1
|
Lakra K, Avishek K. A review on factors influencing fog formation, classification, forecasting, detection and impacts. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2022; 33:319-353. [PMID: 35309246 PMCID: PMC8918085 DOI: 10.1007/s12210-022-01060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/05/2022] [Indexed: 11/17/2022]
Abstract
With the changing climate and environment, the nature of fog has also changed and because of its impact on humans and other systems, study of fog becomes essential. Hence, the study of its controlling factors such as the characteristics of condensation nuclei, microphysics, air–surface interaction, moisture, heat fluxes and synoptic conditions also become crucial, along with research in the field of prediction and detection. The current review expands for the period between 1976 to 2021, however, especially focused on the research articles published in the last two decades. It considers 250 research papers/research letters, 24 review papers, four book chapters/manuals, five news articles, 15 reports, six conference papers and five other online readings. This review is a compilation of the pros and cons of the techniques used to determine the factors influencing fog formation, its classification, tools and techniques available for its detection and forecast. Some recent advanced are also discussed in this review: role of soil properties on fogs, application of microwave communication links in the detection of fog, new class of smog, and how the cognitive abilities of humans are affected by fog. Recently India and China are facing an emergence and repetitions of fog haze/smog and thus their policies initiatives are also briefly discussed. It is concluded that the complexity in fog forecasting is high due to multiple factors playing a role at multiple levels. Most of the researchers have worked upon the role of humidity, temperature, wind, and boundary layer to predict fogs. However, the role of global wind circulations, soil properties, and anthropogenic heat requires further investigations. Literature shows that fog is being harnessed to address water insecurity in various countries, however, coastal areas of Angola, Namibia and South Africa, Kenya, Eastern Yemen, Oman, China, India, Sri Lanka, Mexico, along with the mountainous regions of Peru, Chile, and Ecuador, are some of the potential sites that can benefit from the installation of fog water harvesting systems.
Collapse
|
2
|
Smith KF, Quinn RL, Rahilly LJ. Biomarkers for differentiation of causes of respiratory distress in dogs and cats: Part 2--Lower airway, thromboembolic, and inflammatory diseases. J Vet Emerg Crit Care (San Antonio) 2016; 25:330-48. [PMID: 26040815 DOI: 10.1111/vec.12317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 03/22/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVES To review the current veterinary and relevant human literature regarding biomarkers of respiratory diseases leading to dyspnea and to summarize the availability, feasibility, and practicality of using respiratory biomarkers in the veterinary setting. DATA SOURCES Veterinary and human medical literature: original research articles, scientific reviews, consensus statements, and recent textbooks. HUMAN DATA SYNTHESIS Numerous biomarkers have been evaluated in people for discriminating respiratory disease processes with varying degrees of success. VETERINARY DATA SYNTHESIS Although biomarkers should not dictate clinical decisions in lieu of gold standard diagnostics, their use may be useful in directing care in the stabilization process. Serum immunoglobulins have shown promise as an indicator of asthma in cats. A group of biomarkers has also been evaluated in exhaled breath. Of these, hydrogen peroxide has shown the most potential as a marker of inflammation in asthma and potentially aspiration pneumonia, but methods for measurement are not standardized. D-dimers may be useful in screening for thromboembolic disease in dogs. There are a variety of markers of inflammation and oxidative stress, which are being evaluated for their ability to assess the severity and type of underlying disease process. Of these, amino terminal pro-C-type natriuretic peptide may be the most useful in determining if antibiotic therapy is warranted. Although critically evaluated for their use in respiratory disorders, many of the biomarkers which have been evaluated have been found to be affected by more than one type of respiratory or systemic disease. CONCLUSION At this time, there are point-of-care biomarkers that have been shown to reliably differentiate between causes of dyspnea in dogs and cats. Future clinical research is warranted to understand of how various diseases affect the biomarkers and more bedside tests for their utilization.
Collapse
|
3
|
Regulator of G-protein signaling 2 inhibits acid-induced mucin5AC hypersecretion in human airway epithelial cells. Respir Physiol Neurobiol 2013; 185:265-71. [DOI: 10.1016/j.resp.2012.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/28/2012] [Accepted: 10/02/2012] [Indexed: 11/20/2022]
|
4
|
Saxena H, Deshpande DA, Tiegs BC, Yan H, Battafarano RJ, Burrows WM, Damera G, Panettieri RA, Dubose TD, An SS, Penn RB. The GPCR OGR1 (GPR68) mediates diverse signalling and contraction of airway smooth muscle in response to small reductions in extracellular pH. Br J Pharmacol 2012; 166:981-90. [PMID: 22145625 DOI: 10.1111/j.1476-5381.2011.01807.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Previous studies have linked a reduction in pH in airway, caused by either environmental factors, microaspiration of gastric acid or inflammation, with airway smooth muscle (ASM) contraction and increased airway resistance. Neural mechanisms have been shown to mediate airway contraction in response to reductions in airway pH to < 6.5; whether reduced extracellular pH (pHo) has direct effects on ASM is unknown. EXPERIMENTAL APPROACH Intracellular signalling events stimulated by reduced pHo in human cultured ASM cells were examined by immunoblotting, phosphoinositide hydrolysis and calcium mobilization assays. ASM cell contractile state was examined using magnetic twisting cytometry. The expression of putative proton-sensing GPCRs in ASM was assessed by real-time PCR. The role of ovarian cancer G protein-coupled receptor 1 (OGR1 or GPR68) in acid-induced ASM signalling and contraction was assessed in cultures subjected to siRNA-mediated OGR1 knockdown. KEY RESULTS ASM cells responded to incremental reductions in pHo (from pH 8.0 to pH 6.8) by activating multiple signalling pathways, involving p42/p44, PKB, PKA and calcium mobilization. Coincidently, ASM cells contracted in response to decreased pHo with similar 'dose'-dependence. Real-time PCR suggested OGR1 was the only proton-sensing GPCR expressed in ASM cells. Both acid-induced signalling (with the exception of PKB activation) and contraction were significantly attenuated by knockdown of OGR1. CONCLUSIONS AND IMPLICATIONS These studies reveal OGR1 to be a physiologically relevant GPCR in ASM cells, capable of pleiotropic signalling and mediating contraction in response to small reductions in extracellular pH. Accordingly, ASM OGR1 may contribute to asthma pathology and represent a therapeutic target in obstructive lung diseases.
Collapse
Affiliation(s)
- H Saxena
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201-1075, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Liu L, Teague WG, Erzurum S, Fitzpatrick A, Mantri S, Dweik RA, Bleecker ER, Meyers D, Busse WW, Calhoun WJ, Castro M, Chung KF, Curran-Everett D, Israel E, Jarjour WN, Moore W, Peters SP, Wenzel S, Hunt JF, Gaston B. Determinants of exhaled breath condensate pH in a large population with asthma. Chest 2011; 139:328-336. [PMID: 20966042 PMCID: PMC3032364 DOI: 10.1378/chest.10-0163] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 08/09/2010] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Exhaled breath condensate (EBC) pH is 2 log orders below normal during acute asthma exacerbations and returns to normal with antiinflammatory therapy. However, the determinants of EBC pH, particularly in stable asthma, are poorly understood. We hypothesized that patients with severe asthma would have low EBC pH and that there would be an asthma subpopulation of patients with characteristically low values. METHODS We studied the association of EBC pH with clinical characteristics in 572 stable subjects enrolled in the Severe Asthma Research Program. These included 250 subjects with severe asthma, 291 with nonsevere asthma, and 31 healthy control subjects. RESULTS Overall, EBC in this population of stable, treated study subjects was not lower in severe asthma (8.02; interquartile range [IQR], 7.61-8.41) or nonsevere asthma (7.90; IQR, 7.52-8.20) than in control subjects (7.9; IQR, 7.40-8.20). However, in subjects with asthma the data clustered below and above pH 6.5. Subjects in the subpopulation with pH < 6.5 had lower fraction of exhaled NO (FeNO) values (FeNO = 22.6 ± 18.1 parts per billion) than those with pH ≥ 6.5 (39.9 ± 40.2 parts per billion; P < .0001). By multiple linear regression, low EBC pH was associated with high BMI, high BAL neutrophil counts, low prebronchodilator FEV(1) ratio, high allergy symptoms, race other than white, and gastroesophageal reflux symptoms. CONCLUSION Asthma is a complex syndrome. Subjects who are not experiencing an exacerbation but have low EBC pH appear to be a unique subpopulation.
Collapse
Affiliation(s)
- Lei Liu
- Department of Public Health Sciences at the University of Virginia, Charlottesville, VA
| | | | - Serpil Erzurum
- Department of Pathobiology, the Cleveland Clinic, Cleveland, OH; Department of Pulmonary, Allergy, and Critical Care Medicine, the Cleveland Clinic, Cleveland, OH
| | | | | | - Raed A Dweik
- Department of Pathobiology, the Cleveland Clinic, Cleveland, OH; Department of Pulmonary, Allergy, and Critical Care Medicine, the Cleveland Clinic, Cleveland, OH
| | | | - Deborah Meyers
- Department of Medicine, Wake Forest University, Winston-Salem, NC
| | - William W Busse
- Department of Medicine, University of Wisconsin, Madison, WI
| | | | - Mario Castro
- Department of Medicine, Washington University, St. Louis, MO
| | | | | | | | - W Nizar Jarjour
- Department of Medicine, University of Wisconsin, Madison, WI
| | - Wendy Moore
- Department of Medicine, Wake Forest University, Winston-Salem, NC
| | - Stephen P Peters
- Department of Medicine, Wake Forest University, Winston-Salem, NC
| | | | - John F Hunt
- Department of Pediatrics, Charlottesville, VA
| | | |
Collapse
|
6
|
Chen LC, Chen JY, Hour AL, Shiau CY, Hui CF, Wu JL. Molecular cloning and functional analysis of zebrafish (Danio rerio) chemokine genes. Comp Biochem Physiol B Biochem Mol Biol 2008; 151:400-9. [DOI: 10.1016/j.cbpb.2008.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 08/14/2008] [Accepted: 08/15/2008] [Indexed: 01/16/2023]
|
7
|
Do R, Bartlett KH, Dimich-Ward H, Chu W, Kennedy SM. Biomarkers of airway acidity and oxidative stress in exhaled breath condensate from grain workers. Am J Respir Crit Care Med 2008; 178:1048-54. [PMID: 18723434 DOI: 10.1164/rccm.200711-1731oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Grain workers report adverse respiratory symptoms due to exposures to grain dust and endotoxin. Studies have shown that biomarkers in exhaled breath condensate (EBC) vary with the severity of airway inflammation. OBJECTIVES The purpose of the study was to evaluate biomarkers of airway acidity (pH and ammonium [NH(4)(+)]) and oxidative stress (8-isoprostane) in the EBC of grain workers. METHODS A total of 75 workers from 5 terminal elevators participated. In addition to EBC sampling, exposure monitoring for inhalable grain dust and endotoxin was performed; spirometry, allergy testing, and a respiratory questionnaire derived from that of the American Thoracic Society were administered. MEASUREMENTS AND MAIN RESULTS Dust and endotoxin levels ranged from 0.010 to 13 mg/m(3) (median, 1.0) and 8.1 to 11,000 endotoxin units/m(3) (median, 610) respectively. EBC pH values varied from 4.3 to 8.2 (median, 7.9); NH(4)(+) values from 22 to 2,400 microM (median, 420); and 8-isoprostane values from 1.3 to 45 pg/ml (median, 11). Univariate and multivariable analyses revealed a consistent effect of cumulative smoking and obesity with decreased pH and NH(4)(+), and intensity of grain dust and endotoxin with increased 8-isoprostane. Duration of work on the test day was associated with decreased pH and NH(4)(+), whereas duration of employment in the industry was associated with decreased 8-isoprostane. CONCLUSIONS Chronic exposures are associated with airway acidity, whereas acute exposures are more closely associated with oxidative stress. These results suggest that the collection of EBC may contribute to predicting the pathological state of the airways of workers exposed to acute and chronic factors.
Collapse
Affiliation(s)
- Ron Do
- Experimental Medicine Program, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | |
Collapse
|
8
|
Abstract
Although challenging to study, researchers recently recognized the relevance of airway pH to the pathophysiology of several respiratory diseases, ranging from asthma and cystic fibrosis to pneumonia. The airway epithelium is extraordinarily sensitive to acid. Gastroesophageal reflux can and does cause respiratory symptoms, through both neurally mediated pathways and direct aspiration. Direct aspiration has a variety of immunologic, biochemical, and physiologic effects that aggravate asthma and other respiratory diseases, yet strategies to diagnose and treat gastroesophageal reflux-related respiratory symptoms remain imprecise.
Collapse
|
9
|
Clauss R, Mayes J, Hilton P, Lawrenson R. The influence of weather and environment on pulmonary embolism: pollutants and fossil fuels. Med Hypotheses 2005; 64:1198-201. [PMID: 15823716 DOI: 10.1016/j.mehy.2004.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Accepted: 11/16/2004] [Indexed: 11/28/2022]
Abstract
Previous publications have highlighted seasonal variations in the incidence of thrombosis and pulmonary embolism, and that weather patterns can influence these. While medical risk factors for pulmonary thrombo-embolism such as age, obesity, hypercoagulable states, cancer, previous thrombo-embolism, immobility, limb paralysis, surgery, major illness, trauma, hypotension, tachypnoea and right ventricular hypokinesis are not directly implicated regarding environmental factors such as weather, they could be influenced indirectly by these. This would be especially relevant in polluted areas that are associated with a higher pulmonary embolism risk. Routine nuclear medicine lung ventilation/perfusion studies (V/Q scans) of 2071 adult patients referred to the nuclear medicine department of the Royal Surrey County Hospital in Guildford, UK, between January 1998 and October 2002 were reviewed and 316 of these patients were classified as positive for pulmonary embolism with high probability scan on PIOPED criteria. The occurrence of positive scans was compared to environmental factors such as temperature, humidity, vapour pressure, air pressure and rainfall. Multiple linear regression was used to establish the significance of these relations. The incidence of pulmonary embolism was positively related to vapour pressure and rainfall. The most significant relation was to vapour pressure (p=0.010) while rainfall was less significant (p=0.017). There was no significant relation between pulmonary embolism and air pressure, humidity or temperature. It is postulated that rainfall and water vapour may be contributary factors in thrombosis and pulmonary embolism by way of pollutants that are carried as condensation nuclei in micro-droplets of water. In particular, fossil fuel pollutants are implicated as these condensation nuclei. Pollutants may be inhaled by populations exposed to windborne vapour droplets in cities or airports. Polluted vapour droplets may be absorbed by the lung to hasten coagulation cascades in the blood. This may lead to thrombosis and increased pulmonary embolism under high vapour pressure conditions. With combined factors such as pre-existing ill health or immobility on long flights, the risk of thrombosis and consequent embolism might increase substantially.
Collapse
Affiliation(s)
- Ralf Clauss
- Nuclear Medicine, Royal Surrey County Hospital, Egerton Road, Guildford, Surrey GU27XX, UK.
| | | | | | | |
Collapse
|
10
|
Abstract
Although alteration of airway pH may serve an innate host defense capacity, it also is implicated in the pathophysiology of obstructive airway diseases. Acid-induced asthma appears in association with gastroesophageal reflux after accidental inhalation of acid (fog, pollution, and workplace exposure) and in the presence of altered airway pH homeostasis. Endogenous and exogenous exposures to acids evoke cough, bronchoconstriction, airway hyperreactivity, microvascular leakage, and heightened production of mucous, fluid, and nitric oxide. Abnormal acidity of the airways is reflected in exhaled breath assays. The intimate mechanisms of acid-induced airway obstruction are dependent on activation of capsaicin-sensitive sensory nerves. Protons activate these nerves with the subsequent release of tachykinins (major mediators of this pathway) that, in conjunction with kinins, nitric oxide, oxygen radicals, and proteases, modulate diverse aspects of airway dysfunction and inflammation. The recognition that acid stress might initiate or exacerbate airway obstructive symptomatology has prompted the consideration of new therapies targeting pH homeostasis.
Collapse
|
11
|
Teramoto S, Tanaka H, Kaneko S, Abe S. Neurokinin-1 and neurokinin-2 antagonism inhibits long-term acid fog-induced airway hyperresponsiveness. Chest 2003; 123:524-9. [PMID: 12576376 DOI: 10.1378/chest.123.2.524] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND We recently reported that airway hyperresponsiveness (AHR) induced by a 6-h exposure to sulfuric acid (H(2)SO(4)) was inhibited by either the neurokinin (NK)-1 receptor antagonist, FK888, or the NK-2 receptor antagonist, SR48968, when administered immediately before the exposure. The aims of this study were to determine whether these antagonists have any therapeutic efficiency against AHR after long-term H(2)SO(4) inhalation and to elucidate the mechanisms in ovalbumin sensitized guinea pigs. METHODS Specific airway resistance (sRaw), AHR, and BAL fluid were analyzed after an 8-week exposure to H(2)SO(4) aerosol (82 mg/m(3), pH 1.7, 40 mOsm) or hypotonic saline solution (pH 5.9, 40 mOsm) as a control. The H(2)SO(4) group then received a 2-week treatment with FK888, SR48968, or vehicle. RESULTS The AHR and the eosinophil count in BAL fluid were significantly increased in the H(2)SO(4) group compared to control animals, while sRaw was significantly elevated in both groups after the 8-week exposure. Treatment with both FK888 and SR48968 significantly reduced the AHR and tended to inhibit eosinophilia in BAL fluid, but sRaw did not change. The degree of AHR improvement with SR48968 was much larger than with FK888. CONCLUSION Our results show that both NK-1 and NK-2 receptor antagonists inhibited long-term H(2)SO(4)-induced AHR in sensitized guinea pigs, and the effect was much greater with an NK-2 antagonist. We suggest that NK-1 or NK-2 antagonism might partially inhibit the H(2)SO(4)-induced influx of eosinophils into the lung.
Collapse
Affiliation(s)
- Shin Teramoto
- Third Department of Internal Medicine, Sapporo Medical University School of Medicine, Japan.
| | | | | | | |
Collapse
|