1
|
Albanawany NM, Samy DM, Zahran N, El-Moslemany RM, Elsawy SM, Abou Nazel MW. Histopathological, physiological and biochemical assessment of resveratrol nanocapsules efficacy in bleomycin-induced acute and chronic lung injury in rats. Drug Deliv 2022; 29:2592-2608. [PMID: 35945895 PMCID: PMC9373765 DOI: 10.1080/10717544.2022.2105445] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Acute lung injury (ALI) is a life-threatening illness which may progress to chronic pulmonary fibrosis (CPF). Resveratrol (RSV), a natural polyphenol, is known to exert several pharmacological effects on lung injury. However, its physicochemical properties and pharmacokinetic profile limit its clinical applications. In this study, RSV was loaded into lipid nanocapsules (LNCs) aiming to overcome these limitations. RSV-LNCs were prepared by phase inversion method and showed small uniform particle size (∼55 nm, PdI 0.04) with high entrapment efficiency >99%. The efficacy of RSV-LNCs in the prophylaxis against ALI and treatment of CPF was investigated in bleomycin-induced lung injury. For assessment of ALI, rats were administered a single oral dose of RSV (10 mg/kg) either free or as RSV-LNCs 4 h before bleomycin and euthanized 3 days later. For CPF, treatments in the same dose were given daily from days 10–20 after bleomycin and rats were euthanized on day-21. Results showed enhanced beneficial role for RSV-LNCs, compared to RSV, in the prevention of ALI as demonstrated by preservation of pulmonary microscopic and ultrastructural architecture and improvement of pulmonary functions. Analysis of BALF revealed reduction in oxidative stress markers, IL-6 level, leukocytosis and neutrophilia. iNOS and c-caspase 3 immunohistochemical expression and CD68+ cells immunofluorescence were inhibited. However, RSV-LNCs failed to show any improvement in oxidative stress, chronic inflammation, apoptosis and collagen deposition in CPF. In conclusion, RSV-LNCs are promising nanoplatforms for mitigating ALI detrimental effects. Future research investigating higher doses and longer durations of treatment is recommended to evaluate RSV-LNCs anti-fibrotic potential in CPF.
Collapse
Affiliation(s)
- Neama M Albanawany
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Doaa M Samy
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha Zahran
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Shefaa Mf Elsawy
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Maha W Abou Nazel
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Ji Y, Bourke SJ, Spears M, Wain LV, Boyd G, Lynch PP, Cunningham M, Boyd K, Donnelly I, Kohno N, McSharry C. Krebs von den Lungen-6 (KL-6) is a pathophysiological biomarker of early-stage acute hypersensitivity pneumonitis among pigeon fanciers. Clin Exp Allergy 2020; 50:1391-1399. [PMID: 32966647 DOI: 10.1111/cea.13744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/10/2020] [Accepted: 08/31/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Identifying early stages of hypersensitivity pneumonitis (HP) is hampered by variable presentation, heterogeneous or undetected causal antigens and lack of gold-standard biomarkers. Krebs von den Lungen (KL)-6 is pathophysiological biomarker of alveolar epithelial damage. Pigeon fanciers, susceptible to HP, provide a model to investigate early HP. OBJECTIVE To test the hypothesis that plasma concentrations of KL-6 are increased in early-stage acute HP. METHODS Clinical history, spirometry and blood samples were obtained from pigeon fanciers, 20 with intermittent acute symptoms indicative of developing HP, 27 with no symptoms and 10 healthy subjects with no avian exposure. Plasma KL-6 (units/mL) and pigeon antigen-specific IgG antibody were quantified by enzyme immunoassay. Blood lymphocytes were quantified by flow cytometry and antigen specificity by in vitro cytokine production. RESULTS KL-6 was higher in fanciers than controls, median (IQR) 452 (244, 632) vs 274 (151, 377), P = .01. Although fanciers with symptoms had similar antigen exposure and lung function, they had higher KL-6 than those without, 632 (468, 1314) vs 320 (200, 480), P < .001. KL-6 correlated with IgG antibody titre in those with symptoms, r = .591, P = .006. High KL-6, irrespective of symptom category, was associated with higher antibody (P = .006) and lymphocyte proliferation (P = .041), and lower CD4+ T lymphocyte proportion (P = .032). CONCLUSION AND CLINICAL RELEVANCE Raised KL-6 is associated with acute symptoms of early-stage HP, and its correlation with antibody may support therapeutic strategies when HP is suspected. KL-6 may act as a mechanistic biomarker of early pathogenesis by linking lung pathophysiological changes with an endotype of immune hypersensitivity.
Collapse
Affiliation(s)
- Yuan Ji
- Institute of Infection, Immunity and Inflammation, Glasgow University, Glasgow, UK
| | - Stephen J Bourke
- Department of Respiratory Medicine, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Mark Spears
- Department of Respiratory Medicine, Forth Valley Royal Hospital, Larbert, UK
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK.,National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Gavin Boyd
- Department of Respiratory Medicine, Stobhill Hospital, Glasgow, UK
| | | | - Matthew Cunningham
- Institute of Infection, Immunity and Inflammation, Glasgow University, Glasgow, UK
| | | | - Iona Donnelly
- Institute of Infection, Immunity and Inflammation, Glasgow University, Glasgow, UK
| | | | - Charles McSharry
- Institute of Infection, Immunity and Inflammation, Glasgow University, Glasgow, UK
| |
Collapse
|
3
|
Confalonieri M, Buratti E, Grassi G, Bussani R, Chilosi M, Farra R, Abrami M, Stuani C, Salton F, Ficial M, Confalonieri P, Zandonà L, Romano M. Keratin14 mRNA expression in human pneumocytes during quiescence, repair and disease. PLoS One 2017; 12:e0172130. [PMID: 28199407 PMCID: PMC5310884 DOI: 10.1371/journal.pone.0172130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/31/2017] [Indexed: 02/07/2023] Open
Abstract
The lung alveoli slowly self-renew pneumocytes, but their facultative regeneration capacity is rapidly efficient after an injury, so fibrosis infrequently occurs. We recently observed Keratin 14 (KRT14) expression during diffuse alveolar damage (DAD), but not in controls. We wonder if KRT14 may be a marker of pneumocyte transition from quiescence to regeneration. Quantitative PCR and Western blot analyses highlighted the presence of KRT14 (mRNA and protein) only in human lung samples with DAD or interstitial lung disease (ILD). In the exponentially growing cell lines A549 and H441, the mRNA and protein levels of KRT14 peaked at day one after cell seeding and decreased at day two, opposite to what observed for the proliferation marker E2F1. The inverse relation of KRT14 versus E2F1 expression holds true also for other proliferative markers, such as cyclin E1 and cyclin D1. Of interest, we also found that E2F1 silencing caused cell cycle arrest and increased KRT14 expression, whilst E2F1 stimulation induced cell cycle progression and decreased KRT14. KRT14 also increased in proliferative pneumocytes (HPAEpiC) just before transdifferentiation. Overall, our results suggest that KRT14 is a viable biomarker of pneumocyte activation, and repair/regeneration. The involvement of KRT14 in regenerative process may suggest a novel pharmaceutical target to accelerate lung repair.
Collapse
Affiliation(s)
- Marco Confalonieri
- Pulmonology Department, University Hospital of Cattinara, Trieste, Italy
| | - Emanuele Buratti
- Molecular Pathology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Rossana Bussani
- Institute of Pathologic Anatomy, University of Trieste, Trieste, Italy
| | - Marco Chilosi
- Department of Diagnostic and Public Health, Pathology Unit, University of Verona, Verona, Italy
| | - Rossella Farra
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Cristiana Stuani
- Molecular Pathology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Francesco Salton
- Pulmonology Department, University Hospital of Cattinara, Trieste, Italy
| | - Miriam Ficial
- Department of Diagnostic and Public Health, Pathology Unit, University of Verona, Verona, Italy
| | - Paola Confalonieri
- Pulmonology Department, University Hospital of Cattinara, Trieste, Italy
| | - Lorenzo Zandonà
- Institute of Pathologic Anatomy, University of Trieste, Trieste, Italy
| | - Maurizio Romano
- Molecular Pathology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
4
|
Go H, Koh J, Kim HS, Jeon YK, Chung DH. Expression of toll-like receptor 2 and 4 is increased in the respiratory epithelial cells of chronic idiopathic interstitial pneumonia patients. Respir Med 2014; 108:783-92. [PMID: 24613046 DOI: 10.1016/j.rmed.2013.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/22/2013] [Accepted: 12/16/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Idiopathic interstitial pneumonia (IIP) is characterized by chronic interstitial inflammation and fibrosis. Although mounting evidence has suggested that toll-like receptor (TLR) 2 and TLR4 are involved in the pathogenesis of non-infectious lung injury in vitro and in mouse models, their roles in human IIP remain unknown. METHODS To address this issue, we investigated the expression patterns of TLR2 and TLR4 by immunohistochemistry in resected lung tissues from patients with usual interstitial pneumonia (UIP) or nonspecific interstitial pneumonia (NSIP). RESULTS Type II pneumocytes, bronchial epithelial cells (BECs), and alveolar macrophages accounted for the majority of TLR2- and TLR4-expressing cells in both UIP and NSIP. The numbers of TLR2 and TLR4-positive respiratory epithelial (RE) cells, including type II pneumocytes and BECs, were significantly greater in UIP and NSIP than in the control. In particular, the numbers of TLR2-positive RE cells were much greater in UIP than in NSIP. The intensities of TLR2 and TLR4 expression in type II pneumocytes were also significantly stronger in UIP and NSIP than in the control. A comparison of the TLR expression patterns between the fibroblastic and fibrotic areas in UIP indicated that the numbers TLR2 and TLR4-positive RE cells were similar in fibroblastic areas, whereas the TLR2-positive RE cells outnumbered the TLR4-positive RE cells in the fibrotic areas. CONCLUSIONS This study demonstrates that RE cells over-express TLR2 and TLR4 in the lungs of IIP patients. These findings suggest that high expression of TLRs may contribute to the pathogenesis of human IIP.
Collapse
Affiliation(s)
- Heounjeong Go
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Republic of Korea; Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine,88 Olympic-ro, 43-gil, Songpa-gu, Seoul 138-736, Republic of Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Republic of Korea
| | - Hye Sung Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Republic of Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Republic of Korea.
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Republic of Korea; Ischemic/Hypoxia Institute, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Republic of Korea.
| |
Collapse
|
5
|
Honda T, Uehara T, Sano K. Heterogeneous proliferation of type II pneumocytes in usual interstitial pneumonia. Pathology 2006; 38:433-6. [PMID: 17008282 DOI: 10.1080/00313020600922462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AIMS Heterogeneous alveolar fibrosis, the most specific pathological finding in idiopathic pulmonary fibrosis (IPF)/usual interstitial pneumonia (UIP), enables differentiation of UIP from other interstitial pneumonias. Heterogeneous and mild alveolar injury may occur, and this will be a clue to clarifying the pathogenesis of UIP. METHODS We examined nine lung biopsy specimens obtained from patients with IPF and five control specimens. We semi-quantitatively examined alveolar injury by measuring the density of type II pneumocytes. Serial 3 microm sections were stained with anti-Thomsen-Friedenreich (TF) antibody. We divided each UIP lesion into three areas: area near fibrosis (fibrous area), area with an apparently normal alveolar structure (normal area), and area between the fibrous and normal areas (intervening area). RESULTS Immunostaining with anti-TF antibody stained the apical surface of type II pneumocytes and enabled us to recognise and count type II pneumocytes. The density of type II pneumocytes was increased in the fibrous area, and gradually decreased away from the fibrous lesion. The densities of type II pneumocytes in the above three areas were, respectively: 13.9+/-2.0, 7.2+/-1.6, and 9.5+/-1.6/mm alveolar length. The densities in the fibrous and intervening areas were significantly greater than those in the normal area and in control specimens (6.6+/-0.7/mm). CONCLUSIONS If the density of type II pneumocytes indicates their degree of regeneration after alveolar injury, it reflects the severity of the pre-existing injury. This study confirms that heterogeneous and mild alveolar injury occurs in UIP.
Collapse
Affiliation(s)
- Takayuki Honda
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan.
| | | | | |
Collapse
|
6
|
Vicent S, Garayoa M, López-Picazo JM, Lozano MD, Toledo G, Thunnissen FBJM, Manzano RG, Montuenga LM. Mitogen-activated protein kinase phosphatase-1 is overexpressed in non-small cell lung cancer and is an independent predictor of outcome in patients. Clin Cancer Res 2004; 10:3639-49. [PMID: 15173070 DOI: 10.1158/1078-0432.ccr-03-0771] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE An increase in the activity of the mitogen-activated protein kinases (MAPKs) has been correlated with a more malignant phenotype in several tumor models in vitro and in vivo. A key regulatory mechanism of the MAPKs [extracellular signal-regulated kinase (ERK); c-jun NH(2)-terminal kinase (JNK); and p38] is the dual specificity phosphatase CL100, also called MAPK phosphatase-1 (MKP-1). This study was designed to examine the involvement of CL100/MKP-1 and stress-related MAPKs in lung cancer. EXPERIMENTAL DESIGN We assessed the expression of CL100/MKP-1 and the activation of the MAPKs in a panel of 18 human cell lines [1 primary normal bronchial epithelium, 8 non-small cell lung cancer (NSCLC), 7 small cell lung cancer (SCLC), and 2 carcinoids] and in 108 NSCLC surgical specimens. RESULTS In the cell lines, CL100/MKP-1 expression was substantially higher in NSCLC than in SCLC. P-ERK, P-JNK, and P-p38 were activated in SCLC and NSCLC, but the degree of their activation was variable. Immunohistochemistry in NSCLC resection specimens showed high levels of CL100/MKP-1 and activation of the three MAPK compared with normal lung. In univariate analysis, no relationship was found among CL100/MKP-1 expression and P-ERK, P-JNK, or P-p38. Interestingly, high CL100/MKP-1 expression levels independently predicted improved survival in multivariate analysis. JNK activation associated with T(1-2) and early stage, whereas ERK activation correlated with late stages and higher T and N. Neither JNK nor ERK activation were independent prognostic factors when studied for patient survival. CONCLUSIONS Our data indicate the relevance of MAPKs and CL100/MKP-1 in lung cancer and point at CL100/MKP-1 as a potential positive prognostic factor in NSCLC. Finally, our study supports the search of new molecular targets for lung cancer therapy within the MAPK signaling pathway.
Collapse
Affiliation(s)
- Silvestre Vicent
- Division of Oncology, Center for Applied Medical Research, Clínica Universitaria/Facultad de Medicina, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | |
Collapse
|