1
|
Rey-Keim S, Schito L. Origins and molecular effects of hypoxia in cancer. Semin Cancer Biol 2024; 106-107:166-178. [PMID: 39427969 DOI: 10.1016/j.semcancer.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Hypoxia (insufficient O2) is a pivotal factor in cancer progression, triggering genetic, transcriptional, translational and epigenetic adaptations associated to therapy resistance, metastasis and patient mortality. In this review, we outline the microenvironmental origins and molecular mechanisms responsible for hypoxic cancer cell adaptations in situ and in vitro, whilst outlining current approaches to stratify, quantify and therapeutically target hypoxia in the context of precision oncology.
Collapse
Affiliation(s)
- Sergio Rey-Keim
- UCD School of Medicine, University College Dublin, Belfield, Dublin D04 C7X2, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 C7X2, Ireland.
| | - Luana Schito
- UCD School of Medicine, University College Dublin, Belfield, Dublin D04 C7X2, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 C7X2, Ireland.
| |
Collapse
|
2
|
Epel B, Viswakarma N, Sundramoorthy SV, Pawar NJ, Kotecha M. Oxygen Imaging of a Rabbit Tumor Using a Human-Sized Pulse Electron Paramagnetic Resonance Imager. Mol Imaging Biol 2024; 26:403-410. [PMID: 37715089 DOI: 10.1007/s11307-023-01852-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 09/17/2023]
Abstract
PURPOSE Spatial heterogeneity in tumor hypoxia is one of the most important factors regulating tumor growth, development, aggressiveness, metastasis, and affecting treatment outcome. Most solid tumors are known to have hypoxia or low oxygen levels (pO2 ≤10 torr). Electron paramagnetic resonance oxygen imaging (EPROI) is an emerging oxygen mapping technology. EPROI utilizes the linear relationship between the relaxation rates of the injectable OX071 trityl spin probe and the partial oxygen pressure (pO2). However, most of the EPROI studies have been limited to mouse models of solid tumors because of the instrument-size limitations. The purpose of this work was to develop a human-sized 9-mT (250 MHz resonance frequency, 60 cm bore size) pulse EPROI instrument and evaluate its performance with rabbit VX-2 tumor oxygen imaging. METHODS A New Zealand white rabbit with a 3.2-cm VX-2 tumor in the calf muscle was imaged using the human-sized EPROI instrument and a 2.25-in. ID volume coil. The animal received a ~8-min intravenous injection of OX071 (5.2 mL total volume at 72 mM concentration) and, after 75 min, an intratumoral injection (120 μL total at 5 mM OX071 concentration) and underwent EPROI. At the end of the experiments, MRI was performed using a preclinical 9.4-T MRI system to outline the tumor boundaries. RESULTS For the first time, a human-sized pulse EPROI instrument with a 60-cm bore size/250-MHz frequency was built and evaluated using rabbit tumor oxygen imaging. For the first time, the systemic IV injection of the oxygen-sensitive trityl OX071 spin probe was used for an animal of this size. The resulting EPROI image from the IV injection showed complete tumor coverage. The image obtained after intratumoral injection showed localized coverage in the upper lobe of the tumor, demonstrating the need for improved intratumoral injection protocol. CONCLUSIONS This study demonstrates the performance of the world's first human-sized pulse EPROI instrument. It also demonstrates that the EPROI of larger animals can be performed using the systemic injection of a manageable amount of the spin probe. This brings EPROI one step closer to clinical applications in cancer therapies. Oxygen imaging is a platform technology, and the instrument and techniques developed here will also be useful for other clinical applications.
Collapse
Affiliation(s)
- Boris Epel
- O2M Technologies, LLC, Chicago, IL, 60612, USA.
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, 60637, USA.
| | | | | | | | | |
Collapse
|
3
|
Chang B, Chen J, Bao J, Sun T, Cheng Z. Molecularly Engineered Room-Temperature Phosphorescence for Biomedical Application: From the Visible toward Second Near-Infrared Window. Chem Rev 2023; 123:13966-14037. [PMID: 37991875 DOI: 10.1021/acs.chemrev.3c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Phosphorescence, characterized by luminescent lifetimes significantly longer than that of biological autofluorescence under ambient environment, is of great value for biomedical applications. Academic evidence of fluorescence imaging indicates that virtually all imaging metrics (sensitivity, resolution, and penetration depths) are improved when progressing into longer wavelength regions, especially the recently reported second near-infrared (NIR-II, 1000-1700 nm) window. Although the emission wavelength of probes does matter, it is not clear whether the guideline of "the longer the wavelength, the better the imaging effect" is still suitable for developing phosphorescent probes. For tissue-specific bioimaging, long-lived probes, even if they emit visible phosphorescence, enable accurate visualization of large deep tissues. For studies dealing with bioimaging of tiny biological architectures or dynamic physiopathological activities, the prerequisite is rigorous planning of long-wavelength phosphorescence, being aware of the cooperative contribution of long wavelengths and long lifetimes for improving the spatiotemporal resolution, penetration depth, and sensitivity of bioimaging. In this Review, emerging molecular engineering methods of room-temperature phosphorescence are discussed through the lens of photophysical mechanisms. We highlight the roles of phosphorescence with emission from visible to NIR-II windows toward bioapplications. To appreciate such advances, challenges and prospects in rapidly growing studies of room-temperature phosphorescence are described.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jiasheng Bao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264000, China
| |
Collapse
|
4
|
Carlson N, House CD, Tambasco M. Toward a Transportable Cell Culture Platform for Evaluating Radiotherapy Dose Modifying Factors. Int J Mol Sci 2023; 24:15953. [PMID: 37958936 PMCID: PMC10648285 DOI: 10.3390/ijms242115953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
The current tools for validating dose delivery and optimizing new radiotherapy technologies in radiation therapy do not account for important dose modifying factors (DMFs), such as variations in cellular repair capability, tumor oxygenation, ultra-high dose rates and the type of ionizing radiation used. These factors play a crucial role in tumor control and normal tissue complications. To address this need, we explored the feasibility of developing a transportable cell culture platform (TCCP) to assess the relative biological effectiveness (RBE) of ionizing radiation. We measured cell recovery, clonogenic viability and metabolic viability of MDA-MB-231 cells over several days at room temperature in a range of concentrations of fetal bovine serum (FBS) in medium-supplemented gelatin, under both normoxic and hypoxic oxygen environments. Additionally, we measured the clonogenic viability of the cells to characterize how the duration of the TCCP at room temperature affected their radiosensitivity at doses up to 16 Gy. We found that (78±2)% of MDA-MB-231 cells were successfully recovered after being kept at room temperature for three days in 50% FBS in medium-supplemented gelatin at hypoxia (0.4±0.1)% pO2, while metabolic and clonogenic viabilities as measured by ATP luminescence and colony formation were found to be (58±5)% and (57±4)%, respectively. Additionally, irradiating a TCCP under normoxic and hypoxic conditions yielded a clonogenic oxygen enhancement ratio (OER) of 1.4±0.6 and a metabolic OER of 1.9±0.4. Our results demonstrate that the TCCP can be used to assess the RBE of a DMF and provides a feasible platform for assessing DMFs in radiation therapy applications.
Collapse
Affiliation(s)
- Nicholas Carlson
- Department of Physics, San Diego State University, San Diego, CA 92182, USA;
| | - Carrie D. House
- Biology Department, San Diego State University, San Diego, CA 92182, USA;
| | - Mauro Tambasco
- Department of Physics, San Diego State University, San Diego, CA 92182, USA;
| |
Collapse
|
5
|
Vignoli A, Miolo G, Tenori L, Buonadonna A, Lombardi D, Steffan A, Scalone S, Luchinat C, Corona G. Novel metabolomics-biohumoral biomarkers model for predicting survival of metastatic soft-tissue sarcomas. iScience 2023; 26:107678. [PMID: 37752948 PMCID: PMC10518687 DOI: 10.1016/j.isci.2023.107678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/23/2023] [Accepted: 08/14/2023] [Indexed: 09/28/2023] Open
Abstract
Soft tissue sarcomas (STSs) are rare malignant tumors that are difficult to prognosticate using currently available instruments. Omics sciences could provide more accurate and individualized survival predictions for patients with metastatic STS. In this pilot, hypothesis-generating study, we integrated clinicopathological variables with proton nuclear magnetic resonance (1H NMR) plasma metabolomic and lipoproteomic profiles, capturing both tumor and host characteristics, to identify novel prognostic biomarkers of 2-year survival. Forty-five metastatic STS (mSTS) patients with prevalent leiomyosarcoma and liposarcoma histotypes receiving trabectedin treatment were enrolled. A score combining acetate, triglycerides low-density lipoprotein (LDL)-2, and red blood cell count was developed, and it predicts 2-year survival with optimal results in the present cohort (84.4% sensitivity, 84.6% specificity). This score is statistically significant and independent of other prognostic factors such as age, sex, tumor grading, tumor histotype, frailty status, and therapy administered. A nomogram based on these 3 biomarkers has been developed to inform the clinical use of the present findings.
Collapse
Affiliation(s)
- Alessia Vignoli
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Gianmaria Miolo
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), 50019 Sesto Fiorentino, Italy
| | - Angela Buonadonna
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Davide Lombardi
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Simona Scalone
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Claudio Luchinat
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), 50019 Sesto Fiorentino, Italy
- GiottoBiotech s.r.l, Sesto Fiorentino, Italy
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| |
Collapse
|
6
|
Moroney J, Trivella J, George B, White SB. A Paradigm Shift in Primary Liver Cancer Therapy Utilizing Genomics, Molecular Biomarkers, and Artificial Intelligence. Cancers (Basel) 2023; 15:2791. [PMID: 37345129 PMCID: PMC10216313 DOI: 10.3390/cancers15102791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Primary liver cancer is the sixth most common cancer worldwide and the third leading cause of cancer-related death. Conventional therapies offer limited survival benefit despite improvements in locoregional liver-directed therapies, which highlights the underlying complexity of liver cancers. This review explores the latest research in primary liver cancer therapies, focusing on developments in genomics, molecular biomarkers, and artificial intelligence. Attention is also given to ongoing research and future directions of immunotherapy and locoregional therapies of primary liver cancers.
Collapse
Affiliation(s)
- James Moroney
- Division of Vascular and Interventional Radiology, Department of Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Juan Trivella
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ben George
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sarah B. White
- Division of Vascular and Interventional Radiology, Department of Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
7
|
Elming PB, Busk M, Wittenborn TR, Bussink J, Horsman MR, Lønbro S. The effect of single bout and prolonged aerobic exercise on tumor hypoxia in mice. J Appl Physiol (1985) 2023; 134:692-702. [PMID: 36727633 DOI: 10.1152/japplphysiol.00561.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023] Open
Abstract
The objectives of this study were to investigate 1) the effect of acute aerobic exercise on tumor hypoxia and blood perfusion, 2) the impact of exercise intensity, 3) the duration of the effect, and 4) the effect of prolonged training on tumor hypoxia and tumor growth. Female CDF1 mice were inoculated with the C3H mammary carcinoma either in the mammary fat pad or subcutaneously in the back. For experiments on the effect of different intensities in a single exercise bout, mice were randomized to 30-min treadmill running at low-, moderate-, or high-intensity speeds or no exercise. To investigate the prolonged effect on hypoxia and tumor growth, tumor-bearing mice were randomized to no exercise (CON) or daily 30-min high-intensity exercise averaging 2 wk (EX). Tumor hypoxic fraction was quantified using the hypoxia marker Pimonidazole. Initially, high-intensity exercise reduced tumor hypoxic fraction by 37% compared with CON [P = 0.046; 95% confidence interval (CI): 0.1; 10.3] in fat pad tumors. Low- and moderate-intensity exercises did not. Following experiments investigating the duration of the effect-as well as experiments in mice with back tumors-failed to show any exercise-induced changes in hypoxia. Interestingly, prolonged daily training significantly reduced hypoxic fraction by 60% (P = 0.002; 95% CI: 2.5; 10.1) compared with CON. Despite diverging findings on the acute effect of exercise on hypoxia, our data indicate that if exercise has a diminishing effect, high-intensity exercise is needed. Prolonged training reduced tumor hypoxic fraction-cautiously suggesting a potential clinical potential.NEW & NOTEWORTHY This study provides novel information on the effects of acute and chronic exercise on tumor hypoxia in mice. In contrast to the few related existing studies, diverging findings on tumor hypoxia after acute exercise were observed, suggesting that tumor model and location should be considered in future studies. Highly significant reductions in tumor hypoxia following chronic high-intensity exercise propose a future clinical potential but this should be investigated in patients.
Collapse
Affiliation(s)
| | - Morten Busk
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Rea Wittenborn
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Michael R Horsman
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Simon Lønbro
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Section for Sports Science, Department of Public Health, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
8
|
Chen Z, Han F, Du Y, Shi H, Zhou W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:70. [PMID: 36797231 PMCID: PMC9935926 DOI: 10.1038/s41392-023-01332-8] [Citation(s) in RCA: 265] [Impact Index Per Article: 132.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Having a hypoxic microenvironment is a common and salient feature of most solid tumors. Hypoxia has a profound effect on the biological behavior and malignant phenotype of cancer cells, mediates the effects of cancer chemotherapy, radiotherapy, and immunotherapy through complex mechanisms, and is closely associated with poor prognosis in various cancer patients. Accumulating studies have demonstrated that through normalization of the tumor vasculature, nanoparticle carriers and biocarriers can effectively increase the oxygen concentration in the tumor microenvironment, improve drug delivery and the efficacy of radiotherapy. They also increase infiltration of innate and adaptive anti-tumor immune cells to enhance the efficacy of immunotherapy. Furthermore, drugs targeting key genes associated with hypoxia, including hypoxia tracers, hypoxia-activated prodrugs, and drugs targeting hypoxia-inducible factors and downstream targets, can be used for visualization and quantitative analysis of tumor hypoxia and antitumor activity. However, the relationship between hypoxia and cancer is an area of research that requires further exploration. Here, we investigated the potential factors in the development of hypoxia in cancer, changes in signaling pathways that occur in cancer cells to adapt to hypoxic environments, the mechanisms of hypoxia-induced cancer immune tolerance, chemotherapeutic tolerance, and enhanced radiation tolerance, as well as the insights and applications of hypoxia in cancer therapy.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Fangfang Han
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yan Du
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Huaqing Shi
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China. .,Lanzhou University Sencond Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
9
|
Nakayama S, Nishio J, Aoki M, Koga K, Nabeshima K, Yamamoto T. GLUT-1 expression is helpful to distinguish myxofibrosarcoma from nodular fasciitis. Histol Histopathol 2023; 38:47-51. [PMID: 35792526 DOI: 10.14670/hh-18-490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Myxofibrosarcoma (MFS) is a fibroblastic/myofibroblastic neoplasm with a variably myxoid stroma. Histologically, MFS shows a wide spectrum of cellularity, pleomorphism and proliferative activity. Because of its variable morphology and lack of discriminatory markers, MFS can be difficult to distinguish from some benign soft-tissue tumors, especially nodular fasciitis (NF). Glucose transporter 1 (GLUT-1) is expressed in a variety of malignant mesenchymal tumors. In the current study, we evaluated GLUT-1 expression to determine its value in distinguishing MFS from NF. Tissue specimens from 14 MFS cases and 16 NF cases were sectioned and stained for GLUT-1 using immunohistochemistry. The percentage of GLUT-1-positive cells was scored as follows: 0 (no staining), 1+ (1-19%), 2+ (20-50%) and 3+ (>50%). Samples with a score of 1+ were defined as GLUT1-expressing samples. GLUT-1 expression was seen in all 14 MFS cases, whereas only 6 NF cases (37.5%) were positive for GLUT-1 and were scored 1+. Notably, 2-3+ GLUT-1 expression was found in 86% of MFS cases and 0% of NF cases. Our results indicate that GLUT-1 is a highly sensitive immunohistochemical marker for MFS and may be useful for the differential diagnosis of MFS and NF.
Collapse
Affiliation(s)
- Shizuhide Nakayama
- Department of Orthopaedic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
| | - Jun Nishio
- Section of Orthopaedic Surgery, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Mikiko Aoki
- Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kaori Koga
- Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kazuki Nabeshima
- Department of Pathology, Pathological Diagnosis Center, Fukuoka Tokushukai Hospital, Fukuoka, Japan
| | - Takuaki Yamamoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
10
|
Sinno N, Taylor E, Hompland T, Milosevic M, Jaffray DA, Coolens C. Incorporating cross-voxel exchange for the analysis of dynamic contrast-enhanced imaging data: pre-clinical results. Phys Med Biol 2022; 67. [PMID: 36541560 DOI: 10.1088/1361-6560/aca512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
Tumours exhibit abnormal interstitial structures and vasculature function often leading to impaired and heterogeneous drug delivery. The disproportionate spatial accumulation of a drug in the interstitium is determined by several microenvironmental properties (blood vessel distribution and permeability, gradients in the interstitial fluid pressure). Predictions of tumour perfusion are key determinants of drug delivery and responsiveness to therapy. Pharmacokinetic models allow for the quantification of tracer perfusion based on contrast enhancement measured with non-invasive imaging techniques. An advanced cross-voxel exchange model (CVXM) was recently developed to provide a comprehensive description of tracer extravasation as well as advection and diffusion based on cross-voxel tracer kinetics (Sinnoet al2021). Transport parameters were derived from DCE-MRI of twenty TS-415 human cervical carcinoma xenografts by using CVXM. Tracer velocity flows were measured at the tumour periphery (mean 1.78-5.82μm.s-1) pushing the contrast outward towards normal tissue. These elevated velocity measures and extravasation rates explain the heterogeneous distribution of tracer across the tumour and its accumulation at the periphery. Significant values for diffusivity were deduced across the tumours (mean 152-499μm2.s-1). CVXM resulted in generally smaller values for the extravasation parameterKext(mean 0.01-0.04 min-1) and extravascular extracellular volume fractionve(mean 0.05-0.17) compared to the standard Tofts parameters, suggesting that Toft model underestimates the effects of inter-voxel exchange. The ratio of Tofts' extravasation parameters over CVXM's was significantly positively correlated to the cross-voxel diffusivity (P< 0.0001) and velocity (P= 0.0005). Tofts' increasedvemeasurements were explained using Sinnoet al(2021)'s theoretical work. Finally, a scan time of 15 min renders informative estimations of the transport parameters. However, a duration as low as 7.5 min is acceptable to recognize the spatial variation of transport parameters. The results demonstrate the potential of utilizing CVXM for determining metrics characterizing the exchange of tracer between the vasculature and the tumour tissue. Like for many earlier models, additional work is strongly recommended, in terms of validation, to develop more confidence in the results, motivating future laboratory work in this regard.
Collapse
Affiliation(s)
- Noha Sinno
- The Institute of Biomedical Engineering (BME), University of Toronto, Toronto, Canada.,The Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Edward Taylor
- The Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,TECHNA Institute, University Health Network, Toronto, Canada
| | - Tord Hompland
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway
| | - Michael Milosevic
- The Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - David A Jaffray
- The Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,TECHNA Institute, University Health Network, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,University of Texas, MD Anderson Cancer Centre, Texas, United States of America
| | - Catherine Coolens
- The Institute of Biomedical Engineering (BME), University of Toronto, Toronto, Canada.,The Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,TECHNA Institute, University Health Network, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Arthur A, Johnston EW, Winfield JM, Blackledge MD, Jones RL, Huang PH, Messiou C. Virtual Biopsy in Soft Tissue Sarcoma. How Close Are We? Front Oncol 2022; 12:892620. [PMID: 35847882 PMCID: PMC9286756 DOI: 10.3389/fonc.2022.892620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
A shift in radiology to a data-driven specialty has been unlocked by synergistic developments in imaging biomarkers (IB) and computational science. This is advancing the capability to deliver "virtual biopsies" within oncology. The ability to non-invasively probe tumour biology both spatially and temporally would fulfil the potential of imaging to inform management of complex tumours; improving diagnostic accuracy, providing new insights into inter- and intra-tumoral heterogeneity and individualised treatment planning and monitoring. Soft tissue sarcomas (STS) are rare tumours of mesenchymal origin with over 150 histological subtypes and notorious heterogeneity. The combination of inter- and intra-tumoural heterogeneity and the rarity of the disease remain major barriers to effective treatments. We provide an overview of the process of successful IB development, the key imaging and computational advancements in STS including quantitative magnetic resonance imaging, radiomics and artificial intelligence, and the studies to date that have explored the potential biological surrogates to imaging metrics. We discuss the promising future directions of IBs in STS and illustrate how the routine clinical implementation of a virtual biopsy has the potential to revolutionise the management of this group of complex cancers and improve clinical outcomes.
Collapse
Affiliation(s)
- Amani Arthur
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
| | - Edward W. Johnston
- Sarcoma Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Jessica M. Winfield
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
- Sarcoma Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Matthew D. Blackledge
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
| | - Robin L. Jones
- Sarcoma Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Paul H. Huang
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Christina Messiou
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
- Sarcoma Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
| |
Collapse
|
12
|
Wadsworth BJ, Lee CM, Bennewith KL. Transiently hypoxic tumour cell turnover and radiation sensitivity in human tumour xenografts. Br J Cancer 2022; 126:1616-1626. [PMID: 35031765 PMCID: PMC9130130 DOI: 10.1038/s41416-021-01691-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Solid tumour perfusion can be unstable, creating transiently hypoxic cells that can contribute to radiation resistance. We investigated the in vivo lifetime of transiently hypoxic tumour cells and chronically hypoxic tumour cells during tumour growth and following irradiation. METHODS Hypoxic cells in SiHa and WiDr human tumour xenografts were labelled using pimonidazole and EF5, and turnover was quantified as the loss of labelled cells over time. The perfusion-modifying drug pentoxifylline was used to reoxygenate transiently hypoxic cells prior to hypoxia marker administration or irradiation. RESULTS Chronically hypoxic cells constantly turnover in SiHa and WiDr tumours, with half-lives ranging from 42-82 h and significant numbers surviving >96 h. Transiently hypoxic cells constitute 26% of the total hypoxic cells in WiDr tumours. These transiently hypoxic cells survive at least 24 h, but then rapidly turnover with a half-life of 34 h and are undetectable 72 h after labelling. Transiently hypoxic cells are radiation-resistant, although vascular dysfunction induced by 10 Gy of ionising radiation preferentially kills transiently hypoxic cells. CONCLUSIONS Transiently hypoxic tumour cells survive up to 72 h in WiDr tumours and are radiation-resistant, although transiently hypoxic cells are sensitive to vascular dysfunction induced by high doses of ionising radiation.
Collapse
Affiliation(s)
- Brennan J. Wadsworth
- Integrative Oncology, BC Cancer, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC Canada
| | - Che-Min Lee
- Integrative Oncology, BC Cancer, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC Canada
| | - Kevin L. Bennewith
- Integrative Oncology, BC Cancer, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
13
|
Wegge M, Dok R, Nuyts S. Hypoxia and Its Influence on Radiotherapy Response of HPV-Positive and HPV-Negative Head and Neck Cancer. Cancers (Basel) 2021; 13:5959. [PMID: 34885069 PMCID: PMC8656584 DOI: 10.3390/cancers13235959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cancers are a heterogeneous group of cancers that arise from the upper aerodigestive tract. Etiologically, these tumors are linked to alcohol/tobacco abuse and infections with high-risk human papillomavirus (HPV). HPV-positive HNSCCs are characterized by a different biology and also demonstrate better therapy response and survival compared to alcohol/tobacco-related HNSCCs. Despite this advantageous therapy response and the clear biological differences, all locally advanced HNSCCs are treated with the same chemo-radiotherapy schedules. Although we have a better understanding of the biology of both groups of HNSCC, the biological factors associated with the increased radiotherapy response are still unclear. Hypoxia, i.e., low oxygen levels because of an imbalance between oxygen demand and supply, is an important biological factor associated with radiotherapy response and has been linked with HPV infections. In this review, we discuss the effects of hypoxia on radiotherapy response, on the tumor biology, and the tumor microenvironment of HPV-positive and HPV-negative HNSCCs by pointing out the differences between these two tumor types. In addition, we provide an overview of the current strategies to detect and target hypoxia.
Collapse
Affiliation(s)
- Marilyn Wegge
- Laboratory of Experimental Radiotherapy, Department of Oncology, University of Leuven, 3000 Leuven, Belgium; (M.W.); (R.D.)
| | - Rüveyda Dok
- Laboratory of Experimental Radiotherapy, Department of Oncology, University of Leuven, 3000 Leuven, Belgium; (M.W.); (R.D.)
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, University of Leuven, 3000 Leuven, Belgium; (M.W.); (R.D.)
- Department of Radiation Oncology, Leuven Cancer Institute, UZ Leuven, 3000 Leuven, Belgium
| |
Collapse
|
14
|
Sinno N, Taylor E, Milosevic M, Jaffray DA, Coolens C. Incorporating cross-voxel exchange into the analysis of dynamic contrast-enhanced imaging data: theory, simulations and experimental results. Phys Med Biol 2021; 66. [PMID: 34650009 DOI: 10.1088/1361-6560/ac2205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022]
Abstract
Predictions of tumour perfusion are key determinants of drug delivery and responsiveness to therapy. Pharmacokinetic models allow for the estimation of perfusion properties of tumour tissues but many assume no dispersion associated with tracer transport away from the capillaries and through the tissue. At the level of a voxel, this translates to assuming no cross-voxel tracer exchange, often leading to the misinterpretation of derived perfusion parameters. Tofts model (TM), a compartmental model widely used in oncology, also makes this assumption. A more realistic description is required to quantify kinetic properties of tracers, such as convection and diffusion. We propose a Cross-Voxel Exchange Model (CVXM) for analysing cross-voxel tracer kinetics.In silicodatasets quantifying the roles of convection and diffusion in tracer transport (which TM ignores) were employed to investigate the interpretation of Tofts' perfusion parameters compared to CVXM. TM returned inaccurate values ofKtransandvewhere diffusive and convective mechanisms are pronounced (up to 20% and 300% error respectively). A mathematical equation, developed in this work, predicts and gives the correct physiological interpretation of Tofts've.Finally, transport parameters were derived from dynamic contrast enhanced-magnetic resonance imaging of a TS-415 human cervical carcinoma xenograft by using TM and CVXM. The latter deduced lower values ofKtransandvecompared to TM (lower by up to 63% and 76% respectively). It also allowed the detection of a diffusive flux (mean diffusivity 155μm2s-1) in the tumour tissue, as well as an increased convective flow at the periphery (mean velocity 2.3μm s-1detected). The results serve as a proof of concept establishing the feasibility of using CVXM for accurately determining transport metrics that characterize the exchange of tracer between voxels. CVXM needs to be investigated further as its parameters can be linked to the tumour microenvironment properties (permeability, pressure…), potentially leading to enhanced personalized treatment planning.
Collapse
Affiliation(s)
- Noha Sinno
- The Institute of Biomedical Engineering (BME), University of Toronto, Toronto, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Edward Taylor
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,TECHNA Institute, University Health Network, Toronto, Canada
| | - Michael Milosevic
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - David A Jaffray
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,TECHNA Institute, University Health Network, Toronto, Canada.,University of Texas, MD Anderson Cancer Centre, Texas, United States of America
| | - Catherine Coolens
- The Institute of Biomedical Engineering (BME), University of Toronto, Toronto, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,TECHNA Institute, University Health Network, Toronto, Canada
| |
Collapse
|
15
|
Therapeutic Modification of Hypoxia. Clin Oncol (R Coll Radiol) 2021; 33:e492-e509. [PMID: 34535359 DOI: 10.1016/j.clon.2021.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/04/2021] [Accepted: 08/27/2021] [Indexed: 12/30/2022]
Abstract
Regions of reduced oxygenation (hypoxia) are a characteristic feature of virtually all animal and human solid tumours. Numerous preclinical studies, both in vitro and in vivo, have shown that decreasing oxygen concentration induces resistance to radiation. Importantly, hypoxia in human tumours is a negative indicator of radiotherapy outcome. Hypoxia also contributes to resistance to other cancer therapeutics, including immunotherapy, and increases malignant progression as well as cancer cell dissemination. Consequently, substantial effort has been made to detect hypoxia in human tumours and identify realistic approaches to overcome hypoxia and improve cancer therapy outcomes. Hypoxia-targeting strategies include improving oxygen availability, sensitising hypoxic cells to radiation, preferentially killing these cells, locating the hypoxic regions in tumours and increasing the radiation dose to those areas, or applying high energy transfer radiation, which is less affected by hypoxia. Despite numerous clinical studies with each of these hypoxia-modifying approaches, many of which improved both local tumour control and overall survival, hypoxic modification has not been established in routine clinical practice. Here we review the background and significance of hypoxia, how it can be imaged clinically and focus on the various hypoxia-modifying techniques that have undergone, or are currently in, clinical evaluation.
Collapse
|
16
|
Telarovic I, Wenger RH, Pruschy M. Interfering with Tumor Hypoxia for Radiotherapy Optimization. J Exp Clin Cancer Res 2021; 40:197. [PMID: 34154610 PMCID: PMC8215813 DOI: 10.1186/s13046-021-02000-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/30/2021] [Indexed: 12/11/2022] Open
Abstract
Hypoxia in solid tumors is an important predictor of treatment resistance and poor clinical outcome. The significance of hypoxia in the development of resistance to radiotherapy has been recognized for decades and the search for hypoxia-targeting, radiosensitizing agents continues. This review summarizes the main hypoxia-related processes relevant for radiotherapy on the subcellular, cellular and tissue level and discusses the significance of hypoxia in radiation oncology, especially with regard to the current shift towards hypofractionated treatment regimens. Furthermore, we discuss the strategies to interfere with hypoxia for radiotherapy optimization, and we highlight novel insights into the molecular pathways involved in hypoxia that might be utilized to increase the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Irma Telarovic
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
17
|
Azab MA, Ghozy S, Hassanein SF, Azzam AY. Specific Preoperative Dynamic Contrast-Enhanced MRI Semi-quantitative Markers Can Correlate With Vascularity in Specific Areas of Glioblastoma Tissue and Predict Recurrence. Cureus 2021; 13:e15528. [PMID: 34277164 PMCID: PMC8269995 DOI: 10.7759/cureus.15528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Glioblastoma is one of the most aggressive tumours despite all advanced therapies. We aimed to investigate the correlation between qualitative markers of dynamic contrast-enhanced magnetic resonance imaging and vascularity in different tumour regions and elucidate their potential in predicting recurrence. Methods: Radiological markers of vascularity as wash-in rate, washout rate, and capillary time to peak in different single tumour regions were extracted for all glioblastoma patients before being surgically resected using preoperative dynamic contrast-enhanced MRI (DCE-MRI). Tissue samples were obtained from different intratumoral regions and peritumoral oedema and evaluated for the vascular endothelial growth factor (VEGF). Results: Two hundred sixty individuals were included in the final analysis, with 180 dead ones and 80 survivors. Radio- and chemo-therapy were received by all surviving patients and 77.8% (n= 140) of the dead ones. The mean time to peak, in seconds, was longest at the peritumoral oedema region (71.7±23.5), followed by the tumour's necrotic centre (50.0±28.5) and its periphery (2.9±1.8). The expression of VEGF at the peritumoral edema region was inversely correlated to the washout rate at the periphery (r= -0.66; P-value= 0.014) and positively correlated to peritumoral TTP (r= 0.94; P-value< 0.001). Conclusion: Using DCE-MRI, VEGF expression may be used as a non-invasive marker to estimate tumour grade for clinical diagnosis and treatment. Moreover, the risk of glioblastoma recurrence could be determined by evaluating the washout rate at the tumour's periphery. Further large-scale studies are needed to validate the results and to have concrete evidence.
Collapse
Affiliation(s)
- Mohammed A Azab
- Department of Biochemistry, Boise State University, Boise, USA.,Neurological Surgery, Cairo University Hospital, Cairo, EGY
| | - Sherief Ghozy
- Neurological Surgery, Faculty of Medicine, Mansoura University, Mansoura, EGY
| | | | - Ahmed Y Azzam
- Neurological Surgery, October 6 University, 6th of October City, EGY
| |
Collapse
|
18
|
Gordon AC, White SB, Gates VL, Procissi D, Harris KR, Yang Y, Zhang Z, Li W, Lyu T, Huang X, Omary RA, Salem R, Lewandowski RJ, Larson AC. Yttrium-90 Radioembolization and Tumor Hypoxia: Gas-challenge BOLD Imaging in the VX2 Rabbit Model of Hepatocellular Carcinoma. Acad Radiol 2021; 28:849-858. [PMID: 32522403 PMCID: PMC7719607 DOI: 10.1016/j.acra.2020.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 01/05/2023]
Abstract
RATIONALE AND OBJECTIVES To use a rapid gas-challenge blood oxygen-level dependent magnetic resonance imaging exam to evaluate changes in tumor hypoxia after 90Y radioembolization (Y90) in the VX2 rabbit model. MATERIALS AND METHODS White New Zealand rabbits (n = 11) provided a Y90 group (n = 6 rabbits) and untreated control group (n = 5 rabbits). R2* maps were generated with gas-challenges (O2/room air) at baseline, 1 week, and 2 weeks post-Y90. Laboratory toxicity was evaluated at baseline, 24 hours, 72 hours, 1 hours, and 2 weeks. Histology was used to evaluate tumor necrosis on hematoxylin and eosin and immunofluorescence imaging was used to assess microvessel density (CD31) and proliferative index (Ki67). RESULTS At baseline, median tumor volumes and time to imaging were similar between groups (p = 1.000 and p = 0.4512, respectively). The median administered dose was 50.4 Gy (95% confidence interval:44.8-55.9). At week 2, mean tumor volumes were 5769.8 versus 643.7 mm3 for control versus Y90 rabbits, respectively (p = 0.0246). At two weeks, ΔR2* increased for control tumors to 12.37 ± 12.36sec-1 and decreased to 4.48 ± 9.00sec-1 after Y90. The Pearson correlation coefficient for ΔR2* at baseline and percent increase in tumor size by two weeks was 0.798 for the Y90 group (p = 0.002). There was no difference in mean microvessel density for control versus Y90 treated tumors (p = 0.6682). The mean proliferative index was reduced in Y90 treated tumors at 30.5% versus 47.5% for controls (p = 0.0071). CONCLUSION The baseline ΔR2* of tumors prior to Y90 may be a predictive imaging biomarker of tumor response and treatment of these tumors with Y90 may influence tumor oxygenation over time.
Collapse
Affiliation(s)
- Andrew C Gordon
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Biomedical Engineering, Northwestern University, Evanston, Illinois.
| | - Sarah B White
- Department of Radiology, Division of Vascular & Interventional Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vanessa L Gates
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Daniel Procissi
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kathleen R Harris
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yihe Yang
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Zhuoli Zhang
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Weiguo Li
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Tianchu Lyu
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Xiaoke Huang
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Reed A Omary
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Riad Salem
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Medicine-Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Surgery-Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Robert J Lewandowski
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Andrew C Larson
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| |
Collapse
|
19
|
Modulating the Heat Stress Response to Improve Hyperthermia-Based Anticancer Treatments. Cancers (Basel) 2021; 13:cancers13061243. [PMID: 33808973 PMCID: PMC8001574 DOI: 10.3390/cancers13061243] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Hyperthermia is a method to expose a tumor to elevated temperatures. Heating of the tumor promotes the effects of various treatment regimens that are based on chemo and radiotherapy. Several aspects, however, limit the efficacy of hyperthermia-based treatments. This review provides an overview of the effects and limitations of hyperthermia and discusses how current drawbacks of the therapy can potentially be counteracted by inhibiting the heat stress response—a mechanism that cells activate to defend themselves against hyperthermia. Abstract Cancer treatments based on mild hyperthermia (39–43 °C, HT) are applied to a widening range of cancer types, but several factors limit their efficacy and slow down more widespread adoption. These factors include difficulties in adequate heat delivery, a short therapeutic window and the acquisition of thermotolerance by cancer cells. Here, we explore the biological effects of HT, the cellular responses to these effects and their clinically-relevant consequences. We then identify the heat stress response—the cellular defense mechanism that detects and counteracts the effects of heat—as one of the major forces limiting the efficacy of HT-based therapies and propose targeting this mechanism as a potentially universal strategy for improving their efficacy.
Collapse
|
20
|
Merry E, Thway K, Jones RL, Huang PH. Predictive and prognostic transcriptomic biomarkers in soft tissue sarcomas. NPJ Precis Oncol 2021; 5:17. [PMID: 33674685 PMCID: PMC7935908 DOI: 10.1038/s41698-021-00157-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Soft tissue sarcomas (STS) are rare and heterogeneous tumours comprising over 80 different histological subtypes. Treatment options remain limited in advanced STS with high rates of recurrence following resection of localised disease. Prognostication in clinical practice relies predominantly on histological grading systems as well as sarcoma nomograms. Rapid developments in gene expression profiling technologies presented opportunities for applications in sarcoma. Molecular profiling of sarcomas has improved our understanding of the cancer biology of these rare cancers and identified potential novel therapeutic targets. In particular, transcriptomic signatures could play a role in risk classification in sarcoma to aid prognostication. Unlike other solid and haematological malignancies, transcriptomic signatures have not yet reached routine clinical use in sarcomas. Herein, we evaluate early developments in gene expression profiling in sarcomas that laid the foundations for transcriptomic signature development. We discuss the development and clinical evaluation of key transcriptomic biomarker signatures in sarcomas, including Complexity INdex in SARComas (CINSARC), Genomic Grade Index, and hypoxia-associated signatures. Prospective validation of these transcriptomic signatures is required, and prospective trials are in progress to evaluate reliability for clinical application. We anticipate that integration of these gene expression signatures alongside existing prognosticators and other Omics methodologies, including proteomics and DNA methylation analysis, could improve the identification of 'high-risk' patients who would benefit from more aggressive or selective treatment strategies. Moving forward, the incorporation of these transcriptomic prognostication signatures in clinical practice will undoubtedly advance precision medicine in the routine clinical management of sarcoma patients.
Collapse
Affiliation(s)
- Eve Merry
- Sarcoma Unit, The Royal Marsden Hospital, London, UK
| | - Khin Thway
- Sarcoma Unit, The Royal Marsden Hospital, London, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Robin L Jones
- Sarcoma Unit, The Royal Marsden Hospital, London, UK
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Paul H Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
| |
Collapse
|
21
|
Pietrobon V, Cesano A, Marincola F, Kather JN. Next Generation Imaging Techniques to Define Immune Topographies in Solid Tumors. Front Immunol 2021; 11:604967. [PMID: 33584676 PMCID: PMC7873485 DOI: 10.3389/fimmu.2020.604967] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, cancer immunotherapy experienced remarkable developments and it is nowadays considered a promising therapeutic frontier against many types of cancer, especially hematological malignancies. However, in most types of solid tumors, immunotherapy efficacy is modest, partly because of the limited accessibility of lymphocytes to the tumor core. This immune exclusion is mediated by a variety of physical, functional and dynamic barriers, which play a role in shaping the immune infiltrate in the tumor microenvironment. At present there is no unified and integrated understanding about the role played by different postulated models of immune exclusion in human solid tumors. Systematically mapping immune landscapes or "topographies" in cancers of different histology is of pivotal importance to characterize spatial and temporal distribution of lymphocytes in the tumor microenvironment, providing insights into mechanisms of immune exclusion. Spatially mapping immune cells also provides quantitative information, which could be informative in clinical settings, for example for the discovery of new biomarkers that could guide the design of patient-specific immunotherapies. In this review, we aim to summarize current standard and next generation approaches to define Cancer Immune Topographies based on published studies and propose future perspectives.
Collapse
Affiliation(s)
| | | | | | - Jakob Nikolas Kather
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
22
|
Kalisvaart GM, Bloem JL, Bovée JVMG, van de Sande MAJ, Gelderblom H, van der Hage JA, Hartgrink HH, Krol ADG, de Geus-Oei LF, Grootjans W. Personalising sarcoma care using quantitative multimodality imaging for response assessment. Clin Radiol 2021; 76:313.e1-313.e13. [PMID: 33483087 DOI: 10.1016/j.crad.2020.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/17/2020] [Indexed: 01/18/2023]
Abstract
Over the last decades, technological developments in the field of radiology have resulted in a widespread use of imaging for personalising medicine in oncology, including patients with a sarcoma. New scanner hardware, imaging protocols, image reconstruction algorithms, radiotracers, and contrast media, enabled the assessment of the physical and biological properties of tumours associated with response to treatment. In this context, medical imaging has the potential to select sarcoma patients who do not benefit from (neo-)adjuvant treatment and facilitate treatment adaptation. Due to the biological heterogeneity in sarcomas, the challenge at hand is to acquire a practicable set of imaging features for specific sarcoma subtypes, allowing response assessment. This review provides a comprehensive overview of available clinical data on imaging-based response monitoring in sarcoma patients and future research directions. Eventually, it is expected that imaging-based response monitoring will help to achieve successful modification of (neo)adjuvant treatments and improve clinical care for these patients.
Collapse
Affiliation(s)
- G M Kalisvaart
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - J L Bloem
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - J V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - M A J van de Sande
- Department of Orthopaedics, Leiden University Medical Center, Leiden, the Netherlands
| | - H Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - J A van der Hage
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - H H Hartgrink
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - A D G Krol
- Department of Radiation Oncology. Leiden University Medical Center, Leiden, the Netherlands
| | - L F de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands; Biomedical Photonic Imaging Group, University of Twente, Enschede, the Netherlands
| | - W Grootjans
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
23
|
Kershaw L, Forker L, Roberts D, Sanderson B, Shenjere P, Wylie J, Coyle C, Kochhar R, Manoharan P, Choudhury A. Feasibility of a multiparametric MRI protocol for imaging biomarkers associated with neoadjuvant radiotherapy for soft tissue sarcoma. BJR Open 2021; 3:20200061. [PMID: 35707756 PMCID: PMC9185851 DOI: 10.1259/bjro.20200061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 11/11/2022] Open
Abstract
Objective Soft tissue sarcoma (STS) is a rare malignancy with a 5 year overall survival rate of 55%. Neoadjuvant radiotherapy is commonly used in preparation for surgery, but methods to assess early response are lacking despite pathological response at surgery being predictive of overall survival, local recurrence and distant metastasis. Multiparametric MR imaging (mpMRI) is used to assess response in a variety of tumours but lacks a robust, standardised method. The overall aim of this study was to develop a feasible imaging protocol to identify imaging biomarkers for further investigation. Methods 15 patients with biopsy-confirmed STS suitable for pre-operative radiotherapy and radical surgery were imaged throughout treatment. The mpMRI protocol included anatomical, diffusion-weighted and dynamic contrast-enhanced imaging, giving estimates of apparent diffusion coefficient (ADC) and the area under the enhancement curve at 60 s (iAUC60). Histological analysis of resected tumours included detection of CD31, Ki67, hypoxia inducible factor and calculation of a hypoxia score. Results There was a significant reduction in T1 at visit 2 and in ADC at visit 3. Significant associations were found between hypoxia and pre-treatment iAUC60, pre-treatment ADC and mid-treatment iAUC60. There was also statistically significant association between mid-treatment ADC and Ki67. Conclusion This work showed that mpMRI throughout treatment is feasible in patients with STS having neoadjuvant radiotherapy. The relationships between imaging parameters, tissue biomarkers and clinical outcomes warrant further investigation. Advances in knowledge mpMRI-based biomarkers have good correlation with STS tumour biology and are potentially of use for evaluation of radiotherapy response.
Collapse
Affiliation(s)
- Lucy Kershaw
- The University of Manchester, Manchester Academic Health Science Centre, The Christie NHSFT, Manchester, United Kingdom
| | - Laura Forker
- Translational Radiobiology Group, Division of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, The Christie NHSFT, Manchester, United Kingdom
| | - Darren Roberts
- Translational Radiobiology Group, Division of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, The Christie NHSFT, Manchester, United Kingdom
| | - Benjamin Sanderson
- The University of Manchester, Manchester Academic Health Science Centre, The Christie NHSFT, Manchester, United Kingdom
| | - Patrick Shenjere
- The University of Manchester, Manchester Academic Health Science Centre, The Christie NHSFT, Manchester, United Kingdom
| | - James Wylie
- Dept of Histopathology, The Christie NHSFT, Manchester, United Kingdom
| | - Catherine Coyle
- Dept of Histopathology, The Christie NHSFT, Manchester, United Kingdom
| | - Rohit Kochhar
- Dept of Clinical Oncology, The Christie NHSFT, Manchester, United Kingdom
| | - Prakash Manoharan
- Dept of Clinical Oncology, The Christie NHSFT, Manchester, United Kingdom
| | | |
Collapse
|
24
|
Abstract
Over the last few years, cancer immunotherapy experienced tremendous developments and it is nowadays considered a promising strategy against many types of cancer. However, the exclusion of lymphocytes from the tumor nest is a common phenomenon that limits the efficiency of immunotherapy in solid tumors. Despite several mechanisms proposed during the years to explain the immune excluded phenotype, at present, there is no integrated understanding about the role played by different models of immune exclusion in human cancers. Hypoxia is a hallmark of most solid tumors and, being a multifaceted and complex condition, shapes in a unique way the tumor microenvironment, affecting gene transcription and chromatin remodeling. In this review, we speculate about an upstream role for hypoxia as a common biological determinant of immune exclusion in solid tumors. We also discuss the current state of ex vivo and in vivo imaging of hypoxic determinants in relation to T cell distribution that could mechanisms of immune exclusion and discover functional-morphological tumor features that could support clinical monitoring.
Collapse
|
25
|
Prospects for NK Cell Therapy of Sarcoma. Cancers (Basel) 2020; 12:cancers12123719. [PMID: 33322371 PMCID: PMC7763692 DOI: 10.3390/cancers12123719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Sarcomas are a group of aggressive tumors originating from mesenchymal tissues. Patients with advanced disease have poor prognosis due to the ineffectiveness of current treatment protocols. A subset of lymphocytes called natural killer (NK) cells is capable of effective surveillance and clearance of sarcomas, constituting a promising tool for immunotherapeutic treatment. However, sarcomas can cause impairment in NK cell function, associated with enhanced tumor growth and dissemination. In this review, we discuss the molecular mechanisms of sarcoma-mediated suppression of NK cells and their implications for the design of novel NK cell-based immunotherapies against sarcoma. Abstract Natural killer (NK) cells are innate lymphoid cells with potent antitumor activity. One of the most NK cell cytotoxicity-sensitive tumor types is sarcoma, an aggressive mesenchyme-derived neoplasm. While a combination of radical surgery and radio- and chemotherapy can successfully control local disease, patients with advanced sarcomas remain refractory to current treatment regimens, calling for novel therapeutic strategies. There is accumulating evidence for NK cell-mediated immunosurveillance of sarcoma cells during all stages of the disease, highlighting the potential of using NK cells as a therapeutic tool. However, sarcomas display multiple immunoevasion mechanisms that can suppress NK cell function leading to an uncontrolled tumor outgrowth. Here, we review the current evidence for NK cells’ role in immune surveillance of sarcoma during disease initiation, promotion, progression, and metastasis, as well as the molecular mechanisms behind sarcoma-mediated NK cell suppression. Further, we apply this basic understanding of NK–sarcoma crosstalk in order to identify and summarize the most promising candidates for NK cell-based sarcoma immunotherapy.
Collapse
|
26
|
Busk M, Overgaard J, Horsman MR. Imaging of Tumor Hypoxia for Radiotherapy: Current Status and Future Directions. Semin Nucl Med 2020; 50:562-583. [PMID: 33059825 DOI: 10.1053/j.semnuclmed.2020.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tumor regions that are transiently or chronically undersupplied with oxygen (hypoxia) and nutrients, and enriched with acidic waste products, are common due to an abnormal and inefficient tumor vasculature, and a deviant highly glycolytic energy metabolism. There is compelling evidence that tumor hypoxia is strongly linked to poor prognosis since oxygen-deprived cells are highly resistant to therapy including radio- and chemotherapy, and survival of such cells is a primary cause of disease relapse. Despite a general improvement in cancer survival rates, hypoxia remains a formidable challenge. Recent progress in radiation delivery systems with improved spatial accuracy that allows dose escalation to hypoxic tumors or even tumor subvolumes, and the development of hypoxia-selective drugs, including bioreductive prodrugs, holds great promise for overcoming this obstacle. However, apart from one notable exception, translation of promising preclinical therapies to the clinic have largely been disappointing. A major obstacle in clinical trials on hypoxia-targeting strategies has been the lack of reliable information on tumor hypoxia, which is crucial for patient stratification into groups of those that are likely to benefit from intervention and those who are not. Further, in many newer trials on hypoxia-selective drugs the choice of cancer disease and combination therapy has not always been ideal, especially not for clinical proof of principle trials. Clearly, there is a pending need for clinical applicable methodologies that may allow us to quantify, map and monitor hypoxia. Molecular imaging may provide the information required for narrowing the gap between potential and actual patient benefit of hypoxia-targeting strategies. The grand majority of preclinical and clinical work has focused on the usefulness of PET-based assessment of hypoxia-selective tracers. Since hypoxia PET has profound inherent weaknesses, the use of other methodologies, including more indirect methods that quantifies blood flow or oxygenation-dependent flux changes through ATP-generating pathways (eg, anaerobic glycolysis) is being extensively studied. In this review, we briefly discuss established and emerging hypoxia-targeting strategies, followed by a more thorough evaluation of strengths and weaknesses of clinical applicable imaging methodologies that may guide timely treatment intensification to overcome hypoxia-driven resistance. Historically, most evidence for the linkage between hypoxia and poor outcome is based on work in the field of radiotherapy. Therefore, main emphasis in this review is on targeting and imaging of hypoxia for improved radiotherapy.
Collapse
Affiliation(s)
- Morten Busk
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital (AUH), Aarhus, Denmark; Danish Centre for Particle Therapy, (AUH), Aarhus, Denmark.
| | - Jens Overgaard
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital (AUH), Aarhus, Denmark
| | - Michael R Horsman
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital (AUH), Aarhus, Denmark
| |
Collapse
|
27
|
Giraud N, Popinat G, Regaieg H, Tonnelet D, Vera P. Positron-emission tomography-guided radiation therapy: Ongoing projects and future hopes. Cancer Radiother 2020; 24:437-443. [PMID: 32247689 DOI: 10.1016/j.canrad.2020.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 02/08/2023]
Abstract
Radiation therapy has undergone significant advances these last decades, particularly thanks to technical improvements, computer science and a better ability to define the target volumes via morphological and functional imaging breakthroughs. Imaging contributes to all three stages of patient care in radiation oncology: before, during and after treatment. Before the treatment, the choice of optimal imaging type and, if necessary, the adequate functional tracer will allow a better definition of the volume target. During radiation therapy, image-guidance aims at locating the tumour target and tailoring the volume target to anatomical and tumoral variations. Imaging systems are now integrated with conventional accelerators, and newer accelerators have techniques allowing tumour tracking during the irradiation. More recently, MRI-guided systems have been developed, and are already active in a few French centres. Finally, after radiotherapy, imaging plays a major role in most patients' monitoring, and must take into account post-radiation tissue modification specificities. In this review, we will focus on the ongoing projects of nuclear imaging in oncology, and how they can help the radiation oncologist to better treat patients. To this end, a literature review including the terms "Radiotherapy", "Radiation Oncology" and "PET-CT" was performed in August 2019 on Medline and ClinicalTrials.gov. We chose to review successively these novelties organ-by-organ, focusing on the most promising advances. As a conclusion, the help of modern functional imaging thanks to a better definition and new specific radiopharmaceuticals tracers could allow even more precise treatments and enhanced surveillance. Finally, it could provide determinant information to artificial intelligence algorithms in "-omics" models.
Collapse
Affiliation(s)
- N Giraud
- Radiation Oncology Department, hôpital Haut-Lévêque, CHU de Bordeaux, avenue Magellan, 33600 Pessac, France.
| | - G Popinat
- Nuclear Medicine Department, centre Henri-Becquerel, 1, rue d'Amiens, 76038 Rouen, France
| | - H Regaieg
- Nuclear Medicine Department, centre Henri-Becquerel, 1, rue d'Amiens, 76038 Rouen, France
| | - D Tonnelet
- Nuclear Medicine Department, centre Henri-Becquerel, 1, rue d'Amiens, 76038 Rouen, France
| | - P Vera
- Nuclear Medicine Department, centre Henri-Becquerel, 1, rue d'Amiens, 76038 Rouen, France
| |
Collapse
|
28
|
Cao X, Rao Allu S, Jiang S, Jia M, Gunn JR, Yao C, LaRochelle EP, Shell JR, Bruza P, Gladstone DJ, Jarvis LA, Tian J, Vinogradov SA, Pogue BW. Tissue pO 2 distributions in xenograft tumors dynamically imaged by Cherenkov-excited phosphorescence during fractionated radiation therapy. Nat Commun 2020; 11:573. [PMID: 31996677 PMCID: PMC6989492 DOI: 10.1038/s41467-020-14415-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/04/2020] [Indexed: 12/24/2022] Open
Abstract
Hypoxia in solid tumors is thought to be an important factor in resistance to therapy, but the extreme microscopic heterogeneity of the partial pressures of oxygen (pO2) between the capillaries makes it difficult to characterize the scope of this phenomenon without invasive sampling of oxygen distributions throughout the tissue. Here we develop a non-invasive method to track spatial oxygen distributions in tumors during fractionated radiotherapy, using oxygen-dependent quenching of phosphorescence, oxygen probe Oxyphor PtG4 and the radiotherapy-induced Cherenkov light to excite and image the phosphorescence lifetimes within the tissue. Mice bearing MDA-MB-231 breast cancer and FaDu head neck cancer xenografts show different pO2 responses during each of the 5 fractions (5 Gy per fraction), delivered from a clinical linear accelerator. This study demonstrates subsurface in vivo mapping of tumor pO2 distributions with submillimeter spatial resolution, thus providing a methodology to track response of tumors to fractionated radiotherapy.
Collapse
Affiliation(s)
- Xu Cao
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Srinivasa Rao Allu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Shudong Jiang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Mengyu Jia
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Jason R Gunn
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Cuiping Yao
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | - Jennifer R Shell
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.,Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Lesley A Jarvis
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.,Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China.,CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA. .,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
29
|
Ye S, Liu Y, Fuller AM, Katti R, Ciotti GE, Chor S, Alam MZ, Devalaraja S, Lorent K, Weber K, Haldar M, Pack MA, Eisinger-Mathason TSK. TGFβ and Hippo Pathways Cooperate to Enhance Sarcomagenesis and Metastasis through the Hyaluronan-Mediated Motility Receptor (HMMR). Mol Cancer Res 2020; 18:560-573. [PMID: 31988250 DOI: 10.1158/1541-7786.mcr-19-0877] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/13/2019] [Accepted: 01/21/2020] [Indexed: 12/22/2022]
Abstract
High-grade sarcomas are metastatic and pose a serious threat to patient survival. Undifferentiated pleomorphic sarcoma (UPS) is a particularly dangerous and relatively common sarcoma subtype diagnosed in adults. UPS contains large quantities of extracellular matrix (ECM) including hyaluronic acid (HA), which is linked to metastatic potential. Consistent with these observations, expression of the HA receptor, hyaluronan-mediated motility receptor (HMMR/RHAMM), is tightly controlled in normal tissues and upregulated in UPS. Moreover, HMMR expression correlates with poor clinical outcome in these patients. Deregulation of the tumor-suppressive Hippo pathway is also linked to poor outcome in these patients. YAP1, the transcriptional regulator and central effector of Hippo pathway, is aberrantly stabilized in UPS and was recently shown to control RHAMM expression in breast cancer cells. Interestingly, both YAP1 and RHAMM are linked to TGFβ signaling. Therefore, we investigated crosstalk between YAP1 and TGFβ resulting in enhanced RHAMM-mediated cell migration and invasion. We observed that HMMR expression is under the control of both YAP1 and TGFβ and can be effectively targeted with small-molecule approaches that inhibit these pathways. Furthermore, we found that RHAMM expression promotes tumor cell proliferation and migration/invasion. To test these observations in a robust and quantifiable in vivo system, we developed a zebrafish xenograft assay of metastasis, which is complimentary to our murine studies. Importantly, pharmacologic inhibition of the TGFβ-YAP1-RHAMM axis prevents vascular migration of tumor cells to distant sites. IMPLICATIONS: These studies reveal key metastatic signaling mechanisms and highlight potential approaches to prevent metastatic dissemination in UPS.YAP1 and TGFβ cooperatively enhance proliferation and migration/invasion of UPS and fibrosarcomas.
Collapse
Affiliation(s)
- Shuai Ye
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ying Liu
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ashley M Fuller
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Rohan Katti
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Gabrielle E Ciotti
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Susan Chor
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Md Zahidul Alam
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Samir Devalaraja
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kristin Lorent
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, Pennsylvania
| | - Kristy Weber
- Department of Orthopedic Surgery, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania
| | - Malay Haldar
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael A Pack
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, Pennsylvania
| | - T S Karin Eisinger-Mathason
- Abramson Family Cancer Research Institute, Department of Pathology & Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
30
|
Pratx G, Kapp DS. A computational model of radiolytic oxygen depletion during FLASH irradiation and its effect on the oxygen enhancement ratio. Phys Med Biol 2019; 64:185005. [PMID: 31365907 DOI: 10.1088/1361-6560/ab3769] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent results from animal irradiation studies have demonstrated the potential of ultra-high dose rate irradiation (also known as FLASH) for reducing radiation toxicity in normal tissues. However, despite mounting evidence of a 'FLASH effect', a mechanism has yet to be elucidated. This article hypothesizes that the radioprotecting effect of FLASH irradiation could be due to the specific sparing of hypoxic stem cell niches, which have been identified in several organs including the bone marrow and the brain. To explore this hypothesis, a new computational model is presented that frames transient radiolytic oxygen depletion (ROD) during FLASH irradiation in terms of its effect on the oxygen enhancement ratio (OER). The model takes into consideration oxygen diffusion through the tissue, its consumption by metabolic cells, and its radiolytic depletion to estimate the relative decrease in radiosensitivity of cells receiving FLASH irradiation. Based on this model and the following parameters (oxygen diffusion constant [Formula: see text] = 2 · 10-5 cm2 s-1, oxygen metabolic rate m = 3 mmHg s-1, ROD rate L ROD = [Formula: see text] mmHg Gy-1, prescribed dose D p = 10 Gy, and capillary oxygen tension p 0 = 40 mmHg), several predictions are made that could be tested in future experiments: (1) the FLASH effect should gradually disappear as the radiation pulse duration is increased from <1 s to 10 s; (2) dose should be deposited using the smallest number of radiation pulses to achieve the greatest FLASH effect; (3) a FLASH effect should only be observed in cells that are already hypoxic at the time of irradiation; and (4) changes in capillary oxygen tension (increase or decrease) should diminish the FLASH effect.
Collapse
Affiliation(s)
- Guillem Pratx
- 300 Pasteur Dr, Grant S277, Stanford, CA 94305-5132, United States of America. Author to whom any correspondence should be addressed
| | | |
Collapse
|
31
|
Rossi F, Marconato L, Sabattini S, Cancedda S, Laganga P, Leone VF, Rohrer Bley C. Comparison of definitive-intent finely fractionated and palliative-intent coarsely fractionated radiotherapy as adjuvant treatment of feline microscopic injection-site sarcoma. J Feline Med Surg 2019; 21:65-72. [PMID: 29473768 PMCID: PMC10814612 DOI: 10.1177/1098612x18758883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
OBJECTIVES The aim of this retrospective, bi-institutional study was to evaluate the progression-free interval in a cohort of cats with postoperative microscopic injection-site sarcoma (ISS) treated with two different radiotherapy protocols. METHODS Included in the study were cats with ISSs undergoing macroscopic surgical removal and subsequent electron beam radiotherapy treatment with either a finely fractionated protocol (48 or 52.8 Gy over 4 weeks delivered in 12 or 16 fractions) or a coarsely fractionated protocol (36 Gy over 3 weeks administered in six fractions). Medical records were reviewed and follow-up information was collected. The Kaplan-Meier method and log-rank test were used to compare the progression-free interval (PFI) between the two protocols and to test the influence of many clinical variables. RESULTS Fifty-nine cats were included; 38 underwent a finely fractionated protocol and 21 a coarsely fractionated protocol. PFI was not significantly different between the two groups. Overall PFI was 2000 days (2000 vs 540 days; P = 0.449). When only first-occurrence cases were included, median PFI was significantly longer in the finely fractionated group compared with the coarsely fractionated group (1430 vs 540 days; P = 0.007). In cats that underwent multiple surgeries PFI was not different between protocols (233 vs 395 days; P = 0.353). CONCLUSIONS AND RELEVANCE Cats with first-occurrence ISSs appear to benefit from postoperative finely fractionated radiotherapy. The same benefit was not evident in cats that underwent multiple surgeries and we think a coarsely fractionated protocol would be indicated in these cases.
Collapse
Affiliation(s)
- Federica Rossi
- Veterinary Oncology Centre, Sasso Marconi, Italy
- Orologio Veterinary Centre, Sasso Marconi, Italy
| | | | - Silvia Sabattini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy
| | | | | | - Vito F Leone
- Veterinary Oncology Centre, Sasso Marconi, Italy
| | - Carla Rohrer Bley
- Division of Radiation Oncology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Wang H, Jiang H, Van De Gucht M, De Ridder M. Hypoxic Radioresistance: Can ROS Be the Key to Overcome It? Cancers (Basel) 2019; 11:cancers11010112. [PMID: 30669417 PMCID: PMC6357097 DOI: 10.3390/cancers11010112] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is a mainstay treatment for many types of cancer and kills cancer cells via generation of reactive oxygen species (ROS). Incorporating radiation with pharmacological ROS inducers, therefore, has been widely investigated as an approach to enhance aerobic radiosensitization. However, this strategy was overlooked in hypoxic counterpart, one of the most important causes of radiotherapy failure, due to the notion that hypoxic cells are immune to ROS insults because of the shortage of ROS substrate oxygen. Paradoxically, evidence reveals that ROS are produced more in hypoxic than normoxic cells and serve as signaling molecules that render cells adaptive to hypoxia. As a result, hypoxic tumor cells heavily rely on antioxidant systems to sustain the ROS homeostasis. Thereby, they become sensitive to insults that impair the ROS detoxification network, which has been verified in diverse models with or without radiation. Of note, hypoxic radioresistance has been overviewed in different contexts. To the best of our knowledge, this review is the first to systemically summarize the interplay among radiation, hypoxia, and ROS, and to discuss whether perturbation of ROS homeostasis could provide a new avenue to tackle hypoxic radioresistance.
Collapse
Affiliation(s)
- Hui Wang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Heng Jiang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Melissa Van De Gucht
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| |
Collapse
|
33
|
Addressing the Adult Soft Tissue Sarcoma Microenvironment with Intratumoral Immunotherapy. Sarcoma 2018; 2018:9305294. [PMID: 30158830 PMCID: PMC6109466 DOI: 10.1155/2018/9305294] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023] Open
Abstract
Sarcoma is comprised of a heterogeneous group of tumors originating from the mesenchyme. Sarcoma is also the first tumor that responded to immunotherapeutic agents often termed as “Coley's toxins.” However, immunotherapy is yet to establish its presence in sarcomas. Complex interactions between tumor and immune cells in the tumor microenvironment play a crucial role in response to immunotherapy. There is a dynamic equilibrium created by the immune cells infiltrating the tumor, and this forms the basis of tumor evasion. Manipulating the intratumoral microenvironment will help overcome tumor evasion.
Collapse
|
34
|
Yang L, West CM. Hypoxia gene expression signatures as predictive biomarkers for personalising radiotherapy. Br J Radiol 2018. [PMID: 29513038 DOI: 10.1259/bjr.20180036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hypoxia is a generic micro-environmental factor of solid tumours. High levels of hypoxia lead to resistance to radiotherapy, which can be targeted by adding hypoxia-modifying therapy to improve clinical outcomes. Not all patients benefit from hypoxia-modifying therapy, and there is a need for biomarkers to enable progression to biologically personalised radiotherapy. Gene expression signatures are a relatively new category of biomarkers that can reflect tumour hypoxia. This article reviews the published hypoxia gene signatures, summarising their development and validation. The challenges of gene signature derivation and development, and advantages and disadvantages in comparison with other hypoxia biomarkers are also discussed. Current evidence supports investment in gene signatures as a promising hypoxia biomarker approach for clinical utility.
Collapse
Affiliation(s)
- Lingjian Yang
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital NHS Foundation Trust, Manchester, UK
| | - Catharine Ml West
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital NHS Foundation Trust, Manchester, UK
| |
Collapse
|
35
|
Choi N, Kim JY, Yu T, Kang HC, Kim HS, Kim HJ, Kim IH. Does fluid collection impact radiotherapy outcomes after wide excision of lower extremity soft tissue sarcoma? Jpn J Clin Oncol 2018; 48:153-159. [PMID: 29272500 DOI: 10.1093/jjco/hyx162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/17/2017] [Indexed: 11/13/2022] Open
Abstract
Background Fluid collection (FC) of lymph or blood may accumulate at the site of excision after surgery for soft tissue sarcoma, with reported incidence rates from 10% to 36%. The purpose of this study is to analyze the impact of FC on local recurrence (LR) and wound complication rates after adjuvant postoperative radiotherapy (PORT) in lower extremity soft tissue sarcoma (LE-STS). Methods Eighty-eight patients diagnosed with LE-STS were curatively treated with wide excision and PORT. FC developed in 51.1% of patients. Full FC volumes were included in the irradiation field throughout the full course of PORT for 36 patients (80.0%). A median of 61.2 and 63 Gy was prescribed for patients with and without FC, respectively. Results After a median follow-up of 4.3 years, patients with and without FC had 5-year local control rates of 77.7% and 90.8% (P = 0.105). Eight patients with FC had LR, of which six patients had recurrent tumors at or within 4 cm of the FC wall and three of these patients had out-of-field LR. Wound complication occurred after RT in 3 (6.7%) of 45 patients with FC and 1 (2.3%) of 43 patients without FC. Conclusions FC presents a potential risk for increased LR, particularly near the FC wall. Based on reasonable wound complication rates, we suggest the need and feasibility of fully including FC volumes in the irradiation field.
Collapse
Affiliation(s)
| | | | - Tosol Yu
- Department of Radiation Oncology
| | | | | | | | - Il Han Kim
- Department of Radiation Oncology.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
36
|
Yang L, Forker L, Irlam JJ, Pillay N, Choudhury A, West CML. Validation of a hypoxia related gene signature in multiple soft tissue sarcoma cohorts. Oncotarget 2018; 9:3946-3955. [PMID: 29423096 PMCID: PMC5790513 DOI: 10.18632/oncotarget.23280] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022] Open
Abstract
PURPOSE There is a need for adjuvant/neo-adjuvant treatment strategies to prevent metastatic relapse in soft tissue sarcoma (STS). Tumor hypoxia is associated with a high-risk of metastasis and is potentially targetable. This study aimed to derive and validate a hypoxia mRNA signature for STS for future biomarker-driven trials of hypoxia targeted therapy. MATERIALS AND METHODS RNA sequencing was used to identify seed genes induced by hypoxia in seven STS cell lines. Primary tumors in a training cohort (French training) were clustered into two phenotypes by seed gene expression and a de novo hypoxia signature derived. Prognostic significance of the de novo signature was evaluated in the training and two independent validation (French validation and The Cancer Genome Atlas) cohorts. RESULTS 37 genes were up-regulated by hypoxia in all seven cell lines, and a 24-gene signature was derived. The high-hypoxia phenotype defined by the signature was enriched for well-established hypoxia genes reported in the literature. The signature was prognostic in univariable analysis, and in multivariable analysis in the training (n = 183, HR 2.16, P = 0.0054) and two independent validation (n = 127, HR 3.06, P = 0.0019; n = 258, HR 2.05, P = 0.0098) cohorts. Combining information from the de novo hypoxia signature and a genome instability signature significantly improved prognostication. Transcriptomic analyses showed high-hypoxia tumors had more genome instability and lower immune scores. CONCLUSIONS A 24-gene STS-specific hypoxia signature may be useful for prognostication and identifying patients for hypoxia-targeted therapy in clinical trials.
Collapse
Affiliation(s)
- Lingjian Yang
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - Laura Forker
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - Joely J. Irlam
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - Nischalan Pillay
- Cancer Institute, University College London, London, UK
- Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Ananya Choudhury
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
| | - Catharine M. L. West
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
37
|
Yoon C, Chang KK, Lee JH, Tap WD, Hart CP, Simon MC, Yoon SS. Multimodal targeting of tumor vasculature and cancer stem-like cells in sarcomas with VEGF-A inhibition, HIF-1α inhibition, and hypoxia-activated chemotherapy. Oncotarget 2018; 7:42844-42858. [PMID: 27374091 PMCID: PMC5189991 DOI: 10.18632/oncotarget.10212] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/07/2016] [Indexed: 01/08/2023] Open
Abstract
Vascular endothelial growth factor A (VEGF-A) inhibition with pazopanib is an approved therapy for sarcomas, but likely results in compensatory pathways such as upregulation of hypoxia inducible factor 1α (HIF-1α). In addition, cancer stem-like cells can preferentially reside in hypoxic regions of tumors and be resistant to standard chemotherapies. In this study, we hypothesized that the combination of VEGF-A inhibition, HIF-1α inhibition, and hypoxia-activated chemotherapy with evofosfamide would be an effective multimodal strategy. Multimodal therapy was examined in one genetically engineered and two xenograft mouse models of sarcoma. In all three models, multimodal therapy showed greater efficacy than any single agent therapy or bimodality therapy in blocking tumor growth. Even after cessation of therapy, tumors treated with multimodal therapy remained relatively dormant for up to 2 months. Compared to the next best bimodality therapy, multimodal therapy caused 2.8-3.3 fold more DNA damage, 1.5-2.7 fold more overall apoptosis, and 2.3-3.6 fold more endothelial cell-specific apoptosis. Multimodal therapy also decreased microvessel density and HIF-1α activity by 85-90% and 79-89%, respectively, compared to controls. Sarcomas treated with multimodal therapy had 95-96% depletion of CD133(+) cancer stem-like ells compared to control tumors. Sarcoma cells grown as spheroids to enrich for CD133(+) cancer stem-like cells were more sensitive than monolayer cells to multimodal therapy in terms of DNA damage and apoptosis, especially under hypoxic conditions. Thus multimodal therapy of sarcomas with VEGF-A inhibition, HIF-1α inhibition, and hypoxia-activated chemotherapy effectively blocks sarcoma growth through inhibition of tumor vasculature and cancer stem-like cells.
Collapse
Affiliation(s)
- Changhwan Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin K Chang
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Ho Lee
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sam S Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
38
|
Clinical overview of the current state and future applications of positron emission tomography in bone and soft tissue sarcoma. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0236-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
39
|
Chen HHW, Kuo MT. Improving radiotherapy in cancer treatment: Promises and challenges. Oncotarget 2017; 8:62742-62758. [PMID: 28977985 PMCID: PMC5617545 DOI: 10.18632/oncotarget.18409] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/18/2017] [Indexed: 12/25/2022] Open
Abstract
Effective radiotherapy for cancer has relied on the promise of maximally eradicating tumor cells while minimally killing normal cells. Technological advancement has provided state-of-the-art instrumentation that enables delivery of radiotherapy with great precision to tumor lesions with substantial reduced injury to normal tissues. Moreover, better understanding of radiobiology, particularly the mechanisms of radiation sensitivity and resistance in tumor lesions and toxicity in normal tissues, has improved the treatment efficacy of radiotherapy. Previous mechanism-based studies have identified many cellular targets that can affect radiation sensitivity, notably reactive oxygen species, DNA-damaging response signals, and tumor microenvironments. Several radiation sensitizers and protectors have been developed and clinically evaluated; however, many of these results are inconclusive, indicating that improvement remains needed. In this era of personalized medicine in which patients’ genetic variations, transcriptome and proteomics, tumor metabolism and microenvironment, and tumor immunity are available. These new developments have provided opportunity for new target discovery. Several radiotherapy sensitivity-associated “gene signatures” have been reported although clinical validations are needed. Recently, several immune modifiers have been shown to associate with improved radiotherapy in preclinical models and in early clinical trials. Combination of radiotherapy and immunocheckpoint blockade has shown promising results especially in targeting metastatic tumors through abscopal response. In this article, we succinctly review recent advancements in the areas of mechanism-driven targets and exploitation of new targets from current radio-oncogenomic and radiation-immunotherapeutic approaches that bear clinical implications for improving the treatment efficacy of radiotherapy.
Collapse
Affiliation(s)
- Helen H W Chen
- Division of Clinical Radiation Oncology, Department of Radiation Oncology, National Cheng Kung University Hospital, Department of Radiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Macus Tien Kuo
- Division of Clinical Radiation Oncology, Department of Radiation Oncology, National Cheng Kung University Hospital, Department of Radiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
40
|
Cornillie J, Wozniak A, Pokreisz P, Casazza A, Vreys L, Wellens J, Vanleeuw U, Gebreyohannes YK, Debiec-Rychter M, Sciot R, Hompes D, Schöffski P. In Vivo Antitumoral Efficacy of PhAc-ALGP-Doxorubicin, an Enzyme-Activated Doxorubicin Prodrug, in Patient-Derived Soft Tissue Sarcoma Xenograft Models. Mol Cancer Ther 2017; 16:1566-1575. [DOI: 10.1158/1535-7163.mct-16-0832] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/20/2017] [Accepted: 05/15/2017] [Indexed: 11/16/2022]
|
41
|
Roveri M, Pfohl A, Jaaks P, Alijaj N, Leroux JC, Luciani P, Bernasconi M. Prolonged circulation and increased tumor accumulation of liposomal vincristine in a mouse model of rhabdomyosarcoma. Nanomedicine (Lond) 2017; 12:1135-1151. [PMID: 28447920 DOI: 10.2217/nnm-2017-0430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM Our goal was to improve vincristine (VCR) based rhabdomyosarcoma (RMS) therapy by encapsulating the drug into liposomes. A targeting strategy was attempted to enhance tumor accumulation. MATERIALS & METHODS VCR was loaded in control and peptide-decorated liposomes via an active method. The interaction of an RMS-specific peptide with the presumed target furin and the cellular uptake of both liposomal groups were studied in vitro. Pharmacokinetics and biodistribution of VCR-containing liposomes were assessed in an RMS xenograft mouse model. RESULTS Liposomes ensured high VCR concentration in plasma and in the tumor. Peptide-decorated liposomes showed modest uptake in RMS cells. CONCLUSION The investigated peptide-modified liposomal formulation may not be optimal for furin-mediated RMS targeting. Nevertheless, VCR-loaded liposomes could serve as a delivery platform for experimental RMS.
Collapse
Affiliation(s)
- Maurizio Roveri
- Experimental Infectious Diseases & Cancer Research, University Children's Hospital Zurich, 8008 Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, 8032 Zurich, Switzerland.,Department of Chemistry & Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Alice Pfohl
- Experimental Infectious Diseases & Cancer Research, University Children's Hospital Zurich, 8008 Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, 8032 Zurich, Switzerland.,Department of Chemistry & Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Patricia Jaaks
- Experimental Infectious Diseases & Cancer Research, University Children's Hospital Zurich, 8008 Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Nagjie Alijaj
- Experimental Infectious Diseases & Cancer Research, University Children's Hospital Zurich, 8008 Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Department of Chemistry & Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Paola Luciani
- Department of Chemistry & Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland.,Department of Pharmaceutical Technology, Institute of Pharmacy, Friedrich Schiller University, 07743 Jena, Germany
| | - Michele Bernasconi
- Experimental Infectious Diseases & Cancer Research, University Children's Hospital Zurich, 8008 Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
42
|
Nyström H, Jönsson M, Werner-Hartman L, Nilbert M, Carneiro A. Hypoxia-inducible factor 1α predicts recurrence in high-grade soft tissue sarcoma of extremities and trunk wall. J Clin Pathol 2017; 70:879-885. [DOI: 10.1136/jclinpath-2016-204149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/21/2016] [Accepted: 03/19/2017] [Indexed: 12/25/2022]
|
43
|
Nytko KJ, Grgic I, Bender S, Ott J, Guckenberger M, Riesterer O, Pruschy M. The hypoxia-activated prodrug evofosfamide in combination with multiple regimens of radiotherapy. Oncotarget 2017; 8:23702-23712. [PMID: 28423594 PMCID: PMC5410338 DOI: 10.18632/oncotarget.15784] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 02/06/2017] [Indexed: 11/30/2022] Open
Abstract
The promising treatment combination of ionizing radiation (IR) with a hypoxia-activated prodrug (HAP) is based on biological cooperation. Here we investigated the hypoxia-activated prodrug evofosfamide in combination with different treatment regimens of IR against lung A549- and head&neck UT-SCC-14-derived tumor xenografts. DNA damage-related endpoints and clonogenic cell survival of A549 and UT-SCC-14 carcinoma cells were probed under normoxia and hypoxia.Evofosfamide (TH-302) induced DNA-damage and a dose-dependent antiproliferative response in A549 cells on cellular pretreatment under hypoxia, and supra-additively reduced clonogenic survival in combination with IR. Concomitant treatment of A549-derived tumor xenografts with evofosfamide and fractionated irradiation induced the strongest treatment response in comparison to the corresponding neoadjuvant and adjuvant regimens. Adjuvant evofosfamide was more potent than concomitant and neoadjuvant evofosfamide when combined with a single high dose of IR. Hypoxic UT-SCC-14 cells and tumor xenografts thereof were resistant to evofosfamide alone and in combination with IR, most probably due to reduced P450 oxidoreductase expression, which might act as major predictive determinant of sensitivity to HAPs.In conclusion, evofosfamide with IR is a potent combined treatment modality against hypoxic tumors. However, the efficacy and the therapeutic outcome of this combined treatment modality is, as indicated here in preclinical tumor models, dependent on scheduling parameters and tumor type, which is most probably related to the status of respective HAP-activating oxidoreductases. Further biomarker development is necessary for the launch of successful clinical trials.
Collapse
Affiliation(s)
- Katarzyna J. Nytko
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
- Clinical Research Priority Program “Tumor Oxygenation”, Zurich, Switzerland
| | - Ivo Grgic
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
- Clinical Research Priority Program “Tumor Oxygenation”, Zurich, Switzerland
| | - Sabine Bender
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Janosch Ott
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | | | - Oliver Riesterer
- Clinical Research Priority Program “Tumor Oxygenation”, Zurich, Switzerland
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
- Clinical Research Priority Program “Tumor Oxygenation”, Zurich, Switzerland
| |
Collapse
|
44
|
Oei AL, Vriend LEM, Krawczyk PM, Horsman MR, Franken NAP, Crezee J. Targeting therapy-resistant cancer stem cells by hyperthermia. Int J Hyperthermia 2017; 33:419-427. [PMID: 28100096 DOI: 10.1080/02656736.2017.1279757] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Eradication of all malignant cells is the ultimate but challenging goal of anti-cancer treatment; most traditional clinically-available approaches fail because there are cells in a tumour that either escape therapy or become therapy-resistant. A subpopulation of cancer cells, the cancer stem cells (CSCs), is considered to be of particular significance for tumour initiation, progression and metastasis. CSCs are considered in particular to be therapy-resistant and may drive disease recurrence, which positions CSCs in the focus of anti-cancer research, but successful CSC-targeting therapies are limited. Here, we argue that hyperthermia - a therapeutic approach based on local heating of a tumour - is potentially beneficial for targeting CSCs in solid tumours. First, hyperthermia has been described to target cells in hypoxic and nutrient-deprived tumour areas where CSCs reside and ionising radiation and chemotherapy are least effective. Second, hyperthermia can modify factors that are essential for tumour survival and growth, such as the microenvironment, immune responses, vascularisation and oxygen supply. Third, hyperthermia targets multiple DNA repair pathways, which are generally upregulated in CSCs and protect them from DNA-damaging agents. Addition of hyperthermia to the therapeutic armamentarium of oncologists may thus be a promising strategy to eliminate therapy-escaping and -resistant CSCs.
Collapse
Affiliation(s)
- A L Oei
- a Laboratory for Experimental Oncology and Radiobiology (LEXOR) , Center for Experimental and Molecular Medicine , Amsterdam , The Netherlands.,b Department of Radiotherapy , Academic Medical Center (AMC) and Cancer Center Amsterdam , Amsterdam , The Netherlands
| | - L E M Vriend
- c Department of Cell Biology and Histology , Academic Medical Center (AMC) and Cancer Center Amsterdam , Amsterdam , The Netherlands
| | - P M Krawczyk
- c Department of Cell Biology and Histology , Academic Medical Center (AMC) and Cancer Center Amsterdam , Amsterdam , The Netherlands
| | - M R Horsman
- d Department for Experimental Clinical Oncology , Aarhus University Hospital , Aarhus C , Denmark
| | - N A P Franken
- a Laboratory for Experimental Oncology and Radiobiology (LEXOR) , Center for Experimental and Molecular Medicine , Amsterdam , The Netherlands.,b Department of Radiotherapy , Academic Medical Center (AMC) and Cancer Center Amsterdam , Amsterdam , The Netherlands
| | - J Crezee
- b Department of Radiotherapy , Academic Medical Center (AMC) and Cancer Center Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
45
|
A prognostic profile of hypoxia-induced genes for localised high-grade soft tissue sarcoma. Br J Cancer 2016; 115:1096-1104. [PMID: 27701385 PMCID: PMC5117798 DOI: 10.1038/bjc.2016.310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/22/2016] [Accepted: 09/05/2016] [Indexed: 12/16/2022] Open
Abstract
Background: For decades, tumour hypoxia has been pursued as a cancer treatment target. However, prognostic and predictive biomarkers are essential for the use of this target in the clinic. This study investigates the prognostic value of a hypoxia-induced gene profile in localised soft tissue sarcoma (STS). Methods: The hypoxia-induced gene quantification was performed by real-time quantitative PCR (RT-qPCR) of formalin-fixed, paraffin-embedded tissue samples. The gene expression cut-points were determined in a test cohort of 55 STS patients and used to allocate each patient into a more or a less hypoxic group. The cut-points found in the test cohort were applied to a cohort of 77 STS patients for validation. Results: For patients with localised high-grade STS treated with surgery with or without postoperative radiation therapy, the prognostic value of the hypoxia-induced gene profile was proved in the test cohort and confirmed in the validation cohort. After adjustment for confounders, the hazard ratio (HR) was 3.2 (95% CI: 1.5; 7.0) for patients with more hypoxic tumours compared with patients with less hypoxic tumours regarding disease-specific survival. Moreover, for the development of metastatic disease, the HR was 2.61 (95% CI: 1.27; 5.33). Conclusions: The hypoxia-induced gene profile is a validated independent prognostic marker that may help identify STS patients needing more aggressive or different adjuvant treatment.
Collapse
|
46
|
Noujaim J, Alam S, Thway K, Jones RL. Efficacy and safety of eribulin mesylate in advanced soft tissue sarcomas. Indian J Med Paediatr Oncol 2016; 37:125-30. [PMID: 27688604 PMCID: PMC5027783 DOI: 10.4103/0971-5851.190359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Despite recent advances in the field, treatment options for metastatic soft tissue sarcoma patients are limited. Eribulin, an antimitotic derived from the natural marine sponge product halichondrin B, is currently approved for the treatment of metastatic breast cancer. Following the promising activity of eribulin in sarcoma in a Phase II trial, the drug was recently compared to dacarbazine in pretreated advanced leiomyosarcoma (LMS) and liposarcoma (LPS) patients in a Phase III trial. Eribulin was associated with a significant 2-month improvement in median overall survival compared to dacarbazine (13.5 vs. 11.5 months, heart rate: 0.768) despite no documented significant difference in progression-free survival. In a subgroup analysis, the survival advantage associated with eribulin was evident in the LPS subgroup but not in the LMS subgroup. Following these encouraging results, the Food and Drug Administration has approved eribulin for the treatment of advanced LPS for patients who received prior anthracycline chemotherapy. In this short review, we will evaluate the evidence for eribulin in soft tissue sarcoma, highlight its mechanisms of action, and summarize the results of the major preclinical and clinical studies with a particular focus on the results of the Phase III trial.
Collapse
Affiliation(s)
- Jonathan Noujaim
- Sarcoma Unit, Maisonneuve-Rosemont Hospital, Montreal, H1T 2M4, Canada
| | - Salma Alam
- Sarcoma Unit, The Institute of Cancer Research, Royal Marsden Hospital, London, SW3 6JJ, United Kingdom
| | - Khin Thway
- Sarcoma Unit, The Institute of Cancer Research, Royal Marsden Hospital, London, SW3 6JJ, United Kingdom
| | - Robin Lewis Jones
- Sarcoma Unit, The Institute of Cancer Research, Royal Marsden Hospital, London, SW3 6JJ, United Kingdom
| |
Collapse
|
47
|
Predictive value of hypoxia in advanced head and neck cancer after treatment with hyperfractionated radio-chemotherapy and hypoxia modification. Clin Transl Oncol 2016; 19:419-424. [DOI: 10.1007/s12094-016-1541-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/03/2016] [Indexed: 11/26/2022]
|
48
|
Adhikarla V, Jeraj R. An imaging-based computational model for simulating angiogenesis and tumour oxygenation dynamics. Phys Med Biol 2016; 61:3885-902. [PMID: 27117345 PMCID: PMC6284397 DOI: 10.1088/0031-9155/61/10/3885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tumour growth, angiogenesis and oxygenation vary substantially among tumours and significantly impact their treatment outcome. Imaging provides a unique means of investigating these tumour-specific characteristics. Here we propose a computational model to simulate tumour-specific oxygenation changes based on the molecular imaging data. Tumour oxygenation in the model is reflected by the perfused vessel density. Tumour growth depends on its doubling time (T d) and the imaged proliferation. Perfused vessel density recruitment rate depends on the perfused vessel density around the tumour (sMVDtissue) and the maximum VEGF concentration for complete vessel dysfunctionality (VEGFmax). The model parameters were benchmarked to reproduce the dynamics of tumour oxygenation over its entire lifecycle, which is the most challenging test. Tumour oxygenation dynamics were quantified using the peak pO2 (pO2peak) and the time to peak pO2 (t peak). Sensitivity of tumour oxygenation to model parameters was assessed by changing each parameter by 20%. t peak was found to be more sensitive to tumour cell line related doubling time (~30%) as compared to tissue vasculature density (~10%). On the other hand, pO2peak was found to be similarly influenced by the above tumour- and vasculature-associated parameters (~30-40%). Interestingly, both pO2peak and t peak were only marginally affected by VEGFmax (~5%). The development of a poorly oxygenated (hypoxic) core with tumour growth increased VEGF accumulation, thus disrupting the vessel perfusion as well as further increasing hypoxia with time. The model with its benchmarked parameters, is applied to hypoxia imaging data obtained using a [(64)Cu]Cu-ATSM PET scan of a mouse tumour and the temporal development of the vasculature and hypoxia maps are shown. The work underscores the importance of using tumour-specific input for analysing tumour evolution. An extended model incorporating therapeutic effects can serve as a powerful tool for analysing tumour response to anti-angiogenic therapies.
Collapse
Affiliation(s)
- Vikram Adhikarla
- Department of Physics, University of Wisconsin, Madison, WI, USA. Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
49
|
Haralampieva D, Betzel T, Dinulovic I, Salemi S, Stoelting M, Krämer SD, Schibli R, Sulser T, Handschin C, Eberli D, Ametamey SM. Noninvasive PET Imaging and Tracking of Engineered Human Muscle Precursor Cells for Skeletal Muscle Tissue Engineering. J Nucl Med 2016; 57:1467-73. [PMID: 27199355 DOI: 10.2967/jnumed.115.170548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/08/2016] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Transplantation of human muscle precursor cells (hMPCs) is envisioned for the treatment of various muscle diseases. However, a feasible noninvasive tool to monitor cell survival, migration, and integration into the host tissue is still missing. METHODS In this study, we designed an adenoviral delivery system to genetically modify hMPCs to express a signaling-deficient form of human dopamine D2 receptor (hD2R). The gene expression levels of the receptor were evaluated by reverse transcriptase polymerase chain reaction, and infection efficiency was evaluated by fluorescent microscopy. The viability, proliferation, and differentiation capacity of the transduced cells, as well as their myogenic phenotype, were determined by flow cytometry analysis and fluorescent microscopy. (18)F-fallypride and (18)F-fluoromisonidazole, two well-established PET radioligands, were assessed for their potential to image engineered hMPCs in a mouse model and their uptakes were evaluated at different time points after cell inoculation in vivo. Biodistribution studies, autoradiography, and PET experiments were performed to determine the extent of signal specificity. To address feasibility for tracking hMPCs in an in vivo model, the safety of the adenoviral gene delivery was evaluated. Finally, the harvested tissues were histologically examined to determine whether survival of the transplanted cells was sustained at different time points. RESULTS Adenoviral gene delivery was shown to be safe, with no detrimental effects on the primary human cells. The viability, proliferation, and differentiation capacity of the transduced cells were confirmed, and flow cytometry analysis and fluorescent microscopy showed that their myogenic phenotype was sustained. (18)F-fallypride and (18)F-fluoromisonidazole were successfully synthesized. Specific binding of (18)F-fallypride to hD2R hMPCs was demonstrated in vitro and in vivo. Furthermore, the (18)F-fluoromisonidazole signal was high at the early stages. Finally, sustained survival of the transplanted cells at different time points was confirmed histologically, with formation of muscle tissue at the site of injection. CONCLUSION Our proposed use of a signaling-deficient hD2R as a potent reporter for in vivo hMPC PET tracking by (18)F-fallypride is a significant step toward potential noninvasive tracking of hD2R hMPCs and bioengineered muscle tissues in the clinic.
Collapse
Affiliation(s)
- Deana Haralampieva
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland Zurich Center for Integrative Human Physiology, Zurich, Switzerland; and
| | - Thomas Betzel
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Ivana Dinulovic
- Focal Area of Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| | - Souzan Salemi
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Meline Stoelting
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stefanie D Krämer
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Roger Schibli
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Tullio Sulser
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christoph Handschin
- Focal Area of Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| | - Daniel Eberli
- Laboratory for Tissue Engineering and Stem Cell Therapy, Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland Zurich Center for Integrative Human Physiology, Zurich, Switzerland; and
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland Zurich Center for Integrative Human Physiology, Zurich, Switzerland; and
| |
Collapse
|
50
|
Wigerup C, Påhlman S, Bexell D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther 2016; 164:152-69. [PMID: 27139518 DOI: 10.1016/j.pharmthera.2016.04.009] [Citation(s) in RCA: 450] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insufficient tissue oxygenation, or hypoxia, contributes to tumor aggressiveness and has a profound impact on clinical outcomes in cancer patients. At decreased oxygen tensions, hypoxia-inducible factors (HIFs) 1 and 2 are stabilized and mediate a hypoxic response, primarily by acting as transcription factors. HIFs exert differential effects on tumor growth and affect important cancer hallmarks including cell proliferation, apoptosis, differentiation, vascularization/angiogenesis, genetic instability, tumor metabolism, tumor immune responses, and invasion and metastasis. As a consequence, HIFs mediate resistance to chemo- and radiotherapy and are associated with poor prognosis in cancer patients. Intriguingly, perivascular tumor cells can also express HIF-2α, thereby forming a "pseudohypoxic" phenotype that further contributes to tumor aggressiveness. Therefore, therapeutic targeting of HIFs in cancer has the potential to improve treatment efficacy. Different strategies to target hypoxic cancer cells and/or HIFs include hypoxia-activated prodrugs and inhibition of HIF dimerization, mRNA or protein expression, DNA binding capacity, and transcriptional activity. Here we review the functions of HIFs in the progression and treatment of malignant solid tumors. We also highlight how HIFs may be targeted to improve the management of patients with therapy-resistant and metastatic cancer.
Collapse
Affiliation(s)
- Caroline Wigerup
- Translational Cancer Research, Medicon Village 404:C3, Lund University, Lund, Sweden
| | - Sven Påhlman
- Translational Cancer Research, Medicon Village 404:C3, Lund University, Lund, Sweden.
| | - Daniel Bexell
- Translational Cancer Research, Medicon Village 404:C3, Lund University, Lund, Sweden
| |
Collapse
|