1
|
Zhou XS, Chen C, Li TH, Tang JJ, Zhu BJ, Wei GQ, Qian C, Liu CL, Wang L. A QM protein from Bombyx mori negatively regulates prophenoloxidase activation and melanization by interacting with Jun protein. INSECT MOLECULAR BIOLOGY 2019; 28:578-590. [PMID: 30737848 DOI: 10.1111/imb.12573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The QM gene that encodes for the ribosomal protein L10 was firstly identified from human tumour cells as a tumour suppressor. In this study, a QM gene was identified in silkworm Bombyx mori (BmQM) and its immunomodulatory function was explored. BmQM messenger RNA (mRNA) and protein were highly expressed in the silk gland and fat body, and expressed in all stages of silkworm growth. After challenged with four different microorganisms, the expression levels of BmQM mRNA in fat body or haemocytes were significantly upregulated compared with the control. After knock-down of BmQM gene, the expressions of some immune genes (PGRPS6, Gloverin0, Lysozyme and Moricin) were affected, and the transcripts of prophenoloxidase1 and prophenoloxidase2 have different degrees of change. The phenoloxidase activity was significantly reduced when the purified recombinant BmQM protein was injected. Recombinant BmQM protein inhibited systemic melanization and suppressed prophenoloxidase activation stimulated by Micrococcus luteus, but it did not affect phenoloxidase activity. Far-western blotting assays showed that the BmQM protein interacted with silkworm BmJun protein, which negatively regulates AP-1 expression. Our results indicated that BmQM protein could affect some immune gene expression and negatively regulate the prophenoloxidase-activating system, and it may play an important role in regulation of the innate immunity in insects.
Collapse
Affiliation(s)
- X-S Zhou
- College of Life Science, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - C Chen
- College of Life Science, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - T-H Li
- College of Life Science, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - J-J Tang
- College of Life Science, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - B-J Zhu
- College of Life Science, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - G-Q Wei
- College of Life Science, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - C Qian
- College of Life Science, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - C-L Liu
- College of Life Science, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - L Wang
- College of Life Science, Anhui Agricultural University, Hefei, 230036, P.R. China
| |
Collapse
|
2
|
Guo H, Xian JA, Wang AL. Analysis of digital gene expression profiling in hemocytes of white shrimp Litopenaeus vannamei under nitrite stress. FISH & SHELLFISH IMMUNOLOGY 2016; 56:1-11. [PMID: 27377029 DOI: 10.1016/j.fsi.2016.06.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
Accumulation of nitrite in water is highly toxic to aquatic animals. To understand immune responses in shrimp under such environmental stress, a digital gene expression (DGE) technology was applied to detect the gene expression profile of the Litopenaeus vannamei hemocytes in response to nitrite for 48 h. A total of 1922 differently expressed unigenes were generated. Of these transcripts, 1269 and 653 genes were up- or down-regulated respectively. Functional categorization and pathways of the differentially expressed genes revealed that immune defense, xenobiotics biodegradation and metabolism, amino acid and nucleobase metabolic process, apoptosis were the differentially regulated processes occurring during nitrite stress. We selected 19 differential expression transcripts (DETs) to validate the sequencing results by real time quantitative PCR (qPCR). The Pearson's correlation coefficient (R) of the 19 DETs was 0.843, which confirmed the consistency and accuracy between these two approaches. Subsequently, we screened 10 genes to examine the changes in the time course of gene expression in more detail. The results indicated that expressions of ATP-binding cassette transporter (ABC transporter), caspase10, QM protein, C type lectin 4 (CTL4), protein disulfide isomerase (PDI), serine protease inhibitor 8 (SPI8), transglutaminase (TGase), chitinase1, inhibitors of apoptosis proteins (IAP) and cytochrome P450 enzyme (CYP450) were induced to participate in the anti-stress defense against nitrite. These results will provide a reference for follow-up study of molecular toxicology and valuable gene information for better understanding of immune response in L. vannamei under environmental stress.
Collapse
Affiliation(s)
- Hui Guo
- Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China.
| | - Jian-An Xian
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, People's Republic of China
| | - An-Li Wang
- Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| |
Collapse
|
3
|
Han F, Xiao S, Zhang Y, Wang Z. Molecular cloning and functional characterization of a QM protein in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2015; 44:187-194. [PMID: 25680268 DOI: 10.1016/j.fsi.2015.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/08/2015] [Accepted: 01/22/2015] [Indexed: 06/04/2023]
Abstract
Since it was proposed to be a tumor suppressor in 1991, QM protein has attracted intensive and wide attention in plants, animals and fungi research fields. Up to date, however, the function of QM protein in fish immunity remains unknown. In this investigation, a QM gene (named as LycQM gene) was cloned from large yellow croaker (Larimichthys crocea), and LycQM protein was expressed in Escherichia coli and purified. The LycQM gene was ubiquitously transcribed in multi-tissues, including spleen, muscle, heart, liver, intestine, blood and head kidney. By quantitative real-time RT-PCR analysis, we found the highest and the lowest expression level of LycQM gene in head kidney and in heart, respectively. Time course analysis showed that LycQM expression was obviously up-regulated in blood and head kidney after immunization with polyinosinic polycytidynic acid (poly I:C), formalin-inactive Gram-negative bacterium Vibrio parahaemolyticus and bacterial lipopolysaccharides (LPS). Moreover, as demonstrated by RNAi assays, LycQM protein could regulate the activity of phenoloxidase, a key enzyme in the proPO activation system of immunity. These results suggested that LycQM protein might play an important role in the immune response against microorganisms in large yellow croaker.
Collapse
Affiliation(s)
- Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Shijun Xiao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Yu Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Zhiyong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
4
|
Xu W, Faisal M. Putative identification of expressed genes associated with attachment of the zebra mussel (Dreissena polymorpha). BIOFOULING 2008; 24:157-161. [PMID: 18330781 DOI: 10.1080/08927010801975345] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Because of its aggressive growth and firm attachment to substrata, the zebra mussel (Dreissena polymorpha) has caused severe economic and ecological problems since its invasion into North America. The nature and details of attachment of this nuisance mollusc remains largely unexplored. Byssus, a special glandular apparatus located at the root of the foot of the mussel produces threads and plates through which firm attachment of the mollusc to underwater objects takes place. In an attempt to better understand the adhesion mechanism of the zebra mussel, the suppression subtractive hybridization (SSH) assay was employed to produce a cDNA library with genes unique to the foot of the mussel. Analysis of the SSH cDNA library revealed the presence of 750 new expressed sequence tags (ESTs) including 304 contigs and 446 singlets. Using BLAST search, 365 zebra mussel ESTs showed homology to other gene sequences with putative functions. The putative functions of the homologues included proteins involved in byssal thread formation in zebra and blue mussels, exocrine gland secretion, host defence, and house keeping. The generated data provide, for the first time, some useful insights into the foot structure of the zebra mussel and its underwater adhesion.
Collapse
Affiliation(s)
- Wei Xu
- Aquatic Animal Health Laboratory, Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
5
|
Meistertzheim AL, Tanguy A, Moraga D, Thébault MT. Identification of differentially expressed genes of the Pacific oyster Crassostrea gigas exposed to prolonged thermal stress. FEBS J 2007; 274:6392-402. [PMID: 18005253 DOI: 10.1111/j.1742-4658.2007.06156.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Groups of oysters (Crassostrea gigas) were exposed to 25 degrees C for 24 days (controls to 13 degrees C) to explore the biochemical and molecular pathways affected by prolonged thermal stress. This temperature is 4 degrees C above the summer seawater temperature encountered in western Brittany, France where the animals were collected. Suppression subtractive hybridization was used to identify specific up- and downregulated genes in gill and mantle tissues after 7-10 and 24 days of exposure. The resulting libraries contain 858 different sequences that potentially represent highly expressed genes in thermally stressed oysters. Expression of 17 genes identified in these libraries was studied using real-time PCR in gills and mantle at different time points over the course of the thermal stress. Differential gene expression levels were much higher in gills than in the mantle, showing that gills are more sensitive to thermal stress. Expression of most transcripts (mainly heat shock proteins and genes involved in cellular homeostasis) showed a high and rapid increase at 3-7 days of exposure, followed by a decrease at 14 days, and a second, less-pronounced increase at 17-24 days. A slow-down in protein synthesis occurred after 24 days of thermal stress.
Collapse
Affiliation(s)
- Anne-Leila Meistertzheim
- Laboratoire des Sciences de l'Environnement Marin, Institut Universitaire Européan de la Mer, Université de Bretagne occidentale, Plouzané, France
| | | | | | | |
Collapse
|
6
|
Rojtinnakorn J, Hirono I, Itami T, Takahashi Y, Aoki T. Gene expression in haemocytes of kuruma prawn, Penaeus japonicus, in response to infection with WSSV by EST approach. FISH & SHELLFISH IMMUNOLOGY 2002; 13:69-83. [PMID: 12201653 DOI: 10.1006/fsim.2001.0382] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Gene expression in haemocytes of the kuruma prawn (Penaeus japonicus) was investigated using an expressed sequence tag (EST) approach. Partial nucleotide sequences of cDNA library clones constructed from normal and white spot syndrome virus (WSSV)--infected P. japonicus haemocytes were determined. Of 635 clones obtained from the normal library, 284 (44.7%) significantly matched sequences in GenBank, and of 370 clones obtained from WSSV-infected library, 174 (47.0%) significantly matched sequences in the database. One hundred fifty-two deduced proteins were newly identified. Of these, 28 types were involved in biodefence. For the prophenoloxidase system, there are prophenoloxidase, coagulation factor G-beta chain precursor, factor D, Masquarade-like protease, transglutaminase (TGase), clottable protein and eight types of protease inhibitors (two types of antileukoproteinase, alpha-2-macroglobulin, chelonianin, elastase inhibitor, two types of Kazal inhibitor and Kunitz-type inhibitor). For antibacterial peptides, there are bactinecin 11, penaeidin-2 precursor and lysozyme c type. The others defence-related proteins are basophil leukocyte interleukin-3-regulated protein, natural killer enhancing factor (NK-EF), integral membrane protein (CD34+), ESM-1, Notch homologue and Drac homologue. For the adhesion proteins, there are beta-integrin, cell adhesion molecule (CAM) and three types of collagens. All ESTs representing protease inhibitors and tumour-related proteins were found only in the WSSV-infected library. Those encoding for apoptotic peptides were expressed at high levels in infected library. The putative defence proteins accounted for 2.7% of total ESTs in a normal shrimp library and 15.7% of the total ESTs in an infected library.
Collapse
|
7
|
Chambon JP, Soule J, Pomies P, Fort P, Sahuquet A, Alexandre D, Mangeat PH, Baghdiguian S. Tail regression in Ciona intestinalis (Prochordate) involves a Caspase-dependent apoptosis event associated with ERK activation. Development 2002; 129:3105-14. [PMID: 12070086 DOI: 10.1242/dev.129.13.3105] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two apoptotic events take place during embryonic development of Ciona intestinalis. The first concerns extra-embryonic cells and precedes hatching. The second controls tail regression at metamorphosis, occurs through a polarized wave originating from tail extremity, and is caspase dependent. This was shown by: (1) in vivo incorporation of a fluorescent marker of caspase activation in different cell types of the tail; (2) detection of an activated form of caspase 3-like protein by western blotting; and (3) failure of 30% of larvae to undergo metamorphosis after treatment of fertilized eggs with a pan-caspase inhibitor. In addition, Ciona embryos express a single ERK protein, specifically phosphorylated at metamorphosis. ERK activation was shown to be located in cells of the tail. Addition of MEK inhibitor in the culture medium prevented ERK activation and metamorphosis. In silico analysis of Ciona genome pointed to 15 caspases with high homology with humans, and a single ERK gene with high homology to both mammalian ERK1 and ERK2. It is concluded that the sequence of events leading to metamorphosis includes ERK phosphorylation followed by caspase-dependent apoptosis and tail regression.
Movies available on-line
Collapse
Affiliation(s)
- Jean-Philippe Chambon
- UMR 5539 Centre National de la Recherche Scientifique, Dynamique Moléculaire des Interactions Membranaires, Université Montpellier II place E. Bataillon 34095 Montpellier cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|