1
|
Schultz MLC, Seth P, Kachmar L, Ijpma G, Lauzon AM. A method for isolating contractile smooth muscle cells from cryopreserved tissue. Am J Physiol Cell Physiol 2024; 326:C990-C998. [PMID: 38314725 DOI: 10.1152/ajpcell.00442.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/11/2024] [Accepted: 01/27/2024] [Indexed: 02/07/2024]
Abstract
Multiple techniques have been developed to isolate contractile smooth muscle cells (SMCs) from tissues with varying degrees of success. However, most of these approaches rely on obtaining fresh tissue, which poses logistical challenges. In the present study, we introduce a novel protocol for isolating contractile SMCs from cryopreserved smooth muscle (SM) tissue, thereby enhancing experimental efficiency. This protocol yields abundant viable, spindle-shaped, contractile SMCs that closely resemble those obtained from fresh samples. By analyzing the expression of contractile proteins, we demonstrate that both the isolated SMCs from cryopreserved tissue represent more accurately fresh SM tissue compared with cultured SMCs. Moreover, we demonstrate the importance of a brief incubation step of the tissue in culture medium before cell dissociation to achieve contractile SMCs. Finally, we provide a concise overview of our protocol optimization efforts, along with a summary of previously published methods, which could be valuable for the development of similar protocols for other species.NEW & NOTEWORTHY We report a successful protocol development for isolating contractile smooth muscle cells (SMCs) from cryopreserved tissue reducing the reliance on fresh tissues and providing a readily available source of contractile SMCs. Our findings suggest that SMCs isolated using our protocol maintain their phenotype better compared with cultured SMCs. This preservation of the cellular characteristics, including the expression of key contractile proteins, makes these cells more representative of fresh SM tissue.
Collapse
Affiliation(s)
- Matheus L C Schultz
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, Quebec, Canada
| | - Pranjal Seth
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, Quebec, Canada
| | - Linda Kachmar
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, Quebec, Canada
| | - Gijs Ijpma
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, Quebec, Canada
| | - Anne-Marie Lauzon
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Ijpma G, Lauzon AM. Automated, high temporal resolution mechanics measurements during incubation of contractile tissues. J Biomech 2023; 152:111577. [PMID: 37058766 DOI: 10.1016/j.jbiomech.2023.111577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Muscle tissue mechanics and contractility measurements have a great advantage over cultured cell level experiments as their mechanical and contractile properties are much closer to in vivo tissue properties. However, tissue level experiments cannot be combined with incubation with the same time resolution and consistency as cell culture studies. Here we present a system in which contractile tissues can be incubated for days while intermittently being tested for their mechanical and contractile properties. A two-chamber system was developed with control of temperature in the outer chamber and CO2 and humidity control in the inner, sterile chamber. Incubation medium, to which biologically active components may be added, is reused after each mechanics test to preserve both added and released components. Mechanics and contractility are measured in a different medium to which, through a high accuracy syringe pump, up to 6 different agonists in a 100-fold dose range can be added. The whole system can be operated through fully automated protocols from a personal computer. Testing data shows accurate maintenance of temperature, CO2 and relative humidity at pre-set levels. Equine trachealis smooth muscle tissues tested in the system showed no signs of infection after 72 h with incubation medium replacement every 24 h. Methacholine dosing and electrical field stimulation every 4 h showed consistent responses. In conclusion, the developed system is a great improvement on the manual incubation techniques being used thus far, improving on time resolution, repeatability and robustness, while reducing contamination risk and tissue damage from repeated handling.
Collapse
|
3
|
Blebbistatin modulates prostatic cell growth and contrapctility through myosin II signaling. Clin Sci (Lond) 2018; 132:2189-2205. [PMID: 30279228 DOI: 10.1042/cs20180294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/13/2018] [Accepted: 10/01/2018] [Indexed: 01/07/2023]
Abstract
To investigate the effect of blebbistatin (BLEB, a selective myosin inhibitor) on regulating contractility and growth of prostate cells and to provide insight into possible mechanisms associated with these actions. BLEB was incubated with cell lines of BPH-1 and WPMY-1, and intraprostatically injected into rats. Cell growth was determined by flow cytometry, and in vitro organ bath studies were performed to explore muscle contractility. Smooth muscle (SM) myosin isoform (SM1/2, SM-A/B, and LC17a/b) expression was determined via competitive reverse transcriptase PCR. SM myosin heavy chain (MHC), non-muscle (NM) MHC isoforms (NMMHC-A and NMMHC-B), and proteins related to cell apoptosis were further analyzed via Western blotting. Masson's trichrome staining was applied to tissue sections. BLEB could dose-dependently trigger apoptosis and retard the growth of BPH-1 and WPMY-1. Consistent with in vitro effect, administration of BLEB to the prostate could decrease rat prostatic epithelial and SM cells via increased apoptosis. Western blotting confirmed the effects of BLEB on inducing apoptosis through a mechanism involving MLC20 dephosphorylation with down-regulation of Bcl-2 and up-regulation of BAX and cleaved caspase 3. Meanwhile, NMMHC-A and NMMHC-B, the downstream proteins of MLC20, were found significantly attenuated in BPH-1 and WPMY-1 cells, as well as rat prostate tissues. Additionally, BLEB decreased SM cell number and SM MHC expression, along with attenuated phenylephrine-induced contraction and altered prostate SMM isoform composition with up-regulation of SM-B and down-regulation of LC17a, favoring a faster contraction. Our novel data demonstrate BLEB regulated myosin expression and functional activity. The mechanism involved MLC20 dephosphorylation and altered SMM isoform composition.
Collapse
|
4
|
Li M, Li S, Rao Y, Cui S, Gou K. Loss of smooth muscle myosin heavy chain results in the bladder and stomach developing lesion during foetal development in mice. J Genet 2018. [DOI: 10.1007/s12041-018-0930-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
5
|
Chen P, Yin J, Guo YM, Xiao H, Wang XH, DiSanto ME, Zhang XH. The expression and functional activities of smooth muscle myosin and non-muscle myosin isoforms in rat prostate. J Cell Mol Med 2017; 22:576-588. [PMID: 28990332 PMCID: PMC5742693 DOI: 10.1111/jcmm.13345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 07/10/2017] [Indexed: 11/30/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is mainly caused by increased prostatic smooth muscle (SM) tone and volume. SM myosin (SMM) and non-muscle myosin (NMM) play important roles in mediating SM tone and cell proliferation, but these molecules have been less studied in the prostate. Rat prostate and cultured primary human prostate SM and epithelial cells were utilized. In vitro organ bath studies were performed to explore contractility of rat prostate. SMM isoforms, including SM myosin heavy chain (MHC) isoforms (SM1/2 and SM-A/B) and myosin light chain 17 isoforms (LC17a/b ), and isoform ratios were determined via competitive RT-PCR. SM MHC and NM MHC isoforms (NMMHC-A, NMMHC-B and NMMHC-C) were further analysed via Western blotting and immunofluorescence microscopy. Prostatic SM generated significant force induced by phenylephrine with an intermediate tonicity between phasic bladder and tonic aorta type contractility. Correlating with this kind of intermediate tonicity, rat prostate mainly expressed LC17a and SM1 but with relatively equal expression of SM-A/SM-B at the mRNA level. Meanwhile, isoforms of NMMHC-A, B, C were also abundantly present in rat prostate with SMM present only in the stroma, while NMMHC-A, B, C were present both in the stroma and endothelial. Additionally, the SMM selective inhibitor blebbistatin could potently relax phenylephrine pre-contracted prostate SM. In conclusion, our novel data demonstrated the expression and functional activities of SMM and NMM isoforms in the rat prostate. It is suggested that the isoforms of SMM and NMM could play important roles in BPH development and bladder outlet obstruction.
Collapse
Affiliation(s)
- Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Yin
- Department of Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu-Ming Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - He Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xing-Huan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences of Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Xin-Hua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Zderic SA, Chacko S. Alterations in the contractile phenotype of the bladder: lessons for understanding physiological and pathological remodelling of smooth muscle. J Cell Mol Med 2012; 16:203-17. [PMID: 21707917 PMCID: PMC3289974 DOI: 10.1111/j.1582-4934.2011.01368.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The contractile properties of the urinary bladder are changed by the conditions of normal development and partial bladder outlet obstruction. This change in the contractile phenotype is accompanied by changes in the regulatory cascades and filaments that regulate contractility. This review focuses on such changes during the course of normal development and in response to obstruction. Our goal is to discuss the experimental evidence that has accumulated from work in animal models and correlate these findings with the human voiding phenotype.
Collapse
Affiliation(s)
- Stephen A Zderic
- The John W Duckett Jr Center for Pediatric Urology at The Children's Hospital of Philadelphia, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
7
|
Generation of a human urinary bladder smooth muscle cell line. In Vitro Cell Dev Biol Anim 2012; 48:84-96. [DOI: 10.1007/s11626-011-9473-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 11/14/2011] [Indexed: 01/09/2023]
|
8
|
Labonté I, Hassan M, Risse PA, Tsuchiya K, Laviolette M, Lauzon AM, Martin JG. The effects of repeated allergen challenge on airway smooth muscle structural and molecular remodeling in a rat model of allergic asthma. Am J Physiol Lung Cell Mol Physiol 2009; 297:L698-705. [PMID: 19648284 DOI: 10.1152/ajplung.00142.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of remodeling of airway smooth muscle (SM) by hyperplasia on airway SM contractility in vivo are poorly explored. The aim of this study was to investigate the relationship between allergen-induced airway SM hyperplasia and its contractile phenotype. Brown Norway rats were sensitized with ovalbumin (OVA) or saline on day 0 and then either OVA-challenged once on day 14 and killed 24 h later or OVA-challenged 3 times (on days 14, 19, and 24) and killed 2 or 7 days later. Changes in SM mass, expression of total myosin, SM myosin heavy chain fast isoform (SM-B) and myosin light chain kinase (MLCK), tracheal contractions ex vivo, and airway responsiveness to methacholine (MCh) in vivo were assessed. One day after a single OVA challenge, the number of SM cells positive for PCNA was greater than for control animals, whereas the SM mass, contractile phenotype, and tracheal contractility were unchanged. Two days after three challenges, SM mass and PCNA immunoreactive cells were increased (3- and 10-fold, respectively; P < 0.05), but airway responsiveness to MCh was unaffected. Lower expression in total myosin, SM-B, and MLCK was observed at the mRNA level (P < 0.05), and total myosin and MLCK expression were lower at the protein level (P < 0.05) after normalization for SM mass. Normalized tracheal SM force generation was also significantly lower 2 days after repeated challenges (P < 0.05). Seven days after repeated challenges, features of remodeling were restored toward control levels. Allergen-induced hyperplasia of SM cells was associated with a loss of contractile phenotype, which was offset by the increase in mass.
Collapse
Affiliation(s)
- Isabelle Labonté
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC, Canada H2X 2P2
| | | | | | | | | | | | | |
Collapse
|
9
|
Li L, Jiang C, Hao P, Li W, Song C, Song B. Changes of gap junctional cell-cell communication in overactive detrusor in rats. Am J Physiol Cell Physiol 2007; 293:C1627-35. [PMID: 17855776 DOI: 10.1152/ajpcell.00122.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To evaluate the changes in intercellular communication through gap junctions in detrusor overactivity (DO), we studied 23 adult female Wistar rats with DO after partial outflow obstruction (DO group) and 13 sham-operated rats (control group). The two groups were compared by means of urodynamics, light and electron microscopy, expression of Cx40, Cx43, and Cx45 mRNA genes with RT-PCR, Cx43 protein with Western blot analysis, and functional intercellular communication with scrape loading dye transfer (SLDT) and fluorescence recovery after photobleaching (FRAP). The number of gap junctions and the expression of connexin mRNA and Cx43 protein were increased in DO rats, and intercellular communication through gap junctions increased after 6 wk of partial outflow obstruction as assessed with SLDT and FRAP techniques. The findings provide a theoretical rationale for using Cx43 antagonists and gap junction inhibitors in the treatment of patients with overactive detrusor secondary to partial bladder outflow obstruction.
Collapse
Affiliation(s)
- Longkun Li
- Center of Urology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
10
|
An S, Bai T, Bates J, Black J, Brown R, Brusasco V, Chitano P, Deng L, Dowell M, Eidelman D, Fabry B, Fairbank N, Ford L, Fredberg J, Gerthoffer W, Gilbert S, Gosens R, Gunst S, Halayko A, Ingram R, Irvin C, James A, Janssen L, King G, Knight D, Lauzon A, Lakser O, Ludwig M, Lutchen K, Maksym G, Martin J, Mauad T, McParland B, Mijailovich S, Mitchell H, Mitchell R, Mitzner W, Murphy T, Paré P, Pellegrino R, Sanderson M, Schellenberg R, Seow C, Silveira P, Smith P, Solway J, Stephens N, Sterk P, Stewart A, Tang D, Tepper R, Tran T, Wang L. Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma. Eur Respir J 2007; 29:834-60. [PMID: 17470619 PMCID: PMC2527453 DOI: 10.1183/09031936.00112606] [Citation(s) in RCA: 284] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Excessive airway obstruction is the cause of symptoms and abnormal lung function in asthma. As airway smooth muscle (ASM) is the effecter controlling airway calibre, it is suspected that dysfunction of ASM contributes to the pathophysiology of asthma. However, the precise role of ASM in the series of events leading to asthmatic symptoms is not clear. It is not certain whether, in asthma, there is a change in the intrinsic properties of ASM, a change in the structure and mechanical properties of the noncontractile components of the airway wall, or a change in the interdependence of the airway wall with the surrounding lung parenchyma. All these potential changes could result from acute or chronic airway inflammation and associated tissue repair and remodelling. Anti-inflammatory therapy, however, does not "cure" asthma, and airway hyperresponsiveness can persist in asthmatics, even in the absence of airway inflammation. This is perhaps because the therapy does not directly address a fundamental abnormality of asthma, that of exaggerated airway narrowing due to excessive shortening of ASM. In the present study, a central role for airway smooth muscle in the pathogenesis of airway hyperresponsiveness in asthma is explored.
Collapse
Affiliation(s)
- S.S. An
- Division of Physiology, Dept of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health
| | - T.R. Bai
- James Hogg iCAPTURE Centre, University of British Columbia, Vancouver
| | - J.H.T. Bates
- Vermont Lung Center, University of Vermont College of Medicine, Burlington, VT
| | - J.L. Black
- Dept of Pharmacology, University of Sydney, Sydney
| | - R.H. Brown
- Dept of Anesthesiology and Critical Care medicine, Johns Hopkins Medical Institutions, Baltimore, MD
| | - V. Brusasco
- Dept of Internal Medicine, University of Genoa, Genoa
| | - P. Chitano
- Dept of Paediatrics, Duke University Medical Center, Durham, NC
| | - L. Deng
- Program in Molecular and Integrative Physiological Sciences, Dept of Environmental Health, Harvard School of Public Health
- Bioengineering College, Chongqing University, Chongqing, China
| | - M. Dowell
- Section of Pulmonary and Critical Care Medicine
| | - D.H. Eidelman
- Meakins-Christie Laboratories, Dept of Medicine, McGill University, Montreal
| | - B. Fabry
- Center for Medical Physics and Technology, Erlangen, Germany
| | - N.J. Fairbank
- School of Biomedical Engineering, Dalhousie University, Halifax
| | | | - J.J. Fredberg
- Program in Molecular and Integrative Physiological Sciences, Dept of Environmental Health, Harvard School of Public Health
| | - W.T. Gerthoffer
- Dept of Pharmacology, University of Nevada School of Medicine, Reno, NV
| | | | - R. Gosens
- Dept of Physiology, University of Manitoba, Winnipeg
| | - S.J. Gunst
- Dept of Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - A.J. Halayko
- Dept of Physiology, University of Manitoba, Winnipeg
| | - R.H. Ingram
- Dept of Medicine, Emory University School of Medicine, Atlanta, GA
| | - C.G. Irvin
- Vermont Lung Center, University of Vermont College of Medicine, Burlington, VT
| | - A.L. James
- West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Nedlands
| | - L.J. Janssen
- Dept of Medicine, McMaster University, Hamilton, Canada
| | - G.G. King
- Woolcock Institute of Medical Research, Camperdown
| | - D.A. Knight
- James Hogg iCAPTURE Centre, University of British Columbia, Vancouver
| | - A.M. Lauzon
- Meakins-Christie Laboratories, Dept of Medicine, McGill University, Montreal
| | - O.J. Lakser
- Section of Paediatric Pulmonary Medicine, University of Chicago, Chicago, IL
| | - M.S. Ludwig
- Meakins-Christie Laboratories, Dept of Medicine, McGill University, Montreal
| | - K.R. Lutchen
- Dept of Biomedical Engineering, Boston University, Boston
| | - G.N. Maksym
- School of Biomedical Engineering, Dalhousie University, Halifax
| | - J.G. Martin
- Meakins-Christie Laboratories, Dept of Medicine, McGill University, Montreal
| | - T. Mauad
- Dept of Pathology, Sao Paulo University Medical School, Sao Paulo, Brazil
| | | | - S.M. Mijailovich
- Program in Molecular and Integrative Physiological Sciences, Dept of Environmental Health, Harvard School of Public Health
| | - H.W. Mitchell
- Discipline of Physiology, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Perth
| | | | - W. Mitzner
- Division of Physiology, Dept of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health
| | - T.M. Murphy
- Dept of Paediatrics, Duke University Medical Center, Durham, NC
| | - P.D. Paré
- James Hogg iCAPTURE Centre, University of British Columbia, Vancouver
| | - R. Pellegrino
- Dept of Respiratory Physiopathology, S. Croce e Carle Hospital, Cuneo, Italy
| | - M.J. Sanderson
- Dept of Physiology, University of Massachusetts Medical School, Worcester, MA
| | - R.R. Schellenberg
- James Hogg iCAPTURE Centre, University of British Columbia, Vancouver
| | - C.Y. Seow
- James Hogg iCAPTURE Centre, University of British Columbia, Vancouver
| | - P.S.P. Silveira
- Dept of Pathology, Sao Paulo University Medical School, Sao Paulo, Brazil
| | - P.G. Smith
- Dept of Paediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - J. Solway
- Section of Pulmonary and Critical Care Medicine
| | - N.L. Stephens
- Dept of Physiology, University of Manitoba, Winnipeg
| | - P.J. Sterk
- Dept of Pulmonology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - A.G. Stewart
- Dept of Pharmacology, University of Melbourne, Parkville, Australia
| | - D.D. Tang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY, USA
| | - R.S. Tepper
- Dept of Paediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - T. Tran
- Dept of Physiology, University of Manitoba, Winnipeg
| | - L. Wang
- Dept of Paediatrics, Duke University Medical Center, Durham, NC
| |
Collapse
|
11
|
Low R, Léguillette R, Lauzon AM. (+)Insert smooth muscle myosin heavy chain (SM-B): From single molecule to human. Int J Biochem Cell Biol 2006; 38:1862-74. [PMID: 16716643 DOI: 10.1016/j.biocel.2006.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/22/2006] [Accepted: 03/23/2006] [Indexed: 10/24/2022]
Abstract
In smooth muscle, alternative mRNA splicing of a single gene produces four myosin heavy chain (SMMHC) isoforms. Two of these isoforms differ by the presence [(+)insert] or absence [(-)insert] of a seven amino acid insert in the motor domain. This insert enhances the kinetic properties of myosin at the molecular level but its exact role at the cell and tissue levels still has to be elucidated. This review focuses on the expression and biological functions of the (+)insert isoform. Current knowledge is summarized regarding its tissue distribution in animals and humans. Studies at the molecular, cellular and tissue levels that aimed at understanding the contribution of this isoform to smooth muscle mechanical function are presented with a particular focus on velocity of shortening. In addition, the altered expression of the (+)insert isoform in diseases and models of diseases and the compensatory mechanisms that occur when the (+)insert is knocked out are discussed. The need for additional studies on the relationship of this isoform to contractile performance and how expression of this isoform is regulated are also considered.
Collapse
Affiliation(s)
- Robert Low
- University of Vermont, Burlington, VT 05405, United States
| | | | | |
Collapse
|
12
|
Babu GJ, Pyne GJ, Zhou Y, Okwuchukuasanya C, Brayden JE, Osol G, Paul RJ, Low RB, Periasamy M. Isoform switching from SM-B to SM-A myosin results in decreased contractility and altered expression of thin filament regulatory proteins. Am J Physiol Cell Physiol 2004; 287:C723-9. [PMID: 15140746 DOI: 10.1152/ajpcell.00029.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously generated an isoform-specific gene knockout mouse in which SM-B myosin is permanently replaced by SM-A myosin. In this study, we examined the effects of SM-B myosin loss on the contractile properties of vascular smooth muscle, specifically peripheral mesenteric vessels and aorta. The absence of SM-B myosin leads to decreased velocity of shortening and increased isometric force generation in mesenteric vessels. Surprisingly, the same changes occur in aorta, which contains little or no SM-B myosin in wild-type animals. Calponin and activated mitogen-activated protein kinase expression is increased and caldesmon expression is decreased in aorta, as well as in bladder. Light chain-17b isoform (LC(17b)) expression is increased in aorta. These results suggest that the presence or absence of SM-B myosin is a critical determinant of smooth muscle contraction and that its loss leads to additional changes in thin filament regulatory proteins.
Collapse
Affiliation(s)
- Gopal J Babu
- Dept. of Physiology and Cell Biology, Ohio State University College of Medicine, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Andersson KE, Arner A. Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev 2004; 84:935-86. [PMID: 15269341 DOI: 10.1152/physrev.00038.2003] [Citation(s) in RCA: 607] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The detrusor smooth muscle is the main muscle component of the urinary bladder wall. Its ability to contract over a large length interval and to relax determines the bladder function during filling and micturition. These processes are regulated by several external nervous and hormonal control systems, and the detrusor contains multiple receptors and signaling pathways. Functional changes of the detrusor can be found in several clinically important conditions, e.g., lower urinary tract symptoms (LUTS) and bladder outlet obstruction. The aim of this review is to summarize and synthesize basic information and recent advances in the understanding of the properties of the detrusor smooth muscle, its contractile system, cellular signaling, membrane properties, and cellular receptors. Alterations in these systems in pathological conditions of the bladder wall are described, and some areas for future research are suggested.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Dept. of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
14
|
Zheng Y, Weber WT, Wang S, Wein AJ, Zderic SA, Chacko S, DiSanto ME. Generation of a cell line with smooth muscle phenotype from hypertrophied urinary bladder. Am J Physiol Cell Physiol 2002; 283:C373-82. [PMID: 12055106 DOI: 10.1152/ajpcell.00002.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have established a cell line from hypertrophied rabbit urinary bladder smooth muscle (SM) that stably expresses SM myosin (SMM). These cells, termed BSM, are spindle shaped and form swirls, similar to the "hills and valleys" described for cultured aortic SM cells. Western blotting revealed that BSM expresses the amino-terminal SMM heavy chain isoform SM-B, the carboxy-terminal SM1 and SM2 isoforms, and SM alpha-actin. In addition, they express cGMP-dependent protein kinase G, made by contractile SM cells in vitro but not by noncontractile cells synthesizing extracellular matrix. Immunofluorescence studies indicate a homogeneous population of cells expressing alpha-actin and SMM, including the SM-B isoform, and karyotyping demonstrates a stable 4N chromosomal pattern. These cells also express calcium-dependent myosin light chain kinase and phosphatase activity and contract in response to the muscarinic agonist bethanechol. To our knowledge, BSM is the first visceral SM cell line that expresses the SM-B isoform and might serve as a useful model to study the transcriptional regulation of tissue-specific SMM isoforms in differentiation and pathological SM.
Collapse
Affiliation(s)
- Yongmu Zheng
- Division of Urology, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
PURPOSE Osteopontin is a highly phosphorylated, calcium binding sialoprotein characterized by a conserved arginine-glycine-aspartate sequence. Vitronectin receptor (alphavbeta3 integrin) and hyaluronan receptor (CD44) are documented as receptors for osteopontin and their expression has been established in the bladder. Based on that finding and the fact that osteopontin protein is present in urine we hypothesized that osteopontin is expressed in the lower urinary tract. MATERIALS AND METHODS Osteopontin messenger (m)RNA and protein were analyzed in 5 adult urinary tracts and 5 neonatal bladders of New Zealand White rabbits using reverse transcriptase-polymerase chain reaction and immunohistochemical testing. Analysis of mRNA expression and localization of osteopontin receptors, alphavbeta3 integrin and CD44 were also performed in adult bladders and primary cultures of detrusor myocytes. RESULTS Adult renal pelvis, ureter, bladder and urethra, and neonatal bladders contained significant levels of osteopontin mRNA. Immunohistochemical staining revealed osteopontin expression in all layers of the transitional epithelium of the bladder, co-localizing with alphavbeta3 integrin mainly in the superficial layers and with CD44 mainly in the basal layers. Osteopontin was detected within the cytoplasm of smooth muscle cells, while alphavbeta3 integrin was located closer to the plasmalemma. Furthermore, primary cultured detrusor myocytes expressed osteopontin mRNA in stable fashion for up to 4 passages. Treating bladder myocyte cultures with insulin-like growth factor-1 and 17beta-estradiol resulted in up-regulation and down-regulation of osteopontin mRNA, respectively. CONCLUSIONS Adult and neonatal rabbit detrusors are a prominent source of osteopontin in vivo and in vitro. Epithelial osteopontin may be a source of osteopontin in urine. The co-localization of osteopontin in the bladder epithelium with alphavbeta3 integrin and CD44 suggests a role in maintaining the integrity of the transitional epithelium by providing the sealing and adhesiveness needed for the impermeable state of the bladder.
Collapse
Affiliation(s)
- H A Arafat
- Division of Urology and Department of Pathobiology, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|