1
|
Liu X, Wang S, Lv H, Chen E, Yu J. Venous thromboembolism and ovarian cancer risk: a Mendelian randomized study. Discov Oncol 2024; 15:581. [PMID: 39438364 PMCID: PMC11496464 DOI: 10.1007/s12672-024-01446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
INTRODUCTION A potential link between venous thromboembolism and the risk of ovarian cancer has been identified in clinical practice. However, it is unclear whether there is a causal relationship between the two. In this study, we applied a univariate two-sample Mendelian randomization method to explain the possible link between venous thromboembolism and ovarian cancer pathogenesis at the genetic level, and pointed out that lipid metabolism and ovarian cancer pathogenesis have innovative basic experimental directions. OBJECTIVE This study explored the causal effect between a history of venous thromboembolism and the risk of ovarian cancer. METHODS Genome-Wide Association Study (GWAS) data of venous thromboembolism patients (n = 9176) of the same ethnicity were selected as study exposures, and GWAS data of ovarian cancer patients (n = 1218) of the same ethnicity were selected as study exposures. In this study, univariate two-sample Mendelian randomization analysis (UVMR) was performed separately using inverse variance weighted (IVW), MR-Egger regression, and weighted median (WM) to assess causal effects. In this study, Cochran's Q test, MR-Egger regression intercept term, MR-PRESSO, and leave-one-out method were used for sensitivity analysis to assess the stability and reliability of the results. RESULTS The GWAS data screened in this study were all European ethnicity data. In this study, we found that genetically predicted history of venous thromboembolism was associated with an upward trend in ovarian cancer incidence, and the results of Weighted median, Simple mode, Weighted mode, and MR Egger showed a similar trend (OR = 1.0006, 95% CI: 1.00007-1.0013, p < 0.05). There was no heterogeneity of results (p = 0.18) and no horizontal pleiotropy (p = 0.77). The instrumental variables selected for venous thromboembolism in this study were all strong instrumental variables (F = 669.7). The results of the sensitivity analysis remained consistent. CONCLUSION The results of this study indicate that patients with a history of venous thromboembolism are at increased risk of developing ovarian cancer and point to possible associations between lipid metabolism genes, such as CYP4V2, and the development of ovarian cancer, which provide interesting directions for further basic research.
Collapse
Affiliation(s)
- Xiaolin Liu
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Shan Wang
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Hongwei Lv
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Enli Chen
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Jing Yu
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China.
| |
Collapse
|
2
|
Tsumura R, Anzai T, Koga Y, Takashima H, Matsumura Y, Yasunaga M. Anti-tissue factor antibody conjugated with monomethyl auristatin E or deruxtecan in pancreatic cancer models. Cancer Sci 2024. [PMID: 39322584 DOI: 10.1111/cas.16335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Antibody-drug conjugates (ADCs) have been recognized as a promising class of cancer therapeutics. Tissue factor (TF), an initiator of the blood coagulation pathway, has been investigated regarding its relationship with cancer, and several preclinical and clinical studies have presented data on anti-TF ADCs, including tisotumab vedotin, which was approved in 2021. However, the feasibility of other payloads in the design of anti-TF ADCs is still unclear because no reports have compared payloads with different cytotoxic mechanisms. For ADCs targeting other antigens, such as Her2, optimizing the payload is also an important issue in order to improve in vivo efficacy. In this study, we prepared humanized anti-TF Ab (clone.1084) conjugated with monomethyl auristatin E (MMAE) or deruxtecan (DXd), and evaluated the efficacy in several cell line- and patient-derived xenograft models of pancreatic cancer. As a result, optimizing the drug / Ab ratio was necessary for each payload in order to prevent pharmacokinetic deterioration and maximize delivery efficiency. In addition, MMAE-conjugated anti-TF ADC showed higher antitumor effects in tumors with strong and homogeneous TF expression, while DXd-conjugated anti-TF ADC was more effective in tumors with weak and heterogeneous TF expression. Analysis of a pancreatic cancer tissue array showed weak and heterogeneous TF expression in most TF-positive specimens, indicating that the response rate to pancreatic cancer might be higher for DXd- than MMAE-conjugated anti-TF ADC. Nevertheless, our findings indicated that optimizing the ADC payloads individually in each patient could maximize the potential of ADC therapeutics.
Collapse
Affiliation(s)
- Ryo Tsumura
- Division of Developmental Therapeutics, EPOC, National Cancer Center, Kashiwa, Japan
| | - Takahiro Anzai
- Division of Developmental Therapeutics, EPOC, National Cancer Center, Kashiwa, Japan
- Department of Chemistry and Materials Science, National Institute of Technology (KOSEN), Gunma College, Maebashi, Japan
| | - Yoshikatsu Koga
- Division of Developmental Therapeutics, EPOC, National Cancer Center, Kashiwa, Japan
| | - Hiroki Takashima
- Division of Developmental Therapeutics, EPOC, National Cancer Center, Kashiwa, Japan
| | - Yasuhiro Matsumura
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan
- Research Division, RIN Institute Inc., Tokyo, Japan
| | - Masahiro Yasunaga
- Division of Developmental Therapeutics, EPOC, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
3
|
Raju B, Narendra G, Verma H, Silakari O. Identification of chemoresistance associated key genes-miRNAs-TFs in docetaxel resistant breast cancer by bioinformatics analysis. 3 Biotech 2024; 14:128. [PMID: 38590544 PMCID: PMC10998825 DOI: 10.1007/s13205-024-03971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/01/2024] [Indexed: 04/10/2024] Open
Abstract
The present study aimed to identify the differentially expressed genes (DEGs) and enriched pathways in docetaxel (DTX) resistant breast cancer cell lines by bioinformatics analysis. The microarray dataset GSE28784 was obtained from gene expression omnibus (GEO) database. The differentially expressed genes (DEGs), gene ontology (GO), and Kyoto Encyclopedia of gene and genome (KEGG) pathway analyses were performed with the help of GEO2R and DAVID tools. Furthermore, the protein-protein interaction (PPI) and hub-gene network of DEGs were constructed using STRING and Cytohubba tools. The prognostic values of hub genes were calculated with the help of the Kaplan-Meier plotter database. From the GEO2R analysis, 222 DEGs were identified of which 120 are upregulated and 102 are downregulated genes. In the PPIs network, five up-regulated genes including CCL2, SPARC, CYR61, F3, and MFGE8 were identified as hub genes. It was observed that low expression of six hub genes CXCL8, CYR61, F3, ICAM1, PLAT, and THBD were significantly correlated with poor overall survival of BC patients in survival analysis. miRNA analysis identified that hsa-mir-16-5p, hsa-mir-335-5p, hsa-mir-124-3p, hsa-mir-20a-5p, and hsa-mir-155-5p are the top 5 interactive miRNAs that are commonly interacting with more hub genes with degree score of greater than five. Additionally, drug-gene interaction analysis was performed to identify drugs which are could potentially elevate/lower the expression levels of hub genes. In summary, the gene-miRNAs-TFs network and subsequent correlation of candidate drugs with hub genes may improve individualized diagnosis and help select appropriate combination therapy for DTX-resistant BC in the future. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03971-2.
Collapse
Affiliation(s)
- Baddipadige Raju
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002 India
| | - Gera Narendra
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002 India
| | - Himanshu Verma
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002 India
| | - Om Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002 India
| |
Collapse
|
4
|
Tinholt M, Tekpli X, Torland LA, Tahiri A, Geisler J, Kristensen V, Sandset PM, Iversen N. The breast cancer coagulome in the tumor microenvironment and its role in prognosis and treatment response to chemotherapy. J Thromb Haemost 2024; 22:1319-1335. [PMID: 38237862 DOI: 10.1016/j.jtha.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND The procoagulant phenotype in cancer is linked to thrombosis, cancer progression, and immune response. A novel treatment that reduces the risk of both thrombosis and cancer progression without excess bleeding risk remains to be identified. OBJECTIVES Here, we aimed to broadly investigate the breast tumor coagulome and its relation to prognosis, treatment response to chemotherapy, and the tumor microenvironment. METHODS Key coagulation-related genes (n = 35) were studied in a Norwegian cohort with tumor (n = 134) and normal (n = 189) tissue and in the Cancer Genome Atlas (n = 1052) data set. We performed gene set variation analysis in the Norwegian cohort, and in the Cancer Genome Atlas cohort, associations with the tumor microenvironment and prognosis were evaluated. Analyses were performed with cBioPortal, Estimation of Stromal and Immune cells in Malignant Tumors Using Expression Data, Tumor Immune Estimation Resource, the integrated repository portal for tumor-immune system interactions, Tumor Immune Single-cell Hub 2, and the receiver operating characteristic plotter. Six independent breast cancer cohorts were used to study the tumor coagulome and treatment response to chemotherapy. RESULTS Twenty-two differentially expressed coagulation-related genes were identified in breast tumors. Several coagulome factors were correlated with tumor microenvironment characteristics and were expressed by nonmalignant cells in the tumor microenvironment. PLAT and F8 were independent predictors of better overall survival and progression-free survival, respectively. F12 and PLAU were predictors of worse progression-free survival. The PROCR-THBD-PLAT signature showed a promising predictive value (area under the curve, 0.75; 95% CI, 0.69-0.81; P = 3.6 × 10-17) for combination chemotherapy with fluorouracil, epirubicin, and cyclophosphamide. CONCLUSION The breast tumor coagulome showed potential in prediction of prognosis and chemotherapy response. Cells within the tumor microenvironment are sources of coagulome factors and may serve as therapeutic targets of coagulation factors.
Collapse
Affiliation(s)
- Mari Tinholt
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Department of Haematology, Oslo University Hospital, Oslo, Norway.
| | - Xavier Tekpli
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Lilly Anne Torland
- Department of Research and Innovation, Vestre Viken Hospital Trust, Drammen, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andliena Tahiri
- Department of Research and Innovation, Vestre Viken Hospital Trust, Drammen, Norway; Department of Clinical Molecular Biology (EpiGen), Medical Division, Akershus University Hospital, Lørenskog, Norway
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital, Lørenskog, Norway
| | - Vessela Kristensen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Per Morten Sandset
- Department of Haematology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, Norway
| | - Nina Iversen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
5
|
Li GS, He RQ, Huang ZG, Huang H, Yang Z, Liu J, Fu ZW, Huang WY, Zhou HF, Kong JL, Chen G. A novel prognostic signature of coagulation-related genes leveraged by machine learning algorithms for lung squamous cell carcinoma. Heliyon 2024; 10:e27595. [PMID: 38496840 PMCID: PMC10944263 DOI: 10.1016/j.heliyon.2024.e27595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/26/2023] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
Coagulation-related genes (CRGs) have been demonstrated to be essential for the development of certain tumors; however, little is known about CRGs in lung squamous cell carcinoma (LUSC). In this study, we adopted CRGs to construct a coagulation-related gene prognostic signature (CRGPS) using machine learning algorithms. Using a set of 92 machine learning integrated algorithms, the CRGPS was determined to be the optimal prognostic signature (median C-index = 0.600) for predicting the prognosis of an LUSC patient. The CRGPS was not only superior to traditional clinical parameters (e.g., T stage, age, and gender) and its commutative genes but also outperformed 19 preexisting prognostic signatures for LUSC on predictive accuracy. The CRGPS score was positively correlated with poor prognoses in patients with LUSC (hazard ratio > 1, p < 0.05), indicating its suitability as a prognostic marker for this disease. The CRGPS was observed to be inversely correlated with the degree of infiltration of natural killer cells. For some tumors, patients with lower CRGPS scores are more likely to experience enhanced immunotherapy effects (area under the curve = 0.70), which implies that the CRGPS can potentially predict immunotherapy efficacy. A high CRGPS score is predictive of an LUSC patient being sensitive to several drugs. Collectively, these findings indicate that the CRGPS may be a reliable indicator of the prognoses of patients with LUSC and may be useful for the clinical management of such patients.
Collapse
Affiliation(s)
- Guo-Sheng Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Hong Huang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Zhen Yang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Jun Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Zong-Wang Fu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Wan-Ying Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Hua-Fu Zhou
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Jin-Liang Kong
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| |
Collapse
|
6
|
Martinelli N, Moruzzi S, Udali S, Castagna A, Di Santo L, Ambrosani F, Baroni M, Pattini P, Pizzolo F, Ruzzenente A, Conci S, Grusse M, Campagnaro T, Van Dreden P, Guglielmi A, Bernardi F, Olivieri O, Friso S. Tissue factor pathway-related biomarkers in liver cancer: activated factor VII-antithrombin complex and tissue factor mRNA levels are associated with mortality. Res Pract Thromb Haemost 2024; 8:102310. [PMID: 38282902 PMCID: PMC10818084 DOI: 10.1016/j.rpth.2023.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024] Open
Abstract
Background Tissue factor (TF), the main initiator of the coagulation cascade, plays a role in cancer progression and prognosis. Activated factor VII-antithrombin complex (FVIIa-AT) is considered an indirect marker of TF exposure by reflecting TF-FVIIa interaction. Objectives To assess the link between FVIIa-AT plasma levels, TF messenger RNA (mRNA) expression, and survival in cancer. Methods TF pathway-related coagulation biomarkers were assessed in 136 patients with cancer (52 with hepatocellular carcinoma, 41 with cholangiocarcinoma, and 43 with colon cancer) undergoing surgical intervention with curative intent. TF mRNA expression analysis in neoplastic vs nonneoplastic liver tissues was evaluated in a subgroup of 91 patients with primary liver cancer. Results FVIIa-AT levels were higher in patients with cancer than in 136 sex- and age-matched cancer-free controls. In patients with cancer, high levels of FVIIa-AT and total TF pathway inhibitor were associated with an increased mortality risk after adjustment for confounders, but only FVIIa-AT remained a predictor of mortality by including both FVIIa-AT and total TF pathway inhibitor in Cox regression (hazard ratio, 2.80; 95% CI, 1.23-6.39; the highest vs the lowest quartile). This association remained significant even after adjustment for extracellular vesicle-associated TF-dependent procoagulant activity. In the subgroup of patients with primary liver cancer, patients with high TF mRNA levels had an increased mortality risk compared with that for those with low TF mRNA levels (hazard ratio, 1.92; 95% CI, 1.03-3.57), and there was a consistent correlation among high FVIIa-AT levels, high TF mRNA levels, and increased risk of mortality. Conclusion High FVIIa-AT levels may allow the identification of patients with cancer involving high TF expression and predict a higher mortality risk in liver cancer.
Collapse
Affiliation(s)
| | - Sara Moruzzi
- Department of Medicine, University of Verona, Verona, Italy
| | - Silvia Udali
- Department of Medicine, University of Verona, Verona, Italy
| | | | - Laura Di Santo
- Department of Medicine, University of Verona, Verona, Italy
| | | | - Marcello Baroni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | | | | | - Simone Conci
- Department of Surgery, University of Verona, Verona, Italy
| | - Matthieu Grusse
- Clinical Research Department, Diagnostica Stago, Gennevilliers, France
| | | | | | | | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | | |
Collapse
|
7
|
Heidari Z, Naeimzadeh Y, Fallahi J, Savardashtaki A, Razban V, Khajeh S. The Role of Tissue Factor In Signaling Pathways of Pathological Conditions and Angiogenesis. Curr Mol Med 2024; 24:1135-1151. [PMID: 37817529 DOI: 10.2174/0115665240258746230919165935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 10/12/2023]
Abstract
Tissue factor (TF) is an integral transmembrane protein associated with the extrinsic coagulation pathway. TF gene expression is regulated in response to inflammatory cytokines, bacterial lipopolysaccharides, and mechanical injuries. TF activity may be affected by phosphorylation of its cytoplasmic domain and alternative splicing. TF acts as the primary initiator of physiological hemostasis, which prevents local bleeding at the injury site. However, aberrant expression of TF, accompanied by the severity of diseases and infections under various pathological conditions, triggers multiple signaling pathways that support thrombosis, angiogenesis, inflammation, and metastasis. Protease-activated receptors (PARs) are central in the downstream signaling pathways of TF. In this study, we have reviewed the TF signaling pathways in different pathological conditions, such as wound injury, asthma, cardiovascular diseases (CVDs), viral infections, cancer and pathological angiogenesis. Angiogenic activities of TF are critical in the repair of wound injuries and aggressive behavior of tumors, which are mainly performed by the actions of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1 (HIF1-α). Pro-inflammatory effects of TF have been reported in asthma, CVDs and viral infections, including COVID-19, which result in tissue hypertrophy, inflammation, and thrombosis. TF-FVII induces angiogenesis via clotting-dependent and -independent mechanisms. Clottingdependent angiogenesis is induced via the generation of thrombin and cross-linked fibrin network, which facilitate vessel infiltration and also act as a reservoir for endothelial cells (ECs) growth factors. Expression of TF in tumor cells and ECs triggers clotting-independent angiogenesis through induction of VEGF, urokinase-type plasminogen activator (uPAR), early growth response 1 (EGR1), IL8, and cysteine-rich angiogenic inducer 61 (Cyr61).
Collapse
Affiliation(s)
- Zahra Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Khajeh
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Su Y, Yi J, Zhang Y, Leng D, Huang X, Shi X, Zhang Y. EML4-ALK fusion protein in Lung cancer cells enhances venous thrombogenicity through the pERK1/2-AP-1-tissue factor axis. J Thromb Thrombolysis 2024; 57:67-81. [PMID: 37940761 PMCID: PMC10830642 DOI: 10.1007/s11239-023-02916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Accumulating evidence links the echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) rearrangement to venous thromboembolism (VTE) in non-small cell lung cancer (NSCLC) patients. However, the corresponding mechanisms remain unclear. METHOD High-throughput sequencing analysis of H3122 human ALK-positive NSCLC cells treated with ALK inhibitor/ dimethyl sulfoxide (DMSO) was performed to identify coagulation-associated differential genes between EML4-ALK fusion protein inhibited cells and control cells. Sequentially, we confirmed its expression in NSCLC patients' tissues and in the plasma of a subcutaneous xenograft mouse model. An inferior vena cava (IVC) ligation model was used to assess clot formation potential. Additionally, pathways involved in tissue factor (TF) regulation were explored in ALK-positive cell lines H3122 and H2228. Statistical significance was determined by Student t-test and one-way ANOVA using SPSS. RESULTS Sequencing analysis identified a significant downregulation of TF after inhibiting EML4-ALK fusion protein activity in H3122 cells. In clinical NSCLC cases, TF expression was increased especially in ALK-positive NSCLC tissues. Meanwhile, H3122 and H2228 with high TF expression exhibited shorter plasma clotting time and higher TF activity versus ALK-negative H1299 and A549 in cell culture supernatant. Mice bearing H2228 tumor showed a higher concentration of tumor-derived TF and TF activity in plasma and the highest adjusted IVC clot weights. Limiting EML4-ALK protein phosphorylation downregulated extracellular regulated protein kinases 1/2 (ERK1/2)-activating the protein-1(AP-1) signaling pathway and thus attenuated TF expression. CONCLUSION EML4-ALK fusion protein may enhance venous thrombogenicity by regulating coagulation factor TF expression. There was potential involvement of the pERK1/2-AP-1 pathway in this process.
Collapse
Affiliation(s)
- Yanping Su
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiawen Yi
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yuan Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Dong Leng
- Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xiaoxi Huang
- Basic Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xinyu Shi
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Yuhui Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
9
|
Martins-Cardoso K, Maçao A, Souza JL, Silva AG, König S, Martins-Gonçalves R, Hottz ED, Rondon AMR, Versteeg HH, Bozza PT, Almeida VH, Monteiro RQ. TF/PAR2 Signaling Axis Supports the Protumor Effect of Neutrophil Extracellular Traps (NETs) on Human Breast Cancer Cells. Cancers (Basel) 2023; 16:5. [PMID: 38201433 PMCID: PMC10778307 DOI: 10.3390/cancers16010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Neutrophil extracellular traps (NETs) have been implicated in several hallmarks of cancer. Among the protumor effects, NETs promote epithelial-mesenchymal transition (EMT) in different cancer models. EMT has been linked to an enhanced expression of the clotting-initiating protein, tissue factor (TF), thus favoring the metastatic potential. TF may also exert protumor effects by facilitating the activation of protease-activated receptor 2 (PAR2). Herein, we evaluated whether NETs could induce TF expression in breast cancer cells and further promote procoagulant and intracellular signaling effects via the TF/PAR2 axis. T-47D and MCF7 cell lines were treated with isolated NETs, and samples were obtained for real-time PCR, flow cytometry, Western blotting, and plasma coagulation assays. In silico analyses were performed employing RNA-seq data from breast cancer patients deposited in The Cancer Genome Atlas (TCGA) database. A positive correlation was observed between neutrophil/NETs gene signatures and TF gene expression. Neutrophils/NETs gene signatures and PAR2 gene expression also showed a significant positive correlation in the bioinformatics model. In vitro analysis showed that treatment with NETs upregulated TF gene and protein expression in breast cancer cell lines. The inhibition of ERK/JNK reduced the TF gene expression induced by NETs. Remarkably, the pharmacological or genetic inhibition of the TF/PAR2 signaling axis attenuated the NETs-induced expression of several protumor genes. Also, treatment of NETs with a neutrophil elastase inhibitor reduced the expression of metastasis-related genes. Our results suggest that the TF/PAR2 signaling axis contributes to the pro-cancer effects of NETs in human breast cancer cells.
Collapse
Affiliation(s)
- Karina Martins-Cardoso
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.M.-C.); (A.M.); (J.L.S.); (A.G.S.); (V.H.A.)
| | - Aquiles Maçao
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.M.-C.); (A.M.); (J.L.S.); (A.G.S.); (V.H.A.)
| | - Juliana L. Souza
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.M.-C.); (A.M.); (J.L.S.); (A.G.S.); (V.H.A.)
| | - Alexander G. Silva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.M.-C.); (A.M.); (J.L.S.); (A.G.S.); (V.H.A.)
| | - Sandra König
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Remy Martins-Gonçalves
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (R.M.-G.); (P.T.B.)
| | - Eugenio D. Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora (UFJF), Rio de Janeiro 23890-000, Brazil;
| | - Araci M. R. Rondon
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Thrombosis and Hemostasis, Leiden University Medical Center, 333 ZA Leiden, The Netherlands; (A.M.R.R.); (H.H.V.)
| | - Henri H. Versteeg
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Thrombosis and Hemostasis, Leiden University Medical Center, 333 ZA Leiden, The Netherlands; (A.M.R.R.); (H.H.V.)
| | - Patrícia T. Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (R.M.-G.); (P.T.B.)
| | - Vitor H. Almeida
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.M.-C.); (A.M.); (J.L.S.); (A.G.S.); (V.H.A.)
| | - Robson Q. Monteiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (K.M.-C.); (A.M.); (J.L.S.); (A.G.S.); (V.H.A.)
| |
Collapse
|
10
|
Raafat SN, El Wahed SA, Badawi NM, Saber MM, Abdollah MR. Enhancing the anticancer potential of metformin: fabrication of efficient nanospanlastics, in vitro cytotoxic studies on HEP-2 cells and reactome enhanced pathway analysis. Int J Pharm X 2023; 6:100215. [PMID: 38024451 PMCID: PMC10630776 DOI: 10.1016/j.ijpx.2023.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
Metformin (MET), an oral antidiabetic drug, was reported to possess promising anticancer effects. We hypothesized that MET encapsulation in unique nanospanlastics would enhance its anticancer potential against HEP-2 cells. Our results showed the successful fabrication of Nano-MET spanlastics (d = 232.10 ± 0.20 nm; PDI = 0.25 ± 0.11; zeta potential = (-) 44.50 ± 0.96; drug content = 99.90 ± 0.11 and entrapment efficiency = 88.01 ± 2.50%). MTT assay revealed the enhanced Nano-MET cytotoxicity over MET with a calculated IC50 of 50 μg/mL and > 500 μg/mL, respectively. Annexin V/PI apoptosis assay showed that Nano-MET significantly decreased the percentage of live cells from 95.49 to 93.70 compared to MET and increased the percentage of cells arrested in the G0/G1 phase by 8.38%. Moreover, Nano-MET downregulated BCL-2 and upregulated BAX protein levels by 1.57 and 1.88 folds, respectively. RT-qPCR revealed that Nano-MET caused a significant 13.75, 4.15, and 2.23-fold increase in caspase-3, -8, and - 9 levels as well as a 100 and 43.47-fold decrease in cyclin D1 and mTOR levels, respectively. The proliferation marker Ki67 immunofluorescent staining revealed a 3-fold decrease in positive cells in Nano-MET compared to the control. Utilizing the combined Pathway-Enrichment Analysis (PEA) and Reactome analysis indicated high enrichment of certain pathways including nucleotides metabolism, Nudix-type hydrolase enzymes, carbon dioxide hydration, hemostasis, and the innate immune system. In summary, our results confirm MET cytotoxicity enhancement by its encapsulation in nanospanlastics. We also highlight, using PEA, that MET can modulate multiple pathways implicated in carcinogenesis.
Collapse
Affiliation(s)
- Shereen Nader Raafat
- Department of Pharmacology, Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
- Stem Cells and Tissue Culture Hub (CIDS), Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| | - Sara Abd El Wahed
- Department of Oral Pathology, Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| | - Noha M. Badawi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Egypt
| | - Mona M. Saber
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Maha R.A. Abdollah
- Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Egypt
- Department of Pharmacology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
11
|
Paul S, Das K, Ghosh A, Chatterjee A, Bhoumick A, Basu A, Sen P. Coagulation factor VIIa enhances programmed death-ligand 1 expression and its stability in breast cancer cells to promote breast cancer immune evasion. J Thromb Haemost 2023; 21:3522-3538. [PMID: 37579880 DOI: 10.1016/j.jtha.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Immunotherapy for breast cancer has not gained significant success. Coagulation factor VIIa (FVIIa)-tissue factor (TF) mediated activation of protease-activated receptor 2 (PAR2) is shown to promote metastasis and secretion of the immune-modulatory cytokines but the role of FVIIa in cancer immunology is still not well understood. OBJECTIVES Here, we aim to investigate whether FVIIa protects breast cancer cells from CD8 T-cell-mediated killing. METHODS Peripheral blood mononuclear cell-derived CD8 T cells were cocultured with vehicle or FVIIa pretreated MDAMB468 cells. The proliferation and activity of CD8 T cells were measured by flow cytometry and ELISA. An allograft model, using wild-type or TF/PAR2-deleted 4T1 cells, was employed to determine the effect of FVIIa on breast cancer immune evasion in vivo. RESULTS Here, we demonstrate that TF-FVIIa induces programmed death-ligand 1 (PD-L1) in breast cancer cells by activating PAR2. PAR2 activation triggers large tumor suppressor kinase 1 (LATS1) inactivation leading to loss of yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) phosphorylation and subsequent nuclear localization of YAP/TAZ. YAP/TAZ inhibition reduces PD-L1 expression and increases CD8 T-cell activity. We further demonstrate that, apart from transcriptional induction of PD-L1, PAR2 activation also increases PD-L1 stability by enhancing its glycosylation through N-glycosyltransferases STT3A and STT3B. CONCLUSION In a mouse model of breast cancer, tumor cell-specific PAR2 depletion leads to PD-L1 downregulation and increases anti-PD-1 immunotherapy efficacy. In conclusion, we showed that FVIIa-mediated signaling cascade in cancer cells serves as a tumor intrinsic mechanism of immunosuppression to promote cancer immune evasion.
Collapse
Affiliation(s)
- Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Arnab Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Akash Chatterjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Avinandan Bhoumick
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Abhimanyu Basu
- Department of General Surgery, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Prosenjit Sen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India.
| |
Collapse
|
12
|
Kulkarni A, Bazou D, Santos-Martinez MJ. Bleeding and Thrombosis in Multiple Myeloma: Platelets as Key Players during Cell Interactions and Potential Use as Drug Delivery Systems. Int J Mol Sci 2023; 24:15855. [PMID: 37958838 PMCID: PMC10647631 DOI: 10.3390/ijms242115855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy originated in the bone marrow and characterized by unhindered plasma cell proliferation that results in several clinical manifestations. Although the main role of blood platelets lies in hemostasis and thrombosis, platelets also play a pivotal role in a number of other pathological conditions. Platelets are the less-explored components from the tumor microenvironment in MM. Although some studies have recently revealed that MM cells have the ability to activate platelets even in the premalignant stage, this phenomenon has not been widely investigated in MM. Moreover, thrombocytopenia, along with bleeding, is commonly observed in those patients. In this review, we discuss the hemostatic disturbances observed in MM patients and the dynamic interaction between platelets and myeloma cells, along with present and future potential avenues for the use of platelets for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Anushka Kulkarni
- The School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, The University of Dublin, D02 PN40 Dublin, Ireland;
| | - Despina Bazou
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Maria José Santos-Martinez
- The School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, The University of Dublin, D02 PN40 Dublin, Ireland;
- School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
- Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland
| |
Collapse
|
13
|
Bucciol R, Othman M. Tissue factor positive microparticles as a biomarker for increased risk of breast cancer-associated thrombosis: a mini review. Curr Opin Hematol 2023; 30:180-185. [PMID: 37522480 DOI: 10.1097/moh.0000000000000774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
PURPOSE OF REVIEW Cancer-associated thrombosis (CAT), such as venous thromboembolism (VTE), is a frequent complication in cancer patients, resulting in poor prognosis. Breast cancer is not highly thrombogenic but is highly prevalent, resulting in increased VTE cases. Many cancers express tissue factor (TF), a glycoprotein that triggers coagulation. The cancer cells were shown to express and release substantial amounts of TF-positive microparticles (MPTF), associated with a prothrombotic state. This narrative review evaluated the current use of the procoagulant MPTF as a biomarker for thrombosis risk in breast cancer. RECENT FINDINGS Tumors of epithelial origin with elevated TF expression have been associated with increased VTE incidence. Thus, studies have affirmed the use of MPTF biomarkers for VTE risk in many cancers. Patients with metastatic breast cancer and CAT were found to exhibit elevated procoagulant microparticles in vitro, due to TF expression. The silencing of TF was associated with decreased microparticle release in breast carcinoma cell lines, associated with decreased coagulation. SUMMARY CAT is a multifactorial condition, with several various underlying diseases. It is proposed that MPTF may be an effective biomarker for thrombosis risk in breast cancer patients but requires a more systemic evaluation utilizing standardized quantification methods.
Collapse
Affiliation(s)
- Regan Bucciol
- Department of Biomedical and Molecular Sciences, Queen's University
| | - Maha Othman
- Department of Biomedical and Molecular Sciences, Queen's University
- School of Baccalaureate Nursing, St Lawrence College, Kingston, Ontario, Canada
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
14
|
Kroone C, Tieken C, Kocatürk B, Paauwe M, Blok EJ, Ünlü B, van den Berg YW, Stanganello E, Kapteijn MY, Swier N, Zhang X, Duits DEM, Lin Y, Oostenbrink LVE, van den Akker RFP, Mosnier LO, Hawinkels LJ, van Vlijmen BJM, Ruf W, Kuppen PJ, Cannegieter SC, Buijs JT, Versteeg HH. Tumor-expressed factor VII is associated with survival and regulates tumor progression in breast cancer. Blood Adv 2023; 7:2388-2400. [PMID: 36920782 PMCID: PMC10238845 DOI: 10.1182/bloodadvances.2022008455] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Cancer enhances the risk of venous thromboembolism, but a hypercoagulant microenvironment also promotes cancer progression. Although anticoagulants have been suggested as a potential anticancer treatment, clinical studies on the effect of such modalities on cancer progression have not yet been successful for unknown reasons. In normal physiology, complex formation between the subendothelial-expressed tissue factor (TF) and the blood-borne liver-derived factor VII (FVII) results in induction of the extrinsic coagulation cascade and intracellular signaling via protease-activated receptors (PARs). In cancer, TF is overexpressed and linked to poor prognosis. Here, we report that increased levels of FVII are also observed in breast cancer specimens and are associated with tumor progression and metastasis to the liver. In breast cancer cell lines, tumor-expressed FVII drives changes reminiscent of epithelial-to-mesenchymal transition (EMT), tumor cell invasion, and expression of the prometastatic genes, SNAI2 and SOX9. In vivo, tumor-expressed FVII enhanced tumor growth and liver metastasis. Surprisingly, liver-derived FVII appeared to inhibit metastasis. Finally, tumor-expressed FVII-induced prometastatic gene expression independent of TF but required a functional endothelial protein C receptor, whereas recombinant activated FVII acting via the canonical TF:PAR2 pathway inhibited prometastatic gene expression. Here, we propose that tumor-expressed FVII and liver-derived FVII have opposing effects on EMT and metastasis.
Collapse
Affiliation(s)
- Chantal Kroone
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris Tieken
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Begüm Kocatürk
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Madelon Paauwe
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik J. Blok
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Betül Ünlü
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Yascha W. van den Berg
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Eliana Stanganello
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike Y. Kapteijn
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Nathalie Swier
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Xi Zhang
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Danique E. M. Duits
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Yazhi Lin
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa V. E. Oostenbrink
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob F. P. van den Akker
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Lukas J. Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart J. M. van Vlijmen
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Wolfram Ruf
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Peter J. Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne C. Cannegieter
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen T. Buijs
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Henri H. Versteeg
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
15
|
Ahmadi SE, Shabannezhad A, Kahrizi A, Akbar A, Safdari SM, Hoseinnezhad T, Zahedi M, Sadeghi S, Mojarrad MG, Safa M. Tissue factor (coagulation factor III): a potential double-edge molecule to be targeted and re-targeted toward cancer. Biomark Res 2023; 11:60. [PMID: 37280670 DOI: 10.1186/s40364-023-00504-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023] Open
Abstract
Tissue factor (TF) is a protein that plays a critical role in blood clotting, but recent research has also shown its involvement in cancer development and progression. Herein, we provide an overview of the structure of TF and its involvement in signaling pathways that promote cancer cell proliferation and survival, such as the PI3K/AKT and MAPK pathways. TF overexpression is associated with increased tumor aggressiveness and poor prognosis in various cancers. The review also explores TF's role in promoting cancer cell metastasis, angiogenesis, and venous thromboembolism (VTE). Of note, various TF-targeted therapies, including monoclonal antibodies, small molecule inhibitors, and immunotherapies have been developed, and preclinical and clinical studies demonstrating the efficacy of these therapies in various cancer types are now being evaluated. The potential for re-targeting TF toward cancer cells using TF-conjugated nanoparticles, which have shown promising results in preclinical studies is another intriguing approach in the path of cancer treatment. Although there are still many challenges, TF could possibly be a potential molecule to be used for further cancer therapy as some TF-targeted therapies like Seagen and Genmab's tisotumab vedotin have gained FDA approval for treatment of cervical cancer. Overall, based on the overviewed studies, this review article provides an in-depth overview of the crucial role that TF plays in cancer development and progression, and emphasizes the potential of TF-targeted and re-targeted therapies as potential approaches for the treatment of cancer.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Kahrizi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Armin Akbar
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mehrab Safdari
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Taraneh Hoseinnezhad
- Department of Hematolog, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soroush Sadeghi
- Faculty of Science, Engineering and Computing, Kingston University, London, UK
| | - Mahsa Golizadeh Mojarrad
- Shahid Beheshti Educational and Medical Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Safa
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Wrzeszcz K, Rhone P, Kwiatkowska K, Ruszkowska-Ciastek B. Hypercoagulability State Combined with Post-Treatment Hypofibrinolysis in Invasive Breast Cancer: A Seven-Year Follow-Up Evaluating Disease-Free and Overall Survival. Life (Basel) 2023; 13:life13051106. [PMID: 37240751 DOI: 10.3390/life13051106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: Cancer treatment, including chemotherapy, endocrine therapy, targeted therapy and radiotherapy, has been identified as an important independent risk factor for venous thromboembolism in cancer patients. The aim of the study was to evaluate the effect of adjuvant therapy on the coagulation and fibrinolysis components in invasive breast cancer. (2) Methods: Tissue factor pathway inhibitor (TFPI), tissue factor (TF), tissue plasminogen activator (t-PA), plasminogen activator inhibitor-1 (PAI-1) antigen (concentration) and TFPI and TF activities were examined in the blood samples of 60 breast cancer patients treated by adjuvant chemotherapy, endocrine therapy, radiotherapy and immunotherapy. Blood samples were taken 24 h before primary surgery and 8 months after tumour removal surgery. (3) Results: Adjuvant therapy administrated to breast cancer patients significantly increased the concentration of plasma TF, the PAI-1 antigen and also the activity of TFPI and TF, but significantly decreased the level of the t-PA antigen. Combined chemotherapy and endocrine therapy, but not monotherapy, has an important effect on haemostatic biomarker levels. (4) Conclusions: Breast cancer patients receiving adjuvant therapy have an elevated risk of developing a hypercoagulability and hypofibrinolysis state leading to venous thromboembolism.
Collapse
Affiliation(s)
- Katarzyna Wrzeszcz
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-094 Bydgoszcz, Poland
| | - Piotr Rhone
- Clinical Ward of Breast Cancer and Reconstructive Surgery, Oncology Centre Prof. F. Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland
| | - Katarzyna Kwiatkowska
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-094 Bydgoszcz, Poland
| | - Barbara Ruszkowska-Ciastek
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-094 Bydgoszcz, Poland
| |
Collapse
|
17
|
Hassan N, Bückreiß N, Efing J, Schulz-Fincke M, König P, Greve B, Bendas G, Götte M. The Heparan Sulfate Proteoglycan Syndecan-1 Triggers Breast Cancer Cell-Induced Coagulability by Induced Expression of Tissue Factor. Cells 2023; 12:cells12060910. [PMID: 36980251 PMCID: PMC10047229 DOI: 10.3390/cells12060910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Syndecan-1 (Sdc-1) upregulation is associated with poor prognosis in breast cancer. Sdc-1 knockdown results in reduced angiogenesis and the dysregulation of tissue factor (TF) pathway constituents. Here, we evaluate the regulatory mechanisms and functional consequences of the Sdc-1/TF-axis using Sdc-1 knockdown and overexpression approaches in MCF-7 and MDA-MB-231 breast cancer cells. Gene expression was analyzed by means of qPCR. Thrombin generation and cell migration were detected. Cell-cycle progression and apoptosis were investigated using flow cytometry. In MDA-MB-231 cells, IL6, IL8, VEGF, and IGFR-dependent signaling affected TF pathway expression depending on Sdc-1. Notably, Sdc-1 depletion and TF pathway inhibitor (TFPI) synergistically affected PTEN, MAPK, and STAT3 signaling. At the functional level, the antiproliferative and pro-apoptotic effects of TFPI depended on Sdc-1, whereas Sdc-1’s modulation of cell motility was not affected by TFPI. Sdc-1 overexpression in MCF-7 and MDA-MB-231 cells led to increased TF expression, inducing a procoagulative phenotype, as indicated by the activation of human platelets and increased thrombin formation. A novel understanding of the functional interplay between Sdc-1 and the TF pathway may be compatible with the classical co-receptor role of Sdc-1 in cytokine signaling. This opens up the possibility of a new functional understanding, with Sdc-1 fostering coagulation and platelet communication as the key to the hematogenous metastatic spread of breast cancer cells.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Nico Bückreiß
- Pharmaceutical Department, University Bonn, An der Immenburg 4, 53225 Bonn, Germany
| | - Janes Efing
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Marie Schulz-Fincke
- Pharmaceutical Department, University Bonn, An der Immenburg 4, 53225 Bonn, Germany
| | - Philipp König
- Pharmaceutical Department, University Bonn, An der Immenburg 4, 53225 Bonn, Germany
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Gerd Bendas
- Pharmaceutical Department, University Bonn, An der Immenburg 4, 53225 Bonn, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Correspondence:
| |
Collapse
|
18
|
Hassan N, Efing J, Kiesel L, Bendas G, Götte M. The Tissue Factor Pathway in Cancer: Overview and Role of Heparan Sulfate Proteoglycans. Cancers (Basel) 2023; 15:1524. [PMID: 36900315 PMCID: PMC10001432 DOI: 10.3390/cancers15051524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Historically, the only focus on tissue factor (TF) in clinical pathophysiology has been on its function as the initiation of the extrinsic coagulation cascade. This obsolete vessel-wall TF dogma is now being challenged by the findings that TF circulates throughout the body as a soluble form, a cell-associated protein, and a binding microparticle. Furthermore, it has been observed that TF is expressed by various cell types, including T-lymphocytes and platelets, and that certain pathological situations, such as chronic and acute inflammatory states, and cancer, may increase its expression and activity. Transmembrane G protein-coupled protease-activated receptors can be proteolytically cleaved by the TF:FVIIa complex that develops when TF binds to Factor VII (PARs). The TF:FVIIa complex can activate integrins, receptor tyrosine kinases (RTKs), and PARs in addition to PARs. Cancer cells use these signaling pathways to promote cell division, angiogenesis, metastasis, and the maintenance of cancer stem-like cells. Proteoglycans play a crucial role in the biochemical and mechanical properties of the cellular extracellular matrix, where they control cellular behavior via interacting with transmembrane receptors. For TFPI.fXa complexes, heparan sulfate proteoglycans (HSPGs) may serve as the primary receptor for uptake and degradation. The regulation of TF expression, TF signaling mechanisms, their pathogenic effects, and their therapeutic targeting in cancer are all covered in detail here.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Domagkstrasse 11, 48149 Münster, Germany
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Janes Efing
- Department of Gynecology and Obstetrics, Münster University Hospital, Domagkstrasse 11, 48149 Münster, Germany
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Domagkstrasse 11, 48149 Münster, Germany
| | - Gerd Bendas
- Pharmaceutical Department, University Bonn, An der Immenburg 4, 53225 Bonn, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Domagkstrasse 11, 48149 Münster, Germany
| |
Collapse
|
19
|
Loft M, Christensen C, Clausen MM, Carlsen EA, Hansen CP, Kroman N, Langer SW, Høgdall C, Madsen J, Gillings N, Nielsen CH, Klausen TL, Holm S, Loft A, Berthelsen AK, Kjaer A. First-in-Humans PET Imaging of Tissue Factor in Patients with Primary and Metastatic Cancers Using 18F-labeled Active-Site Inhibited Factor VII ( 18F-ASIS): Potential as Companion Diagnostic. J Nucl Med 2022; 63:1871-1879. [PMID: 35589407 PMCID: PMC9730914 DOI: 10.2967/jnumed.122.264068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/10/2022] [Indexed: 01/11/2023] Open
Abstract
Tissue factor (TF) expression in cancers correlates with poor prognosis. Recently, the first TF-targeted therapy was approved by the U.S. Food and Drug Administration for cervical cancer. To unfold the potential of TF-targeted therapies, correct stratification and selection of patients eligible for treatments may become important for optimization of patient outcomes. TF-targeted PET imaging based on 18F-radiolabeled active-site inhibited versions of the TF natural ligand coagulation factor VII (18F-ASIS) has in preclinical models convincingly demonstrated its use for noninvasive quantitative measurements of TF expression in tumor tissue. 18F-ASIS PET imaging thus has the potential to act as a diagnostic companion for TF-targeted therapies in the clinical setting. Methods: In this first-in-humans trial, we included 10 cancer patients (4 pancreatic, 3 breast, 2 lung, and 1 cervical cancer) for 18F-ASIS PET imaging. The mean and SD of administered 18F-ASIS activity was 157 ± 35 MBq (range, 93-198 MBq). PET/CT was performed after 1, 2, and 4 h. The primary objectives were to establish the safety, biodistribution, pharmacokinetics, and dosimetry of 18F-ASIS. Secondary objectives included quantitative measurements of SUVs in tumor tissue with PET and evaluation of the correlation (Pearson correlation) between tumor SUVmax and ex vivo TF expression in tumor tissue. Results: Administration of 18F-ASIS was safe, and no adverse events were observed. No clinically significant changes in vital signs, electrocardiograms, or blood parameters were observed after injection of 18F-ASIS. Mean 18F-ASIS plasma half-life was 3.2 ± 0.6 h, and the radiotracer was predominantly excreted in the urine. For injection activity of 200 MBq of 18F-ASIS, effective whole-body dose was 4 mSv and no prohibitive organ-specific absorbed doses were found. Heterogeneous radiotracer uptake was observed across patients and within tumors. We found a trend of a positive correlation between tumor SUVmax and ex vivo TF expression (r = 0.84, P = 0.08, n = 5). Conclusion: 18F-ASIS can be safely administered to cancer patients for PET imaging of TF expression in tumors. The trial marks the first test of a TF-targeted PET radiotracer in humans (first-in-class). The findings represent important first steps toward clinical implementation of 18F-ASIS PET imaging of TF expression.
Collapse
Affiliation(s)
- Mathias Loft
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital – Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Camilla Christensen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital – Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Malene M. Clausen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital – Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Denmark;,Department of Oncology, Copenhagen University Hospital – Rigshospitalet, Denmark
| | - Esben A. Carlsen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital – Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Carsten P. Hansen
- Department of Surgery, Copenhagen University Hospital – Rigshospitalet, Denmark
| | - Niels Kroman
- Department of Breast Surgery, Copenhagen University Hospital – Rigshospitalet, Denmark
| | - Seppo W. Langer
- Department of Oncology, Copenhagen University Hospital – Rigshospitalet, Denmark;,Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Claus Høgdall
- Department of Gynecology, Copenhagen University Hospital – Rigshospitalet, Denmark and
| | - Jacob Madsen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital – Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Nic Gillings
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital – Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Carsten H. Nielsen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital – Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Denmark;,Minerva Imaging ApS, Denmark
| | - Thomas L. Klausen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital – Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Søren Holm
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital – Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Annika Loft
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital – Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Anne K. Berthelsen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital – Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital – Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
20
|
Moik F, Ay C. Hemostasis and cancer: Impact of haemostatic biomarkers for the prediction of clinical outcomes in patients with cancer. J Thromb Haemost 2022; 20:2733-2745. [PMID: 36106749 PMCID: PMC9827869 DOI: 10.1111/jth.15880] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 01/13/2023]
Abstract
Patients with cancer are characterized by a dysregulation of the hemostatic system and systemic hypercoagulability. Different components of the hemostatic system are involved in tumor-promoting mechanisms including primary tumor growth, cancer cell invasion, immune evasion, angiogenesis, and the metastatic process. Therefore, different degrees of systemic hemostatic activation in patients with cancer can reflect distinct underlying biological phenotypes of cancer and seem to correlate with cancer aggressiveness. Peripheral blood levels of hemostatic biomarkers, indicating the activation status of different parts of the hemostatic system including the coagulation cascade, fibrinolytic activity, platelet activation, or endothelial activation, can be used to reflect cancer-associated systemic hypercoagulability. Thereby, hemostatic biomarkers represent promising candidates to investigate as surrogate markers for underlying cancer activity and progression dynamics and therefore as biomarkers for the prediction of clinical outcomes in cancer patients. In the present review, we provide an up-to-date summary of available data on hemostatic biomarkers for prognostication of overall survival and prediction of therapy response in patients with cancer, including specific oncologic treatment settings for potential clinical application. We provide a thorough discussion on potential clinical implementation and current limitations and highlight the most promising emerging biomarkers that might be used to contribute to risk-stratified, personalized oncologic decision making in the future.
Collapse
Affiliation(s)
- Florian Moik
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of ViennaViennaAustria
- Clinical Division of Oncology, Department of Internal Medicine, Medical University of GrazGrazAustria
| | - Cihan Ay
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Comprehensive Cancer Center Vienna, Medical University of ViennaViennaAustria
| |
Collapse
|
21
|
Tissue factor-dependent coagulation activation in intracranial neoplasms: a comparative study. Blood Coagul Fibrinolysis 2022; 33:438-448. [PMID: 36165076 DOI: 10.1097/mbc.0000000000001164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of the study was to investigate the concentration and activity of tissue factor (TF) and Tissue factor pathway inhibitor (TFPI) as well as the concentration of thrombin-antithrombin (TAT) complexes in patients with primary and metastatic intracranial neoplasms. The study included 69 patients with an average age of 62 years. Twenty-one patients were diagnosed with gliomas, 18 meningioma stage II (M) patients, and 30 metastatic brain tumour cases (Meta). The control group consisted of 30 individuals with a mean age of 57 years. In the plasma of all the participants and in tumour tissue-derived homogenate, the concentrations and activities of TF, TFPI, the concentration of TAT complexes and the concentration of total protein were measured. The results were converted per 1 mg of protein. The concentration of TF was over 80 times higher in the tumour tissue-derived homogenate in respect to patients' plasma levels. Plasma TF activity in intracranial cancer patients was almost six times higher compared with noncancer counterparts, while in the tumour tissue-derived homogenate it was more than 14 times higher than in the intracranial cancer patients' plasma, whereas the concentration of TFPI in the tumour tissue-derived homogenate was significantly lower than in the patients' plasma. However, a significantly higher TFPI activity in the tumour tissue derived than in the patients' plasma was reported. The high concentration and activity of TF, along with the coexisting low concentration and activity of TFPI in the plasma of intracranial tumour patients, is associated with a higher prothrombotic risk in these patients.
Collapse
|
22
|
Ünlü B, Kocatürk B, Rondon AMR, Lewis CS, Swier N, van den Akker RFP, Krijgsman D, Noordhoek I, Blok EJ, Bogdanov VY, Ruf W, Kuppen PJK, Versteeg HH. Integrin regulation by tissue factor promotes cancer stemness and metastatic dissemination in breast cancer. Oncogene 2022; 41:5176-5185. [PMID: 36271029 DOI: 10.1038/s41388-022-02511-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
Tissue Factor (TF) is the initiator of blood coagulation but also functions as a signal transduction receptor. TF expression in breast cancer is associated with higher tumor grade, metastasis and poor survival. The role of TF signaling on the early phases of metastasis has never been addressed. Here, we show an association between TF expression and metastasis as well as cancer stemness in 574 breast cancer patients. In preclinical models, blockade of TF signaling inhibited metastasis tenfold independent of primary tumor growth. TF blockade caused a reduction in epithelial-to-mesenchymal-transition, cancer stemness and expression of the pro-metastatic markers Slug and SOX9 in several breast cancer cell lines and in ex vivo cultured tumor cells. Mechanistically, TF forms a complex with β1-integrin leading to inactivation of β1-integrin. Inhibition of TF signaling induces a shift in TF-binding from α3β1-integrin to α6β4 and dictates FAK recruitment, leading to reduced epithelial-to-mesenchymal-transition and tumor cell differentiation. In conclusion, TF signaling inhibition leads to reduced pro-metastatic transcriptional programs, and a subsequent integrin β1 and β4-dependent reduction in metastasic dissemination.
Collapse
Affiliation(s)
- Betül Ünlü
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Begüm Kocatürk
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Araci M R Rondon
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Clayton S Lewis
- Division of Hematology/Oncology, Department of Internal Medicine, College of Medicine University of Cincinnati, Cincinnati, OH, USA
| | - Nathalie Swier
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob F P van den Akker
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Danielle Krijgsman
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Iris Noordhoek
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik J Blok
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Vladimir Y Bogdanov
- Division of Hematology/Oncology, Department of Internal Medicine, College of Medicine University of Cincinnati, Cincinnati, OH, USA
| | - Wolfram Ruf
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.,Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Henri H Versteeg
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
23
|
Integrative, In Silico and Comparative Analysis of Breast Cancer Secretome Highlights Invasive-Ductal-Carcinoma-Grade Progression Biomarkers. Cancers (Basel) 2022; 14:cancers14163854. [PMID: 36010848 PMCID: PMC9406168 DOI: 10.3390/cancers14163854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Globally, BC is the most frequently diagnosed cancer in women. The aim of this study was to identify novel secreted biomarkers that may indicate progression to high-grade BC malignancies and therefore predict metastatic potential. A total of 33 studies of breast cancer and 78 of other malignancies were screened via a systematic review for eligibility, yielding 26 datasets, 8 breast cancer secretome datasets, and 18 of other cancers that were included in the comparative secretome analysis. Sequential bioinformatic analysis using online resources enabled the identification of enriched GO_terms, overlapping clusters, and pathway reconstruction. This study identified putative predictors of IDC grade progression and their association with breast cancer patient mortality outcomes, namely, HSPG2, ACTG1, and LAMA5 as biomarkers of in silico pathway prediction, offering a putative approach by which the abovementioned proteins may mediate their effects, enabling disease progression. This study also identified ITGB1, FBN1, and THBS1 as putative pan-cancer detection biomarkers. The present study highlights novel, putative secretome biomarkers that may provide insight into the tumor biology and could inform clinical decision making in the context of IDC management in a non-invasive manner.
Collapse
|
24
|
Abstract
Tissue factor (TF), an initiator of extrinsic coagulation pathway, is positively correlated with venous thromboembolism (VTE) of tumor patients. Beyond thrombosis, TF plays a vital role in tumor progression. TF is highly expressed in cancer tissues and circulating tumor cell (CTC), and activates factor VIIa (FVIIa), which increases tumor cells proliferation, angiogenesis, epithelial-mesenchymal transition (EMT) and cancer stem cells(CSCs) activity. Furthermore, TF and TF-positive microvesicles (TF+MVs) activate the coagulation system to promote the clots formation with non-tumor cell components (e.g., platelets, leukocytes, fibrin), which makes tumor cells adhere to clots to form CTC clusters. Then, tumor cells utilize clots to cause its reducing fluid shear stress (FSS), anoikis resistance, immune escape, adhesion, extravasation and colonization. Herein, we review in detail that how TF signaling promotes tumor metastasis, and how TF-targeted therapeutic strategies are being in the preclinical and clinical trials.
Collapse
|
25
|
Strasenburg W, Jóźwicki J, Durślewicz J, Kuffel B, Kulczyk MP, Kowalewski A, Grzanka D, Drewa T, Adamowicz J. Tumor Cell-Induced Platelet Aggregation as an Emerging Therapeutic Target for Cancer Therapy. Front Oncol 2022; 12:909767. [PMID: 35814405 PMCID: PMC9259835 DOI: 10.3389/fonc.2022.909767] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor cells have the ability to induce platelet activation and aggregation. This has been documented to be involved in tumor progression in several types of cancers, such as lung, colon, breast, pancreatic, ovarian, and brain. During the process, platelets protect circulating tumor cells from the deleterious effects of shear forces, shield tumor cells from the immune system, and provide growth factors, facilitating metastatic spread and tumor growth at the original site as well as at the site of metastasis. Herein, we present a wider view on the induction of platelet aggregation by specific factors primarily developed by cancer, including coagulation factors, adhesion receptors, growth factors, cysteine proteases, matrix metalloproteinases, glycoproteins, soluble mediators, and selectins. These factors may be presented on the surface of tumor cells as well as in their microenvironment, and some may trigger more than just one simple receptor-ligand mechanism. For a better understanding, we briefly discuss the physiological role of the factors in the platelet activation process, and subsequently, we provide scientific evidence and discuss their potential role in the progression of specific cancers. Targeting tumor cell-induced platelet aggregation (TCIPA) by antiplatelet drugs may open ways to develop new treatment modalities. On the one hand, it may affect patients' prognosis by enhancing known therapies in advanced-stage tumors. On the other hand, the use of drugs that are mostly easily accessible and widely used in general practice may be an opportunity to propose an unparalleled antitumor prophylaxis. In this review, we present the recent discoveries of mechanisms by which cancer cells activate platelets, and discuss new platelet-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Wiktoria Strasenburg
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Jakub Jóźwicki
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Justyna Durślewicz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Błażej Kuffel
- Department of General and Oncological Urology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Martyna Parol Kulczyk
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Adam Kowalewski
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Tomasz Drewa
- Department of General and Oncological Urology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Jan Adamowicz
- Department of General and Oncological Urology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
26
|
Bridoux A, Mousa SA. Screening of a Library for Factor VIIa Inhibitors. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666211207125903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
As an alternative to the anticoagulant’s strategy using direct or indirect anti-Xa
drugs, considering other targets upstream in the coagulation cascade such as anti-Factor VIIa could represent
an effective and safer strategy in coagulation and pathological angiogenesis.
Objective:
The objective of the study was to assess a high technology methodology composed of virtual
screening, anticoagulant, and anti-angiogenesis assays to identify potent small-molecule FVIIa inhibitors.
Methods:
Chemical databanks were screened to select molecules bearing functional groups that could fit
into the active site of FVIIa, which were then tested. Ligands assigned with the lowest scores were retained
and then biologically assessed.
Results:
From the 500 molecules considered, 8 chemical structures revealed to be effective compounds in
vitro and to inhibit angiogenesis in the chick chorioallantoic membrane (CAM) model.
Conclusion:
New potent small-molecule FVIIa inhibitors have been identified; further biochemical and
chemical developments would be investigated directly from the selected scaffolds.
Collapse
Affiliation(s)
- Alexandre Bridoux
- Vascular Vision Pharmaceuticals, 5 University Place, Rensselaer, NY 12144, USA
- Pharmaceutical Research Institute,
One Discovery Drive, Rensselaer, NY 12144, USA
| | - Shaker A. Mousa
- Vascular Vision Pharmaceuticals, 5 University Place, Rensselaer, NY 12144, USA
- Pharmaceutical Research Institute,
One Discovery Drive, Rensselaer, NY 12144, USA
| |
Collapse
|
27
|
Menon S, Parakh S, Scott AM, Gan HK. Antibody-drug conjugates: beyond current approvals and potential future strategies. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:252-277. [PMID: 36046842 PMCID: PMC9400743 DOI: 10.37349/etat.2022.00082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/07/2022] [Indexed: 11/19/2022] Open
Abstract
The recent approvals for antibody-drug conjugates (ADCs) in multiple malignancies in recent years have fuelled the ongoing development of this class of drugs. These novel agents combine the benefits of high specific targeting of oncogenic cell surface antigens with the additional cell kill from high potency cytotoxic payloads, thus achieving wider therapeutic windows. This review will summarise the clinical activity of ADCs in tumour types not covered elsewhere in this issue, such as gastrointestinal (GI) and genitourinary (GU) cancers and glioblastoma (GBM). In addition to the ongoing clinical testing of existing ADCs, there is substantial preclinical and early phase testing of newer ADCs or ADC incorporating strategies. This review will provide selected insights into such future development, focusing on the development of novel ADCs against new antigen targets in the tumour microenvironment (TME) and combination of ADCs with immuno-oncology (IO) agents.
Collapse
Affiliation(s)
- Siddharth Menon
- Olivia Newton-John Cancer Centre at Austin Health, Olivia Newton-John Cancer Wellness & Research Centre, Heidelberg Victoria 3084, Australia;College of Science, Health and Engineering, La Trobe University, Melbourne Victoria 3086, Australia
| | - Sagun Parakh
- Olivia Newton-John Cancer Centre at Austin Health, Olivia Newton-John Cancer Wellness & Research Centre, Heidelberg Victoria 3084, Australia;College of Science, Health and Engineering, La Trobe University, Melbourne Victoria 3086, Australia
| | - Andrew M. Scott
- Olivia Newton-John Cancer Centre at Austin Health, Olivia Newton-John Cancer Wellness & Research Centre, Heidelberg Victoria 3084, Australia;College of Science, Health and Engineering, La Trobe University, Melbourne Victoria 3086, Australia
| | - Hui K. Gan
- Olivia Newton-John Cancer Centre at Austin Health, Olivia Newton-John Cancer Wellness & Research Centre, Heidelberg Victoria 3084, Australia;College of Science, Health and Engineering, La Trobe University, Melbourne Victoria 3086, Australia
| |
Collapse
|
28
|
Pan Z, Chen J, Xiao X, Xie Y, Jiang H, Zhang B, Lu H, Yuan Y, Han L, Zhou Y, Zong H, Wang L, Sun R, Zhu J. Characterization of a novel bispecific antibody targeting tissue factor-positive tumors with T cell engagement. Acta Pharm Sin B 2022; 12:1928-1942. [PMID: 35847491 PMCID: PMC9279644 DOI: 10.1016/j.apsb.2021.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/01/2021] [Accepted: 10/14/2021] [Indexed: 01/04/2023] Open
Abstract
T cell engaging bispecific antibody (TCB) is an effective immunotherapy for cancer treatment. Through co-targeting CD3 and tumor-associated antigen (TAA), TCB can redirect CD3+ T cells to eliminate tumor cells regardless of the specificity of T cell receptor. Tissue factor (TF) is a TAA that involved in tumor progression. Here, we designed and characterized a novel TCB targeting TF (TF-TCB) for the treatment of TF-positive tumors. In vitro, robust T cell activation, tumor cell lysis and T cell proliferation were induced by TF-TCB. The tumor cell lysis activity was dependent upon both CD3 and TF binding moieties of the TF-TCB, and was related to TF expression level of tumor cells. In vivo, in both tumor cell/human peripheral blood mononuclear cells (PBMC) co-grafting model and established tumor models with poor T cell infiltration, tumor growth was strongly inhibited by TF-TCB. T cell infiltration into tumors was induced during the treatment. Furthermore, efficacy of TF-TCB was further improved by combination with immune checkpoint inhibitors. For the first time, our results validated the feasibility of using TF as a target for TCB and highlighted the potential for TF-TCB to demonstrate efficacy in solid tumor treatment.
Collapse
|
29
|
Thromboinflammatory Processes at the Nexus of Metabolic Dysfunction and Prostate Cancer: The Emerging Role of Periprostatic Adipose Tissue. Cancers (Basel) 2022; 14:cancers14071679. [PMID: 35406450 PMCID: PMC8996963 DOI: 10.3390/cancers14071679] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary As overweight and obesity increase among the population worldwide, a parallel increase in the number of individuals diagnosed with prostate cancer was observed. There appears to be a relationship between both diseases where the increase in the mass of fat tissue can lead to inflammation. Such a state of inflammation could produce many factors that increase the aggressiveness of prostate cancer, especially if this inflammation occurred in the fat stores adjacent to the prostate. Another important observation that links obesity, fat tissue inflammation, and prostate cancer is the increased production of blood clotting factors. In this article, we attempt to explain the role of these latter factors in the effect of increased body weight on the progression of prostate cancer and propose new ways of treatment that act by affecting how these clotting factors work. Abstract The increased global prevalence of metabolic disorders including obesity, insulin resistance, metabolic syndrome and diabetes is mirrored by an increased incidence of prostate cancer (PCa). Ample evidence suggests that these metabolic disorders, being characterized by adipose tissue (AT) expansion and inflammation, not only present as risk factors for the development of PCa, but also drive its increased aggressiveness, enhanced progression, and metastasis. Despite the emerging molecular mechanisms linking AT dysfunction to the various hallmarks of PCa, thromboinflammatory processes implicated in the crosstalk between these diseases have not been thoroughly investigated. This is of particular importance as both diseases present states of hypercoagulability. Accumulating evidence implicates tissue factor, thrombin, and active factor X as well as other players of the coagulation cascade in the pathophysiological processes driving cancer development and progression. In this regard, it becomes pivotal to elucidate the thromboinflammatory processes occurring in the periprostatic adipose tissue (PPAT), a fundamental microenvironmental niche of the prostate. Here, we highlight key findings linking thromboinflammation and the pleiotropic effects of coagulation factors and their inhibitors in metabolic diseases, PCa, and their crosstalk. We also propose several novel therapeutic targets and therapeutic interventions possibly modulating the interaction between these pathological states.
Collapse
|
30
|
Fillmann LS, Fillmann LP, Oliveira LZD, Fillmann HS, Carvalhal GF. Tissue Factor Expression in Colorectal Adenocarcinoma: Association with Angiogenesis and Clinical and Pathological Aspects. JOURNAL OF COLOPROCTOLOGY 2022. [DOI: 10.1055/s-0041-1739453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Introduction Tissue factor (TF) expression has been described in various neoplasms and was correlated with angiogenesis and metastases.
Objectives To describe TF expression in colorectal cancers, correlating it with microvessel density and clinical and pathological variables.
Methods Immunohistochemistry was used to determine TF expression and microvessel density. The Student t-test was used to compare high and low TF expression with microvessel density and with age. The chi-squared test was used for other comparisons, and Kaplan-Meier curves were used for survival analyses.
Results Forty-three patients were operated with curative intent. Their mean age was 58.1 ± 12.6 years old, and 62.8% were male. The rectum was the most common location (60,4%), and most tumors reached the serosa and peri-intestinal fat (72.1%). Lymph nodes were positive in 46.5%, and 72.1% of the tumors were moderately differentiated adenocarcinomas. Death occurred in 27.6 ± 12.8 months in 51.1% of the patients who had recurrence. Tissue factor expression was intense in 88.4%. There was a positive correlation between TF expression and microvessel density (p = 0.02), and between TF and older age (p < 0.01). There was no correlation between TF expression and other variables (gender, histological type, penetration into the intestinal wall, and lymphatic and systemic metastases). Tissue factor expression did not correlate with survival.
Conclusion Tissue factor expression correlated with increased microvessel density and older age. Further studies are necessary to ascertain the clinical relevance of TF in colorectal cancer.
Collapse
Affiliation(s)
- Lúcio Sarubbi Fillmann
- PhD in Medicine and Health Sciences from PUC-RS and Professor in the Department of Surgery at PUC-RS School of Medicine, Porto Alegre, RS, Brazil
| | - Laura Pinho Fillmann
- Student of the Undergraduate Course in Medicine at PUC-RS, Porto Alegre, RS, Brazil
| | | | - Henrique Sarubbi Fillmann
- PhD from UFRGS and Professor at the School of Medicine at PUC-RS, Professor at the Department of Surgery at the School of Medicine at PUC-RS, Porto Alegre, RS, Brazil
| | - Gustavo Franco Carvalhal
- PhD in Urology from USP and Professor in the Department of Surgery at the PUC-RS School of Medicine, Porto Alegre, RS, Brazil
| |
Collapse
|
31
|
Zarychta E, Ruszkowska-Ciastek B. Cooperation between Angiogenesis, Vasculogenesis, Chemotaxis, and Coagulation in Breast Cancer Metastases Development: Pathophysiological Point of View. Biomedicines 2022; 10:biomedicines10020300. [PMID: 35203510 PMCID: PMC8869468 DOI: 10.3390/biomedicines10020300] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Breast cancer is one of the main causes of morbidity and mortality in women. Early breast cancer has a relatively good prognosis, in contrast to metastatic disease with rather poor outcomes. Metastasis formation in distant organs is a complex process requiring cooperation of numerous cells, growth factors, cytokines, and chemokines. Tumor growth, invasion, and finally systemic spread are driven by processes of angiogenesis, vasculogenesis, chemotaxis, and coagulation. This review summarizes their role in development of distant metastases in breast cancer, as well as explains the essential processes occurring throughout these actions. Abstract With almost 2.3 million new cases and 685 thousand fatal events in 2020 alone, breast cancer remains one of the main causes of morbidity and mortality in women worldwide. Despite the increasing prevalence of the disease in recent years, the number of deaths has dropped—this is mostly the result of better diagnostic and therapeutic opportunities, allowing to recognize and treat breast cancer earlier and more efficiently. However, metastatic disease still remains a therapeutic challenge. As mechanisms of tumor spread are being explored, new drugs can be implemented in clinical practice, improving the outcomes in patients with advanced disease. Formation of metastases is a complex process, which involves activation of angiogenesis, vasculogenesis, chemotaxis, and coagulation. The actions, which occur during metastatic spread are interrelated and complementary. This review summarizes their importance and mutual connections in formation of secondary tumors in breast cancer.
Collapse
|
32
|
Ischemic Stroke in Patients with Cancer: a Retrospective Cross-Sectional Study. J Crit Care Med (Targu Mures) 2021; 7:54-61. [PMID: 34722904 PMCID: PMC8519371 DOI: 10.2478/jccm-2021-0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
Introduction An increasing trend of cancer associated stroke has been noticed in the past decade. Objectives To evaluate the risk factors and the incidence of neoplasia in stroke patients. Material and Method A retrospective, observational study was undertaken on 249 patients with stroke and active cancer (SAC) and 1563 patients with stroke without cancer (SWC). The general cardiovascular risk factors, the site of cancer, and the general clinical data were registered and evaluated. According to the “Oxfordshire Community Stroke Project” (OCSP) classification, all patients were classified into the clinical subtypes of stroke. The aetiology of stroke was considered as large-artery atherosclerosis, small vessel disease, cardio-embolic, cryptogenic or other determined cause. Results The severity of neurological deficits at admission were significantly higher in the SAC group (p<0.01). The haemoglobin level was significantly lower, and platelet level and erythrocyte sedimentation rate were significantly higher in the SAC group. Glycaemia, cholesterol and triglycerides levels were significantly higher in the SWC group. The personal history of hypertension was more frequent in the SWC group. In the SAC group, 28.9% had a cryptogenic aetiology, compared to 9.1% in SWC group. Cardio-embolic strokes were more frequent in the SAC group (24%) than the SWC group (19.6%). In the SAC group, 15,6% were diagnosed with cancer during the stroke hospitalization, and 78% of the SAC patients were without metastasis. Conclusions The most frequent aetiologies of stroke in cancer patients were cryptogenic stroke, followed by large-artery atherosclerosis. SAC patients had more severe neurological deficits and worse clinical outcomes than SWC patients. Stroke in cancer patients appears to be more frequently cryptogenic, probably due to cancer associated thrombosis. The association between stroke and cancer is important, especially in stroke of cryptogenic mechanism, even in the presence of traditional cardiovascular risk factors.
Collapse
|
33
|
Functional Characteristics and Regulated Expression of Alternatively Spliced Tissue Factor: An Update. Cancers (Basel) 2021; 13:cancers13184652. [PMID: 34572880 PMCID: PMC8471299 DOI: 10.3390/cancers13184652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
In human and mouse, alternative splicing of tissue factor's primary transcript yields two mRNA species: one features all six TF exons and encodes full-length tissue factor (flTF), and the other lacks exon 5 and encodes alternatively spliced tissue factor (asTF). flTF, which is oftentimes referred to as "TF", is an integral membrane glycoprotein due to the presence of an alpha-helical domain in its C-terminus, while asTF is soluble due to the frameshift resulting from the joining of exon 4 directly to exon 6. In this review, we focus on asTF-the more recently discovered isoform of TF that appears to significantly contribute to the pathobiology of several solid malignancies. There is currently a consensus in the field that asTF, while dispensable to normal hemostasis, can activate a subset of integrins on benign and malignant cells and promote outside-in signaling eliciting angiogenesis; cancer cell proliferation, migration, and invasion; and monocyte recruitment. We provide a general overview of the pioneering, as well as more recent, asTF research; discuss the current concepts of how asTF contributes to cancer progression; and open a conversation about the emerging utility of asTF as a biomarker and a therapeutic target.
Collapse
|
34
|
Falanga A, Marchetti M, Russo L. Hemostatic Biomarkers and Cancer Prognosis: Where Do We Stand? Semin Thromb Hemost 2021; 47:962-971. [PMID: 34450680 DOI: 10.1055/s-0041-1733925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer patients are characterized by hypercoagulable state and an increased rate of thrombotic events, the most common being venous thromboembolism. Several hemostatic pathways that are significantly implicated in mechanisms of thromboembolic disease are also involved in growth, invasion, and metastatic spread of malignant cells as well in tumor-induced neo-angiogenesis. This close connection between cancer and the hemostatic system has prompted numerous studies on the role of alterations in the level plasma biomarkers of the different compartments of hemostasis in predicting cancer prognosis. In this review, we collect the results of several exemplificative studies that have evaluated clotting activation biomarkers in relation to different cancer outcomes with a final emphasis on current research and forthcoming directions in this field.
Collapse
Affiliation(s)
- Anna Falanga
- Division of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy.,Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - Marina Marchetti
- Division of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Laura Russo
- Division of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
35
|
Hisada Y, Mackman N. Tissue Factor and Extracellular Vesicles: Activation of Coagulation and Impact on Survival in Cancer. Cancers (Basel) 2021; 13:cancers13153839. [PMID: 34359742 PMCID: PMC8345123 DOI: 10.3390/cancers13153839] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The tissue factor (TF)-factor VIIa complex is the major physiological initiator of blood coagulation. Tumors express TF and release TF-positive extracellular vesicles (EVs) into the circulation, and this is associated with the activation of coagulation. Circulating levels of EVTF activity may be a useful biomarker to identify patients at risk for thrombosis. Tumor TF and TF-positive EVs are also associated with reduced survival. Abstract Tissue factor (TF) is a transmembrane glycoprotein that functions as a receptor for FVII/FVIIa and initiates the extrinsic coagulation pathway. Tumors and cancer cells express TF that can be released in the form of TF positive (TF+) extracellular vesicles (EVs). In this review, we summarize the studies of tumor TF and TF + EVs, and their association with activation of coagulation and survival in cancer patients. We also summarize the role of tumor-derived TF + EVs in venous thrombosis in mouse models. Levels of tumor TF and TF + EVs are associated with venous thromboembolism in pancreatic cancer patients. In addition, levels of EVTF activity are associated with disseminated intravascular coagulation in cancer patients. Furthermore, tumor-derived TF + EVs enhance venous thrombosis in mice. Tumor TF and TF + EVs are also associated with worse survival in cancer patients, particularly in pancreatic cancer patients. These studies indicate that EVTF activity could be used as a biomarker to identify pancreatic cancer patients at risk for venous thrombosis and cancer patients at risk for disseminated intravascular coagulation. EVTF activity may also be a useful prognostic biomarker in cancer patients.
Collapse
|
36
|
Skille H, Paulsen B, Hveem K, Severinsen MT, Gabrielsen ME, Kristensen SR, Næss IA, Hindberg K, Tjønneland A, Brækkan SK, Hansen JB. Prothrombotic genotypes and risk of venous thromboembolism in occult cancer. Thromb Res 2021; 205:17-23. [PMID: 34237679 DOI: 10.1016/j.thromres.2021.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Studies have reported that the combination of some prothrombotic genotypes and overt cancer yields a synergistic effect on VTE risk. Whether individual prothrombotic genotypes or number of risk alleles in a genetic risk score (GRS) affect VTE risk in occult cancer have not been addressed. The aim of this study was to investigate the joint effect of five prothrombotic genotypes and occult cancer on VTE risk. METHODS Cases with incident VTE (n = 1566) and a subcohort (n = 14,537) were sampled from the Scandinavian Thrombosis and Cancer Cohort (1993-2012). Five single nucleotide polymorphisms previously reported in a GRS were genotyped: ABO (rs8176719), F5 (rs6025), F2 (rs1799963), FGG (rs2066865) and F11 (rs2036914). Hazard ratios (HRs) for VTE by individual SNPs and GRS were estimated according to non-cancer and occult cancer (one year preceding a cancer diagnosis) exposure. RESULTS Occult cancer occurred in 1817 subjects, and of these, 93 experienced a VTE. The VTE risk was 4-fold higher (HR 4.05, 95% CI 3.28-5.00) in subjects with occult cancer compared with those without cancer. Among subjects with occult cancer, those with VTE had a higher proportion of prothrombotic and advanced cancers than those without VTE. The VTE risk increased according to individual prothrombotic genotypes and GRS in cancer-free subjects, while no such effect was observed in subjects with occult cancer (HR for ≥4 versus ≤1 risk alleles in GRS: 1.14, 95% CI 0.61-2.11). CONCLUSIONS Five well-established prothrombotic genotypes, individually or combined, were not associated with increased risk of VTE in individuals with occult cancer.
Collapse
Affiliation(s)
- Hanne Skille
- Thrombosis Research Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Benedikte Paulsen
- Thrombosis Research Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
| | - Marianne T Severinsen
- Department of Clinical Medicine, Aalborg University, Denmark; Department of Hematology, Aalborg University Hospital, Aalborg, Denmark
| | - Maiken E Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
| | - Søren R Kristensen
- Department of Clinical Medicine, Aalborg University, Denmark; Department of Clinical Biochemistry, Aalborg University hospital, Aalborg, Denmark
| | - Inger Anne Næss
- Department of Rheumatology, Trondheim University Hospital, Trondheim, Norway
| | - Kristian Hindberg
- Thrombosis Research Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Anne Tjønneland
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Sigrid K Brækkan
- Thrombosis Research Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway; Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway.
| | - John-Bjarne Hansen
- Thrombosis Research Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway; Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
37
|
Åberg M, Edén D, Siegbahn A. Activation of β1 integrins and caveolin-1 by TF/FVIIa promotes IGF-1R signaling and cell survival. Apoptosis 2021; 25:519-534. [PMID: 32458278 PMCID: PMC7347522 DOI: 10.1007/s10495-020-01611-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tissue factor/coagulation factor VIIa (TF/FVIIa) complex induces transactivation of the IGF-1 receptor (IGF-1R) in a number of different cell types. The mechanism is largely unknown. The transactivation leads to protection from apoptosis and nuclear translocation of the IGF-1R. The aim of this study was to clarify the signaling pathway between TF and IGF-1R after FVIIa treatment with PC3 and DU145 prostate or MDA-MB-231 breast cancer cells as model systems. Protein interactions, levels, and phosphorylations were assessed by proximity ligation assay or flow cytometry in intact cells and by western blot on cell lysates. The transactivation of the IGF-1R was found dependent on TF/FVIIa-induced activation of β1-integrins. A series of experiments led to the conclusion that the caveolae protein caveolin-1 prevented IGF-1R activation in resting cells via its scaffolding domain. TF/FVIIa/β1-integrins terminated this inhibition by activation of Src family kinases and subsequent phosphorylation of caveolin-1 on tyrosine 14. This phosphorylation was not seen after treatment with PAR1 or PAR2 agonists. Consequently, the protective effect of FVIIa against apoptosis induced by the death receptor agonist TRAIL and the de novo synthesis of cyclin D1 induced by nuclear IGF-1R accumulation were both significantly reduced by down-regulation of β1-integrins or overexpression of the caveolin-1 scaffolding domain. In conclusion, we present a plausible mechanism for the interplay between TF and IGF-1R involving FVIIa, β1-integrins, Src family proteins, and caveolin-1. Our results increase the knowledge of diseases associated with TF and IGF-1R overexpression in general but specifically of TF-mediated signaling with focus on cell survival.
Collapse
Affiliation(s)
- Mikael Åberg
- Department of Medical Sciences, Clinical Chemistry and Science for Life Laboratory, Uppsala University Hospital, Entr. 61 3rd floor, 751 85, Uppsala, Sweden.
| | - Desirée Edén
- Department of Medical Sciences, Clinical Chemistry and Science for Life Laboratory, Uppsala University Hospital, Entr. 61 3rd floor, 751 85, Uppsala, Sweden
| | - Agneta Siegbahn
- Department of Medical Sciences, Clinical Chemistry and Science for Life Laboratory, Uppsala University Hospital, Entr. 61 3rd floor, 751 85, Uppsala, Sweden
| |
Collapse
|
38
|
Nassar E, Hassan N, El-Ghonaimy EA, Hassan H, Abdullah MS, Rottke TV, Kiesel L, Greve B, Ibrahim SA, Götte M. Syndecan-1 Promotes Angiogenesis in Triple-Negative Breast Cancer through the Prognostically Relevant Tissue Factor Pathway and Additional Angiogenic Routes. Cancers (Basel) 2021; 13:cancers13102318. [PMID: 34066023 PMCID: PMC8150756 DOI: 10.3390/cancers13102318] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Triple-negative breast cancer is an aggressive subtype of breast cancer characterized by tumor angiogenesis and poor patient survival. Here, we analyzed the function of the cell surface molecule Syndecan-1 in tumor angiogenesis in a 3D cell culture system. As a novel finding, we demonstrate that downregulation of Syndecan-1 reduces angiogenesis by decreasing the amount of angiogenesis factors of the tissue factor pathway. Furthermore, we show that the components of this pathway are associated with the prognosis of breast cancer patients. Our study identifies Syndecan-1 and the tissue factor pathway as novel potential therapeutic targets in the aggressive triple-negative subtype of breast cancer, for which no targeted therapies are currently available. Abstract Triple-negative breast cancer (TNBC) is characterized by increased angiogenesis, metastasis, and poor survival. Dysregulation of the cell surface heparan sulfate proteoglycan and signaling co-receptor Syndecan-1 is linked to poor prognosis. To study its role in angiogenesis, we silenced Syndecan-1 in TNBC cell lines using a 3D human umbilical vein endothelial cell (HUVEC) co-culture system. Syndecan-1 siRNA depletion in SUM-149, MDA-MB-468, and MDA-MB-231 cells decreased HUVEC tubule network formation. Angiogenesis array revealed reduced VEGF-A and tissue factor (TF) in the Syndecan-1-silenced secretome. qPCR independently confirmed altered expression of F3, F7, F2R/PAR1, F2RL1/PAR2, VEGF-A, EDN1, IGFBP1, and IGFBP2 in SUM-149, MDA-MB-231, and MDA-MB-468 cells. ELISA revealed reduced secreted endothelin-1 (SUM-149, MDA-MB-468) and TF (all cell lines) upon Syndecan-1 depletion, while TF pathway inhibitor treatment impaired angiogenesis. Survival analysis of 3951 patients demonstrated that high expression of F3 and F7 are associated with better relapse-free survival, whereas poor survival was observed in TNBC and p53 mutant basal breast cancer (F3) and in ER-negative and HER2-positive breast cancer (F2R, F2RL1). STRING protein network analysis revealed associations of Syndecan-1 with VEGF-A and IGFBP1, further associated with the TF and ET-1 pathways. Our study suggests that TNBC Syndecan-1 regulates angiogenesis via the TF and additional angiogenic pathways and marks its constituents as novel prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Eyyad Nassar
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
| | - Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, 12613 Giza, Egypt;
| | - Eslam A. El-Ghonaimy
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
- Department of Zoology, Faculty of Science, Cairo University, 12613 Giza, Egypt;
| | - Hebatallah Hassan
- Department of Zoology, Faculty of Science, Cairo University, 12613 Giza, Egypt;
| | - Mahmoud Salah Abdullah
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, 12613 Giza, Egypt;
| | - Theresa V. Rottke
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
| | - Burkhard Greve
- Department of Radiotherapy and Radiooncology, University Hospital Münster, 48149 Münster, Germany;
| | - Sherif Abdelaziz Ibrahim
- Department of Zoology, Faculty of Science, Cairo University, 12613 Giza, Egypt;
- Correspondence: (S.A.I.); (M.G.)
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149 Münster, Germany; (E.N.); (N.H.); (E.A.E.-G.); (T.V.R.); (L.K.)
- Correspondence: (S.A.I.); (M.G.)
| |
Collapse
|
39
|
Fang H, Cavaliere A, Li Z, Huang Y, Marquez-Nostra B. Preclinical Advances in Theranostics for the Different Molecular Subtypes of Breast Cancer. Front Pharmacol 2021; 12:627693. [PMID: 33986665 PMCID: PMC8111013 DOI: 10.3389/fphar.2021.627693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/22/2021] [Indexed: 12/29/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide. The heterogeneity of breast cancer and drug resistance to therapies make the diagnosis and treatment difficult. Molecular imaging methods with positron emission tomography (PET) and single-photon emission tomography (SPECT) provide useful tools to diagnose, predict, and monitor the response of therapy, contributing to precision medicine for breast cancer patients. Recently, many efforts have been made to find new targets for breast cancer therapy to overcome resistance to standard of care treatments, giving rise to new therapeutic agents to offer more options for patients with breast cancer. The combination of diagnostic and therapeutic strategies forms the foundation of theranostics. Some of these theranostic agents exhibit high potential to be translated to clinic. In this review, we highlight the most recent advances in theranostics of the different molecular subtypes of breast cancer in preclinical studies.
Collapse
Affiliation(s)
- Hanyi Fang
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States.,Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Alessandra Cavaliere
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States
| | - Ziqi Li
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States.,Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States
| | - Bernadette Marquez-Nostra
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
40
|
Haschemi R, Gockel LM, Bendas G, Schlesinger M. A Combined Activity of Thrombin and P-Selectin Is Essential for Platelet Activation by Pancreatic Cancer Cells. Int J Mol Sci 2021; 22:3323. [PMID: 33805059 PMCID: PMC8037188 DOI: 10.3390/ijms22073323] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 01/01/2023] Open
Abstract
Pancreatic cancer patients have an elevated risk of suffering from venous thrombosis. Among several risk factors that contribute to hypercoagulability of this malignancy, platelets possess a key role in the initiation of clot formation. Although single mechanisms of platelet activation are well-known in principle, combinations thereof and their potential synergy to mediate platelet activation is, in the case of pancreatic cancer, far from being clear. Applying an inhibitor screening approach using light transmission aggregometry, dense granule release, and thrombin formation assays, we provide evidence that a combination of tissue factor-induced thrombin formation by cancer cells and their platelet P-selectin binding is responsible for AsPC-1 and Capan-2 pancreatic cancer cell-mediated platelet activation. While the blockade of one of these pathways leads to a pronounced inhibition of platelet aggregation and dense granule release, the simultaneous blockade of both pathways is inevitable to prevent platelet aggregation completely and minimize ATP release. In contrast, MIA PaCa-2 pancreatic cancer cells express reduced levels of tissue factor and P-selectin ligands and thus turn out to be poor platelet activators. Consequently, a simultaneous blockade of thrombin and P-selectin binding seems to be a powerful approach, as mediated by heparin to crucially reduce the hypercoagulable state of pancreatic cancer patients.
Collapse
Affiliation(s)
| | | | | | - Martin Schlesinger
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (R.H.); (L.M.G.); (G.B.)
| |
Collapse
|
41
|
Jin Y, Liu W, Wang F, Wang M, Xu K, Yang A, Wang C, Zhang L, Zhang F, Li M. Tissue factor potentiates adherence of breast cancer cells to human umbilical vein endothelial cells under static and flow conditions. Cell Adh Migr 2021; 15:74-83. [PMID: 33734001 PMCID: PMC7993123 DOI: 10.1080/19336918.2021.1898709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Tissue factor (TF) has been extensively studied for tumor metastasis, but its role in mediating cancer cell adhesion to vasculature remains unknown. This study aimed to measure the ability of TF to mediate the adhesion of breast cancer cells to human umbilical vein endothelial cells (HUVECs). MDA-MB-231 cells expressed the highest TF level and adhered more to HUVECs under static and flow conditions, a neutralizing TF antibody abolished the enhanced adhesion of MDA-MB-231 cells to HUVECs. Recombinant human soluble TF (rTF) bonded β1integrin on HUVECs surfaces, β1 or α3integrin antibody combined with TF antibody abolished more cell-cell adhesion. These data suggested that TF mediated adhesion of breast cancer cells to endothelial cells may rely on β1integrin on HUVECs surfaces.
Collapse
Affiliation(s)
- Yanling Jin
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wei Liu
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Fengxia Wang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Min Wang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Kai Xu
- First Affiliated Clinical Hospital, Lanzhou University, Lanzhou, Gansu, China
| | - Aijun Yang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Chenyu Wang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Lihan Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fangfang Zhang
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Min Li
- Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Key Laboratory of Preclinical Study for New Drug Development, Lanzhou University, Lanzhou, China
| |
Collapse
|
42
|
Polyglutamic acid-based crosslinked doxorubicin nanogels as an anti-metastatic treatment for triple negative breast cancer. J Control Release 2021; 332:10-20. [PMID: 33587988 DOI: 10.1016/j.jconrel.2021.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/12/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Treatment of triple negative breast cancer (TNBC)-associated metastasis represents an unmet clinical need, and we lack effective therapeutics for a disease that exhibits high relapse rates and associates with poor patient outcomes. Advanced nanosized drug delivery systems may enhance the efficacy of first-line chemotherapeutics by altering drug pharmacokinetics and enhancing tumor/metastasis targeting to significantly improve efficacy and safety. Herein, we propose the application of injectable poly-amino acid-based nanogels (NGs) as a versatile hydrophilic drug delivery platform for the treatment of TNBC lung metastasis. We prepared biocompatible and biodegradable cross-linked NGs from polyglutamic acid (PGA) loaded with the chemotherapeutic agent doxorubicin (DOX). Our optimized synthetic procedures generated NGs of ~100 nm in size and 25 wt% drug loading content that became rapidly internalized in TNBC cell lines and displayed IC50 values comparable to the free form of DOX. Importantly, PGA-DOX NGs significantly inhibited lung metastases and almost completely suppressed lymph node metastases in a spontaneously metastatic orthotopic mouse TNBC model. Overall, our newly developed PGA-DOX NGs represent a potentially effective therapeutic strategy for the treatment of TNBC metastases.
Collapse
|
43
|
Procoagulant Disorders in Patients with Newly Diagnosed Pancreatic Adenocarcinoma. ACTA ACUST UNITED AC 2020; 56:medicina56120677. [PMID: 33316933 PMCID: PMC7763230 DOI: 10.3390/medicina56120677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 11/17/2022]
Abstract
Background and objectives: Cancer coagulopathy is thought to be partially due to the up-regulation of tissue factor (TF), thrombin-antithrombin complex (TAT) and soluble P-selectin (sP-selectin). The purpose of this study was to evaluate the clinical significance of TF, TAT and sP-selectin in patients with pancreatic cancer. Materials and methods: The study included 93 subjects: 73 newly diagnosed patients with pancreatic adenocarcinoma (42 with stage I-III and 31 with metastatic cancer (stage IV)) and a control group of 20 healthy subjects. Analyzed patients were hospitalized in the Department of Digestive Tract Diseases, Medical University of Lodz or in the Department of Digestive Tract Surgery, Silesian University, Katowice, Poland. All laboratory parameters were measured using ELISA procedures. Results: TF plasma levels were detectable in all patients and were significantly higher in metastatic cancer compared to stage I-III patients and the control group (p < 0.05). In patients with pancreatic adenocarcinoma, the median levels of TAT were also elevated compared to the control group. Moreover, patients with metastases had significantly higher TAT concentration compared to the I-III cancer group. On the other hand, only the metastatic patients group showed significantly higher plasma sP-selectin levels compared to the controls (p = 0.009), whereas there was no difference between localized and metastatic cancer patients. Conclusions: The coagulation disorders are present in the majority of patients with pancreatic adenocarcinoma already at the diagnosis stage and reflect cancer progression and spread.
Collapse
|
44
|
Beatson R, Graham R, Grundland Freile F, Cozzetto D, Kannambath S, Pfeifer E, Woodman N, Owen J, Nuamah R, Mandel U, Pinder S, Gillett C, Noll T, Bouybayoune I, Taylor-Papadimitriou J, Burchell JM. Cancer-associated hypersialylated MUC1 drives the differentiation of human monocytes into macrophages with a pathogenic phenotype. Commun Biol 2020; 3:644. [PMID: 33149188 PMCID: PMC7642421 DOI: 10.1038/s42003-020-01359-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
The tumour microenvironment plays a crucial role in the growth and progression of cancer, and the presence of tumour-associated macrophages (TAMs) is associated with poor prognosis. Recent studies have demonstrated that TAMs display transcriptomic, phenotypic, functional and geographical diversity. Here we show that a sialylated tumour-associated glycoform of the mucin MUC1, MUC1-ST, through the engagement of Siglec-9 can specifically and independently induce the differentiation of monocytes into TAMs with a unique phenotype that to the best of our knowledge has not previously been described. These TAMs can recruit and prolong the lifespan of neutrophils, inhibit the function of T cells, degrade basement membrane allowing for invasion, are inefficient at phagocytosis, and can induce plasma clotting. This macrophage phenotype is enriched in the stroma at the edge of breast cancer nests and their presence is associated with poor prognosis in breast cancer patients. Beatson et al. show that a sialylated tumour-associated glycoform of the mucin MUC1 induces the differentiation of monocytes into tumour-associated macrophages. These macrophages are found in breast cancer stroma and their presence is associated with poor prognosis.
Collapse
Affiliation(s)
- Richard Beatson
- Breast Cancer Biology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK.
| | - Rosalind Graham
- Breast Cancer Biology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Fabio Grundland Freile
- Breast Cancer Biology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Domenico Cozzetto
- Translational Bioinformatics, Genomics Facility, National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, SE1 9RT, UK
| | - Shichina Kannambath
- Genomics Facility, National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, SE1 9RT, UK
| | - Ester Pfeifer
- Breast Cancer Biology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Natalie Woodman
- KHP Tissue Bank, Breast Pathology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Julie Owen
- KHP Tissue Bank, Breast Pathology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Rosamond Nuamah
- Genomics Facility, National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, SE1 9RT, UK
| | - Ulla Mandel
- Copenhagen Centre for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200N, Copenhagen, Denmark
| | - Sarah Pinder
- Breast Pathology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Cheryl Gillett
- KHP Tissue Bank, Breast Pathology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Thomas Noll
- Cell Culture Technology, Faculty of Technology & CeBiTec, Bielefeld University, P.O. Box 10 01 31, 33501, Bielefeld, Germany
| | - Ihssane Bouybayoune
- Breast Pathology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Joyce Taylor-Papadimitriou
- Breast Cancer Biology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Joy M Burchell
- Breast Cancer Biology, Comprehensive Cancer Centre, King's College London, Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
45
|
Mechanisms and biomarkers of cancer-associated thrombosis. Transl Res 2020; 225:33-53. [PMID: 32645431 PMCID: PMC8020882 DOI: 10.1016/j.trsl.2020.06.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
Cancer-associated thrombosis is a leading cause of non-cancer death in cancer patients and is comprised of both arterial and venous thromboembolism (VTE). There are multiple risk factors for developing VTE, including cancer type, stage, treatment, and other medical comorbidities, which suggests that the etiology of thrombosis is multifactorial. While cancer-associated thrombosis can be treated with anticoagulation, benefits of therapy must be balanced with the increased bleeding risks seen in patients with cancer. Although risk models exist for primary and recurrent VTE, additional predictors are needed to improve model performance and discrimination of high-risk patients. This review will outline the diverse mechanisms driving thrombosis in cancer patients, as well as provide an overview of biomarkers studied in thrombosis risk and important considerations when selecting candidate biomarkers.
Collapse
|
46
|
Gomez S, Tsung A, Hu Z. Current Targets and Bioconjugation Strategies in Photodynamic Diagnosis and Therapy of Cancer. Molecules 2020; 25:E4964. [PMID: 33121022 PMCID: PMC7662882 DOI: 10.3390/molecules25214964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/18/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023] Open
Abstract
Photodynamic diagnosis (PDD) and therapy (PDT) are emerging, non/minimally invasive techniques for cancer diagnosis and treatment. Both techniques require a photosensitizer and light to visualize or destroy cancer cells. However, a limitation of conventional, non-targeted PDT is poor selectivity, causing side effects. The bioconjugation of a photosensitizer to a tumor-targeting molecule, such as an antibody or a ligand peptide, is a way to improve selectivity. The bioconjugation strategy can generate a tumor-targeting photosensitizer conjugate specific for cancer cells, or ideally, for multiple tumor compartments to improve selectivity and efficacy, such as cancer stem cells and tumor neovasculature within the tumor microenvironment. If successful, such targeted photosensitizer conjugates can also be used for specific visualization and detection of cancer cells and/or tumor angiogenesis (an early event in tumorigenesis) with the hope of an early diagnosis of cancer. The purpose of this review is to summarize some current promising target molecules, e.g., tissue factor (also known as CD142), and the currently used bioconjugation strategies in PDT and PDD, with a focus on newly developed protein photosensitizers. These are genetically engineered photosensitizers, with the possibility of generating a fusion protein photosensitizer by recombinant DNA technology for both PDT and PDD without the need of chemical conjugation. We believe that providing an overview of promising targets and bioconjugation strategies will aid in driving research in this field forward towards more effective, less toxic, and non- or minimally invasive treatment and diagnosis options for cancer patients.
Collapse
Affiliation(s)
- Salvador Gomez
- The James-Comprehensive Cancer Center, Division of Surgical Oncology Department of Surgery, College of Medicine, The Ohio State University, 460 W 12th Ave, Columbus, OH 43210, USA; (S.G.); (A.T.)
- College of Medicine, The Ohio State University, 370 W 9th Ave, Columbus, OH 43210, USA
| | - Allan Tsung
- The James-Comprehensive Cancer Center, Division of Surgical Oncology Department of Surgery, College of Medicine, The Ohio State University, 460 W 12th Ave, Columbus, OH 43210, USA; (S.G.); (A.T.)
| | - Zhiwei Hu
- The James-Comprehensive Cancer Center, Division of Surgical Oncology Department of Surgery, College of Medicine, The Ohio State University, 460 W 12th Ave, Columbus, OH 43210, USA; (S.G.); (A.T.)
| |
Collapse
|
47
|
Lucotti S, Muschel RJ. Platelets and Metastasis: New Implications of an Old Interplay. Front Oncol 2020; 10:1350. [PMID: 33042789 PMCID: PMC7530207 DOI: 10.3389/fonc.2020.01350] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022] Open
Abstract
During the process of hematogenous metastasis, tumor cells interact with platelets and their precursors megakaryocytes, providing a selection driver for the metastatic phenotype. Cancer cells have evolved a plethora of mechanisms to engage platelet activation and aggregation. Platelet coating of tumor cells in the blood stream promotes the successful completion of multiple steps of the metastatic cascade. Along the same lines, clinical evidence suggests that anti-coagulant therapy might be associated with reduced risk of metastatic disease and better prognosis in cancer patients. Here, we review experimental and clinical literature concerning the contribution of platelets and megakaryocytes to cancer metastasis and provide insights into the clinical relevance of anti-coagulant therapy in cancer treatment.
Collapse
Affiliation(s)
- Serena Lucotti
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Ruth J Muschel
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
48
|
Cancer cell-derived tissue factor-positive extracellular vesicles: biomarkers of thrombosis and survival. Curr Opin Hematol 2020; 26:349-356. [PMID: 31261175 DOI: 10.1097/moh.0000000000000521] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Tissue factor (TF) is released from cancer cells and tumors in the form of extracellular vesicles (EVs). This review summarizes our current knowledge of the mechanisms of release of TF-positive EVs (TF+EVs) from cancer cells and the effect of these TF+EVs on cultured endothelial cells. In addition, we will summarize the contribution of TF+EVs to thrombosis in mice, and the association between plasma EVTF activity and venous thrombosis as well as survival of cancer patients. RECENT FINDINGS The release of TF+EVs from cancer cells is regulated by multiple factors, including hypoxia, epithelial-mesenchymal transition, and various intracellular signaling pathways. Cancer cell-derived, TF+EVs confer procoagulant activity to endothelial cells and induce the expression of adhesion proteins and IL-8. In addition, they contribute to thrombosis by directly activating the coagulation system and by generating thrombin that activates platelets in mouse models. Finally, there is an association between EVTF activity and venous thrombosis in pancreatic cancer patients as well as mortality in cancer patients. SUMMARY Cancer cell-derived TF+EVs bind to and activate endothelial cells. In addition, they serve as biomarkers of survival of cancer patients and venous thrombosis in pancreatic cancer patients.
Collapse
|
49
|
Castle J, Blower E, Bundred NJ, Harvey JR, Thachil J, Marshall A, Cox K, Cicconi S, Holcombe C, Palmieri C, Kirwan CC. Rivaroxaban compared to no treatment in ER-negative stage I-III early breast cancer patients (the TIP Trial): study protocol for a phase II preoperative window-of-opportunity study design randomised controlled trial. Trials 2020; 21:749. [PMID: 32854772 PMCID: PMC7534806 DOI: 10.1186/s13063-020-04675-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/12/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breast cancer patients are at a four-fold increased risk of developing a venous thromboembolism (VTE), a major cause of death in this group. Conversely, coagulation factors promote tumour growth and metastasis. This has been evidenced in preclinical models, with an inhibitory effect of anticoagulants on cancer growth through proliferative, angiogenic, apoptotic, cancer stem cell and metastatic processes. The extrinsic clotting pathway is also more upregulated in patients in the relatively poorer prognosis oestrogen receptor (ER)-negative breast cancer subgroup, with increased tumour stromal expression of the coagulation factors Tissue Factor and thrombin. Rivaroxaban (Xarelto®, Bayer AG, Leverkusen, Germany) is a direct oral anticoagulant (DOAC). It is a Factor Xa inhibitor that is routinely prescribed for the prevention of stroke in non-valvular atrial fibrillation and for both VTE prophylaxis and treatment. This trial will assess the anti-proliferative and other anti-cancer progression mechanisms of Rivaroxaban in ER-negative early breast cancer patients. METHODS This UK-based preoperative window-of-opportunity phase II randomised control trial will randomise 88 treatment-naïve early breast cancer patients to receive 20 mg OD Rivaroxaban treatment for 11 to 17 days or no treatment. Treatment will be stopped 24 h (range 18-36 h) prior to surgery or repeat core biopsy. All patients will be followed up for 2 weeks following surgery or repeat core biopsy. The primary endpoint is change in tumour Ki67. Secondary outcome measures include tumour markers of apoptosis and angiogenesis, extrinsic clotting pathway activation and systemic markers of metastasis, tumour load and coagulation. DISCUSSION Laboratory evidence supports an anti-cancer role for anticoagulants; however, this has failed to translate into survival benefit when trialled in patients with metastatic disease or poor prognosis cancers, such as lung cancer. Subgroup analysis supported a potential survival benefit in better prognosis advanced disease patients. This is the first study to investigate the anti-cancer effects of anticoagulants in early breast cancer. TRIAL REGISTRATION UK National Research Ethics Service (NRES) approval 15/NW/0406, MHRA Clinical Trials Authorisation 48380/0003/001-0001. The sponsor is Manchester University NHS Foundation Trust, and the trial is co-ordinated by Cancer Research UK Liverpool Cancer Trials Unit (LCTU). EudraCT 2014-004909-33 , registered 27 July 2015. ISRCTN14785273 .
Collapse
Affiliation(s)
- John Castle
- Manchester Cancer Research Centre, The University of Manchester, Wilmslow Road, Manchester, M20 4GJ UK
| | - Emma Blower
- Manchester Cancer Research Centre, The University of Manchester, Wilmslow Road, Manchester, M20 4GJ UK
| | - Nigel J. Bundred
- Manchester Cancer Research Centre, The University of Manchester, Wilmslow Road, Manchester, M20 4GJ UK
- The Nightingale Centre, Wythenshawe Hospital, Manchester, M23 9LT UK
| | - James R. Harvey
- The Nightingale Centre, Wythenshawe Hospital, Manchester, M23 9LT UK
| | - Jecko Thachil
- Department of Haematology, Manchester Royal Infirmary, Manchester, M13 9WL UK
| | - Andrea Marshall
- Warwick Clinical Trials Unit, University of Warwick, Coventry, CV4 7AL UK
| | - Karina Cox
- Department of Breast Surgery, Maidstone Hospital, Maidstone, ME16 9QQ UK
| | - Silvia Cicconi
- Cancer Research UK Liverpool Cancer Trials Unit, Liverpool, L69 3GL UK
| | - Chris Holcombe
- Breast Unit, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, L3 9TA UK
| | - Carlos Palmieri
- Department of Molecular and Clinical Cancer Medicine, Liverpool, L69 3GA UK
| | - Cliona C. Kirwan
- Manchester Cancer Research Centre, The University of Manchester, Wilmslow Road, Manchester, M20 4GJ UK
- The Nightingale Centre, Wythenshawe Hospital, Manchester, M23 9LT UK
| |
Collapse
|
50
|
Vimentin prevents a miR-dependent negative regulation of tissue factor mRNA during epithelial-mesenchymal transitions and facilitates early metastasis. Oncogene 2020; 39:3680-3692. [PMID: 32152404 PMCID: PMC7190572 DOI: 10.1038/s41388-020-1244-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 01/31/2023]
Abstract
Epithelial-mesenchymal transitions (EMTs) are high-profile in the field of circulating tumor cells (CTCs). EMT-shifted CTCs are considered to encompass pre-metastatic subpopulations though underlying molecular mechanisms remain elusive. Our previous work identified tissue factor (TF) as an EMT-induced gene providing tumor cells with coagulant properties and supporting metastatic colonization by CTCs. We here report that vimentin, the type III intermediate filament considered a canonical EMT marker, contributes to TF regulation and positively supports coagulant properties and early metastasis. Different evidence further pointed to a new post-transcriptional regulatory mechanism of TF mRNA by vimentin: (1) vimentin silencing accelerated TF mRNA decay after actinomycin D treatment, reflecting TF mRNA stabilization, (2) RNA immunoprecipitation revealed enriched levels of TF mRNA in vimentin immunoprecipitate, (3) TF 3'-UTR-luciferase reporter vector assays implicated the 3'-UTR of TF mRNA in vimentin-dependent TF regulation, and (4) using different TF 3'UTR-luciferase reporter vectors mutated for potential miR binding sites and specific Target Site Blockers identified a key miR binding site in vimentin-dependent TF mRNA regulation. All together, these data support a novel mechanism by which vimentin interferes with a miR-dependent negative regulation of TF mRNA, thereby promoting coagulant activity and early metastasis of vimentin-expressing CTCs.
Collapse
|