1
|
Takagi M, Hoshino A, Bousset K, Röddecke J, Martin HL, Folcut I, Tomomasa D, Yang X, Kobayashi J, Sakata N, Yoshida K, Miyano S, Ogawa S, Kojima S, Morio T, Dörk T, Kanegane H. Bone Marrow Failure and Immunodeficiency Associated with Human RAD50 Variants. J Clin Immunol 2023; 43:2136-2145. [PMID: 37794136 DOI: 10.1007/s10875-023-01591-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
PURPOSE The MRE11-RAD50-NBN (MRN) complex plays a key role in recognizing and signaling DNA double-strand breaks. Pathogenic variants in NBN and MRE11 give rise to the autosomal-recessive diseases, Nijmegen breakage syndrome (NBS) and ataxia telangiectasia-like disorder, respectively. The clinical consequences of pathogenic variants in RAD50 are incompletely understood. We aimed to characterize a newly identified RAD50 deficiency/NBS-like disorder (NBSLD) patient with bone marrow failure and immunodeficiency. METHODS We report on a girl with microcephaly, mental retardation, bird-like face, short stature, bone marrow failure and B-cell immunodeficiency. We searched for candidate gene by whole-exome sequencing and analyzed the cellular phenotype of patient-derived fibroblasts using immunoblotting, radiation sensitivity assays and lentiviral complementation experiments. RESULTS Compound heterozygosity for two variants in the RAD50 gene (p.Arg83His and p.Glu485Ter) was identified in this patient. The expression of RAD50 protein and MRN complex formation was maintained in the cells derived from this patient. DNA damage-induced activation of the ATM kinase was markedly decreased, which was restored by the expression of wild-type (WT) RAD50. Radiosensitivity appeared inconspicuous in the patient-derived cell line as assessed by colony formation assay. The RAD50R83H missense substitution did not rescue the mitotic defect in complementation experiments using RAD50-deficient fibroblasts, whereas RAD50WT did. The RAD50E485X nonsense variant was associated with in-frame skipping of exon 10 (p.Glu485_545del). CONCLUSION These findings indicate important roles of RAD50 in human bone marrow and immune cells. RAD50 deficiency/NBSLD can manifest as a distinct inborn error of immunity characterized by bone marrow failure and B-cell immunodeficiency.
Collapse
Affiliation(s)
- Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akihiro Hoshino
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Pediatrics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kristine Bousset
- Gynaecology Research Unit, Hannover Medical School, 30625, Hannover, Germany
| | - Jule Röddecke
- Gynaecology Research Unit, Hannover Medical School, 30625, Hannover, Germany
| | - Hanna Luisa Martin
- Gynaecology Research Unit, Hannover Medical School, 30625, Hannover, Germany
| | - Iulia Folcut
- Gynaecology Research Unit, Hannover Medical School, 30625, Hannover, Germany
| | - Dan Tomomasa
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Xi Yang
- Department of Pediatrics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Junya Kobayashi
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Naoki Sakata
- Department of Pediatrics, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, 30625, Hannover, Germany.
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
2
|
López-Nieva P, González-Vasconcellos I, González-Sánchez L, Cobos-Fernández MA, Ruiz-García S, Sánchez Pérez R, Aroca Á, Fernández-Piqueras J, Santos J. Differential molecular response in mice and human thymocytes exposed to a combined-dose radiation regime. Sci Rep 2022; 12:3144. [PMID: 35210498 PMCID: PMC8873405 DOI: 10.1038/s41598-022-07166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/11/2022] [Indexed: 11/17/2022] Open
Abstract
In the quest for more effective radiation treatment options that can improve both cell killing and healthy tissue recovery, combined radiation therapies are lately in the spotlight. The molecular response to a combined radiation regime where exposure to an initial low dose (priming dose) of ionizing radiation is administered prior to a subsequent higher radiation dose (challenging dose) after a given latency period have not been thoroughly explored. In this study we report on the differential response to either a combined radiation regime or a single challenging dose both in mouse in vivo and in human ex vivo thymocytes. A differential cell cycle response including an increase in the subG1 fraction on cells exposed to the combined regime was found. Together with this, a differential protein expression profiling in several pathways including cell cycle control (ATM, TP53, p21CDKN1A), damage response (γH2AX) and cell death pathways such as apoptosis (Cleaved Caspase-3, PARP1, PKCδ and H3T45ph) and ferroptosis (xCT/GPX4) was demonstrated. This study also shows the epigenetic regulation following a combined regime that alters the expression of chromatin modifiers such as DNMTs (DNMT1, DNMT2, DNMT3A, DNMT3B, DNMT3L) and glycosylases (MBD4 and TDG). Furthermore, a study of the underlying cellular status six hours after the priming dose alone showed evidence of retained modifications on the molecular and epigenetic pathways suggesting that the priming dose infers a “radiation awareness phenotype” to the thymocytes, a sensitization key to the differential response seen after the second hit with the challenging dose. These data suggest that combined-dose radiation regimes could be more efficient at making cells respond to radiation and it would be interesting to further investigate how can these schemes be of use to potential new radiation therapies.
Collapse
Affiliation(s)
- Pilar López-Nieva
- Genome Dynamics and Function Program, Genome Decoding Unit, Severo Ochoa Molecular Biology Center, Madrid, Spain. .,Department of Biology, Madrid Autonomous University, 28049, Madrid, Spain. .,Institute of Health Research, Jiménez Díaz Foundation, 28040, Madrid, Spain.
| | - Iria González-Vasconcellos
- Genome Dynamics and Function Program, Genome Decoding Unit, Severo Ochoa Molecular Biology Center, Madrid, Spain. .,Department of Biology, Madrid Autonomous University, 28049, Madrid, Spain.
| | - Laura González-Sánchez
- Genome Dynamics and Function Program, Genome Decoding Unit, Severo Ochoa Molecular Biology Center, Madrid, Spain.,Institute of Health Research, Jiménez Díaz Foundation, 28040, Madrid, Spain.,Consorcio de Investigación Biomédica de Enfermedades Raras (CIBERER), Madrid, Spain
| | - María A Cobos-Fernández
- Genome Dynamics and Function Program, Genome Decoding Unit, Severo Ochoa Molecular Biology Center, Madrid, Spain.,Department of Biology, Madrid Autonomous University, 28049, Madrid, Spain
| | - Sara Ruiz-García
- Genome Dynamics and Function Program, Genome Decoding Unit, Severo Ochoa Molecular Biology Center, Madrid, Spain.,Department of Biology, Madrid Autonomous University, 28049, Madrid, Spain
| | - Raúl Sánchez Pérez
- Department of Congenital Cardiac Surgery, Hospital Universitario La Paz, 28046, Madrid, Spain
| | - Ángel Aroca
- Department of Congenital Cardiac Surgery, Hospital Universitario La Paz, 28046, Madrid, Spain
| | - José Fernández-Piqueras
- Genome Dynamics and Function Program, Genome Decoding Unit, Severo Ochoa Molecular Biology Center, Madrid, Spain.,Department of Biology, Madrid Autonomous University, 28049, Madrid, Spain.,Institute of Health Research, Jiménez Díaz Foundation, 28040, Madrid, Spain
| | - Javier Santos
- Genome Dynamics and Function Program, Genome Decoding Unit, Severo Ochoa Molecular Biology Center, Madrid, Spain.,Department of Biology, Madrid Autonomous University, 28049, Madrid, Spain.,Institute of Health Research, Jiménez Díaz Foundation, 28040, Madrid, Spain
| |
Collapse
|
3
|
Ferracchiato S, Di-Iacovo N, Scopetti D, Piobbico D, Castelli M, Pieroni S, Gargaro M, Manni G, Brancorsini S, Della-Fazia MA, Servillo G. Hops/Tmub1 Heterozygous Mouse Shows Haploinsufficiency Effect in Influencing p53-Mediated Apoptosis. Int J Mol Sci 2021; 22:ijms22137186. [PMID: 34281239 PMCID: PMC8269437 DOI: 10.3390/ijms22137186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023] Open
Abstract
HOPS is a ubiquitin-like protein implicated in many aspects of cellular function including the regulation of mitotic activity, proliferation, and cellular stress responses. In this study, we focused on the complex relationship between HOPS and the tumor suppressor p53, investigating both transcriptional and non-transcriptional p53 responses. Here, we demonstrated that Hops heterozygous mice and mouse embryonic fibroblasts exhibit an impaired DNA-damage response to etoposide-induced double-strand breaks when compared to wild-type genes. Specifically, alterations in HOPS levels caused significant defects in the induction of apoptosis, including a reduction in p53 protein level and percentage of apoptotic cells. We also analyzed the effect of reduced HOPS levels on the DNA-damage response by examining the transcript profiles of p53-dependent genes, showing a suggestive deregulation of the mRNA levels for a number of p53-dependent genes. Taken together, these results show an interesting haploinsufficiency effect mediated by Hops monoallelic deletion, which appears to be enough to destabilize the p53 protein and its functions. Finally, these data indicate a novel role for Hops as a tumor-suppressor gene in DNA damage repair in mammalian cells.
Collapse
|
4
|
Barreto TLN, Kotchetkoff ECDA, Lago CSA, Sarni ROS. Agreement of cardiovascular risk in ataxia-telangiectasia mutated heterozygotes and their children with Ataxia-telangiectasia. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1780117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
5
|
Babeu JP, Wilson SD, Lambert É, Lévesque D, Boisvert FM, Boudreau F. Quantitative Proteomics Identifies DNA Repair as a Novel Biological Function for Hepatocyte Nuclear Factor 4α in Colorectal Cancer Cells. Cancers (Basel) 2019; 11:E626. [PMID: 31060309 PMCID: PMC6562498 DOI: 10.3390/cancers11050626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocyte nuclear factor 4α (HNF4α) is a transcription factor that acts as a master regulator of genes for several endoderm-derived tissues, including the intestine, in which it plays a central role during development and tumorigenesis. To better define the mechanisms by which HNF4α can influence these processes, we identified proteins interacting with HNF4α using stable isotope labelling with amino acids in cell culture (SILAC)-based quantitative proteomics with either immunoprecipitation of green fluorescent protein (GFP) or with proximity-dependent purification by the biotin ligase BirA (BioID), both fused to HNF4α. Surprisingly, these analyses identified a significant enrichment of proteins characterized with a role in DNA repair, a so far unidentified biological feature of this transcription factor. Several of these proteins including PARP1, RAD50, and DNA-PKcs were confirmed to interact with HNF4α in colorectal cancer cell lines. Following DNA damage, HNF4α was able to increase cell viability in colorectal cancer cells. Overall, these observations identify a potential role for this transcription factor during the DNA damage response.
Collapse
Affiliation(s)
- Jean-Philippe Babeu
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| | - Samuel D Wilson
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| | - Élie Lambert
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| | - Dominique Lévesque
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| | - François-Michel Boisvert
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| | - François Boudreau
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
6
|
van Os NJH, Chessa L, Weemaes CMR, van Deuren M, Fiévet A, van Gaalen J, Mahlaoui N, Roeleveld N, Schrader C, Schindler D, Taylor AMR, Van de Warrenburg BPC, Dörk T, Willemsen MAAP. Genotype-phenotype correlations in ataxia telangiectasia patients with ATM c.3576G>A and c.8147T>C mutations. J Med Genet 2019; 56:308-316. [PMID: 30819809 DOI: 10.1136/jmedgenet-2018-105635] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/21/2018] [Accepted: 12/19/2018] [Indexed: 11/03/2022]
Abstract
BACKGROUND Ataxia telangiectasia (A-T) is a neurodegenerative disorder. While patients with classic A-T generally die in their 20s, some patients with variant A-T, who have residual ataxia-telangiectasia mutated (ATM) kinase activity, have a milder phenotype. We noticed two commonly occurring ATM mutations that appeared to be associated with prolonged survival and decided to study patients carrying one of these mutations. METHODS Data were retrospectively collected from the Dutch, Italian, German and French A-T cohorts. To supplement these data, we searched the literature for patients with identical genotypes. RESULTS This study included 35 patients who were homozygous or compound heterozygous for the ATM c.3576G>A; p.(Ser1135_Lys1192del58) mutation and 24 patients who were compound heterozygous for the ATM c.8147T>C; p.(Val2716Ala) mutation. Compared with 51 patients with classic A-T from the Dutch cohort, patients with ATM c.3576G>A had a longer survival and were less likely to develop cancer, respiratory disease or immunodeficiency. This was also true for patients with ATM c.8147T>C, who additionally became wheelchair users later in life and had fewer telangiectasias. The oldest patient with A-T reported so far was a 78-year-old patient who was compound heterozygous for ATM c.8147T>C. ATM kinase activity was demonstrated in cells from all patients tested with the ATM c.8147T>C mutant protein and only at a low level in some patients with ATM c.3576G>A. CONCLUSION Compared with classic A-T, the presence of ATM c.3576G>A results in a milder classic phenotype. Patients with ATM c.8147T>C have a variant phenotype with prolonged survival, which in exceptional cases may approach a near-normal lifespan.
Collapse
Affiliation(s)
- Nienke J H van Os
- Department of Pediatric Neurology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Luciana Chessa
- Department of Clinical and Molecular Medicine, Sapienza Università di Roma, Rome, Italy
| | - Corry M R Weemaes
- Department of Pediatrics, Pediatric Infectious Disease and Immunology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marcel van Deuren
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alice Fiévet
- INSERM UMR 830, Institut de recherche, Institut Curie, PSL Research University, Paris, France
- Service de Génétique, Institut Curie Hôpital, Paris, France
| | - Judith van Gaalen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nizar Mahlaoui
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Pediatric Immuno-Haematology and Rheumatology Unit, Biostatistics Unit, Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, Paris, France
- INSERM UMR 1163, Sorbonne Paris Cité, Imagine Institute, Paris Descartes University, Paris, France
| | - Nel Roeleveld
- Department of Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Detlev Schindler
- Institute of Human Genetics, University of Wurzburg, Wurzburg, Germany
| | | | - Bart P C Van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Michèl A A P Willemsen
- Department of Pediatric Neurology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
7
|
Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL. Nat Commun 2018; 9:697. [PMID: 29449575 PMCID: PMC5814445 DOI: 10.1038/s41467-017-02688-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 12/19/2017] [Indexed: 12/20/2022] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a rare and poor-prognostic mature T-cell malignancy. Here we integrated large-scale profiling data of alterations in gene expression, allelic copy number (CN), and nucleotide sequences in 111 well-characterized patients. Besides prominent signatures of T-cell activation and prevalent clonal variants, we also identify novel hot-spots for CN variability, fusion molecules, alternative transcripts, and progression-associated dynamics. The overall lesional spectrum of T-PLL is mainly annotated to axes of DNA damage responses, T-cell receptor/cytokine signaling, and histone modulation. We formulate a multi-dimensional model of T-PLL pathogenesis centered around a unique combination of TCL1 overexpression with damaging ATM aberrations as initiating core lesions. The effects imposed by TCL1 cooperate with compromised ATM toward a leukemogenic phenotype of impaired DNA damage processing. Dysfunctional ATM appears inefficient in alleviating elevated redox burdens and telomere attrition and in evoking a p53-dependent apoptotic response to genotoxic insults. As non-genotoxic strategies, synergistic combinations of p53 reactivators and deacetylase inhibitors reinstate such cell death execution. T-cell prolymphocytic leukemia (T-PLL) is a rare malignancy with a poor prognosis. Here, the authors investigate the genomic landscape, gene expression profiles and functional mechanisms in 111 patients, highlighting TCL1 overexpression and ATM aberrations as core lesions which co-operate to impair DNA damage processing.
Collapse
|
8
|
Targeting transcription-coupled nucleotide excision repair overcomes resistance in chronic lymphocytic leukemia. Leukemia 2016; 31:1177-1186. [DOI: 10.1038/leu.2016.294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/01/2016] [Accepted: 09/12/2016] [Indexed: 12/31/2022]
|
9
|
Meador JA, Ghandhi SA, Amundson SA. p53-independent downregulation of histone gene expression in human cell lines by high- and low-let radiation. Radiat Res 2011; 175:689-99. [PMID: 21520998 DOI: 10.1667/rr2539.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Using microarrays to analyze differential gene expression as a function of p53 status and radiation quality, we observed downregulation of a large set of histone genes in p53 wild-type TK6 cells 24 h after exposure to equitoxic doses of high-LET (1.67 Gy 1 GeV/amu (56)Fe ions) or low-LET (2.5 Gy γ rays) radiation. Quantitative real-time PCR of specific subtypes of core (H2A, H2B, H3 and H4) and linker (H1) histones confirmed this result. DNA synthesis and histone gene expression are tightly coordinated during the S phase of the cell cycle, and both processes are regulated by cell cycle checkpoints in response to DNA damage caused by ionizing radiation. However, we observed similar repression of histone gene expression in both TK6 cells and their p53-null derivative NH32 after radiation exposure, although the histone gene expression was not decreased to the same extent in NH32 cells as it was in TK6 cells. We also found decreased histone gene expression that was dose- and time-dependent in the colon cancer cell line HCT116 and its p53-null derivative. These results show that both high- and low-LET radiation exposure negatively regulate histone gene expression in human lymphoblastoid and colon cancer cell lines independent of p53 status.
Collapse
Affiliation(s)
- Jarah A Meador
- Center for Radiological Research, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
10
|
Carlessi L, De Filippis L, Lecis D, Vescovi A, Delia D. DNA-damage response, survival and differentiation in vitro of a human neural stem cell line in relation to ATM expression. Cell Death Differ 2009; 16:795-806. [PMID: 19229246 DOI: 10.1038/cdd.2009.10] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ataxia-telangiectasia (A-T) is a neurodegenerative disorder caused by defects in the ATM kinase, a component of the DNA-damage response (DDR). Here, we employed an immortalized human neural stem-cell line (ihNSC) capable of differentiating in vitro into neurons, oligodendrocytes and astrocytes to assess the ATM-dependent response and outcome of ATM ablation. The time-dependent differentiation of ihNSC was accompanied by an upregulation of ATM and DNA-PK, sharp downregulation of ATR and Chk1, transient induction of p53 and by the onset of apoptosis in a fraction of cells. The response to ionizing radiation (IR)-induced DNA lesions was normal, as attested by the phosphorylation of ATM and some of its substrates (e.g., Nbs1, Smc1, Chk2 and p53), and by the kinetics of gamma-H2AX nuclear foci formation. Depletion in these cells of ATM by shRNA interference (shATM) attenuated the differentiation-associated apoptosis and response to IR, but left unaffected the growth, self-renewal and genomic stability. shATM cells generated a normal number of MAP2/beta-tubulin III+ neurons, but a reduced number of GalC+ oligodendrocytes, which were nevertheless more susceptible to oxidative stress. Altogether, these findings highlight the potential of ihNSCs as an in vitro model system to thoroughly assess, besides ATM, the role of DDR genes in neurogenesis and/or neurodegeneration.
Collapse
Affiliation(s)
- L Carlessi
- Department of Experimental Oncology, Fondazione IRCSS Istituto Nazionale Tumori, Milan, Italy
| | | | | | | | | |
Collapse
|
11
|
Zhang XH, Zhao C, Ma ZA. The increase of cell-membranous phosphatidylcholines containing polyunsaturated fatty acid residues induces phosphorylation of p53 through activation of ATR. J Cell Sci 2008; 120:4134-43. [PMID: 18032786 DOI: 10.1242/jcs.015834] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The G1 phase of the cell cycle is marked by the rapid turnover of phospholipids. This turnover is regulated by CTP:phosphocholine-cytidylyltransferase (CCT) and group VIA Ca(2+)-independent-phospholipase A(2) (iPLA(2)). We previously reported that inhibition of iPLA(2) arrests cells in G1 phase of the cell cycle by activating the p53-p21 checkpoint. Here we further characterize the mechanism of p53 activation. We show that specific inhibition of iPLA(2) induces a time dependent phosphorylation of Ser15 in p53 in the absence of DNA damage. This phosphorylation requires the kinase ataxia-telangiectasia and Rad-3-related (ATR) but not the ataxia-telangiectasia-mutated (ATM) kinase. Moreover, we identify in cell membranes a significant increase of phosphatidylcholines (PCs) containing chains of polyunsaturated fatty acids and a decrease of PCs containing saturated fatty acids in response to inhibition of iPLA(2). The time course of phosphorylation of Ser15 in p53 correlates with increasing levels of PCs containing polyunsaturated fatty acids. We further demonstrate that the PCs with linoleic acid in their sn-2 position (18:2n6) induce phosphorylation of Ser15 in p53 in an ATR-dependent manner. Our findings establish that cells can regulate the levels of polyunsaturated fatty acids in phospholipids through iPLA(2)-mediated deacylation of PCs. Disruption of this regulation increases the proportions of PCs containing polyunsaturated fatty acids and activates the ATR-p53 signalling pathway.
Collapse
Affiliation(s)
- Xu Hannah Zhang
- Division of Experimental Diabetes and Aging, Department of Geriatrics and Adult Development, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
12
|
Lin TS, Byrd JC. Chronic Lymphocytic Leukemia and Related Chronic Leukemias. Oncology 2007. [DOI: 10.1007/0-387-31056-8_65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Day TK, Hooker AM, Zeng G, Sykes PJ. Low dose X-radiation adaptive response in spleen and prostate of Atm knockout heterozygous mice. Int J Radiat Biol 2007; 83:523-34. [PMID: 17613125 DOI: 10.1080/09553000701420582] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE To investigate the effect of being heterozygous for a knockout mutation in the ataxia telangiectasia (Atm) gene on radiation adaptive response. MATERIALS AND METHODS DNA recombination, as measured by pKZ1 inversion frequency, was quantified by histochemistry in Atm knockout heterozygous prostate and spleen 3 days after treatment with a priming dose of 0.01 or 10 mGy X-radiation 4 h prior to a challenge dose of 1,000 mGy. RESULTS In spleen and prostate, a single dose of 0.01 mGy caused an induction in inversion frequency but a dose of 10 mGy prevented the induction of a proportion of endogenous inversions. Both doses induced an adaptive response, of similar magnitude, to a subsequent high challenge dose for chromosomal inversions in both spleen and prostate. The adaptive response completely prevented the induction of inversions from a 1,000 mGy challenge dose and also a proportion of endogenous inversions. The adaptive responses and distribution of inversions across gland cross-sections observed here in Atm knockout heterozygote prostate were similar to those induced in Atm wild-type prostate in a previous study. CONCLUSIONS Being heterozygous for a knockout mutation in the Atm gene does not affect the endogenous pKZ1 inversion frequency, the inversion response to single low radiation doses used here, or the induction of a radiation adaptive response for inversions in pKZ1 mouse spleen or prostate.
Collapse
Affiliation(s)
- Tanya K Day
- Department of Haematology and Genetic Pathology, Flinders University and Medical Centre, Bedford Park, South Australia, Australia
| | | | | | | |
Collapse
|
14
|
Kato TA, Nagasawa H, Weil MM, Little JB, Bedford JS. Levels of gamma-H2AX Foci after low-dose-rate irradiation reveal a DNA DSB rejoining defect in cells from human ATM heterozygotes in two at families and in another apparently normal individual. Radiat Res 2006; 166:443-53. [PMID: 16953663 DOI: 10.1667/rr3604.1] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have investigated the use of the gamma-H2AX assay, reflecting the presence of DNA double-strand breaks, as a possible means for identifying individuals who are mildly hypersensitive to ionizing radiation, such as some ATM heterozygotes. We compared levels of gamma-H2AX foci after irradiation in cells from six apparently normal individuals as well as from individuals from two separate AT families including the proband, mother, father and three unaffected siblings in each family. After a 1-Gy single acute (high-dose-rate) gamma-ray dose delivered to noncycling contact-inhibited monolayers of cells, clear differences were seen between samples from normal individuals (ATM(+/+)) and probands (ATM(-/-)) at nearly all sampling times after irradiation, but no clear distinctions were seen for cells from normal compared to obligate heterozygotes (ATM(+/-)). In contrast, after 24 h of continuous irradiation at a dose rate of 10 cGy/h, appreciable differences in numbers of foci per cell were observed for cells from individuals for all the known ATM genotypes compared with controls. Four unaffected siblings had mean numbers of foci per cell similar to that for the obligate heterozygotes, whereas the other two had mean values similar to that for normal controls. We determined independently that those siblings with mean numbers of foci per cell in the range of ATM heterozygotes carried the mutant allele, while both siblings with a normal number of foci per cell after irradiation had normal alleles. A more limited set of experiments using lymphoblastoid cell strains in the low-dose-rate assay also revealed distinct differences for normal compared to ATM heterozygotes from the same families and opens the possibility of using peripheral blood lymphocytes as a more suitable material for an assay to detect mild hypersensitivities to radiation among individuals.
Collapse
Affiliation(s)
- Takamitsu A Kato
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | |
Collapse
|
15
|
Buscemi G, Carlessi L, Zannini L, Lisanti S, Fontanella E, Canevari S, Delia D. DNA damage-induced cell cycle regulation and function of novel Chk2 phosphoresidues. Mol Cell Biol 2006; 26:7832-45. [PMID: 16940182 PMCID: PMC1636737 DOI: 10.1128/mcb.00534-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chk2 kinase is activated by DNA damage to regulate cell cycle arrest, DNA repair, and apoptosis. Phosphorylation of Chk2 in vivo by ataxia telangiectasia-mutated (ATM) on threonine 68 (T68) initiates a phosphorylation cascade that promotes the full activity of Chk2. We identified three serine residues (S19, S33, and S35) on Chk2 that became phosphorylated in vivo rapidly and exclusively in response to ionizing radiation (IR)-induced DNA double-strand breaks in an ATM- and Nbs1-dependent but ataxia telangiectasia- and Rad3-related-independent manner. Phosphorylation of these residues, restricted to the G(1) phase of the cell cycle, was induced by a higher dose of IR (>1 Gy) than that required for phosphorylation of T68 (0.25 Gy) and declined by 45 to 90 min, concomitant with a rise in Chk2 autophosphorylation. Compared to the wild-type form, Chk2 with alanine substitutions at S19, S33, and S35 (Chk2(S3A)) showed impaired dimerization, defective auto- and trans-phosphorylation activities, and reduced ability to promote degradation of Hdmx, a phosphorylation target of Chk2 and regulator of p53 activity. Besides, Chk2(S3A) failed to inhibit cell growth and, in response to IR, to arrest G(1)/S progression. These findings underscore the critical roles of S19, S33, and S35 and argue that these phosphoresidues may serve to fine-tune the ATM-dependent response of Chk2 to increasing amounts of DNA damage.
Collapse
Affiliation(s)
- Giacomo Buscemi
- Department of Experimental Oncology, Istituto Nazionale Tumori, 20133 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Vutskits GV, Salmon P, Mayor L, Vutskits L, Cudré-Mauroux C, Soriano J, Montesano R, Maillet P, Sappino AP. A role for atm in E-cadherin-mediated contact inhibition in epithelial cells. Breast Cancer Res Treat 2006; 99:143-53. [PMID: 16541306 DOI: 10.1007/s10549-006-9195-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 02/07/2006] [Indexed: 10/24/2022]
Abstract
Ataxia telangiectasia is a hereditary pleiomorphic syndrome caused by loss of Atm, a phosphoprotein involved in multiple signaling pathways. Here, we propose a novel role for atm in cultured epithelial cells, namely the regulation of cell growth by contact inhibition. We show that atm is upregulated in epithelial cells reaching confluence. Conditional expression of the PI 3-Kinase domain of atm in non-confluent Tac-2 epithelial cells increases the expression of the anti-proliferative gene Tis-21 and downregulates key cell cycle regulator genes, such as cyclins A, B1, B2, E and E2. Finally, we demonstrate that upregulation of atm, and thus Tis-21, in confluent Tac-2 cells can be inhibited by an E-cadherin antibody blocking specifically homophilic E-cadherin interactions between adjacent cell surfaces. Altogether, these results suggest that atm could participate in a molecular pathway linking extracellular signalling to cell cycle control and may help further clarify the role of Atm in epithelial cell biology and carcinogenesis.
Collapse
|
17
|
Young DB, Jonnalagadda J, Gatei M, Jans DA, Meyn S, Khanna KK. Identification of Domains of Ataxia-telangiectasia Mutated Required for Nuclear Localization and Chromatin Association. J Biol Chem 2005; 280:27587-94. [PMID: 15929992 DOI: 10.1074/jbc.m411689200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ataxia-telangiectasia mutated (ATM) is essential for rapid induction of cellular responses to DNA double strand breaks (DSBs). In this study, we mapped a nuclear localization signal (NLS), 385KRKK388, within the amino terminus of ATM and demonstrate its recognition by the conventional nuclear import receptor, the importin alpha1/beta1 heterodimer. Although mutation of this NLS resulted in green fluorescent protein (GFP) x ATM(NLSm) localizing predominantly within the cytoplasm, small amounts of nuclear GFP x ATM(NLSm) were still sufficient to elicit a DNA damage response. Insertion of an heterologous nuclear export signal between GFP and ATM(NLSm) resulted in complete cytoplasmic localization of ATM, concomitantly reducing the level of substrate phosphorylation and increasing radiosensitivity, which indicates a functional requirement for ATM nuclear localization. Interestingly, the carboxyl-terminal half of ATM, containing the kinase domain, which localizes to the cytoplasm, could not autophosphorylate itself or phosphorylate substrates, nor could it correct radiosensitivity in response to DSBs even when targeted to the nucleus by insertion of an exogenous NLS, demonstrating that the ATM amino terminus is required for optimal ATM function. Moreover, we have shown that the recruitment/retention of ATM at DSBs requires its kinase activity because a kinase-dead mutant of GFP x ATM failed to form damage-induced foci. Using deletion mutation analysis we mapped a domain in ATM (amino acids 5-224) required for its association with chromatin, which may target ATM to sites of DNA damage. Combined, these data indicate that the amino terminus of ATM is crucial not only for nuclear localization but also for chromatin association, thereby facilitating the kinase activity of ATM in vivo.
Collapse
Affiliation(s)
- David B Young
- Signal Transduction Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia
| | | | | | | | | | | |
Collapse
|
18
|
Helt CE, Cliby WA, Keng PC, Bambara RA, O'Reilly MA. Ataxia telangiectasia mutated (ATM) and ATM and Rad3-related protein exhibit selective target specificities in response to different forms of DNA damage. J Biol Chem 2004; 280:1186-92. [PMID: 15533933 DOI: 10.1074/jbc.m410873200] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ataxia telangiectasia mutated (ATM) and ATR (ATM and Rad3-related) protein kinases exert cell cycle delay, in part, by phosphorylating Checkpoint kinase (Chk) 1, Chk2, and p53. It is well established that ATR is activated following UV light-induced DNA damage such as pyrimidine dimers and the 6-(1,2)-dihydro-2-oxo-4-pyrimidinyl-5-methyl-2,4-(1H,3H)-pyrimidinediones, whereas ATM is activated in response to double strand DNA breaks. Here we clarify the activation of these kinases in cells exposed to IR, UV, and hyperoxia, a condition of chronic oxidative stress resulting in clastogenic DNA damage. Phosphorylation on Chk1(Ser-345), Chk2(Thr-68), and p53(Ser-15) following oxidative damage by IR involved both ATM and ATR. In response to ultraviolet radiation-induced stalled replication forks, phosphorylation on Chk1 and p53 required ATR, whereas Chk2 required ATM. Cells exposed to hyperoxia exhibited growth delay in G1, S, and G2 that was disrupted by wortmannin. Consistent with ATM or ATR activation, hyperoxia induced wortmannin-sensitive phosphorylation of Chk1, Chk2, and p53. By using ATM- and ATR-defective cells, phosphorylation on Chk1, Chk2, and p53 was found to be ATM-dependent, whereas ATR also contributed to Chk1 phosphorylation. These data reveal activated ATM and ATR exhibit selective substrate specificity in response to different genotoxic agents.
Collapse
Affiliation(s)
- Christopher E Helt
- Department of Environmental Medicine, School of Medicine and Dentistry, the University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
19
|
Watanabe F, Fukazawa H, Masutani M, Suzuki H, Teraoka H, Mizutani S, Uehara Y. Poly(ADP-ribose) polymerase-1 inhibits ATM kinase activity in DNA damage response. Biochem Biophys Res Commun 2004; 319:596-602. [PMID: 15178448 DOI: 10.1016/j.bbrc.2004.05.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Indexed: 11/25/2022]
Abstract
DNA double-strand breaks (DSB) mobilize DNA-repair machinery and cell cycle checkpoint by activating the ataxia-telangiectasia (A-T) mutated (ATM). Here we show that ATM kinase activity is inhibited by poly(ADP-ribose) polymerase-1 (PARP-1) in vitro. It was shown by biochemical fractionation procedure that PARP-1 as well as ATM increases at chromatin level after induction of DSB with neocarzinostatin (NCS). Phosphorylation of histone H2AX on serine 139 and p53 on serine 15 in Parp-1 knockout (Parp-1(-/-)) mouse embryonic fibroblasts (MEF) was significantly induced by NCS treatment compared with MEF derived from wild-type (Parp-1(+/+)) mouse. NCS-induced phosphorylation of histone H2AX on serine 139 in Parp-1(-/-) embryonic stem cell (ES) clones was also higher than that in Parp-1(+/+) ES clone. Furthermore, in vitro, PARP-1 inhibited phosphorylation of p53 on serine 15 and (32)P-incorporation into p53 by ATM in a DNA-dependent manner. These results suggest that PARP-1 negatively regulates ATM kinase activity in response to DSB.
Collapse
Affiliation(s)
- Fumiaki Watanabe
- Department of Bioactive Molecules, National Institute of Infectious Disease, 1-23-1 Toyama, Shinjyuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Fernet M, Moullan N, Lauge A, Stoppa-Lyonnet D, Hall J. Cellular responses to ionising radiation of AT heterozygotes: differences between missense and truncating mutation carriers. Br J Cancer 2004; 90:866-73. [PMID: 14970866 PMCID: PMC2410162 DOI: 10.1038/sj.bjc.6601549] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
It has been estimated that approximately 1% of the general population are ataxia telangiectasia (AT) mutated (ATM) heterozygotes. The ATM protein plays a central role in DNA-damage response pathways; however, the functional consequences of the presence of either heterozygous truncating or missense mutations on ATM expression and the ionising radiation (IR)-induced cellular phenotype remain to be fully determined. To investigate this relationship, the ATM mRNA and protein levels and several cellular end points were characterised in 14 AT heterozygote (AT het) lymphoblastoid cell lines, compared to normal and AT homozygote lines. The AT het cell lines displayed a wide range of IR-induced responses: despite lower average levels of ATM mRNA and protein expression compared to normal cells, 13 out of 14 were capable of phosphorylating the ATM substrates p53-ser15 and Chk2, leading to a normal cell cycle progression after irradiation. However, cell survival was lower than in the normal cell lines. The presence of a missense compared to a truncating mutation was associated with lower cell survival after exposure to 2 Gy irradiation (P=0.005), and a higher level of ATM mRNA expression (P=0.047). Our results underline the difficulty in establishing a reliable test for determining ATM heterozygosity.
Collapse
Affiliation(s)
- M Fernet
- DNA Repair Group, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon cedex 08, France
| | - N Moullan
- DNA Repair Group, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon cedex 08, France
| | - A Lauge
- Service de Génétique, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - D Stoppa-Lyonnet
- Service de Génétique, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | - J Hall
- DNA Repair Group, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon cedex 08, France
- DNA Repair Group, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon cedex 08, France. E-mail:
| |
Collapse
|
21
|
Affiliation(s)
- T S Lin
- Division of Hematology and Oncology, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
22
|
Lantelme E, Turinetto V, Mantovani S, Marchi A, Regazzoni S, Porcedda P, De Marchi M, Giachino C. Analysis of secondary V(D)J rearrangements in mature, peripheral T cells of ataxia-telangiectasia heterozygotes. J Transl Med 2003; 83:1467-75. [PMID: 14563948 DOI: 10.1097/01.lab.0000092228.51605.6a] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ataxia-telangiectasia (AT) is a rare recessive disease with pleiotropic involvement of the nervous and lymphoid systems. AT heterozygotes have a population frequency of about 1%, and although not manifesting any overt clinical symptoms, they have an increased mortality, mainly because of cancer and ischemic heart disease. We and others have described a mature T lymphocyte population with an altered T cell receptor surface expression ("TCR variant") that reactivates the recombination activating genes (RAG) and is expanded in the blood of patients with AT. In view of the known role of V(D)J recombination in the onset of tumorigenic translocations, we proposed that the increased RAG activity was responsible for the predisposition of AT homozygotes to develop mature-type T leukemia/lymphoma. In the present report, we used cytofluorimetry to quantify the TCR variant population and the memory/naïve T-cell compartments in the blood of AT heterozygotes compared with AT patients and controls. We assessed the expression of different recombinase genes through RT-PCR/oligotyping and cytofluorometric analysis and searched for rearrangement intermediates by ligase-mediated PCR in T-cell lines from four heterozygous carriers. We found the TCR variant population was increased on average 2x in AT heterozygotes (vs 10x in homozygotes) compared with controls, and naïve CD4(+) T lymphocytes were reduced on average 0.5x (vs 0.1x in homozygotes). We were able to demonstrate recombinase gene expression in all four heterozygous T-cell lines, and rearrangement intermediates, indicative of ongoing V(D)J recombination, in two. These rearrangements were compatible with V-gene replacement, a mechanism of receptor editing described for Ig and TCRalpha genes, to our knowledge not previously documented for TCRbeta. In conclusion, we found that RAG reactivation and secondary V(D)J rearrangements, potential risk factors of mature-type leukemia in AT homozygotes, also take place in AT heterozygous carriers and might place this large population fraction at an increased risk of leukemia/lymphoma.
Collapse
Affiliation(s)
- Erica Lantelme
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Nur-E-Kamal A, Li TK, Zhang A, Qi H, Hars ES, Liu LF. Single-stranded DNA induces ataxia telangiectasia mutant (ATM)/p53-dependent DNA damage and apoptotic signals. J Biol Chem 2003; 278:12475-81. [PMID: 12540848 DOI: 10.1074/jbc.m212915200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Single-stranded DNA has been speculated to be the initial signal in the DNA damage signaling pathway. We showed that introduction of single-stranded DNA with diverse sequences into mammalian cells induced DNA damage as well as apoptosis signals. Like DNA damaging agents, single-stranded DNA up-regulated p53 and activated the nuclear kinase ataxia telangiectasia mutant (ATM) as evidenced by phosphorylation of histone 2AX, an endogenous ATM substrate. Single-stranded DNA also triggered apoptosis as evidenced by the formation of caspase-dependent chromosomal DNA strand breaks, cytochrome c release, and increase in reactive oxygen species production. Moreover, single-stranded DNA-induced apoptosis was reduced significantly in p53 null cells and in cells treated with ATM small interfering RNA. These results suggest that single-stranded DNA may act upstream of ATM/p53 in DNA damage signaling.
Collapse
Affiliation(s)
- Alam Nur-E-Kamal
- Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Tsuchida R, Yamada T, Takagi M, Shimada A, Ishioka C, Katsuki Y, Igarashi T, Chessa L, Delia D, Teraoka H, Mizutani S. Detection of ATM gene mutation in human glioma cell line M059J by a rapid frameshift/stop codon assay in yeast. Radiat Res 2002; 158:195-201. [PMID: 12105990 DOI: 10.1667/0033-7587(2002)158[0195:doagmi]2.0.co;2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A yeast-based frameshift/stop codon assay for examining ATM (ataxia telangiectasia mutated) mutations was established. Each of six fragments of a PCR-amplified coding sequence for ATM is inserted in frame by homologous recombination into a yeast URA3 fusion protein gene, and the transformants are assayed for growth in the absence of uracil. The usefulness of this assay was verified in a panel of cell lines derived from individuals with homozygous and heterozygous ATM mutations. The assay was also shown to distinguish between specimens with wild-type alleles and those with truncating mutations: a frameshift mutation or an inserted stop codon. Using this assay M059J cells, which fail to express the catalytic subunit of DNA-dependent protein kinase (PRKDC, also known as DNA-PKcs) and are hypersensitive to ionizing radiation, were found to express two different aberrant ATM transcripts: one characterized by 4776 del 133, which corresponds to the deletion of exon 33, and the other by 4909 ins 116. Subsequent analysis of the intron sequences revealed that 4909 ins 116 is comprised of a nucleotide sequence corresponding to 84013-84128 in intron 33 with a cryptic splice site. Thus the radiosensitive phenotype of M059J cells appears to be due to a defect in PRKDC and a truncating ATM mutation.
Collapse
Affiliation(s)
- Rika Tsuchida
- Department of Pediatrics and Developmental Biology, Postgraduate Medical School, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Buscemi G, Savio C, Zannini L, Miccichè F, Masnada D, Nakanishi M, Tauchi H, Komatsu K, Mizutani S, Khanna K, Chen P, Concannon P, Chessa L, Delia D. Chk2 activation dependence on Nbs1 after DNA damage. Mol Cell Biol 2001; 21:5214-22. [PMID: 11438675 PMCID: PMC87245 DOI: 10.1128/mcb.21.15.5214-5222.2001] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The checkpoint kinase Chk2 has a key role in delaying cell cycle progression in response to DNA damage. Upon activation by low-dose ionizing radiation (IR), which occurs in an ataxia telangiectasia mutated (ATM)-dependent manner, Chk2 can phosphorylate the mitosis-inducing phosphatase Cdc25C on an inhibitory site, blocking entry into mitosis, and p53 on a regulatory site, causing G(1) arrest. Here we show that the ATM-dependent activation of Chk2 by gamma- radiation requires Nbs1, the gene product involved in the Nijmegen breakage syndrome (NBS), a disorder that shares with AT a variety of phenotypic defects including chromosome fragility, radiosensitivity, and radioresistant DNA synthesis. Thus, whereas in normal cells Chk2 undergoes a time-dependent increased phosphorylation and induction of catalytic activity against Cdc25C, in NBS cells null for Nbs1 protein, Chk2 phosphorylation and activation are both defective. Importantly, these defects in NBS cells can be complemented by reintroduction of wild-type Nbs1, but neither by a carboxy-terminal deletion mutant of Nbs1 at amino acid 590, unable to form a complex with and to transport Mre11 and Rad50 in the nucleus, nor by an Nbs1 mutated at Ser343 (S343A), the ATM phosphorylation site. Chk2 nuclear expression is unaffected in NBS cells, hence excluding a mislocalization as the cause of failed Chk2 activation in Nbs1-null cells. Interestingly, the impaired Chk2 function in NBS cells correlates with the inability, unlike normal cells, to stop entry into mitosis immediately after irradiation, a checkpoint abnormality that can be corrected by introduction of the wild-type but not the S343A mutant form of Nbs1. Altogether, these findings underscore the crucial role of a functional Nbs1 complex in Chk2 activation and suggest that checkpoint defects in NBS cells may result from the inability to activate Chk2.
Collapse
Affiliation(s)
- G Buscemi
- Department of Experimental Oncology, Istituto Nazionale Tumori, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|