1
|
Munekane M, Ozaki M, Mitani Y, Sakaida N, Sano K, Yamasaki T, Mukai T, Mishiro K, Fuchigami T, Ogawa K. Development of Radiolabeled Probes with Improved Imaging Contrast by Releasing Urinary Excretable Radiolabeled Compounds from Thermosensitive Liposomes in the Blood. Mol Pharm 2024; 21:5728-5735. [PMID: 39445871 DOI: 10.1021/acs.molpharmaceut.4c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
In this study, thermosensitive liposomes (TSLs) encapsulating urinary excretable radiolabeled compounds were developed. We considered that the release of the radiolabeled compounds from the TSLs in the blood by heating the blood in peripheral tissues can achieve rapid clearance of radioactivity, resulting in improved imaging contrast. To demonstrate the hypothesis, classical TSLs mainly composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine with a phase transition temperature of 41 °C were used. The optimal composition of TSLs was determined by an in vitro release test using [111In]In-diethylenetriaminepentaacetic acid (DTPA)-encapsulated liposomes, which showed that the cholesterol content drastically changed the release characteristics of classical TSLs. In the biodistribution experiments, [111In]In-DTPA was significantly released from the TSLs in the blood when the tails of mice were heated at 43 °C. The tumor-to-blood ratio of the heated group was three times higher than that of the nonheated group, and accumulation in normal tissues of the heated group was lower than that of the nonheated group. These results demonstrate the usefulness of the method using TSLs to encapsulate urinary excretable radiolabeled compounds for improving imaging contrast.
Collapse
Affiliation(s)
- Masayuki Munekane
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Miki Ozaki
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yuri Mitani
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Natsuki Sakaida
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Kohei Sano
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Toshihide Yamasaki
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Takahiro Mukai
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takeshi Fuchigami
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kazuma Ogawa
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
2
|
Chakravarty R, Rohra N, Jadhav S, Sarma HD, Jain R, Chakraborty S. Biochemical separation of Cetuximab-Fab from papain-digested antibody fragments and radiolabeling with 64Cu for potential use in radioimmunotheranostics. Appl Radiat Isot 2023; 196:110795. [PMID: 37004293 DOI: 10.1016/j.apradiso.2023.110795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 03/29/2023]
Abstract
Engineered Fab fragments of monoclonal antibodies (mAbs) after radiolabeling with suitable radiometals have the potential to play a key role in personalized radioimmunotheranostics of cancer patients. In this study, we have generated Fab fragment of Cetuximab, a mAb targeting epidermal growth factor receptor (EGFR) expression and purified from the Fc and other fragments by ultrafiltration and affinity chromatography. The Cetuximab-Fab was conjugated with a suitable bifunctional chelator and radiolabeled with no-carrier-added (NCA) 64Cu produced via 64Zn (n, p) 64Cu reaction in a nuclear reactor. The radioimmunoconjugate obtained after size exclusion chromatographic separation possessed >95% radiochemical purity and it retained its integrity over at least three half-lives of the radiometal. Biodistribution studies was performed in fibrosarcoma tumor bearing Swiss mice, which demonstrated the explicit need for purification of the Cetuximab-Fab from Fc fragments. Enhanced and rapid tumor uptake with decent tumor-to-background ratio with prolonged retention was observed when radiolabeled purified Cetuximab-Fab was intravenously administered in animal models. Overall, this preclinical study established the pivotal role of separation science and technology to obtain the radioimmunoconjugate with requisite purity in order to demonstrate optimal pharmacokinetics and maximized treatment efficacy.
Collapse
|
3
|
Chakravarty R, Sen N, Ghosh S, Sarma HD, Guleria A, Singh KK, Chakraborty S. Flow synthesis of intrinsically radiolabeled and renal-clearable ultrasmall [198Au]Au nanoparticles in a PTFE microchannel. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
4
|
Dias LM, de Keijzer MJ, Ernst D, Sharifi F, de Klerk DJ, Kleijn TG, Desclos E, Kochan JA, de Haan LR, Franchi LP, van Wijk AC, Scutigliani EM, Fens MH, Barendrecht AD, Cavaco JEB, Huang X, Xu Y, Pan W, den Broeder MJ, Bogerd J, Schulz RW, Castricum KC, Thijssen VL, Cheng S, Ding B, Krawczyk PM, Heger M. Metallated phthalocyanines and their hydrophilic derivatives for multi-targeted oncological photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112500. [PMID: 35816857 DOI: 10.1016/j.jphotobiol.2022.112500] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/27/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIM A photosensitizer (PS) delivery and comprehensive tumor targeting platform was developed that is centered on the photosensitization of key pharmacological targets in solid tumors (cancer cells, tumor vascular endothelium, and cellular and non-cellular components of the tumor microenvironment) before photodynamic therapy (PDT). Interstitially targeted liposomes (ITLs) encapsulating zinc phthalocyanine (ZnPC) and aluminum phthalocyanine (AlPC) were formulated for passive targeting of the tumor microenvironment. In previous work it was established that the PEGylated ITLs were taken up by cultured cholangiocarcinoma cells. The aim of this study was to verify previous results in cancer cells and to determine whether the ITLs can also be used to photosensitize cells in the tumor microenvironment and vasculature. Following positive results, rudimentary in vitro and in vivo experiments were performed with ZnPC-ITLs and AlPC-ITLs as well as their water-soluble tetrasulfonated derivatives (ZnPCS4 and AlPCS4) to assemble a research dossier and bring this platform closer to clinical transition. METHODS Flow cytometry and confocal microscopy were employed to determine ITL uptake and PS distribution in cholangiocarcinoma (SK-ChA-1) cells, endothelial cells (HUVECs), fibroblasts (NIH-3T3), and macrophages (RAW 264.7). Uptake of ITLs by endothelial cells was verified under flow conditions in a flow chamber. Dark toxicity and PDT efficacy were determined by cell viability assays, while the mode of cell death and cell cycle arrest were assayed by flow cytometry. In vivo systemic toxicity was assessed in zebrafish and chicken embryos, whereas skin phototoxicity was determined in BALB/c nude mice. A PDT efficacy pilot was conducted in BALB/c nude mice bearing human triple-negative breast cancer (MDA-MB-231) xenografts. RESULTS The key findings were that (1) photodynamically active PSs (i.e., all except ZnPCS4) were able to effectively photosensitize cancer cells and non-cancerous cells; (2) following PDT, photodynamically active PSs were highly toxic-to-potent as per anti-cancer compound classification; (3) the photodynamically active PSs did not elicit notable systemic toxicity in zebrafish and chicken embryos; (4) ITL-delivered ZnPC and ZnPCS4 were associated with skin phototoxicity, while the aluminum-containing PSs did not exert detectable skin phototoxicity; and (5) ITL-delivered ZnPC and AlPC were equally effective in their tumor-killing capacity in human tumor breast cancer xenografts and superior to other non-phthalocyanine PSs when appraised on a per mole administered dose basis. CONCLUSIONS AlPC(S4) are the safest and most effective PSs to integrate into the comprehensive tumor targeting and PS delivery platform. Pending further in vivo validation, these third-generation PSs may be used for multi-compartmental tumor photosensitization.
Collapse
Affiliation(s)
- Lionel Mendes Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; CICS-UBI, Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | - Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Daniël Ernst
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | - Farangis Sharifi
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands
| | - Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Emilie Desclos
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands
| | - Jakub A Kochan
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands
| | - Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
| | - Leonardo P Franchi
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences (ICB 2), Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Albert C van Wijk
- Department of Surgery, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Enzo M Scutigliani
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands
| | - Marcel H Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - José E B Cavaco
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Xuan Huang
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China
| | - Ying Xu
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, PR China
| | - Weiwei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, PR China
| | - Marjo J den Broeder
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, the Netherlands
| | - Jan Bogerd
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, the Netherlands
| | - Rüdiger W Schulz
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, the Netherlands
| | - Kitty C Castricum
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
| | - Victor L Thijssen
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
| | - Shuqun Cheng
- Department of Hepatic Surgery VI, The Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, PR China
| | - Baoyue Ding
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China.
| | - Przemek M Krawczyk
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands; Laboratory of Experimental Oncology and Radiobiology (LEXOR), Cancer Center Amsterdam, Amsterdam UMC Location Academic Medical Center, Amsterdam, the Netherlands
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China; Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, the Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
5
|
Munekane M, Kosugi A, Yamasaki M, Watanabe Y, Kannaka K, Sano K, Yamasaki T, Ogawara KI, Mukai T. Biodistribution study of indium-111-labeled PEGylated niosomes as novel drug carriers for tumor-targeting. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
6
|
Theranostic Radiolabeled Nanomaterials for Molecular Imaging and potential Immunomodulation Effects. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Đorđević S, Gonzalez MM, Conejos-Sánchez I, Carreira B, Pozzi S, Acúrcio RC, Satchi-Fainaro R, Florindo HF, Vicent MJ. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv Transl Res 2022; 12:500-525. [PMID: 34302274 PMCID: PMC8300981 DOI: 10.1007/s13346-021-01024-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
The field of nanomedicine has significantly influenced research areas such as drug delivery, diagnostics, theranostics, and regenerative medicine; however, the further development of this field will face significant challenges at the regulatory level if related guidance remains unclear and unconsolidated. This review describes those features and pathways crucial to the clinical translation of nanomedicine and highlights considerations for early-stage product development. These include identifying those critical quality attributes of the drug product essential for activity and safety, appropriate analytical methods (physical, chemical, biological) for characterization, important process parameters, and adequate pre-clinical models. Additional concerns include the evaluation of batch-to-batch consistency and considerations regarding scaling up that will ensure a successful reproducible manufacturing process. Furthermore, we advise close collaboration with regulatory agencies from the early stages of development to assure an aligned position to accelerate the development of future nanomedicines.
Collapse
Affiliation(s)
- Snežana Đorđević
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, 46012, Valencia, Av, Spain
| | - María Medel Gonzalez
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, 46012, Valencia, Av, Spain
| | - Inmaculada Conejos-Sánchez
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, 46012, Valencia, Av, Spain
| | - Barbara Carreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Rita C Acúrcio
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel.
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal.
| | - María J Vicent
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, 46012, Valencia, Av, Spain.
| |
Collapse
|
8
|
Abstract
8-Hydroxyquinoline (8-HQ, oxine) is a small, monoprotic, bicyclic aromatic compound and its relative donor group orientation imparts impressive bidentate metal chelating abilities that have been exploited in a vast array of applications over decades. 8-HQ and its derivatives have been explored in medicinal applications including anti-neurodegeneration, anticancer properties, and antimicrobial activities. One long established use of 8-HQ in medicinal inorganic chemistry is the coordination of radioactive isotopes of metal ions in nuclear medicine. The metal-oxine complex with the single photon emission computed tomography (SPECT) imaging isotope [111In]In3+ was developed in the 1970s and 1980s to radiolabel leukocytes for inflammation and infection imaging. The [111In][In(oxine)3] complex functions as an ionophore: a moderately stable lipophilic complex to enter cells; however, inside the cell environment [111In]In3+ undergoes exchange and remains localized. As new developments have progressed towards radiopharmaceuticals capable of both imaging and therapy (theranostics), 8-HQ has been re-explored in recent years to investigate its potential to chelate larger radiometal ions with longer half-lives and different indications. Further, metal-oxine complexes have been used to study liposomes and other nanomaterials by tracking these nanomedicines in vivo. Expanding 8-HQ to multidentate ligands for highly thermodynamically stable and kinetically inert complexes has increased the possibilities of this small molecule in nuclear medicine. This article outlines the historic use of metal-oxine complexes in inorganic radiopharmaceutical chemistry, with a focus on recent advances highlighting the possibilities of developing higher denticity, targeted bifunctional chelators with 8-HQ.
Collapse
Affiliation(s)
- Lily Southcott
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3, Canada.,Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
9
|
Kaduri M, Sela M, Kagan S, Poley M, Abumanhal-Masarweh H, Mora-Raimundo P, Ouro A, Dahan N, Hershkovitz D, Shklover J, Shainsky-Roitman J, Buganim Y, Schroeder A. Targeting neurons in the tumor microenvironment with bupivacaine nanoparticles reduces breast cancer progression and metastases. SCIENCE ADVANCES 2021; 7:eabj5435. [PMID: 34613777 PMCID: PMC8494443 DOI: 10.1126/sciadv.abj5435] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Neurons within the tumor microenvironment promote cancer progression; thus, their local targeting has potential clinical benefits. We designed PEGylated lipid nanoparticles loaded with a non-opioid analgesic, bupivacaine, to target neurons within breast cancer tumors and suppress nerve-to-cancer cross-talk. In vitro, 100-nm nanoparticles were taken up readily by primary neurons, trafficking from the neuronal body and along the axons. We demonstrate that signaling between triple-negative breast cancer cells (4T1) and neurons involves secretion of cytokines stimulating neurite outgrowth. Reciprocally, neurons stimulated 4T1 proliferation, migration, and survival through secretion of neurotransmitters. Bupivacaine curbs neurite growth and signaling with cancer cells, inhibiting cancer cell viability. In vivo, bupivacaine-loaded nanoparticles intravenously administered suppressed neurons in orthotopic triple-negative breast cancer tumors, inhibiting tumor growth and metastatic dissemination. Overall, our findings suggest that reducing nerve involvement in tumors is important for treating cancer.
Collapse
Affiliation(s)
- Maya Kaduri
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Mor Sela
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Shaked Kagan
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Maria Poley
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Hanan Abumanhal-Masarweh
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Patricia Mora-Raimundo
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Alberto Ouro
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
- Department of Developmental Biology and Cancer Research and The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Nitsan Dahan
- Life Sciences and Engineering Infrastructure Center, Lorry I. Lokey Interdisciplinary Center, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Dov Hershkovitz
- Pathology Institute, Sourasky Medical Center, Tel Aviv, Israel
| | - Jeny Shklover
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Janna Shainsky-Roitman
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research and The Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Avi Schroeder
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
- Corresponding author.
| |
Collapse
|
10
|
Pellico J, Gawne PJ, T M de Rosales R. Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev 2021; 50:3355-3423. [PMID: 33491714 DOI: 10.1039/d0cs00384k] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanomaterials offer unique physical, chemical and biological properties of interest for medical imaging and therapy. Over the last two decades, there has been an increasing effort to translate nanomaterial-based medicinal products (so-called nanomedicines) into clinical practice and, although multiple nanoparticle-based formulations are clinically available, there is still a disparity between the number of pre-clinical products and those that reach clinical approval. To facilitate the efficient clinical translation of nanomedicinal-drugs, it is important to study their whole-body biodistribution and pharmacokinetics from the early stages of their development. Integrating this knowledge with that of their therapeutic profile and/or toxicity should provide a powerful combination to efficiently inform nanomedicine trials and allow early selection of the most promising candidates. In this context, radiolabelling nanomaterials allows whole-body and non-invasive in vivo tracking by the sensitive clinical imaging techniques positron emission tomography (PET), and single photon emission computed tomography (SPECT). Furthermore, certain radionuclides with specific nuclear emissions can elicit therapeutic effects by themselves, leading to radionuclide-based therapy. To ensure robust information during the development of nanomaterials for PET/SPECT imaging and/or radionuclide therapy, selection of the most appropriate radiolabelling method and knowledge of its limitations are critical. Different radiolabelling strategies are available depending on the type of material, the radionuclide and/or the final application. In this review we describe the different radiolabelling strategies currently available, with a critical vision over their advantages and disadvantages. The final aim is to review the most relevant and up-to-date knowledge available in this field, and support the efficient clinical translation of future nanomedicinal products for in vivo imaging and/or therapy.
Collapse
Affiliation(s)
- Juan Pellico
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK.
| | | | | |
Collapse
|
11
|
Zabel MD, Mollnow L, Bender H. siRNA Therapeutics for Protein Misfolding Diseases of the Central Nervous System. Methods Mol Biol 2021; 2282:377-394. [PMID: 33928585 DOI: 10.1007/978-1-0716-1298-9_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nanoparticles have been used to deliver siRNA to tissues and cells to silence specific genes in diverse organisms. Research and clinical application of nanoparticles like liposomes for drug delivery requires targeting them to specific anatomic regions or cell types, while avoiding off-target effects or clearance by the liver, kidney, or the immune system. Delivery to the central nervous system (CNS) presents additional challenges to cross the blood-brain barrier (BBB) to specific cell types like neurons, astrocytes, or glia. Here, we describe the generation of three different liposomal siRNA delivery vehicles to the CNS using the thin film hydration method. Utilizing cationic or anionic liposomes protects the siRNA from serum nucleases and proteases en route. To deliver the siRNA specifically to the CNS, the liposomes are complexed to a peptide that acts as a neuronal address by binding to nicotinic acetylcholine receptors (nAchRs). When injected intravenously or instilled intranasally, these liposome-siRNA-peptide complexes (LSPCs) or peptide addressed liposome-encapsulated therapeutic siRNA (PALETS) resist serum degradation, effectively cross the BBB, and deliver siRNA to AchR-expressing cells to suppress protein expression in the CNS.
Collapse
Affiliation(s)
- Mark D Zabel
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Luke Mollnow
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Heather Bender
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
12
|
Gabizon AA, de Rosales RT, La-Beck NM. Translational considerations in nanomedicine: The oncology perspective. Adv Drug Deliv Rev 2020; 158:140-157. [PMID: 32526450 DOI: 10.1016/j.addr.2020.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 12/13/2022]
Abstract
Nanoparticles can provide effective control of the release rate and tissue distribution of their drug payload, leading to major pharmacokinetic and pharmacodynamic changes vis-à-vis the conventional administration of free drugs. In the last two decades, we have witnessed major progress in the synthesis and characterization of engineered nanoparticles for imaging and treatment of cancers, resulting in the approval for clinical use of several products and in new and promising approaches. Despite these advances, clinical applications of nanoparticle-based therapeutic and imaging agents remain limited due to biological, immunological, and translational barriers. There is a need to make high impact advances toward translation. In this review, we address biological, toxicological, immunological, and translational aspects of nanomedicine and discuss approaches to move the field forward productively. Overcoming these barriers may dramatically improve the development potential and role of nanomedicines in the oncology field and help meet the high expectations.
Collapse
|
13
|
White DT, Saxena MT, Mumm JS. Let's get small (and smaller): Combining zebrafish and nanomedicine to advance neuroregenerative therapeutics. Adv Drug Deliv Rev 2019; 148:344-359. [PMID: 30769046 PMCID: PMC6937731 DOI: 10.1016/j.addr.2019.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 01/18/2023]
Abstract
Several key attributes of zebrafish make them an ideal model system for the discovery and development of regeneration promoting therapeutics; most notably their robust capacity for self-repair which extends to the central nervous system. Further, by enabling large-scale drug discovery directly in living vertebrate disease models, zebrafish circumvent critical bottlenecks which have driven drug development costs up. This review summarizes currently available zebrafish phenotypic screening platforms, HTS-ready neurodegenerative disease modeling strategies, zebrafish small molecule screens which have succeeded in identifying regeneration promoting compounds and explores how intravital imaging in zebrafish can facilitate comprehensive analysis of nanocarrier biodistribution and pharmacokinetics. Finally, we discuss the benefits and challenges attending the combination of zebrafish and nanoparticle-based drug optimization, highlighting inspiring proof-of-concept studies and looking toward implementation across the drug development community.
Collapse
Affiliation(s)
- David T White
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Meera T Saxena
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA; Luminomics Inc., Baltimore, MD 21286, USA
| | - Jeff S Mumm
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
14
|
Witzigmann D, Uhl P, Sieber S, Kaufman C, Einfalt T, Schöneweis K, Grossen P, Buck J, Ni Y, Schenk SH, Hussner J, Meyer Zu Schwabedissen HE, Québatte G, Mier W, Urban S, Huwyler J. Optimization-by-design of hepatotropic lipid nanoparticles targeting the sodium-taurocholate cotransporting polypeptide. eLife 2019; 8:42276. [PMID: 31333191 PMCID: PMC6682401 DOI: 10.7554/elife.42276] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Active targeting and specific drug delivery to parenchymal liver cells is a promising strategy to treat various liver disorders. Here, we modified synthetic lipid-based nanoparticles with targeting peptides derived from the hepatitis B virus large envelope protein (HBVpreS) to specifically target the sodium-taurocholate cotransporting polypeptide (NTCP; SLC10A1) on the sinusoidal membrane of hepatocytes. Physicochemical properties of targeted nanoparticles were optimized and NTCP-specific, ligand-dependent binding and internalization was confirmed in vitro. The pharmacokinetics and targeting capacity of selected lead formulations was investigated in vivo using the emerging zebrafish screening model. Liposomal nanoparticles modified with 0.25 mol% of a short myristoylated HBV derived peptide, that is Myr-HBVpreS2-31, showed an optimal balance between systemic circulation, avoidance of blood clearance, and targeting capacity. Pronounced liver enrichment, active NTCP-mediated targeting of hepatocytes and efficient cellular internalization were confirmed in mice by 111In gamma scintigraphy and fluorescence microscopy demonstrating the potential use of our hepatotropic, ligand-modified nanoparticles.
Collapse
Affiliation(s)
- Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Philipp Uhl
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sandro Sieber
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Christina Kaufman
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany.,Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, INF, Heidelberg, Germany
| | - Tomaz Einfalt
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Katrin Schöneweis
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, INF, Heidelberg, Germany
| | - Philip Grossen
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jonas Buck
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, INF, Heidelberg, Germany
| | - Susanne H Schenk
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Janine Hussner
- Division of Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | - Gabriela Québatte
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Walter Mier
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, INF, Heidelberg, Germany
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
15
|
Abstract
RNA interference is a relatively new tool used to silence specific genes in diverse biological systems. The development of this promising new technique for research and therapeutic use in studying and treating neurological diseases has been hampered by the lack of an efficient way to deliver siRNA transvascularly across the blood-brain barrier (BBB) to the central nervous system (CNS). Here we describe the generation of three different liposomal siRNA delivery vehicles to the CNS using the thin film hydration method. Utilizing cationic or anionic liposomes protects the siRNA from serum nucleases and proteases en route. To deliver the siRNA specifically to the CNS, the liposomes are complexed to a peptide that acts as a neuronal address by binding to nicotinic acetylcholine receptors (nAchRs). When injected intravenously, these liposome-siRNA-peptide complexes (LSPCs) or peptide addressed liposome encapsulated therapeutic siRNA (PALETS) resist serum degradation, effectively cross the BBB and deliver siRNA to AchR-expressing cells to suppress protein expression in the CNS.
Collapse
|
16
|
Man F, Gawne PJ, T M de Rosales R. Nuclear imaging of liposomal drug delivery systems: A critical review of radiolabelling methods and applications in nanomedicine. Adv Drug Deliv Rev 2019; 143:134-160. [PMID: 31170428 PMCID: PMC6866902 DOI: 10.1016/j.addr.2019.05.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/25/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
Abstract
The integration of nuclear imaging with nanomedicine is a powerful tool for efficient development and clinical translation of liposomal drug delivery systems. Furthermore, it may allow highly efficient imaging-guided personalised treatments. In this article, we critically review methods available for radiolabelling liposomes. We discuss the influence that the radiolabelling methods can have on their biodistribution and highlight the often-overlooked possibility of misinterpretation of results due to decomposition in vivo. We stress the need for knowing the biodistribution/pharmacokinetics of both the radiolabelled liposomal components and free radionuclides in order to confidently evaluate the images, as they often share excretion pathways with intact liposomes (e.g. phospholipids, metallic radionuclides) and even show significant tumour uptake by themselves (e.g. some radionuclides). Finally, we describe preclinical and clinical studies using radiolabelled liposomes and discuss their impact in supporting liposomal drug development and clinical translation in several diseases, including personalised nanomedicine approaches.
Collapse
Affiliation(s)
- Francis Man
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Peter J Gawne
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Rafael T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom; London Centre for Nanotechnology, King's College London, Strand Campus, London WC2R 2LS, United Kingdom.
| |
Collapse
|
17
|
Farzin L, Sheibani S, Moassesi ME, Shamsipur M. An overview of nanoscale radionuclides and radiolabeled nanomaterials commonly used for nuclear molecular imaging and therapeutic functions. J Biomed Mater Res A 2018; 107:251-285. [PMID: 30358098 DOI: 10.1002/jbm.a.36550] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/08/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023]
Abstract
Recent advances in the field of nanotechnology applications in nuclear medicine offer the promise of better diagnostic and therapeutic options. In recent years, increasing efforts have been focused on developing nanoconstructs that can be used as core platforms for attaching medical radionuclides with different strategies for the purposes of molecular imaging and targeted drug delivery. This review article presents an introduction to some commonly used nanomaterials with zero-dimensional, one-dimensional, two-dimensional, and three-dimensional structures, describes the various methods applied to radiolabeling of nanomaterials, and provides illustrative examples of application of the nanoscale radionuclides or radiolabeled nanocarriers in nuclear nanomedicine. Especially, the passive and active nanotargeting delivery of radionuclides with illustrating examples for tumor imaging and therapy was reviewed and summarized. The accurate and early diagnosis of cancer can lead to increased survival rates for different types of this disease. Although, the conventional single-modality diagnostic methods such as positron emission tomography/single photon emission computed tomography or MRI used for such purposes are powerful means; most of these are limited by sensitivity or resolution. By integrating complementary signal reporters into a single nanoparticulate contrast agent, multimodal molecular imaging can be performed as scalable images with high sensitivity, resolution, and specificity. The advent of radiolabeled nanocarriers or radioisotope-loaded nanomaterials with magnetic, plasmonic, or fluorescent properties has stimulated growing interest in the developing multimodality imaging probes. These new developments in nuclear nanomedicine are expected to introduce a paradigm shift in multimodal molecular imaging and thereby opening up an era of new diagnostic medical imaging agents. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 251-285, 2019.
Collapse
Affiliation(s)
- Leila Farzin
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Shahab Sheibani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Mohammad Esmaeil Moassesi
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | | |
Collapse
|
18
|
Kleynhans J, Grobler AF, Ebenhan T, Sathekge MM, Zeevaart JR. Radiopharmaceutical enhancement by drug delivery systems: A review. J Control Release 2018; 287:177-193. [DOI: 10.1016/j.jconrel.2018.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/17/2022]
|
19
|
Bourquin J, Milosevic A, Hauser D, Lehner R, Blank F, Petri-Fink A, Rothen-Rutishauser B. Biodistribution, Clearance, and Long-Term Fate of Clinically Relevant Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704307. [PMID: 29389049 DOI: 10.1002/adma.201704307] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/20/2017] [Indexed: 05/18/2023]
Abstract
Realization of the immense potential of nanomaterials for biomedical applications will require a thorough understanding of how they interact with cells, tissues, and organs. There is evidence that, depending on their physicochemical properties and subsequent interactions, nanomaterials are indeed taken up by cells. However, the subsequent release and/or intracellular degradation of the materials, transfer to other cells, and/or translocation across tissue barriers are still poorly understood. The involvement of these cellular clearance mechanisms strongly influences the long-term fate of used nanomaterials, especially if one also considers repeated exposure. Several nanomaterials, such as liposomes and iron oxide, gold, or silica nanoparticles, are already approved by the American Food and Drug Administration for clinical trials; however, there is still a huge gap of knowledge concerning their fate in the body. Herein, clinically relevant nanomaterials, their possible modes of exposure, as well as the biological barriers they must overcome to be effective are reviewed. Furthermore, the biodistribution and kinetics of nanomaterials and their modes of clearance are discussed, knowledge of the long-term fates of a selection of nanomaterials is summarized, and the critical points that must be considered for future research are addressed.
Collapse
Affiliation(s)
- Joël Bourquin
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Ana Milosevic
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Daniel Hauser
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Roman Lehner
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Fabian Blank
- Respiratory Medicine, Department of Biomedical Research, University of Bern, Murtenstrasse 50, 3008, Bern
| | - Alke Petri-Fink
- Adolphe Merkle InstituteUniversity of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | | |
Collapse
|
20
|
Shen Z, Ye H, Kröger M, Li Y. Aggregation of polyethylene glycol polymers suppresses receptor-mediated endocytosis of PEGylated liposomes. NANOSCALE 2018; 10:4545-4560. [PMID: 29461551 DOI: 10.1039/c7nr09011k] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The PEGylated liposome, composed of an aqueous core and a fluid state lipid bilayer shell, is one of the few Food and Drug Administration (FDA) approved drug delivery platforms. To prevent the absorption of serum proteins, the surface of a liposome is decorated by hydrophilic and bio-compatible polyethylene glycol (PEG) polymers, which can significantly extend the blood circulation time of liposomes. In this work, with the help of dissipative particle dynamics (DPD) simulations, we explore how the tethered PEG polymers will affect the membrane wrapping process of PEGylated liposomes during endocytosis. Specifically, we compare the membrane wrapping process of a PEGylated rigid nanoparticle (NP) with a PEGylated liposome under identical conditions. Due to the mobility of grafted PEG polymers on the liposome's surface, the complete wrapping of a PEGylated liposome can be dramatically delayed and blocked, in comparison with a PEGylated rigid NP. For the first time, we observe the aggregation of PEG polymers in the contact region between a PEGylated liposome and the membrane, which in turn leads to a ligand-free region on the surface of the liposome during endocytosis. Subsequently, the partially wrapped PEGylated liposome can be bounced back to a less wrapped state. Through free energy analysis, we find that the aggregation of PEG polymers during the membrane wrapping process of a PEGylated liposome introduces a dramatic free energy penalty of about ∼800kBT, which is almost twice that of a PEGylated rigid NP. Here kB and T are the Boltzmann constant and temperature, respectively. Such a large energy barrier and the existence of a ligand-free region on the surface of PEGlylated liposomes prevent their membrane wrapping, thereby reducing the chance of internalization by tumor cells. Therefore, our DPD simulation results provide a possible explanation for the inefficient cellular uptake of PEGylated liposomes. In addition, we suggest that by increasing the repulsive interactions between grafted PEG polymers it might be possible to limit their aggregation, and in turn, facilitate the internalization of PEGylated liposomes. The current study provides fundamental insights into the endocytosis of PEGylated liposomes, which could help to design this platform with high efficacy for drug delivery.
Collapse
Affiliation(s)
- Zhiqiang Shen
- Department of Mechanical Engineering and Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA.
| | - Huilin Ye
- Department of Mechanical Engineering and Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA.
| | - Martin Kröger
- Department of Materials, Polymer Physics, ETH Zürich, CH-8093 Zurich, Switzerland
| | - Ying Li
- Department of Mechanical Engineering and Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
21
|
Lamichhane N, Udayakumar TS, D'Souza WD, Simone CB, Raghavan SR, Polf J, Mahmood J. Liposomes: Clinical Applications and Potential for Image-Guided Drug Delivery. Molecules 2018; 23:molecules23020288. [PMID: 29385755 PMCID: PMC6017282 DOI: 10.3390/molecules23020288] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 01/16/2023] Open
Abstract
Liposomes have been extensively studied and are used in the treatment of several diseases. Liposomes improve the therapeutic efficacy by enhancing drug absorption while avoiding or minimizing rapid degradation and side effects, prolonging the biological half-life and reducing toxicity. The unique feature of liposomes is that they are biocompatible and biodegradable lipids, and are inert and non-immunogenic. Liposomes can compartmentalize and solubilize both hydrophilic and hydrophobic materials. All these properties of liposomes and their flexibility for surface modification to add targeting moieties make liposomes more attractive candidates for use as drug delivery vehicles. There are many novel liposomal formulations that are in various stages of development, to enhance therapeutic effectiveness of new and established drugs that are in preclinical and clinical trials. Recent developments in multimodality imaging to better diagnose disease and monitor treatments embarked on using liposomes as diagnostic tool. Conjugating liposomes with different labeling probes enables precise localization of these liposomal formulations using various modalities such as PET, SPECT, and MRI. In this review, we will briefly review the clinical applications of liposomal formulation and their potential imaging properties.
Collapse
Affiliation(s)
- Narottam Lamichhane
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | - Warren D D'Souza
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Charles B Simone
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Srinivasa R Raghavan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| | - Jerimy Polf
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Javed Mahmood
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
22
|
Lamichhane N, Dewkar GK, Sundaresan G, Mahon RN, Zweit J. [ 18F]-Fluorinated Carboplatin and [ 111In]-Liposome for Image-Guided Drug Delivery. Int J Mol Sci 2017; 18:E1079. [PMID: 28524076 PMCID: PMC5454988 DOI: 10.3390/ijms18051079] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 11/16/2022] Open
Abstract
Radiolabeled liposomes have been employed as diagnostic tools to monitor in vivo distribution of liposomes in real-time, which helps in optimizing the therapeutic efficacy of the liposomal drug delivery. This work utilizes the platform of [111In]-Liposome as a drug delivery vehicle, encapsulating a novel 18F-labeled carboplatin drug derivative ([18F]-FCP) as a dual-molecular imaging tool as both a radiolabeled drug and radiolabeled carrier. The approach has the potential for clinical translation in individual patients using a dual modal approach of clinically-relevant radionuclides of 18F positron emission tomography (PET) and 111In single photon emission computed tomography (SPECT). [111In]-Liposome was synthesized and evaluated in vivo by biodistribution and SPECT imaging. The [18F]-FCP encapsulated [111In]-Liposome nano-construct was investigated, in vivo, using an optimized dual-tracer PET and SPECT imaging in a nude mouse. The biodistribution data and SPECT imaging showed spleen and liver uptake of [111In]-Liposome and the subsequent clearance of activity with time. Dual-modality imaging of [18F]-FCP encapsulated [111In]-Liposome showed significant uptake in liver and spleen in both PET and SPECT images. Qualitative analysis of SPECT images and quantitative analysis of PET images showed the same pattern of activity during the imaging period and demonstrated the feasibility of dual-tracer imaging of a single dual-labeled nano-construct.
Collapse
Affiliation(s)
- Narottam Lamichhane
- Center for Molecular Imaging, Department of Radiology, Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, VA 23298-0031, USA.
| | - Gajanan K Dewkar
- Center for Molecular Imaging, Department of Radiology, Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, VA 23298-0031, USA.
| | - Gobalakrishnan Sundaresan
- Center for Molecular Imaging, Department of Radiology, Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, VA 23298-0031, USA.
| | - Rebecca N Mahon
- Center for Molecular Imaging, Department of Radiology, Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, VA 23298-0031, USA.
| | - Jamal Zweit
- Center for Molecular Imaging, Department of Radiology, Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, VA 23298-0031, USA.
| |
Collapse
|
23
|
Ngoune R, Peters A, von Elverfeldt D, Winkler K, Pütz G. Accumulating nanoparticles by EPR: A route of no return. J Control Release 2016; 238:58-70. [PMID: 27448444 DOI: 10.1016/j.jconrel.2016.07.028] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/13/2016] [Accepted: 07/17/2016] [Indexed: 11/26/2022]
Abstract
Nanoparticle-based drug delivery to ease anticancer therapy relies primarily on the enhanced permeability and retention effect (EPR). The leaky vascular structure in tumors allows extravasation of nanoparticles, often termed passive targeting. Long term retention of nanoparticles is attributed to the lack of lymphatic drainage, and unidirectional extravasation has been implied. Fluorescent liposomes with a plasma half-life of 29h were injected into tumor-bearing rats, and biodistribution in tumor, skin, paws and ears was monitored via in vivo fluorescence measurements. To calculate tissue accumulation, an algorithm was developed to subtract the blood signal from the total fluorescence recorded. Accumulation in tumor tissue was much higher than that in other tissues monitored, initially exhibiting very rapid accumulation followed by a long plateau phase with little change. Discontinuous plasmapheresis was established that was as effective as highly sophisticated clinical plasmapheresis. We observed no difference in the tumor tissue's accumulation when plasmapheresis was performed 22h after liposome injection. In contrast, plasmapheresis led to a significant inhibition of further accumulation in other tissues. When the liposomes' blood concentration was rapidly lowered, we detected no drop in tumor fluorescence. Thus extravasation via EPR is most likely a route of no return. These data support the emerging view of a more dynamic model of EPR, where gaps or entire vessels may open and close over time, or accumulated liposomes become entangled within the pores, hampering further accumulation.
Collapse
Affiliation(s)
- Romeo Ngoune
- University Freiburg Medical Center, Institute for Clinical Chemistry, Freiburg, Germany.
| | - Annette Peters
- University Freiburg Medical Center, Institute for Clinical Chemistry, Freiburg, Germany.
| | - Dominik von Elverfeldt
- University Freiburg Medical Center, Department of Diagnostic Radiology Medical Physics, Freiburg, Germany.
| | - Karl Winkler
- University Freiburg Medical Center, Institute for Clinical Chemistry, Freiburg, Germany.
| | - Gerhard Pütz
- University Freiburg Medical Center, Institute for Clinical Chemistry, Freiburg, Germany.
| |
Collapse
|
24
|
Camacho KM, Menegatti S, Vogus DR, Pusuluri A, Fuchs Z, Jarvis M, Zakrewsky M, Evans MA, Chen R, Mitragotri S. DAFODIL: A novel liposome-encapsulated synergistic combination of doxorubicin and 5FU for low dose chemotherapy. J Control Release 2016; 229:154-162. [PMID: 27034194 DOI: 10.1016/j.jconrel.2016.03.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/25/2016] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
Abstract
PEGylated liposomes have transformed chemotherapeutic use of doxorubicin by reducing its cardiotoxicity; however, it remains unclear whether liposomal doxorubicin is therapeutically superior to free doxorubicin. Here, we demonstrate a novel PEGylated liposome system, named DAFODIL (Doxorubicin And 5-Flurouracil Optimally Delivered In a Liposome) that inarguably offers superior therapeutic efficacies compared to free drug administrations. Delivery of synergistic ratios of this drug pair led to greater than 90% reduction in tumor growth of murine 4T1 mammary carcinoma in vivo. By exploiting synergistic ratios, the effect was achieved at remarkably low doses, far below the maximum tolerable drug doses. Our approach re-invents the use of liposomes for multi-drug delivery by providing a chemotherapy vehicle which can both reduce toxicity and improve therapeutic efficacy. This methodology is made feasible by the extension of the ammonium-sulfate gradient encapsulation method to nucleobase analogues, a liposomal entrapment method once conceived useful only for anthracyclines. Therefore, our strategy can be utilized to efficiently evaluate various chemotherapy combinations in an effort to translate more effective combinations into the clinic.
Collapse
Affiliation(s)
- Kathryn M Camacho
- Center for Bioengineering, Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, Department of Biomedical Engineering, Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States
| | - Douglas R Vogus
- Center for Bioengineering, Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Anusha Pusuluri
- Center for Bioengineering, Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Zoë Fuchs
- Center for Bioengineering, Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Maria Jarvis
- Center for Bioengineering, Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Michael Zakrewsky
- Center for Bioengineering, Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Michael A Evans
- Center for Bioengineering, Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Renwei Chen
- Center for Bioengineering, Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Samir Mitragotri
- Center for Bioengineering, Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| |
Collapse
|
25
|
Arranja A, Ivashchenko O, Denkova AG, Morawska K, van Vlierberghe S, Dubruel P, Waton G, Beekman FJ, Schosseler F, Mendes E. SPECT/CT Imaging of Pluronic Nanocarriers with Varying Poly(ethylene oxide) Block Length and Aggregation State. Mol Pharm 2016; 13:1158-65. [PMID: 26883169 DOI: 10.1021/acs.molpharmaceut.5b00958] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Optimal biodistribution and prolonged circulation of nanocarriers improve diagnostic and therapeutic effects of enhanced permeability and retention-based nanomedicines. Despite extensive use of Pluronics in polymer-based pharmaceuticals, the influence of different poly(ethylene oxide) (PEO) block length and aggregation state on the biodistribution of the carriers is rather unexplored. In this work, we studied these effects by evaluating the biodistribution of Pluronic unimers and cross-linked micelles with different PEO block size. In vivo biodistribution of (111)In-radiolabeled Pluronic nanocarriers was investigated in healthy mice using single photon emission computed tomography. All carriers show fast uptake in the organs from the reticuloendothelial system followed by a steady elimination through the hepatobiliary tract and renal filtration. The PEO block length affects the initial renal clearance of the compounds and the overall liver uptake. The aggregation state influences the long-term accumulation of the nanocarriers in the liver. We showed that the circulation time and elimination pathways can be tuned by varying the physicochemical properties of Pluronic copolymers. Our results can be beneficial for the design of future Pluronic-based nanomedicines.
Collapse
Affiliation(s)
- Alexandra Arranja
- Institut Charles Sadron (CNRS), Strasbourg, France.,Department of Radiation Science and Technology, Delft University of Technology , 2629 JB Delft, The Netherlands
| | - Oleksandra Ivashchenko
- Department of Radiation Science and Technology, Delft University of Technology , 2629 JB Delft, The Netherlands.,MILabs B.V., 3584 CX Utrecht, The Netherlands.,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center , 3584 CG Utrecht, The Netherlands
| | - Antonia G Denkova
- Department of Radiation Science and Technology, Delft University of Technology , 2629 JB Delft, The Netherlands
| | - Karolina Morawska
- Department of Organic and Macromolecular Chemistry, Ghent University , B-9000 Ghent, Belgium
| | - Sandra van Vlierberghe
- Department of Organic and Macromolecular Chemistry, Ghent University , B-9000 Ghent, Belgium
| | - Peter Dubruel
- Department of Organic and Macromolecular Chemistry, Ghent University , B-9000 Ghent, Belgium
| | - Gilles Waton
- Institut Charles Sadron (CNRS), Strasbourg, France
| | - Freek J Beekman
- Department of Radiation Science and Technology, Delft University of Technology , 2629 JB Delft, The Netherlands.,MILabs B.V., 3584 CX Utrecht, The Netherlands.,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center , 3584 CG Utrecht, The Netherlands
| | | | - Eduardo Mendes
- Department of Chemical Engineering, Delft University of Technology , 2628 BL Delft, The Netherlands
| |
Collapse
|
26
|
Bolkestein M, de Blois E, Koelewijn SJ, Eggermont AMM, Grosveld F, de Jong M, Koning GA. Investigation of Factors Determining the Enhanced Permeability and Retention Effect in Subcutaneous Xenografts. J Nucl Med 2015; 57:601-7. [PMID: 26719375 DOI: 10.2967/jnumed.115.166173] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/25/2015] [Indexed: 12/30/2022] Open
Abstract
Liposomal chemotherapy offers several advantages over conventional therapies, including high intratumoral drug delivery, reduced side effects, prolonged circulation time, and the possibility to dose higher. The efficient delivery of liposomal chemotherapeutics relies, however, on the enhanced permeability and retention (EPR) effect, which refers to the ability of macromolecules to extravasate leaky tumor vessels and accumulate in the tumor tissue. Using a panel of human xenograft tumors, we evaluated the influence of the EPR effect on liposomal distribution in vivo by injection of pegylated liposomes radiolabeled with (111)In. Liposomal accumulation in tumors and organs was followed over time by SPECT/CT imaging. We observed that fast-growing xenografts, which may be less representative of tumor development in patients, showed higher liposomal accumulation than slow-growing xenografts. Additionally, several other parameters known to influence the EPR effect were evaluated, such as blood and lymphatic vessel density, intratumoral hypoxia, and the presence of infiltrating macrophages. The investigation of various parameters showed a few correlations. Although hypoxia, proliferation, and macrophage presence were associated with tumor growth, no hard conclusions or predictions could be made regarding the EPR effect or liposomal uptake. However, liposomal uptake was significantly correlated with tumor growth, with fast-growing tumors showing a higher uptake, although no biological determinants could be elucidated to explain this correlation.
Collapse
Affiliation(s)
- Michiel Bolkestein
- Laboratory of Experimental Surgical Oncology, Department of Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Erik de Blois
- Departments of Nuclear Medicine and Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Stuart J Koelewijn
- Departments of Nuclear Medicine and Radiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Frank Grosveld
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Marion de Jong
- Departments of Nuclear Medicine and Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Gerben A Koning
- Laboratory of Experimental Surgical Oncology, Department of Surgery, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
27
|
Comparison of three remote radiolabelling methods for long-circulating liposomes. J Control Release 2015; 220:239-244. [DOI: 10.1016/j.jconrel.2015.10.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/23/2015] [Accepted: 10/24/2015] [Indexed: 01/03/2023]
|
28
|
Gaddy DF, Lee H, Zheng J, Jaffray DA, Wickham TJ, Hendriks BS. Whole-body organ-level and kidney micro-dosimetric evaluations of (64)Cu-loaded HER2/ErbB2-targeted liposomal doxorubicin ((64)Cu-MM-302) in rodents and primates. EJNMMI Res 2015; 5:24. [PMID: 25918676 PMCID: PMC4404468 DOI: 10.1186/s13550-015-0096-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/08/2015] [Indexed: 02/04/2023] Open
Abstract
Background Features of the tumor microenvironment influence the efficacy of cancer nanotherapeutics. The ability to directly radiolabel nanotherapeutics offers a valuable translational tool to obtain biodistribution and tumor deposition data, testing the hypothesis that the extent of delivery predicts therapeutic outcome. In support of a first in-human clinical trial with 64Cu-labeled HER2-targeted liposomal doxorubicin (64Cu-MM-302), a preclinical dosimetric analysis was performed. Methods Whole-body biodistribution and pharmacokinetic data were obtained in mice that received 64Cu-MM-302 and used to estimate absorbed radiation doses in normal human organs. PET/CT imaging revealed non-uniform distribution of 64Cu signal in mouse kidneys. Kidney micro-dosimetry analysis was performed in mice and squirrel monkeys, using a physiologically based pharmacokinetic model to estimate the full dynamics of the 64Cu signal in monkeys. Results Organ-level dosimetric analysis of mice receiving 64Cu-MM-302 indicated that the heart was the organ receiving the highest radiation absorbed dose, due to extended liposomal circulation. However, PET/CT imaging indicated that 64Cu-MM-302 administration resulted in heterogeneous exposure in the kidney, with a focus of 64Cu activity in the renal pelvis. This result was reproduced in primates. Kidney micro-dosimetry analysis illustrated that the renal pelvis was the maximum exposed tissue in mice and squirrel monkeys, due to the highly concentrated signal within the small renal pelvis surface area. Conclusions This study was used to select a starting clinical radiation dose of 64Cu-MM-302 for PET/CT in patients with advanced HER2-positive breast cancer. Organ-level dosimetry and kidney micro-dosimetry results predicted that a radiation dose of 400 MBq of 64Cu-MM-302 should be acceptable in patients. Electronic supplementary material The online version of this article (doi:10.1186/s13550-015-0096-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel F Gaddy
- Merrimack Pharmaceuticals, One Kendall Square, Suite B7201, Cambridge, MA 02139 USA
| | - Helen Lee
- Merrimack Pharmaceuticals, One Kendall Square, Suite B7201, Cambridge, MA 02139 USA
| | - Jinzi Zheng
- STTARR Innovation Centre, Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, 190 Elizabeth Street, Toronto, ON M5G 2C4 Canada
| | - David A Jaffray
- STTARR Innovation Centre, Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, 190 Elizabeth Street, Toronto, ON M5G 2C4 Canada
| | - Thomas J Wickham
- Merrimack Pharmaceuticals, One Kendall Square, Suite B7201, Cambridge, MA 02139 USA
| | - Bart S Hendriks
- Merrimack Pharmaceuticals, One Kendall Square, Suite B7201, Cambridge, MA 02139 USA
| |
Collapse
|
29
|
Yang S, Sun S, Zhou C, Hao G, Liu J, Ramezani S, Yu M, Sun X, Zheng J. Renal clearance and degradation of glutathione-coated copper nanoparticles. Bioconjug Chem 2015; 26:511-9. [PMID: 25674666 DOI: 10.1021/acs.bioconjchem.5b00003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Degradation of inorganic nanoparticles (NPs) into small molecular complexes is often observed in the physiological environment; however, how this process influences renal clearance of inorganic NPs is largely unknown. By systematically comparing renal clearance of degradable luminescent glutathione coated copper NPs (GS-CuNPs) and their dissociated products, Cu(II)-glutathione disulfide (GSSG) complexes (Cu(II)-GSSG), we found that GS-CuNPs were eliminated through the urinary system surprisingly faster and accumulated in the liver much less than their smaller dissociation counterparts. With assistance of radiochemistry and positron emission tomography (PET) imaging, we found that the observed "nano size" effect in enhancing renal clearance is attributed to the fact that GS-CuNPs are more resistant to serum protein adsorption than Cu(II)-GSSG. In addition, since dissociation of GS-CuNPs follows zero-order chemical kinetics, their renal clearance and biodistribution also depend on initial injection doses and their dissociation processes. Quantitative understanding of size effect and other factors involved in renal clearance and biodistribution of degradable inorganic NPs will lay down a foundation for further development of renal-clearable inorganic NPs with minimized nanotoxicity.
Collapse
Affiliation(s)
- Shengyang Yang
- †Department of Chemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Shasha Sun
- †Department of Chemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Chen Zhou
- †Department of Chemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Guiyang Hao
- ‡Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Jinbin Liu
- †Department of Chemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Saleh Ramezani
- ‡Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Mengxiao Yu
- †Department of Chemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Xiankai Sun
- ‡Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Jie Zheng
- †Department of Chemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
30
|
Severin GW, Jørgensen JT, Wiehr S, Rolle AM, Hansen AE, Maurer A, Hasenberg M, Pichler B, Kjær A, Jensen AI. The impact of weakly bound ⁸⁹Zr on preclinical studies: non-specific accumulation in solid tumors and aspergillus infection. Nucl Med Biol 2014; 42:360-8. [PMID: 25583221 DOI: 10.1016/j.nucmedbio.2014.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/11/2014] [Accepted: 11/14/2014] [Indexed: 01/12/2023]
Abstract
UNLABELLED Preclinical studies involving (89)Zr often report significant bone accumulation, which is associated with dissociation of the radiometal from the tracer. However, experiments determining the uptake of unbound (89)Zr in disease models are not performed as routine controls. The purpose of the present study was to investigate the impact of free or weakly bound (89)Zr on PET quantifications in disease models, in order to determine if such control experiments are warranted. METHODS Chemical studies were carried out to find a (89)Zr compound that would solubilize the (89)Zr as a weak chelate, thus mimicking free or weakly bound (89)Zr released in circulation. (89)Zr oxalate had the desired characteristics, and was injected into mice bearing FaDu and HT29 solid tumor xenografts, and mice infected in the lungs with the mold Aspergillus fumigatus, as well as in healthy controls (naïve). PET/CT or PET/MR imaging followed to quantify the distribution of the radionuclide in the disease models. RESULTS (89)Zr oxalate was found to have a plasma half-life of 5.1 ± 2.3 h, accumulating mainly in the bones of all animals. Both tumor types accumulated (89)Zr on the order of 2-4 %ID/cm(3), which is comparable to EPR-mediated accumulation of certain species. In the aspergillosis model, the concentration of (89)Zr in lung tissue of the naïve animals was 6.0 ± 1.1 %ID/g. This was significantly different from that of the animals with advanced disease, showing 11.6 ± 1.8 %ID/g. CONCLUSIONS Given the high levels of (89)Zr accumulation in the disease sites in the present study, we recommend control experiments mapping the biodistribution of free (89)Zr in any preclinical study employing (89)Zr where bone uptake is observed. Aqueous (89)Zr oxalate appears to be a suitable compound for such studies. This is especially relevant in studies where the tracer accumulation is based upon passive targeting, such as EPR.
Collapse
Affiliation(s)
- Gregory W Severin
- The Hevesy Laboratory, DTU Nutech, Technical University of Denmark; Center for Nanomedicine and Theranostics, Technical University of Denmark
| | - Jesper T Jørgensen
- Dept. of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet and Cluster for Molecular Imaging, Faculty of Health Science, University of Copenhagen, Denmark
| | - Stefan Wiehr
- Werner Siemens Imaging Center, Department for Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Anna-Maria Rolle
- Werner Siemens Imaging Center, Department for Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Anders E Hansen
- Dept. of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet and Cluster for Molecular Imaging, Faculty of Health Science, University of Copenhagen, Denmark; Center for Nanomedicine and Theranostics, Technical University of Denmark; Department of Micro- and Nanotechnology, DTU Nanotech, Technical University of Denmark
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department for Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Mike Hasenberg
- University Duisburg-Essen, University Hospital, Institute for Experimental Immunology and Imaging, Essen, Germany
| | - Bernd Pichler
- Werner Siemens Imaging Center, Department for Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Kjær
- Dept. of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet and Cluster for Molecular Imaging, Faculty of Health Science, University of Copenhagen, Denmark
| | - Andreas I Jensen
- The Hevesy Laboratory, DTU Nutech, Technical University of Denmark; Center for Nanomedicine and Theranostics, Technical University of Denmark.
| |
Collapse
|
31
|
Roh YH, Lee JB, Shopsowitz KE, Dreaden EC, Morton SW, Poon Z, Hong J, Yamin I, Bonner DK, Hammond PT. Layer-by-layer assembled antisense DNA microsponge particles for efficient delivery of cancer therapeutics. ACS NANO 2014; 8:9767-80. [PMID: 25198246 PMCID: PMC4212789 DOI: 10.1021/nn502596b] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/08/2014] [Indexed: 05/19/2023]
Abstract
Antisense oligonucleotides can be employed as a potential approach to effectively treat cancer. However, the inherent instability and inefficient systemic delivery methods for antisense therapeutics remain major challenges to their clinical application. Here, we present a polymerized oligonucleotides (ODNs) that self-assemble during their formation through an enzymatic elongation method (rolling circle replication) to generate a composite nucleic acid/magnesium pyrophosphate sponge-like microstructure, or DNA microsponge, yielding high molecular weight nucleic acid product. In addition, this densely packed ODN microsponge structure can be further condensed to generate polyelectrolyte complexes with a favorable size for cellular uptake by displacing magnesium pyrophosphate crystals from the microsponge structure. Additional layers are applied to generate a blood-stable and multifunctional nanoparticle via the layer-by-layer (LbL) assembly technique. By taking advantage of DNA nanotechnology and LbL assembly, functionalized DNA nanostructures were utilized to provide extremely high numbers of repeated ODN copies for efficient antisense therapy. Moreover, we show that this formulation significantly improves nucleic acid drug/carrier stability during in vivo biodistribution. These polymeric ODN systems can be designed to serve as a potent means of delivering stable and large quantities of ODN therapeutics systemically for cancer treatment to tumor cells at significantly lower toxicity than traditional synthetic vectors, thus enabling a therapeutic window suitable for clinical translation.
Collapse
|
32
|
Abstract
Nuclear imaging techniques that include positron emission tomography (PET) and single-photon computed tomography have found great success in the clinic because of their inherent high sensitivity. Radionuclide imaging is the most popular form of imaging to be used for molecular imaging in oncology. While many types of molecules have been used for radionuclide-based molecular imaging, there has been a great interest in developing newer nanomaterials for use in clinic, especially for cancer diagnosis and treatment. Nanomaterials have unique physical properties which allow them to be used as imaging probes to locate and identify cancerous lesions. Over the past decade, a great number of nanoparticles have been developed for radionuclide imaging of cancer. This chapter reviews the different kinds of nanomaterials, both organic and inorganic, which are currently being researched for as potential agents for nuclear imaging of variety of cancers. Several radiolabeled multifunctional nanocarriers have been extremely successful for the detection of cancer in preclinical models. So far, significant progress has been achieved in nanoparticle structure design, in vitro/in vivo trafficking, and in vivo fate mapping by using PET. There is a great need for the development of newer nanoparticles, which improve active targeting and quantify new biomarkers for early disease detection and possible prevention of cancer.
Collapse
|
33
|
Hoang B, Ekdawi SN, Reilly RM, Allen C. Active targeting of block copolymer micelles with trastuzumab Fab fragments and nuclear localization signal leads to increased tumor uptake and nuclear localization in HER2-overexpressing xenografts. Mol Pharm 2013; 10:4229-41. [PMID: 24066900 DOI: 10.1021/mp400315p] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Block copolymer micelles (BCMs) have been employed as effective drug delivery systems to solid tumors by virtue of their capacity to transport large therapeutic payloads and passively target tumor sites. Active targeting of nanoparticles (NPs) has been exploited as a means to increase the therapeutic efficacy of NP-based drugs by promoting their delivery to cellular sites of action. Effective whole tumor accumulation and cellular uptake constitute key objectives in the success of preclinical drug formulations, although they have seldom been investigated concurrently in vivo. The current study aims to elucidate the in vivo fate of 31-nm-sized block copolymer micelles (BCMs) targeted to the nucleus of HER2-overexpressing breast cancer cells. Pharmacokinetics, biodistribution, tumor uptake, and intratumoral distribution of BCMs were investigated in mice bearing subcutaneous BT-474 and MDA-MB-231 xenografts expressing high and low levels of HER2, respectively. Radiolabeling with (111)indium enabled quantitative assessment of BCM distribution at the whole body, tissue, and cellular levels. Surface-grafted trastuzumab Fab fragments (TmAb-Fab) facilitated binding and internalization of BCMs by HER2-positive breast cancer cells, while synthetic 13-mer nuclear localization signal (NLS) peptides conjugated to the TmAb-Fab conferred nuclear translocation capability. Active targeting of BCMs led to a 5-fold increase in tumor uptake in HER2-overexpressing BT-474 tumors, alongside a correspondingly greater level of cellular uptake and nuclear localization, relative to the nontargeted formulations. This study distinctively highlights the quantitative evaluation of active targeting on tumor, cellular and subcellular uptake of BCMs and presents a promising platform for the effective delivery of chemo- and/or radiotherapy in vivo.
Collapse
Affiliation(s)
- Bryan Hoang
- Leslie Dan Faculty of Pharmacy, ‡Department of Chemistry, and §Department of Medical Imaging, University of Toronto , 144 College St., Toronto, Ontario, M5S 3M2, Canada
| | | | | | | |
Collapse
|
34
|
Suresh AK, Weng Y, Li Z, Zerda R, Van Haute D, Williams JC, Berlin JM. Matrix metalloproteinase-triggered denuding of engineered gold nanoparticles for selective cell uptake. J Mater Chem B 2013; 1:2341-2349. [DOI: 10.1039/c3tb00435j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Abstract
RNA interference is a relatively new tool used to silence specific genes in diverse biological systems. The development of this promising new technique for research and therapeutic use in studying and treating neurological diseases has been hampered by the lack of an efficient way to deliver siRNA transvascularly across the blood-brain barrier (BBB) to the central nervous system (CNS). Here we describe a method for delivering siRNA to the CNS by complexing it to a peptide that acts as a neuronal address by binding to acetylcholine receptors (AchRs). Adding cationic liposomes to the complex protects it from serum nucleases and proteases en route. When injected intravenously, these liposome-siRNA-peptide complexes resist serum degradation, effectively cross the BBB, and deliver siRNA to AchR-expressing cells to suppress protein expression in the CNS.
Collapse
Affiliation(s)
- Mark D Zabel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
36
|
Petersen AL, Binderup T, Jølck RI, Rasmussen P, Henriksen JR, Pfeifer AK, Kjær A, Andresen TL. Positron emission tomography evaluation of somatostatin receptor targeted 64Cu-TATE-liposomes in a human neuroendocrine carcinoma mouse model. J Control Release 2012; 160:254-63. [DOI: 10.1016/j.jconrel.2011.12.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 12/24/2011] [Accepted: 12/27/2011] [Indexed: 11/17/2022]
|
37
|
Makrilia N, Kollias A, Manolopoulos L, Syrigos K. Cell adhesion molecules: role and clinical significance in cancer. Cancer Invest 2009; 27:1023-37. [PMID: 19909018 DOI: 10.3109/07357900902769749] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is a growing body of evidence suggesting that alterations in the adhesion properties of neoplastic cells endow them with an invasive and migratory phenotype. Indeed, changes in the expression or function of cell adhesion molecules have been implicated in all steps of tumor progression, including detachment of tumor cells from the primary site, intravasation into the blood stream, extravasation into distant target organs, and formation of the secondary lesions. This review presents recent data regarding the role of cell adhesion molecules in tumor development and progress with concern to their clinical exploitation as potential biomarkers in neoplastic diseases.
Collapse
Affiliation(s)
- Nektaria Makrilia
- Oncology Unit, 3rd Department of Medicine, Sotiria General Hospital, Athens School of Medicine, Greece
| | | | | | | |
Collapse
|
38
|
Hoang B, Lee H, Reilly RM, Allen C. Noninvasive monitoring of the fate of 111In-labeled block copolymer micelles by high resolution and high sensitivity microSPECT/CT imaging. Mol Pharm 2009; 6:581-92. [PMID: 19718806 DOI: 10.1021/mp8002418] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The validation of high sensitivity and high resolution microSPECT/CT imaging for tracking the in vivo pathway and fate of an 111Indium-labeled (111In) amphiphilic diblock copolymer micelle formulation is presented. Heterobifunctional poly(ethylene glycol) was used to initiate cationic ring opening polymerization of epsilon-caprolactone, which was then conjugated to 2-(4-isothiocyanatobenzyl)-diethylenetriaminepentaacetic acid (p-SCN-Bn-DTPA) for chelation with 111In. The micelles were characterized in terms of their physicochemical properties including size, size distribution, zeta-potential, and radiochemical purity. Elimination kinetics and tissue deposition were evaluated in healthy mice following administration of 111In-micelles, 111In-DTPA-b-PCL unimers (i.e., administered under the critical micelle concentration) or 111In-Bn-DTPA. Healthy and MDA-MB-231 tumor-bearing mice were imaged using microSPECT/CT following iv administration of 111In-micelles or 111In-Bn-DTPA. Overall, incorporation of 111In onto the surface of thermodynamically stable micelles results in long plasma residence times for the radionuclide and preferential localization within the spleen (22 +/- 5% i.d/g), liver (13 +/- 3% i.d./g), and tumor (9 +/- 2% i.d./g). MicroSPECT/CT imaging provided noninvasive longitudinal visualization of circulation dynamics and tissue deposition. A strong correlation between image-based region of interest (ROI) analysis and biodistribution data was found, implying that nuclear imaging can be used as a noninvasive tool to accurately quantify tissue distribution. As well, the image-based assessment provided unique insight into the intratumoral distribution of the micelles in vivo.
Collapse
Affiliation(s)
- Bryan Hoang
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
39
|
Herth MM, Barz M, Moderegger D, Allmeroth M, Jahn M, Thews O, Zentel R, Rösch F. Radioactive Labeling of Defined HPMA-Based Polymeric Structures Using [18F]FETos for In Vivo Imaging by Positron Emission Tomography. Biomacromolecules 2009; 10:1697-703. [DOI: 10.1021/bm8014736] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Matthias M. Herth
- Institute of Nuclear Chemistry, Johannes Gutenberg-University Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany, Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, and Institute of Pathophysiology, Johannes Gutenberg-University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Matthias Barz
- Institute of Nuclear Chemistry, Johannes Gutenberg-University Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany, Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, and Institute of Pathophysiology, Johannes Gutenberg-University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Dorothea Moderegger
- Institute of Nuclear Chemistry, Johannes Gutenberg-University Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany, Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, and Institute of Pathophysiology, Johannes Gutenberg-University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Mareli Allmeroth
- Institute of Nuclear Chemistry, Johannes Gutenberg-University Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany, Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, and Institute of Pathophysiology, Johannes Gutenberg-University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Markus Jahn
- Institute of Nuclear Chemistry, Johannes Gutenberg-University Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany, Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, and Institute of Pathophysiology, Johannes Gutenberg-University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Oliver Thews
- Institute of Nuclear Chemistry, Johannes Gutenberg-University Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany, Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, and Institute of Pathophysiology, Johannes Gutenberg-University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Rudolf Zentel
- Institute of Nuclear Chemistry, Johannes Gutenberg-University Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany, Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, and Institute of Pathophysiology, Johannes Gutenberg-University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Frank Rösch
- Institute of Nuclear Chemistry, Johannes Gutenberg-University Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany, Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, and Institute of Pathophysiology, Johannes Gutenberg-University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| |
Collapse
|
40
|
Hamoudeh M, Kamleh MA, Diab R, Fessi H. Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv Drug Deliv Rev 2008; 60:1329-46. [PMID: 18562040 DOI: 10.1016/j.addr.2008.04.013] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 04/16/2008] [Indexed: 01/30/2023]
Abstract
The recent developments of nuclear medicine in oncology have involved numerous investigations of novel specific tumor-targeting radiopharmaceuticals as a major area of interest for both cancer imaging and therapy. The current progress in pharmaceutical nanotechnology field has been exploited in the design of tumor-targeting nanoscale and microscale carriers being able to deliver radionuclides in a selective manner to improve the outcome of cancer diagnosis and treatment. These carriers include chiefly, among others, liposomes, microparticles, nanoparticles, micelles, dendrimers and hydrogels. Furthermore, combining the more recent nuclear imaging multimodalities which provide high sensitivity and anatomical resolution such as PET/CT (positron emission tomography/computed tomography) and SPECT/CT (combined single photon emission computed tomography/computed tomography system) with the use of these specific tumor-targeting carriers constitutes a promising rally which will, hopefully in the near future, allow for earlier tumor detection, better treatment planning and more powerful therapy. In this review, we highlight the use, limitations, advantages and possible improvements of different nano- and microcarriers as potential vehicles for radionuclides delivery in cancer nuclear imaging and radiotherapy.
Collapse
Affiliation(s)
- Misara Hamoudeh
- Université de Lyon, 69622, France, Université Lyon1, CNRS, UMR 5007, LAGEP, Pharmacotechnical department, ISPB facuté de Pharmacie
| | | | | | | |
Collapse
|
41
|
Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS JOURNAL 2007; 9:E128-47. [PMID: 17614355 PMCID: PMC2751402 DOI: 10.1208/aapsj0902015] [Citation(s) in RCA: 550] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The use of various pharmaceutical nanocarriers has become one of the most important areas of nanomedicine. Ideally, such carriers should be specifically delivered (targeted) to the pathological area to provide the maximum therapeutic efficacy. Among the many potential targets for such nanocarriers, tumors have been most often investigated. This review attempts to summarize currently available information regarding targeted pharmaceutical nanocarriers for cancer therapy and imaging. Certain issues related to some popular pharmaceutical nanocarriers, such as liposomes and polymeric micelles, are addressed, as are different ways to target tumors via specific ligands and via the stimuli sensitivity of the carriers. The importance of intracellular targeting of drug- and DNA-loaded pharmaceutical nanocarriers is specifically discussed, including intracellular delivery with cell-penetrating peptides.
Collapse
Affiliation(s)
- Vladimir P Torchilin
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Erdogan S, Roby A, Torchilin VP. Enhanced tumor visualization by gamma-scintigraphy with 111In-labeled polychelating-polymer-containing immunoliposomes. Mol Pharm 2007; 3:525-30. [PMID: 17009851 DOI: 10.1021/mp060055t] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Here, we have prepared long-circulating PEGylated liposomes heavily loaded with 111In via the liposome-incorporated polylysine-based (PLL-based) polychelating amphiphilic polymer (PAP) and additionally modified with the monoclonal antibody 2C5 (mAb 2C5) possessing the nucleosome-restricted (NS-restricted) specificity and capable of specific recognition of a broad variety of live cancer cells via the cancer cell surface bound NSs. These liposomes have been tested as a tumor-specific contrast agent for the gamma-scintigraphic visualization of model tumors in mice. The tumor accumulation of mAb 2C5 modified liposomes prepared in this study was significantly (3-to-5-fold) higher than in the neighboring muscle tissue at all times after administration (6, 24, and 48 h) in mice bearing murine Lewis lung carcinoma (LLC) and human HT-29 tumors. The whole body direct gamma-imaging of LLC tumor bearing mice at different times has demonstrated the superior in vivo tumor accumulation of the targeted mAb 2C5 modified PAP-containing PEGylated liposomes compared to nontargeted liposomal control formulations, which resulted in better and faster tumor imaging as shown with LLC-bearing mice.
Collapse
Affiliation(s)
- Suna Erdogan
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
43
|
Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 2006; 1:297-315. [PMID: 17717971 PMCID: PMC2426795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Among several promising new drug-delivery systems, liposomes represent an advanced technology to deliver active molecules to the site of action, and at present several formulations are in clinical use. Research on liposome technology has progressed from conventional vesicles ("first-generation liposomes") to "second-generation liposomes", in which long-circulating liposomes are obtained by modulating the lipid composition, size, and charge of the vesicle. Liposomes with modified surfaces have also been developed using several molecules, such as glycolipids or sialic acid. A significant step in the development of long-circulating liposomes came with inclusion of the synthetic polymer poly-(ethylene glycol) (PEG) in liposome composition. The presence of PEG on the surface of the liposomal carrier has been shown to extend blood-circulation time while reducing mononuclear phagocyte system uptake (stealth liposomes). This technology has resulted in a large number of liposome formulations encapsulating active molecules, with high target efficiency and activity. Further, by synthetic modification of the terminal PEG molecule, stealth liposomes can be actively targeted with monoclonal antibodies or ligands. This review focuses on stealth technology and summarizes pre-clinical and clinical data relating to the principal liposome formulations; it also discusses emerging trends of this promising technology.
Collapse
|
44
|
Smith LP, Thomas GR. Animal models for the study of squamous cell carcinoma of the upper aerodigestive tract: a historical perspective with review of their utility and limitations. Part A. Chemically-induced de novo cancer, syngeneic animal models of HNSCC, animal models of transplanted xenogeneic human tumors. Int J Cancer 2006; 118:2111-22. [PMID: 16380986 DOI: 10.1002/ijc.21694] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Understanding the complex histological, genetic and molecular changes that lead to malignant transformation of squamous epithelia of the head and neck will likely guide the development of methods for improved diagnosis, monitoring and treatment of head and neck squamous cell carcinoma (HNSCC). The development and use of animal models that closely mimic the histopathology and molecular pathogenesis of HNSCC in humans would greatly expand the research possibilities and provide a means of testing potential therapeutic agents. However, many available animal models of HNSCC fall short of this objective. In order for investigators to select the appropriate model to answer scientific questions, it is important to understand the benefits and limitations of available animal models for the study of HNSCC. The purpose of this work is to give an overview of the most pertinent animal models of HNSCC, and to discuss future directions of research in this field.
Collapse
Affiliation(s)
- Lee P Smith
- Department of Otolaryngology, Head and Neck Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | |
Collapse
|
45
|
Affiliation(s)
- William C Zamboni
- Molecular Therapeutics Drug Discovery Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213-1863, USA
| |
Collapse
|
46
|
Harrington KJ, Syrigos KN, Uster PS, Zetter A, Lewanski CR, Gullick WJ, Vile RG, Stewart JSW. Targeted radiosensitisation by pegylated liposome-encapsulated 3', 5'-O-dipalmitoyl 5-iodo-2'-deoxyuridine in a head and neck cancer xenograft model. Br J Cancer 2004; 91:366-73. [PMID: 15199395 PMCID: PMC2409821 DOI: 10.1038/sj.bjc.6601958] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
5-Iodo-2′-deoxyuridine (IUdR) is an effective radiosensitiser but its clinical development has been limited by toxicity. Prolonged intravenous infusions of IUdR are necessary for optimal tumour uptake but cause dose-limiting myelosuppression. The lack of selective tumour uptake can lead to radiosensitisation of adjacent normal tissues and enhanced local radiation toxicity. Liposomal IUdR delivery offers selective targeting of tumour tissues and avoidance of local and systemic toxicity. In these studies, we report the development of a pegylated liposome containing a lipophilic IUdR derivative (3′, 5′-O-dipalmitoyl-5-iodo-2′-deoxyuridine) for use in a head and neck cancer xenograft model. Initial studies confirmed the ability of IUdR to sensitise two head and neck cancer cell lines to single fractions of radiotherapy (SFRT) and this effect was seen to correlate with the thymidine replacement index in KB cells. In vivo delivery of single doses of either unencapsulated IUdR or pegylated liposomal IUdR (PLIUdR) to nude mice bearing KB xenograft tumours did not enhance the effect of SFRT delivered 16 h later. When PLIUdR was delivered by a protracted administration schedule to a dose of 48 mg kg−1 over 7 days, it enhanced the effect of both 4.5 Gy SFRT and fractionated radiotherapy. PLIUdR was at least as effective as unencapsulated IUdR delivered by multiple intravenous injections or continuous subcutaneous infusion. Immunohistochemistry with a specific anti-IUdR monoclonal antibody confirmed greater levels of tumour staining in tumours from animals treated with PLIUdR compared with those treated with unencapsulated IUdR.
Collapse
Affiliation(s)
- K J Harrington
- ICRF Oncology Unit, Imperial College of Science, Technology and Medicine, Hammersmith Hospital, and Cancer Research UK Targeted Therapy Laboratory, Chester Beatty Laboratories, Institute of Cancer Research, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Leonetti C, Scarsella M, Semple SC, Molinari A, D'Angelo C, Stoppacciaro A, Biroccio A, Zupi G. In vivo administration of liposomal vincristine sensitizes drug-resistant human solid tumors. Int J Cancer 2004; 110:767-74. [PMID: 15146568 DOI: 10.1002/ijc.20174] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Here we evaluated the antitumor efficacy of vincristine (VCR) encapsulated in sphingomyelin/cholesterol liposomes (SM/Chol) on drug-resistant human solid tumors. We firstly used the M14 human melanoma line and the counterpart resistant derivative, M14/R. The M14/R, selected after doxorubicin exposure, was cross resistant to VCR: the in vitro treatment with free VCR reduced the survival of M14, while M14/R line was completely resistant to VCR. Encapsulation in liposomes improved the efficacy of VCR in M14 cells and sensitized the M14/R line to the drug. Experiments in vivo confirmed these results. The treatment of M14 bearing mice with VCR resulted in marked reduction of tumor growth, while no antitumoral effect was observed in M14/R tumors. The administration of VCR encapsulated in liposomes was able to sensitize M14/R tumors to the drug, the antitumoral effect being comparable to that observed in M14 tumors after the same treatment. By injecting animals with the same dose of liposomal VCR fractionated into 3 daily injections and administering repeated cycles of treatment, to a marked improvement of the antitumor activity of liposomal VCR was observed. TUNEL assay in tumor sections indicated that the improved efficacy of liposomal VCR was related to the induction of massive necrosis and apoptosis. To confirm the efficacy of liposomal VCR on drug-resistant tumors, MCF7 breast and LoVo colon carcinomas, sensitive and resistant to VCR treatment, were also employed. The results showed that the treatment with liposomal VCR of mice bearing breast or colon resistant tumors reduced the tumor mass and delayed the tumor regrowth to the same extent observed in the sensitive counterpart. Together, these results demonstrate the ability of VCR encapsulated in liposomes in sensitizing drug resistant tumors of different histotypes.
Collapse
Affiliation(s)
- Carlo Leonetti
- Experimental Chemotherapy Laboratory, Regina Elena Cancer Institute, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Luciani A, Olivier JC, Clement O, Siauve N, Brillet PY, Bessoud B, Gazeau F, Uchegbu IF, Kahn E, Frija G, Cuenod CA. Glucose-Receptor MR Imaging of Tumors: Study in Mice with PEGylated Paramagnetic Niosomes. Radiology 2004; 231:135-42. [PMID: 15068944 DOI: 10.1148/radiol.2311021559] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To evaluate a magnetic resonance (MR) imaging contrast agent for tumor detection based on paramagnetic nonionic vesicles (niosomes) bearing polyethylene glycol (PEG) and glucose conjugates for the targeting of overexpressed glucose receptors. MATERIALS AND METHODS Four gadobenate dimeglumine-loaded niosome preparations including nonconjugated niosomes, niosomes bearing glucose conjugates (N-palmitoyl glucosamine [NPG]), niosomes bearing PEG 4400, and niosomes bearing both PEG and NPG were tested. In vitro cellular uptake was measured at electron paramagnetic resonance (EPR) after incubation with human prostate carcinoma, PC3, cells. In vivo distribution was studied at MR imaging 6, 12, and 24 hours after injection, with assessment of tumor, brain, liver, and muscle signal intensity (SI) in 49 mice bearing PC3 cells. Efficiency of targeted contrast agents was assessed with tumor-to-muscle contrast-to-noise ratio (CNR). Testing for differences was performed with analysis of variance followed by a posteriori Fisher test. RESULTS In vitro, gadolinium could be detected at EPR only in cell pellets incubated with niosomes bearing glucose conjugates or niosomes bearing both glucose conjugates and PEG (4.9. 10(-15) and 4.5. 10(-15) mol gadolinium per PC3 cell). In vivo, marked predominant tumor enhancement was demonstrated 24 hours after injection of glycosylated PEG niosomes (P <.01); no significant differences were observed following injection of nonconjugated niosomes, glycosylated niosomes, or PEG 4400 niosomes. Twenty-four hours after injection, sole presence of NPG or PEG 4400 on the surface of the niosome led to higher tumor-to-muscle CNR than that observed after injection of nonconjugated niosomes (CNR of 3.3 +/- 0.7 [SD], 3.4 +/- 2.2, and 0 +/- 1.9). Combination of NPG and PEG led to even higher tumor-to-muscle CNR (6.3 +/- 2.2). CONCLUSION Combination of PEG and glucose conjugates on the surface of niosomes significantly improved tumor targeting of an encapsulated paramagnetic agent assessed with MR imaging in a human carcinoma xenograft model.
Collapse
Affiliation(s)
- Alain Luciani
- Radiology Department, Hôpital Européen Georges Pompidou, INSERM U494, LRI, Faculté Necker, 20 Rue Leblanc, 75015 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Avril N, Bengel FM. Defining the success of cardiac gene therapy: how can nuclear imaging contribute? Eur J Nucl Med Mol Imaging 2003; 30:757-71. [PMID: 12541135 DOI: 10.1007/s00259-002-1100-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Gene therapy is a promising modality for the treatment of various cardiovascular diseases such as ischaemia, heart failure, restenosis after revascularisation, hypertension and hyperlipidaemia. An increasing number of approaches are moving from experimental and preclinical validation to clinical application, and several multi-centre trials are currently underway. Despite the rapid progress in cardiac gene therapy, many basic tools and principles remain under development. Questions with regard to the optimal method for gene delivery in a given situation remain open, as do questions concerning therapeutic efficacy and the time course and magnitude of gene expression in target and remote areas. Nuclear imaging provides valuable tools to address these open issues non-invasively. Functional effects of molecular therapy at the tissue level can be identified using tracers of blood flow, metabolism, innervation or cell death. The use of reporter genes and radiolabelled reporter probes allows for non-invasive assessment of location, magnitude and persistence of transgene expression in the heart and the whole body. Co-expression of a reporter gene will allow for indirect imaging of the expression of a therapeutic gene of choice, and linkage of measures of transgene expression to downstream functional effects will enhance the understanding of basic mechanisms of cardiac gene therapy. Hence, nuclear imaging offers great potential to facilitate and refine the determination of therapeutic effects in preclinical and clinical cardiovascular gene therapy.
Collapse
Affiliation(s)
- Norbert Avril
- Division of Nuclear Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | |
Collapse
|
50
|
Harrington KJ, Syrigos KN, Vile RG. Liposomally targeted cytotoxic drugs for the treatment of cancer. J Pharm Pharmacol 2002; 54:1573-600. [PMID: 12542887 DOI: 10.1211/0022357002243] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Phospholipid spherules composed of lipid bilayer membranes entrapping a central aqueous core were first described more than 30 years ago (Bangham et al 1965). The term liposome was coined in 1968 (Sessa & Weissmann 1968) and the first suggestions that these vesicles might have potential as vehicles for targeted drug delivery for a range of diseases, including cancer, appeared shortly afterwards (Gregoriades et al 1974; Gregoriades 1976a, b). However, the process of turning this expectation into a clinical reality has suffered a number of setbacks and has taken more than a quarter of a century. In the process, new types of liposomes with favourable in-vivo pharmacokinetics and biodistribution patterns have been generated (Lasic & Papahadjopoulos 1995). Many of these preparations have been subjected to extensive examination and an increasing number of agents have entered clinical trials. In this review, we will trace the development of those liposomes that are currently undergoing (or are about to undergo) clinical evaluation.
Collapse
Affiliation(s)
- Kevin J Harrington
- Cancer Research UK Targeted Therapy Laboratory, Chester Beatty Laboratories, Institute of Cancer Research, London, UK.
| | | | | |
Collapse
|