Dublin 12, Dublin, Ireland
| | - Julia Zimmer
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Gate 5, Dublin 12, Dublin, Ireland
| | - Florian Friedmacher
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Gate 5, Dublin 12, Dublin, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Gate 5, Dublin 12, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, School of Medicine & Medical Science, University College Dublin, Belfield, Dublin, 4, Dublin, Ireland.
| |
Collapse
|
4
|
Lopez E, Gascoin G, Flamant C, Merhi M, Tourneux P, Baud O. Exogenous surfactant therapy in 2013: what is next? Who, when and how should we treat newborn infants in the future? BMC Pediatr 2013; 13:165. [PMID: 24112693 PMCID: PMC3851818 DOI: 10.1186/1471-2431-13-165] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 09/19/2013] [Indexed: 11/10/2022] Open
Abstract
Background Surfactant therapy is one of the few treatments that have dramatically changed clinical practice in neonatology. In addition to respiratory distress syndrome (RDS), surfactant deficiency is observed in many other clinical situations in term and preterm infants, raising several questions regarding the use of surfactant therapy. Objectives This review focuses on several points of interest, including some controversial or confusing topics being faced by clinicians together with emerging or innovative concepts and techniques, according to the state of the art and the published literature as of 2013. Surfactant therapy has primarily focused on RDS in the preterm newborn. However, whether this treatment would be of benefit to a more heterogeneous population of infants with lung diseases other than RDS needs to be determined. Early trials have highlighted the benefits of prophylactic surfactant administration to newborns judged to be at risk of developing RDS. In preterm newborns that have undergone prenatal lung maturation with steroids and early treatment with continuous positive airway pressure (CPAP), the criteria for surfactant administration, including the optimal time and the severity of RDS, are still under discussion. Tracheal intubation is no longer systematically done for surfactant administration to newborns. Alternative modes of surfactant administration, including minimally-invasive and aerosolized delivery, could thus allow this treatment to be used in cases of RDS in unstable preterm newborns, in whom the tracheal intubation procedure still poses an ethical and medical challenge. Conclusion The optimization of the uses and methods of surfactant administration will be one of the most important challenges in neonatal intensive care in the years to come.
Collapse
Affiliation(s)
- Emmanuel Lopez
- Réanimation et Pédiatrie Néonatales, Groupe Hospitalier Robert Debré, APHP, 48 Bd Sérurier, Paris, 75019, France.
| | | | | | | | | | | | | |
Collapse
|
5
|
Pulmonary Collectins in Diagnosis and Prevention of Lung Diseases. ANIMAL LECTINS: FORM, FUNCTION AND CLINICAL APPLICATIONS 2012. [PMCID: PMC7121960 DOI: 10.1007/978-3-7091-1065-2_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pulmonary surfactant is a complex mixture of lipids and proteins, and is synthesized and secreted by alveolar type II epithelial cells and bronchiolar Clara cells. It acts to keep alveoli from collapsing during the expiratory phase of the respiratory cycle. After its secretion, lung surfactant forms a lattice structure on the alveolar surface, known as tubular myelin. Surfactant proteins (SP)-A, B, C and D make up to 10% of the total surfactant. SP-B and SPC are relatively small hydrophobic proteins, and are involved in the reduction of surface-tension at the air-liquid interface. SP-A and SP-D, on the other hand, are large oligomeric, hydrophilic proteins that belong to the collagenous Ca2+-dependent C-type lectin family (known as “Collectins”), and play an important role in host defense and in the recycling and transport of lung surfactant (Awasthi 2010) (Fig. 43.1). In particular, there is increasing evidence that surfactant-associated proteins A and -D (SP-A and SP-D, respectively) contribute to the host defense against inhaled microorganisms (see 10.1007/978-3-7091-1065_24 and 10.1007/978-3-7091-1065_25). Based on their ability to recognize pathogens and to regulate the host defense, SP-A and SP-D have been recently categorized as “Secretory Pathogen Recognition Receptors”. While SP-A and SP-D were first identified in the lung; the expression of these proteins has also been observed at other mucosal surfaces, such as lacrimal glands, gastrointestinal mucosa, genitourinary epithelium and periodontal surfaces. SP-A is the most prominent among four proteins in the pulmonary surfactant-system. The expression of SP-A is complexly regulated on the transcriptional and the chromosomal level. SP-A is a major player in the pulmonary cytokine-network and moreover has been described to act in the pulmonary host defense. This chapter gives an overview on the understanding of role of SP-A and SP-D in for human pulmonary disorders and points out the importance for pathology-orientated research to further elucidate the role of these molecules in adult lung diseases. As an outlook, it will become an issue of pulmonary pathology which might provide promising perspectives for applications in research, diagnosis and therapy (Awasthi 2010).
Collapse
|
6
|
Thyroid transcription factor-1 (TTF-1/Nkx2.1/TITF1) gene regulation in the lung. Clin Sci (Lond) 2009; 116:27-35. [PMID: 19037882 DOI: 10.1042/cs20080068] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TTF-1 [thyroid transcription factor-1; also known as Nkx2.1, T/EBP (thyroid-specific-enhancer-binding protein) or TITF1] is a homeodomain-containing transcription factor essential for the morphogenesis and differentiation of the thyroid, lung and ventral forebrain. TTF-1 controls the expression of select genes in the thyroid, lung and the central nervous system. In the lung, TTF-1 controls the expression of surfactant proteins that are essential for lung stability and lung host defence. Human TTF-1 is encoded by a single gene located on chromosome 14 and is organized into two/three exons and one/two introns. Multiple transcription start sites and alternative splicing produce mRNAs with heterogeneity at the 5' end. The 3' end of the TTF-1 mRNA is characterized by a rather long untranslated region. The amino acid sequences of TTF-1 from human, rat, mouse and other species are very similar, indicating a high degree of sequence conservation. TTF-1 promoter activity is maintained by the combinatorial or co-operative actions of HNF-3 [hepatocyte nuclear factor-3; also known as FOXA (forkhead box A)], Sp (specificity protein) 1, Sp3, GATA-6 and HOXB3 (homeobox B3) transcription factors. There is limited information on the regulation of TTF-1 gene expression by hormones, cytokines and other biological agents. Glucocorticoids, cAMP and TGF-beta (transforming growth factor-beta) have stimulatory effects on TTF-1 expression, whereas TNF-alpha (tumour necrosis factor-alpha) and ceramide have inhibitory effects on TTF-1 DNA-binding activity in lung cells. Haplo-insufficiency of TTF-1 in humans causes hypothyroidism, respiratory dysfunction and recurring pulmonary infections, underlining the importance of optimal TTF-1 levels for the maintenance of thyroid and lung function. Recent studies have implicated TTF-1 as a lineage-specific proto-oncogene for lung cancer.
Collapse
|
7
|
Main bronchus occlusion for treatment of congenital diaphragmatic hernia in fetal lambs. J Pediatr Surg 2008; 43:620-6. [PMID: 18405706 DOI: 10.1016/j.jpedsurg.2007.09.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 09/19/2007] [Accepted: 09/19/2007] [Indexed: 11/21/2022]
Abstract
PURPOSE The present study investigates a new surgical approach in the treatment of left diaphragmatic hernia in fetal sheep. We postulated that unlike tracheal occlusion where both lungs are occluded, selective left main bronchus occlusion (LMBO) would accelerate growth of only the left lung, reduce left visceral herniation, and recover space in the both thoraces necessary for lung development. METHODS Left-sided congenital diaphragmatic hernia (CDH) was surgically created in 8 fetal lambs at approximately 65 days of gestation; in 4 of these animals, LMBO was performed at approximately 118 days. Four sham-operated animals served as controls. Lambs were delivered by hysterotomy at 137 days. We measured lung-to-body weight ratios, alveolar surface area, septal wall thickness, and AE2 cell density in the left and right lungs. RESULTS Left main bronchus occlusion increased (P < .05) left lung growth causing severe right mediastinal shift but failed to reduce herniated abdominal viscera in 3 of 4 lambs. Wet lung-to-body weight ratio in LMBO group was similar to that of the control group; however, this was achieved by overgrowth of left lung, whereas the right wet lung-to-body weight ratio remained low. In the LMBO group, right lung AE2 cell density was higher than that of control group and not different to that of the CDH group. CONCLUSIONS Left main bronchus occlusion failed to restore normal pulmonary development in CDH.
Collapse
|
8
|
Boucherat O, Benachi A, Chailley-Heu B, Franco-Montoya ML, Elie C, Martinovic J, Bourbon JR. Surfactant maturation is not delayed in human fetuses with diaphragmatic hernia. PLoS Med 2007; 4:e237. [PMID: 17676984 PMCID: PMC1950205 DOI: 10.1371/journal.pmed.0040237] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 06/07/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Pulmonary hypoplasia and persistent pulmonary hypertension account for significant mortality and morbidity in neonates with congenital diaphragmatic hernia (CDH). Global lung immaturity and studies in animal models suggest the presence of surfactant deficiency that may further complicate the pathophysiology of CDH. However, data about surfactant status in human fetuses with CDH at birth are contradictory. The lack of a chronological study of surfactant content in late pregnancy has been a significant limitation. The appropriateness of administering surfactant supplements to neonates with CDH is therefore a debated question. METHODS AND FINDINGS We investigated surfactant content in human fetuses with CDH compared to age-matched fetuses with nonpulmonary diseases used as controls. Concentrations of disaturated phosphatidylcholine and surfactant proteins were found to be similar at a given stage of pregnancy, with both components showing a similar pattern of increase with progressing pregnancy in fetuses with CDH and in control fetuses. Thyroid transcription factor 1, a critical regulator of surfactant protein transcription, similarly displayed no difference in abundance. Finally, we examined the expression of three glucocorticoid-regulated diffusible mediators involved in lung epithelial maturation, namely: keratinocyte growth factor (KGF), leptin, and neuregulin 1 beta 1 (NRG1-beta1). KGF expression decreased slightly with time in control fetuses, but remained unchanged in fetuses with CDH. Leptin and NRG1-beta1 similarly increased in late pregnancy in control and CDH lungs. These maturation factors were also determined in the sheep fetus with surgical diaphragmatic hernia, in which surfactant deficiency has been reported previously. In contrast to the findings in humans, surgical diaphragmatic hernia in the sheep fetus was associated with decreased KGF and neuregulin expression. Fetoscopic endoluminal tracheal occlusion performed in the sheep model to correct lung hypoplasia increased leptin expression, partially restored KGF expression, and fully restored neuregulin expression. CONCLUSIONS Our results indicate that CDH does not impair surfactant storage in human fetuses. CDH lungs exhibited no trend toward a decrease in contents, or a delay in developmental changes for any of the studied surfactant components and surfactant maturation factors. Surfactant amounts are likely to be appropriate to lung size. These findings therefore do not support the use of surfactant therapy for infants with CDH. Moreover, they raise the question of the relevance of CDH animal models to explore lung biochemical maturity.
Collapse
Affiliation(s)
- Olivier Boucherat
- Institut national de la santé et de la recherche médicale (INSERM), Unité 841—Institut Mondor de Recherche Biomédicale, Créteil, France
- Université Paris 12, Faculté de Médecine, Créteil, France
| | - Alexandra Benachi
- Institut national de la santé et de la recherche médicale (INSERM), Unité 841—Institut Mondor de Recherche Biomédicale, Créteil, France
- Université Paris 12, Faculté de Médecine, Créteil, France
- Université Paris-Descartes, Paris, France
- Maternité, Assistance Publique-Hôpitaux de Paris et Hôpital Necker-Enfants Malades, Paris, France
| | - Bernadette Chailley-Heu
- Institut national de la santé et de la recherche médicale (INSERM), Unité 841—Institut Mondor de Recherche Biomédicale, Créteil, France
- Université Paris 12, Faculté de Médecine, Créteil, France
| | - Marie-Laure Franco-Montoya
- Institut national de la santé et de la recherche médicale (INSERM), Unité 841—Institut Mondor de Recherche Biomédicale, Créteil, France
- Université Paris 12, Faculté de Médecine, Créteil, France
| | - Caroline Elie
- Maternité, Assistance Publique-Hôpitaux de Paris et Hôpital Necker-Enfants Malades, Paris, France
- Service de Biostatistique et Informatique Médicale, Assistance Publique-Hôpitaux de Paris et Hôpital Necker-Enfants Malades, Paris, France
| | - Jelena Martinovic
- Maternité, Assistance Publique-Hôpitaux de Paris et Hôpital Necker-Enfants Malades, Paris, France
- Service de Fœtopathologie, Assistance Publique-Hôpitaux de Paris et Hôpital Necker-Enfants Malades, Paris, France
| | - Jacques R Bourbon
- Institut national de la santé et de la recherche médicale (INSERM), Unité 841—Institut Mondor de Recherche Biomédicale, Créteil, France
- Université Paris 12, Faculté de Médecine, Créteil, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
9
|
Kling DE, Schnitzer JJ. Vitamin A deficiency (VAD), teratogenic, and surgical models of congenital diaphragmatic hernia (CDH). AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2007; 145C:139-57. [PMID: 17436305 DOI: 10.1002/ajmg.c.30129] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Congenital diaphragmatic hernia (CDH) is a congenital malformation that occurs with a frequency of 0.08 to 0.45 per 1,000 births. Children with CDH are born with the abdominal contents herniated through the diaphragm and exhibit an associated pulmonary hypoplasia which is frequently accompanied by severe morbidity and mortality. Although the etiology of CDH is largely unknown, considerable progress has been made in understanding its molecular mechanisms through the usage of genetic, teratogenic, and surgical models. The following review focuses on the teratogenic and surgical models of CDH and the possible molecular mechanisms of nitrofen (a diphenyl ether, formerly used as an herbicide) in both induction of CDH and pulmonary hypoplasia. In addition, the mechanisms of other compounds including several anti-inflammatory agents that have been linked to CDH will be discussed. Furthermore, this review will also explore the importance of vitamin A in lung and diaphragm development and the possible mechanisms of teratogen interference in vitamin A homeostasis. Continued exploration of these models will bring forth a clearer understanding of CDH and its molecular underpinnings, which will ultimately facilitate development of therapeutic strategies.
Collapse
Affiliation(s)
- David E Kling
- Massachusetts General Hospital, Department of Pediatric Surgery, Boston, MA 02114, USA.
| | | |
Collapse
|
10
|
Takayasu H, Nakazawa N, Montedonico S, Sugimoto K, Sato H, Puri P. Impaired alveolar epithelial cell differentiation in the hypoplastic lung in nitrofen-induced congenital diaphragmatic hernia. Pediatr Surg Int 2007; 23:405-10. [PMID: 17245593 DOI: 10.1007/s00383-006-1853-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pulmonary hypoplasia is the principal cause of morbidity and mortality in infants with congenital diaphragmatic hernia (CDH). Still, relatively little is known about the mechanisms causing lung hypoplasia associated with CDH. The differentiation from alveolar epithelial cells type II (AECs-II) into alveolar epithelial cells type I (AECs-I) is one of the key processes in lung development in late gestation. It is well known that increased lung expansion promotes differentiation into AECs-I phenotype, whereas reduced lung expansion promotes AECs-II phenotype. The recent availability of cell-specific molecule markers for AECs-I and AECs-II has provided an opportunity to study the various characteristics of these two cell types. To test the hypothesis that the differentiation of AECs-II to AECs-I is impaired in the CDH hypoplastic lung, we investigated molecular markers for AECs-I [ICAM-1, T1alpha, aquaporin 5 (AQP5)] and molecular markers for AECs-II [thyroid transcription factor-1 (Ttf-1), surfactant protein (SP)-B and C] in the nitrofen-induced CDH lung. Fetal rat lungs of normal (n = 7) and nitrofen-treated (n = 14) dams were harvested on embryonic day 21. The expression of the ICAM1, T1alpha, AQP5, SP-B, C and Ttf-1 was analyzed in each lung by real-time reverse transcription polymerase chain reaction. Immunohistochemical studies were performed to evaluate the protein expression level of ICAM1 and Ttf1. Expression levels of ICAM-1, T1alpha and AQP5 were significantly reduced (P < 0.05) in the lungs from nitrofen-treated CDH animals compared to normal controls. ICAM-1 and AQP5 immunohistochemistry showed a diffuse pattern of expression in the alveolar cells in normal lungs. By contrast, the ICAM-1 and AQP5 positive cells were markedly reduced in hypoplastic lungs with CDH. On the other hand, the expression levels of Ttf-1, SP-B and C were significantly (P < 0.05) increased in the lungs from nitrofen-treated CDH animals compared to normal controls. The population of Ttf-1 positive cells was slightly increased in the lungs from nitrofen-treated animals in immunohistochemical study. Our results demonstrate that there is significant reduction in the proportion of AECs-I and increase in the proportion of AECs-II in the hypoplastic lung in the nitrofen-induced CDH. This data provides the first evidence to support the hypothesis that AEC differentiation is impaired in CDH hypoplastic lung.
Collapse
Affiliation(s)
- Hajime Takayasu
- Children's Research Centre, Our Lady's Hospital for Sick Children, University College Dublin, Dublin 12, Ireland
| | | | | | | | | | | |
Collapse
|
11
|
Gonzalez-Reyes S, Martinez L, Martinez-Calonge W, Fernandez-Dumont V, Tovar JA. Effects of antioxidant vitamins on molecular regulators involved in lung hypoplasia induced by nitrofen. J Pediatr Surg 2006; 41:1446-52. [PMID: 16863852 DOI: 10.1016/j.jpedsurg.2006.04.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Oxidant herbicide nitrofen (2,4-dichloro-4'-nitrodiphenyl ether) induces in rat embryos congenital diaphragmatic hernia (CDH) with lung hypoplasia. The present study aims at examining whether antioxidant vitamins A, E, and C reverse the effects of the teratogen in the lungs of exposed rats and how they modify the expression of molecular regulators known to be involved in their pathogenesis. MATERIALS AND METHODS Wet lung weight-body weight ratio, total DNA, and total protein were determined. Thyroid transcription factor 1 (TTF-1), hepatocyte nuclear factor 3beta (HNF-3beta), and surfactant protein B (SP-B) proteins were measured by immunoblot assay in lung homogenates from rat fetuses exposed in utero to either nitrofen 100 mg intragastrically or vehicle. The coexpression of these factors in the alveolar epithelium was demonstrated by immunohistochemistry. The effects of the addition of vitamins A, C, and E were assessed by comparison with analysis of variance. RESULTS Nitrofen decreased lung weight, total DNA, and total protein. The addition of antioxidant vitamins had no effect on lung weight, but increased DNA and protein contents. TTF-1, HNF-3beta, and SP-B proteins were decreased in lung homogenates of exposed rats with CDH. The addition of antioxidant vitamins nearly normalized these values. CONCLUSIONS The effects of nitrofen in fetal rat lungs are reversed in part by antioxidant vitamins by upregulating the expression of TTF-1, HNF-3beta, and SP-B. This approach could help to develop transplacental prenatal interventions for CDH.
Collapse
Affiliation(s)
- Salome Gonzalez-Reyes
- Department of Pediatric Surgery, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | | | | | | | | |
Collapse
|
12
|
Bütter A, Bratu I, Flageole H, Laberge JM, Kovacs L, Faucher D, Piedoboeuf B. Fetal tracheal occlusion in lambs with congenital diaphragmatic hernia: role of exogenous surfactant at birth. Pediatr Res 2005; 58:689-94. [PMID: 16189194 DOI: 10.1203/01.pdr.0000180534.42731.95] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fetal tracheal occlusion (TO) has been used to reverse the lung hypoplasia associated with congenital diaphragmatic hernia (CDH). However, TO has a detrimental effect on type II pneumocyte function and surfactant production. Previously, we have shown that in surgically created CDH lambs, TO improved markedly the response to resuscitation even though the lungs remain surfactant deficient. The goal of this investigation was to assess the effects of exogenous surfactant administered at birth to CDH lambs with or without fetal TO during 8 h of resuscitation. Lambs were divided into five groups: CDH, CDH+surfactant (SURF), CDH+TO, CDH+TO+SURF, and nonoperated controls. A left-sided CDH was created in fetal lambs at 80 d gestation. TO was performed at 108 d, and the lambs were delivered by hysterotomy at 136 d. Bovine lipid extract surfactant was administered before the first breath and again at 4 h of life. All CDH+SURF lambs, but only three of five CDH lambs, survived up to 8 h. When compared with the corresponding nonsurfactant-treated group, surfactant-treated CDH and CDH+TO lambs did not demonstrate improved alveolar-arterial oxygen gradients, pH, or Pco(2). In fact, in the CDH+TO group, surfactant treatment significantly worsened ventilation efficiency as measured by the ventilation efficiency index. The observed improvement in pulmonary compliance secondary to surfactant treatment was not significant. This investigation demonstrates that prophylactic surfactant treatment at birth does not improve gas exchange or ventilation efficiency in CDH lambs with or without TO.
Collapse
Affiliation(s)
- Andreana Bütter
- Division of Pediatric Surgery, Montréal Children's Hospital, McGill University Health Centre, Canada
| | | | | | | | | | | | | |
Collapse
|
13
|
Chapin CJ, Ertsey R, Yoshizawa J, Hara A, Sbragia L, Greer JJ, Kitterman JA. Congenital diaphragmatic hernia, tracheal occlusion, thyroid transcription factor-1, and fetal pulmonary epithelial maturation. Am J Physiol Lung Cell Mol Physiol 2005; 289:L44-52. [PMID: 15764645 DOI: 10.1152/ajplung.00342.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) occurs in ∼1:2,500 human births and has high morbidity and mortality rates, primarily due to pulmonary hypoplasia and pulmonary hypertension. Tracheal occlusion (TO), in experimental animals, distends lungs and increases lung growth and alveolar type I cell maturation but decreases surfactant components and reduces alveolar type II cell density. We examined effects of CDH and CDH+TO on lung growth and maturation in fetal rats. To induce CDH, we administered nitrofen (100 mg) to dams at 9.5 days of gestation. We compared lungs from fetuses with CDH, CDH+TO, and those exposed to nitrofen without CDH. CDH decreased lung wet weight bilaterally ( P < 0.0001) and DNA content in lung ipsilateral to CDH ( P < 0.05). CDH+TO significantly increased lung wet weights bilaterally; DNA content was intermediate between CDH and NC. To evaluate effects on the distal pulmonary epithelium, we examined surfactant mRNA and protein levels, type I and II cell-specific markers (RTI40 and RTII70, respectively), and transcriptional regulator thyroid transcription factor-1 (TTF-1). Decreased lung distension (due to CDH) increased SP-C mRNA and TTF-1 protein expression and reduced RTI40 ( P < 0.05 for all). Increased lung distension (due to CDH+TO) reduced expression of SP mRNAs and pro-SP-C and TTF-1 proteins and enhanced expression of RTI40 (mRNA and protein; P < 0.05 for all). We conclude that CDH+TO partially reverses effects of CDH; it corrects the pulmonary hypoplasia and restores type I cell differentiation but adversely affects SP expression in type II cells. These effects may be mediated through changes in TTF-1 expression.
Collapse
Affiliation(s)
- Cheryl J Chapin
- Cardiovascular Research Institute, University of California, San Francisco, 94143, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Oshiro T, Asato Y, Sakanashi M, Ohta T, Sugahara K. Differential effects of vitamin A on fetal lung growth and diaphragmatic formation in nitrofen-induced rat model. Pulm Pharmacol Ther 2005; 18:155-64. [PMID: 15707848 DOI: 10.1016/j.pupt.2004.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 10/30/2004] [Accepted: 11/01/2004] [Indexed: 10/26/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is associated with high neonatal mortality and morbidity due to pulmonary hypoplasia and pulmonary hypertension. Antenatal interventions have been developed in an attempt to reduce the unacceptable mortality rate of CDH. The pathogenesis of pulmonary hypoplasia is not fully understood. It is not clear whether the increase of lung growth would be necessary for diaphragmatic closure. Vitamin A is important for various aspects of lung development. Therefore, the aim of this study was to examine whether antenatal treatment with vitamin A can increase lung growth and reduce the incidence of CDH in a nitrofen-treated rat model. The animals were randomly assigned to four groups: control, vitamin A, nitrofen, and nitrofen/vitamin A (NIP/Vit A). The incidence of CDH in the NIP/Vit A group (54%) was markedly lower than that in the nitrofen-treated group (85%). Although lung weight was decreased in the nitrofen-treated and NIP/vitamin A groups, the fetal lung weight-to-body weight ratio was slightly increased in the NIP/vitamin A group, compared to the nitrofen-treated group. The mRNA levels of lung surfactant proteins were decreased in the NIP/vitamin A group. We conclude that antenatal treatment with vitamin A reduced the incidence of CDH without lung maturation in the nitrofen-induced rat model.
Collapse
Affiliation(s)
- T Oshiro
- Department of Pediatrics, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan.
| | | | | | | | | |
Collapse
|
15
|
Davey MG, Biard JM, Robinson L, Tsai J, Schwarz U, Danzer E, Adzick NS, Flake AW, Hedrick HL. Surfactant protein expression is increased in the ipsilateral but not contralateral lungs of fetal sheep with left-sided diaphragmatic hernia. Pediatr Pulmonol 2005; 39:359-67. [PMID: 15704191 DOI: 10.1002/ppul.20175] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Congenital diaphragmatic hernia (CDH) impairs fetal lung growth and increases the density of alveolar epithelial type 2 (AE2) cells. There is controversy whether surfactant protein (SP) expression is altered in CDH. The primary aim of this study was to assess SP expression (mRNA and protein) in the left and right lungs of fetal sheep with and without a diaphragmatic hernia (DH). Left-sided DH was created in four fetal sheep at 65 days of gestational age (g.a.). Sham-operated animals were used as controls. At 138 days g.a., lungs were harvested and the following parameters were measured: SP-A, -B, and -C mRNA expression (Northern blot), SP-A and -B expression (Western blot), and AE2 cell density (immunohistochemistry). The lung weight-to-body weight ratio was reduced by 42% in DH animals. The left-to-right lung weight ratio was lower in DH animals (0.47 +/- 0.03 vs. 0.69 +/- 0.03), indicative of asymmetric lung growth. SP-A, -B, and -C mRNA expression were increased by 61.7%, 32.9%, and 75.5%, respectively, in the left lungs of DH animals. SP-A and SP-B were also increased in DH. In the right lung, SP expression (mRNA and protein) was not different between groups. AE2 cell density was higher (by 67%) in the left but not right lungs of DH animals. Although DH in fetal sheep results in significant lung hypoplasia, SP expression is not reduced. On the contrary, SP expression was increased in the ipsilateral lung of fetuses with left-sided DH. Furthermore, AE2 cell density is increased in DH, suggesting that the increase in SP mRNA and protein levels is due to increases AE2 cell number. Our data further support the premise that fetal lung hypoplasia favors an AE2 phenotype.
Collapse
Affiliation(s)
- Marcus G Davey
- Children's Institute for Surgical Science and Center for Fetal Diagnosis and Treatment, Children's Hospital of Philadelphia, Abramson 1112 D, 3615 Civic Center Blvd., Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bratu I, Flageole H, Laberge JM, Kovacs L, Faucher D, Piedboeuf B. Lung function in lambs with diaphragmatic hernia after reversible fetal tracheal occlusion. J Pediatr Surg 2004; 39:1524-31. [PMID: 15486898 DOI: 10.1016/j.jpedsurg.2004.06.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND/PURPOSE Short-duration resuscitation (< or =4 hours) of lambs with diaphragmatic hernia treated in utero with tracheal occlusion have shown improved lung function compared with untreated diaphragmatic hernia. This may be a transient phenomenon in the treated diaphragmatic hernia lambs because of surfactant deficiency. Our objective was to analyze the effect of fetal tracheal occlusion with or without release of the occlusion 1 week before delivery on pulmonary function during a longer period of resuscitation (8 hours) in the diaphragmatic hernia lamb model. METHODS Four groups were compared: diaphragmatic hernia (n = 5), diaphragmatic hernia and tracheal occlusion until delivery (n = 5), diaphragmatic hernia and tracheal occlusion with release of the occlusion 1 week before delivery (n = 5), and normal controls (n = 4). RESULTS Despite persistently decreased surfactant levels, diaphragmatic hernia lambs treated with tracheal occlusion had normal-sized lungs with marked improvement in lung function and gas exchange over 8 hours when compared with untreated lambs with diaphragmatic hernia. Release of the tracheal occlusion 1 week before delivery added no benefit. CONCLUSIONS It appears that surfactant-independent mechanisms such as pulmonary growth and structural changes are of foremost importance in relating to improved compliance, oxygenation, and ventilation of diaphragmatic hernia lambs treated with tracheal occlusion.
Collapse
Affiliation(s)
- Ioana Bratu
- Division of Pediatric Surgery of The Montreal Children's Hospital, McGill University Health Center, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Van Tuyl M, Blommaart PJE, Keijzer R, Wert SE, Ruijter JM, Lamers WH, Tibboel D. Pulmonary surfactant protein A, B, and C mRNA and protein expression in the nitrofen-induced congenital diaphragmatic hernia rat model. Pediatr Res 2003; 54:641-52. [PMID: 12904592 DOI: 10.1203/01.pdr.0000086906.19683.42] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neonates with congenital diaphragmatic hernia (CDH) suffer from a diaphragmatic defect, lung hypoplasia, and pulmonary hypertension, with poor lung function forming the major clinical challenge. Despite prenatal diagnosis and advanced postnatal treatment strategies, the mortality rate of CDH is still high. CDH has been subject of extensive research over the past decades, but its etiology remains unknown. A major problem with CDH is the failure to predict the individual response to treatment modalities like high-frequency ventilation, inhaled nitric oxide, and extracorporeal membrane oxygenation. In this study, we tested the possibility that CDH lungs are surfactant protein deficient, which could explain the respiratory failure and difficulties in treating CDH infants. We investigated this hypothesis in the nitrofen-induced CDH rat model and assessed the cellular concentrations of surfactant protein (SP)-A, -B, and -C mRNA with a quantitative radioactive in situ hybridization technique. No differences were observed between control and CDH lungs for SP mRNA expression patterns. The cellular concentration (mean OD) of SP-A and SP-B mRNA was similar at all stages whereas the mean OD of SP-C mRNA and the volume fraction of cells (% Area) expressing SP mRNA was higher in CDH lungs at term. Immunohistochemical analysis revealed no differences between control and CDH lungs for SP protein expression. No differences in the mean OD or % Area for the SP mRNAs were found between the ipsi- and contralateral side of CDH lungs. We conclude that there is no primary deficiency of surfactant proteins in the nitrofen-induced CDH rat model.
Collapse
Affiliation(s)
- Minke Van Tuyl
- Department of Surgery, Sophia Children's Hospital, Erasmus Medical Center Rotterdam, 3015 GJ Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|