1
|
Prager M, Al Jalali V, Zeitlinger M. Clinical Pharmacokinetics of Antitubercular Drugs in the Overweight and Obese Population: Implications for Dosage Adjustments. Clin Pharmacokinet 2025; 64:193-214. [PMID: 39792209 PMCID: PMC11782447 DOI: 10.1007/s40262-024-01442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 10/21/2024] [Indexed: 01/12/2025]
Abstract
The rise in global obesity prevalence has increased the need to understand the pharmacokinetics of drugs in overweight and obese individuals. Tuberculosis remains a significant health challenge, and its treatment outcomes can be influenced by the pharmacokinetic profiles of antitubercular agents. This literature review aims to point out the clinical pharmacokinetics of antitubercular drugs in the overweight and obese patient population, highlighting considerations for potential dosage adjustments. We conducted a comprehensive search of the PubMed US National Library of Medicine from inception to January 2024. Articles focusing on the pharmacokinetics of antitubercular agents used for both drug-susceptible and multidrug-resistant tuberculosis in overweight and obese adults were included. In total, 349 scientific articles were identified and examined for human pharmacokinetic parameters. Of these, 19 were included in this article. To highlight potential differences, pharmacokinetic data for normal-weight tuberculosis patients are also presented, albeit selectively. In general, pharmacokinetic studies of antitubercular agents in overweight and obese individuals are lacking. Fixed-dose combinations often used in the treatment of drug-susceptible tuberculosis are not recommended when treating these population groups. Rather, individual dosing based on therapeutic drug monitoring and the known solubility of the substance should be considered. To improve the management of tuberculosis in overweight and obese patients, there is an urgent need for pharmacokinetic studies and, ultimately, adequate dosing in this patient population, especially given the increasing prevalence of obesity.
Collapse
Affiliation(s)
- Marlene Prager
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Valentin Al Jalali
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
2
|
Prothionamide Dose Optimization Using Population Pharmacokinetics for Multidrug-Resistant Tuberculosis Patients. Antimicrob Agents Chemother 2022; 66:e0189321. [PMID: 35938799 PMCID: PMC9487524 DOI: 10.1128/aac.01893-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Prothionamide, a second-line drug for multidrug-resistant tuberculosis (MDR-TB), has been in use for a few decades. However, its pharmacokinetic (PK) profile remains unclear. This study aimed to develop a population PK model for prothionamide and then apply the model to determine the optimal dosing regimen for MDR-TB patients. Multiple plasma samples were collected from 27 MDR-TB patients who had been treated with prothionamide at 2 different study hospitals. Prothionamide was administered according to the weight-band dose regimen (500 mg/day for weight <50 kg and 750 mg/day for weight >50 kg) recommended by the World Health Organization. The population PK model was developed using nonlinear mixed-effects modeling. The probability of target attainment, based on systemic exposure and MIC, was used as a response target. Fixed-dose regimens (500 or 750 mg/day) were simulated to compare the efficacies of various dosing regimens. PK profiles adequately described the two-compartment model with first-order elimination and the transit absorption compartment model with allometric scaling on clearance. All dosing regimens had effectiveness >90% for MIC values <0.4 μg/mL in 1.0-log kill target. However, a fixed dose of 750 mg/day was the only regimen that achieved the target resistance suppression of ≥90% for MIC values of <0.2 μg/mL. In conclusion, fixed-dose prothionamide (750 mg/day), regardless of weight-band, was appropriate for adult MDR-TB patients with weights of 40 to 67 kg.
Collapse
|
3
|
Flipo M, Frita R, Bourotte M, Martínez-Martínez MS, Boesche M, Boyle GW, Derimanov G, Drewes G, Gamallo P, Ghidelli-Disse S, Gresham S, Jiménez E, de Mercado J, Pérez-Herrán E, Porras-De Francisco E, Rullas J, Casado P, Leroux F, Piveteau C, Kiass M, Mathys V, Soetaert K, Megalizzi V, Tanina A, Wintjens R, Antoine R, Brodin P, Delorme V, Moune M, Djaout K, Slupek S, Kemmer C, Gitzinger M, Ballell L, Mendoza-Losana A, Lociuro S, Deprez B, Barros-Aguirre D, Remuiñán MJ, Willand N, Baulard AR. The small-molecule SMARt751 reverses Mycobacterium tuberculosis resistance to ethionamide in acute and chronic mouse models of tuberculosis. Sci Transl Med 2022; 14:eaaz6280. [PMID: 35507672 DOI: 10.1126/scitranslmed.aaz6280] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022]
Abstract
The sensitivity of Mycobacterium tuberculosis, the pathogen that causes tuberculosis (TB), to antibiotic prodrugs is dependent on the efficacy of the activation process that transforms the prodrugs into their active antibacterial moieties. Various oxidases of M. tuberculosis have the potential to activate the prodrug ethionamide. Here, we used medicinal chemistry coupled with a phenotypic assay to select the N-acylated 4-phenylpiperidine compound series. The lead compound, SMARt751, interacted with the transcriptional regulator VirS of M. tuberculosis, which regulates the mymA operon encoding a monooxygenase that activates ethionamide. SMARt751 boosted the efficacy of ethionamide in vitro and in mouse models of acute and chronic TB. SMARt751 also restored full efficacy of ethionamide in mice infected with M. tuberculosis strains carrying mutations in the ethA gene, which cause ethionamide resistance in the clinic. SMARt751 was shown to be safe in tests conducted in vitro and in vivo. A model extrapolating animal pharmacokinetic and pharmacodynamic parameters to humans predicted that as little as 25 mg of SMARt751 daily would allow a fourfold reduction in the dose of ethionamide administered while retaining the same efficacy and reducing side effects.
Collapse
Affiliation(s)
- Marion Flipo
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France
| | - Rosangela Frita
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Marilyne Bourotte
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France.,BioVersys SAS, Lille, France
| | | | - Markus Boesche
- Cellzome GmbH . A GSK Company, 69117 Heidelberg, Germany
| | - Gary W Boyle
- GSK, David Jack Centre for R&D, Park Road, Ware, Hertfordshire SG12 ODP, UK
| | - Geo Derimanov
- GSK, Clinical Pharmacology and Experimental Medicine, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Gerard Drewes
- Cellzome GmbH . A GSK Company, 69117 Heidelberg, Germany
| | - Pablo Gamallo
- GSK, Tres Cantos R&D, PTM, Tres Cantos, 28760 Madrid, Spain
| | | | - Stephanie Gresham
- GSK, David Jack Centre for R&D, Park Road, Ware, Hertfordshire SG12 ODP, UK
| | - Elena Jiménez
- GSK, Tres Cantos R&D, PTM, Tres Cantos, 28760 Madrid, Spain
| | | | | | | | - Joaquín Rullas
- GSK, Tres Cantos R&D, PTM, Tres Cantos, 28760 Madrid, Spain
| | | | - Florence Leroux
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France
| | - Catherine Piveteau
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France
| | - Mehdi Kiass
- National Reference Center for Tuberculosis and Mycobacteria, Sciensano, Brussels, Belgium
| | - Vanessa Mathys
- National Reference Center for Tuberculosis and Mycobacteria, Sciensano, Brussels, Belgium
| | - Karine Soetaert
- National Reference Center for Tuberculosis and Mycobacteria, Sciensano, Brussels, Belgium
| | - Véronique Megalizzi
- Microbiology, Bioorganic and Macromolecular Chemistry, Facult. de Pharmacie, Universit. Libre de Bruxelles, Brussels, Belgium
| | - Abdalkarim Tanina
- Microbiology, Bioorganic and Macromolecular Chemistry, Facult. de Pharmacie, Universit. Libre de Bruxelles, Brussels, Belgium
| | - René Wintjens
- Microbiology, Bioorganic and Macromolecular Chemistry, Facult. de Pharmacie, Universit. Libre de Bruxelles, Brussels, Belgium
| | - Rudy Antoine
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Priscille Brodin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France
| | - Vincent Delorme
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Martin Moune
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Kamel Djaout
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Stéphanie Slupek
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | | | | | - Lluis Ballell
- GSK, Tres Cantos R&D, PTM, Tres Cantos, 28760 Madrid, Spain
| | | | | | - Benoit Deprez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France
| | | | | | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France
| | - Alain R Baulard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France
| |
Collapse
|
4
|
The effect of isoniazid intake on ethionamide pharmacokinetics and target attainment in multidrug-resistant tuberculosis patients. Antimicrob Agents Chemother 2021; 65:e0027821. [PMID: 34310215 DOI: 10.1128/aac.00278-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Ethionamide is recommended as part of regimens to treat multidrug-resistant and rifampicin-resistant tuberculosis. The study was conducted to (i) describe the distribution of ethionamide minimum inhibitory concentrations (MICs), (ii) describe the pharmacokinetics of ethionamide, and (iii) determine the probability of attaining target AUC0-24/MIC values associated with suppression of resistant subpopulation and microbial kill. Participants received 15-20 mg/kg of ethionamide daily (in 500 or 750 mg doses), as part of a multidrug regimen. Pretreatment MICs of ethionamide for M. tuberculosis sputum isolates were determined using Sensititre MYCOTB MIC plates. Plasma concentrations of ethionamide (measured pre-dose and at 2, 4, 6, 8 and 10 hours post-dose) were available for 84 patients. A one-compartment disposition model including a liver compartment capturing hepatic extraction, best described ethionamide pharmacokinetics. Clearance and volume were allometrically scaled using fat-free mass. Isoniazid co-administration reduced ethionamide clearance by 31% resulting in a 44% increase in AUC0-24. The median (range) MIC (n=111) was 2.5 mg/L (<0.3 to >40 mg/L). Simulations showed increased daily doses of ethionamide (1 250 mg, 1 500 mg, and 1 750 mg for patients weighing ≤45 kg, 46-70 kg, and >70 kg, respectively) resulted in the probability of attaining a fAUC0-24/MIC ratio ≥ 42 in more than 90% of patients, only at the lowest MIC of 0.3 mg/L. The WHO recommended doses of ethionamide do not achieve target concentrations even for the lowest MIC measured in the cohort.
Collapse
|
5
|
Sturkenboom MGG, Märtson AG, Svensson EM, Sloan DJ, Dooley KE, van den Elsen SHJ, Denti P, Peloquin CA, Aarnoutse RE, Alffenaar JWC. Population Pharmacokinetics and Bayesian Dose Adjustment to Advance TDM of Anti-TB Drugs. Clin Pharmacokinet 2021; 60:685-710. [PMID: 33674941 PMCID: PMC7935699 DOI: 10.1007/s40262-021-00997-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Tuberculosis (TB) is still the number one cause of death due to an infectious disease. Pharmacokinetics and pharmacodynamics of anti-TB drugs are key in the optimization of TB treatment and help to prevent slow response to treatment, acquired drug resistance, and adverse drug effects. The aim of this review was to provide an update on the pharmacokinetics and pharmacodynamics of anti-TB drugs and to show how population pharmacokinetics and Bayesian dose adjustment can be used to optimize treatment. We cover aspects on preclinical, clinical, and population pharmacokinetics of different drugs used for drug-susceptible TB and multidrug-resistant TB. Moreover, we include available data to support therapeutic drug monitoring of these drugs and known pharmacokinetic and pharmacodynamic targets that can be used for optimization of therapy. We have identified a wide range of population pharmacokinetic models for first- and second-line drugs used for TB, which included models built on NONMEM, Pmetrics, ADAPT, MWPharm, Monolix, Phoenix, and NPEM2 software. The first population models were built for isoniazid and rifampicin; however, in recent years, more data have emerged for both new anti-TB drugs, but also for defining targets of older anti-TB drugs. Since the introduction of therapeutic drug monitoring for TB over 3 decades ago, further development of therapeutic drug monitoring in TB next steps will again depend on academic and clinical initiatives. We recommend close collaboration between researchers and the World Health Organization to provide important guideline updates regarding therapeutic drug monitoring and pharmacokinetics/pharmacodynamics.
Collapse
Affiliation(s)
- Marieke G G Sturkenboom
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anne-Grete Märtson
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Elin M Svensson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Derek J Sloan
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Liverpool School of Tropical Medicine, Liverpool, UK.,School of Medicine, University of St Andrews, St Andrews, UK
| | - Kelly E Dooley
- Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Simone H J van den Elsen
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy, Hospital Group Twente, Almelo, Hengelo, the Netherlands
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Charles A Peloquin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan-Willem C Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. .,Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia. .,Westmead Hospital, Westmead, NSW, Australia. .,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Mugabo P, Mulubwa M. Ethionamide population pharmacokinetics/pharmacodynamics and therapeutic implications in South African adult patients with drug-resistant tuberculosis. Br J Clin Pharmacol 2021; 87:3863-3870. [PMID: 33620754 DOI: 10.1111/bcp.14795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2020] [Revised: 02/02/2021] [Accepted: 02/13/2021] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Ethionamide is part of the drug-resistant tuberculosis regimen whose pharmacokinetic (PK) and pharmacodynamic (PD) information is limited. The aim of the study was to describe the PK and simulate doses to assess PD attainment. METHODS This was an observational population PK study of patients admitted for drug-resistant tuberculosis at a hospital in South Africa. Nonlinear mixed-effects modelling implemented in Monolix 2019R2 was used to estimate population pharmacokinetic parameters. We performed Monte Carlo simulations to assess and optimise the dose regimen. The target Cmax range was 2.5-5 μg/mL, which is within the minimum inhibitory concentration (MIC) range. The target AUC0-24h was 140.5 μg*h/mL, which corresponds to the PK/PD target ratio AUC0-24h /MIC of 56.2. RESULTS A one-compartment pharmacokinetic model with a lag-time, first-order absorption and elimination best described the PK of ethionamide. The lag-time, absorption rate constant (ka), volume of distribution (V/F) and clearance (Cl/F) were 0.66 hours, 0.434 h-1 , 180 L and 99.5 L/h, respectively, for a typical individual weighing 52.6 kg. Between-subject variability in lag-time, ka, V/F and Cl/F were 38%, 92%, 168% and 120%, respectively. Simulation of the recommended doses of 15-20 mg/kg, 500 mg, 750 mg and 1000 mg for patients in the weight bands <33, 33-50, 51-70 and >70 kg resulted in <17% and 3% of the patients achieving the target Cmax and AUC0-24h , respectively. CONCLUSION There is high variability in ethionamide PK and very few patients attain the desired target exposure at standard or optimised doses. We propose individualised dose regimen optimisation.
Collapse
Affiliation(s)
- Pierre Mugabo
- School of Pharmacy, University of the Western Cape, Private bag X17, Bellville 7535, Cape Town, South Africa
| | - Mwila Mulubwa
- School of Pharmacy, University of the Western Cape, Private bag X17, Bellville 7535, Cape Town, South Africa
| |
Collapse
|
7
|
Otalvaro JD, Hernandez AM, Rodriguez CA, Zuluaga AF. Population Pharmacokinetic Models of Antituberculosis Drugs in Patients: A Systematic Critical Review. Ther Drug Monit 2021; 43:108-115. [PMID: 32956238 DOI: 10.1097/ftd.0000000000000803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2019] [Accepted: 06/28/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Tuberculosis (TB) remains one of the most important infectious diseases. Population pharmacokinetic (pop-PK) models are widely used to individualize dosing regimens of several antibiotics, but their application in anti-TB drug studies is scant. The aim of this study was to provide an insight regarding the status of pop-PK for these drugs and to compare results obtained through both parametric and nonparametric approaches to design precise dosage regimens. METHODS First, a systematic approach was implemented, searching in PubMed and Google Scholar. Articles that did not include human patients, that lacked an explicit structural model, that analyzed drugs inactive against M. tuberculosis, or were without full-text access, were excluded. Second, the PK parameters were summarized and categorized as parametric versus nonparametric results. Third, a Monte Carlo simulation was performed in Pmetrics using the results of both groups, and an error term was built to describe the imprecision of each PK modeling approach. RESULTS Thirty-three articles reporting at least 1 pop-PK model of 19 anti-TB drug were found; 46 different models including PK parameter estimates and their relevant covariates were also reported. Only 9 models were based on nonparametric approaches. Rifampin was the drug most studied, but only using parametric approaches. The simulations showed that nonparametric approaches improve the error term compared with parametric approaches. CONCLUSIONS More and better models, ideally using nonparametric approaches linked with clear pharmacodynamic goals, are required to optimize anti-TB drug dosing, as recommended in the WHO End TB strategy.
Collapse
Affiliation(s)
- Julian D Otalvaro
- CIEMTO: Drug and Poison Information and Research Center, Laboratorio Integrado de Medicina Especializada (LIME), IPS Universitaria, Facultad de Medicina, Universidad de Antioquia; and
- Bioinstrumentation and Clinical Engineering Research Group-GIBIC, Bioengineering Department, Engineering Faculty, Universidad de Antioquia, Medellin, Colombia
| | - Alher M Hernandez
- Bioinstrumentation and Clinical Engineering Research Group-GIBIC, Bioengineering Department, Engineering Faculty, Universidad de Antioquia, Medellin, Colombia
| | - Carlos A Rodriguez
- CIEMTO: Drug and Poison Information and Research Center, Laboratorio Integrado de Medicina Especializada (LIME), IPS Universitaria, Facultad de Medicina, Universidad de Antioquia; and
| | - Andres F Zuluaga
- CIEMTO: Drug and Poison Information and Research Center, Laboratorio Integrado de Medicina Especializada (LIME), IPS Universitaria, Facultad de Medicina, Universidad de Antioquia; and
| |
Collapse
|
8
|
Märtson AG, Burch G, Ghimire S, Alffenaar JWC, Peloquin CA. Therapeutic drug monitoring in patients with tuberculosis and concurrent medical problems. Expert Opin Drug Metab Toxicol 2020; 17:23-39. [PMID: 33040625 DOI: 10.1080/17425255.2021.1836158] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Therapeutic drug monitoring (TDM) has been recommended for treatment optimization in tuberculosis (TB) but is only is used in certain countries e.g. USA, Germany, the Netherlands, Sweden and Tanzania. Recently, new drugs have emerged and PK studies in TB are continuing, which contributes further evidence for TDM in TB. The aim of this review is to provide an update on drugs used in TB, treatment strategies for these drugs, and TDM to support broader implementation. AREAS COVERED This review describes the different drug classes used for TB, multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB), along with their pharmacokinetics, dosing strategies, TDM and sampling strategies. Moreover, the review discusses TDM for patient TB and renal or liver impairment, patients co-infected with HIV or hepatitis, and special patient populations - children and pregnant women. EXPERT OPINION TB treatment has a long history of using 'one size fits all.' This has contributed to treatment failures, treatment relapses, and the selection of drug-resistant isolates. While challenging in resource-limited circumstances, TDM offers the clinician the opportunity to individualize and optimize treatment early in treatment. This approach may help to refine treatment and thereby reduce adverse effects and poor treatment outcomes. Funding, training, and randomized controlled trials are needed to advance the use of TDM for patients with TB.
Collapse
Affiliation(s)
- Anne-Grete Märtson
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands
| | - Gena Burch
- Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy and Emerging Pathogens Institute, University of Florida , Gainesville, FL, USA
| | - Samiksha Ghimire
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands
| | - Jan-Willem C Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands.,Department of Pharmacy, Westmead Hospital , Sydney, Australia.,Sydney Pharmacy School, The University of Sydney , Sydney, New South Wales, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney , Sydney, Australia
| | - Charles A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy and Emerging Pathogens Institute, University of Florida , Gainesville, FL, USA
| |
Collapse
|
9
|
Ethionamide Population Pharmacokinetic Model and Target Attainment in Multidrug-Resistant Tuberculosis. Antimicrob Agents Chemother 2020; 64:AAC.00713-20. [PMID: 32631828 DOI: 10.1128/aac.00713-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2020] [Accepted: 06/30/2020] [Indexed: 01/07/2023] Open
Abstract
Ethionamide (ETA), an isonicotinic acid derivative, is part of the multidrug-resistant tuberculosis (MDR-TB) regimen. The current guidelines have deprioritized ETA because it is potentially less effective than other agents. Our aim was to develop a population pharmacokinetic (PK) model and simulate ETA dosing regimens in order to assess target attainment. This study included subjects from four different sites, including healthy volunteers and patients with MDR-TB. The TB centers included were two in the United States and one in Bangladesh. Patients who received ETA and had at least one drug concentration reported were included. The population PK model was developed, regimens with a total of 1,000 to 2,250 mg daily were simulated, and target attainment using published MICs and targets of 1.0-log kill and resistance suppression was assessed with the Pmetrics R package. We included 1,167 ethionamide concentrations from 94 subjects. The final population model was a one-compartment model with first-order elimination and absorption with a lag time. The mean (standard deviation [SD]) final population parameter estimates were as follows: absorption rate constant, 1.02 (1.11) h-1; elimination rate constant, 0.69 (0.46) h-1; volume of distribution, 104.16 (59.87) liters; lag time, 0.43 (0.32) h. A total daily dose of 1,500 mg or more was needed for ≥90% attainment of the 1.0-log kill target at a MIC of 1 mg/liter, and 2,250 mg/day led to 80% attainment of the resistance suppression target at a MIC of 0.5 mg/liter. In conclusion, we developed a population PK model and assessed target attainment for different ETA regimens. Patients may not be able to tolerate the doses needed to achieve the predefined targets supporting the current recommendations for ETA deprioritization.
Collapse
|
10
|
Population Pharmacokinetics and Dosing of Ethionamide in Children with Tuberculosis. Antimicrob Agents Chemother 2020; 64:AAC.01984-19. [PMID: 31871093 DOI: 10.1128/aac.01984-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2019] [Accepted: 12/12/2019] [Indexed: 12/23/2022] Open
Abstract
Ethionamide has proven efficacy against both drug-susceptible and some drug-resistant strains of Mycobacterium tuberculosis Limited information on its pharmacokinetics in children is available, and current doses are extrapolated from weight-based adult doses. Pediatric doses based on more robust evidence are expected to improve antituberculosis treatment, especially in small children. In this analysis, ethionamide concentrations in children from 2 observational clinical studies conducted in Cape Town, South Africa, were pooled. All children received ethionamide once daily at a weight-based dose of approximately 20 mg/kg of body weight (range, 10.4 to 25.3 mg/kg) in combination with other first- or second-line antituberculosis medications and with antiretroviral therapy in cases of HIV coinfection. Pharmacokinetic parameters were estimated using nonlinear mixed-effects modeling. The MDR-PK1 study contributed data for 110 children on treatment for multidrug-resistant tuberculosis, while the DATiC study contributed data for 9 children treated for drug-susceptible tuberculosis. The median age of the children in the studies combined was 2.6 years (range, 0.23 to 15 years), and the median weight was 12.5 kg (range, 2.5 to 66 kg). A one-compartment, transit absorption model with first-order elimination best described ethionamide pharmacokinetics in children. Allometric scaling of clearance (typical value, 8.88 liters/h), the volume of distribution (typical value, 21.4 liters), and maturation of clearance and absorption improved the model fit. HIV coinfection decreased the ethionamide bioavailability by 22%, rifampin coadministration increased clearance by 16%, and ethionamide administration by use of a nasogastric tube increased the rate, but the not extent, of absorption. The developed model was used to predict pediatric doses achieving the same drug exposure achieved in 50- to 70-kg adults receiving 750-mg once-daily dosing. Based on model predictions, we recommend a weight-banded pediatric dosing scheme using scored 125-mg tablets.
Collapse
|
11
|
Abstract
Multidrug-resistant tuberculosis (MDR TB) has become a major global health concern and is also an issue in children. Children with MDR TB need longer duration of treatment with multiple drugs. The MDR TB treatment regimen usually comprises of a fluoroquinolone, an aminoglycoside, ethionamide, cycloserine, pyrazinamide and ethambutol. In the absence of pediatric friendly tablets/formulations, in most cases the adult tablets are either crushed or broken. This is likely to lead to inaccurate dosing. Very limited information is available on the pharmacokinetics of second-line anti-TB drugs in children with MDR TB, except for few studies from South Africa and one from India. Drugs such as linezolid, clofazimine are also being considered for the treatment of MDR TB in children. However, their pharmacokinetics is not known in the pediatric population. It is important to generate pharmacokinetic studies of drugs used to treat MDR TB in children in different settings, which would provide useful information on the adequacy of drug doses.
Collapse
Affiliation(s)
- Geetha Ramachandran
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Mayor Sathyamoorthy Road, Chetpet, Chennai, 600 031, India.
| |
Collapse
|
12
|
Gunjal DB, Gore AH, Bhosale AR, Naik VM, Anbhule PV, Shejwal RV, Kolekar GB. Waste derived sustainable carbon nanodots as a new approach for sensitive quantification of ethionamide and cell imaging. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.02.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/27/2022]
|
13
|
Nguyen PTT, Parvez MM, Kim MJ, Yoo SE, Ahn S, Ghim JL, Shin JG. Physiologically Based Pharmacokinetic Modeling Approach to Predict Drug-Drug Interactions With Ethionamide Involving Impact of Genetic Polymorphism on FMO3. J Clin Pharmacol 2019; 59:880-889. [PMID: 30690726 DOI: 10.1002/jcph.1378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/13/2018] [Accepted: 01/02/2019] [Indexed: 11/06/2022]
Abstract
The widely used second-line antituberculosis drug ethionamide shows wide interindividual variability in its disposition; however, the relevant factors affecting this phenomenon have not been characterized. We previously reported the major contribution of flavin-containing monooxygenase 3 (FMO3) in the reductive elimination pathway of ethionamide. In this study, ethionamide metabolism was potentially inhibited by methimazole in vitro. The drug-drug interaction leading to methimazole affecting the disposition of ethionamide mediated by FMO3 was then quantitated using a bottom-up approach with a physiologically based pharmacokinetic framework. The maximum concentration (Cmax ) and area under the curve (AUC) of ethionamide were estimated to increase by 13% and 16%, respectively, when coadministered with methimazole. Subsequently, we explored the effect of FMO3 genetic polymorphism on metabolic capacity, by constructing 2 common functional variants, Lys158 -FMO3 and Gly308 -FMO3. Compared to the wild type, recombinant Lys158 -FMO3 and Gly308 -FMO3 variants significantly decreased the intrinsic clearance of ethionamide by 2% and 24%, respectively. Two prevalent functional variants of FMO3 were predicted to affect ethionamide disposition, with mean ratios of Cmax and AUC of up to 1.5 and 1.7, respectively, in comparison with the wild type. In comparing single ethionamide administration with the wild type, simulations of the combined effects of comedications and FMO3 genetic polymorphism estimated that the Cmax and AUC ratios of ethionamide increased up to 1.7 and 2.0, respectively. These findings suggested that FMO3-mediated drug-drug interaction and genetic polymorphism could be important determinants of interindividual heterogeneity in ethionamide disposition that need to be considered comprehensively to optimize the personalized dosing of ethionamide.
Collapse
Affiliation(s)
- Phuong Thi Thu Nguyen
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea.,Faculty of Pharmacy, Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam
| | - Md Masud Parvez
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Min Jung Kim
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Sung Eun Yoo
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Sangzin Ahn
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea
| | - Jong-Lyul Ghim
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea.,Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - Jae-Gook Shin
- Department of Pharmacology and Clinical Pharmacology, PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea.,Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, Republic of Korea.,Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan, Republic of Korea
| |
Collapse
|
14
|
Deshpande D, Pasipanodya JG, Mpagama SG, Srivastava S, Bendet P, Koeuth T, Lee PS, Heysell SK, Gumbo T. Ethionamide Pharmacokinetics/Pharmacodynamics-derived Dose, the Role of MICs in Clinical Outcome, and the Resistance Arrow of Time in Multidrug-resistant Tuberculosis. Clin Infect Dis 2018; 67:S317-S326. [PMID: 30496457 PMCID: PMC6260165 DOI: 10.1093/cid/ciy609] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/30/2023] Open
Abstract
Background Ethionamide is used to treat multidrug-resistant tuberculosis (MDR-TB). The antimicrobial pharmacokinetics/pharmacodynamics, the contribution of ethionamide to the multidrug regimen, and events that lead to acquired drug resistance (ADR) are unclear. Methods We performed a multidose hollow fiber system model of tuberculosis (HFS-TB) study to identify the 0-24 hour area under the concentration-time curve (AUC0-24) to minimum inhibitory concentration (MIC) ratios that achieved maximal kill and ADR suppression, defined as target exposures. Ethionamide-resistant isolates underwent whole-genome and targeted Sanger sequencing. We utilized Monte Carlo experiments (MCEs) to identify ethionamide doses that would achieve the target exposures in 10000 patients with pulmonary tuberculosis. We also identified predictors of time-to-sputum conversion in Tanzanian patients on ethionamide- and levofloxacin-based regimens using multivariate adaptive regression splines (MARS). Results An AUC0-24/MIC >56.2 was identified as the target exposure in the HFS-TB. Early efflux pump induction to ethionamide monotherapy led to simultaneous ethambutol and isoniazid ADR, which abrogated microbial kill of an isoniazid-ethambutol-ethionamide regimen. Genome sequencing of isolates that arose during ethionamide monotherapy revealed mutations in both ethA and embA. In MCEs, 20 mg/kg/day achieved the AUC0-24/MIC >56.2 in >95% of patients, provided the Sensititre assay MIC was <2.5 mg/L. In the clinic, MARS revealed that ethionamide Sensititre MIC had linear negative relationships with time-to-sputum conversion until an MIC of 2.5 mg/L, above which patients with MDR-TB failed combination therapy. Conclusions Ethionamide is an important contributor to MDR-TB treatment regimens, at Sensititre MIC <2.5 mg/L. Suboptimal ethionamide exposures led to efflux pump-mediated ADR.
Collapse
Affiliation(s)
- Devyani Deshpande
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Jotam G Pasipanodya
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | | | - Shashikant Srivastava
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Paula Bendet
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Thearith Koeuth
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Pooi S Lee
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville
| | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| |
Collapse
|
15
|
Costa-Gouveia J, Pancani E, Jouny S, Machelart A, Delorme V, Salzano G, Iantomasi R, Piveteau C, Queval CJ, Song OR, Flipo M, Deprez B, Saint-André JP, Hureaux J, Majlessi L, Willand N, Baulard A, Brodin P, Gref R. Combination therapy for tuberculosis treatment: pulmonary administration of ethionamide and booster co-loaded nanoparticles. Sci Rep 2017; 7:5390. [PMID: 28710351 PMCID: PMC5511234 DOI: 10.1038/s41598-017-05453-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/14/2017] [Accepted: 05/24/2017] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) is a leading infectious cause of death worldwide. The use of ethionamide (ETH), a main second line anti-TB drug, is hampered by its severe side effects. Recently discovered "booster" molecules strongly increase the ETH efficacy, opening new perspectives to improve the current clinical outcome of drug-resistant TB. To investigate the simultaneous delivery of ETH and its booster BDM41906 in the lungs, we co-encapsulated these compounds in biodegradable polymeric nanoparticles (NPs), overcoming the bottlenecks inherent to the strong tendency of ETH to crystallize and the limited water solubility of this Booster. The efficacy of the designed formulations was evaluated in TB infected macrophages using an automated confocal high-content screening platform, showing that the drugs maintained their activity after incorporation in NPs. Among tested formulations, "green" β-cyclodextrin (pCD) based NPs displayed the best physico-chemical characteristics and were selected for in vivo studies. The NPs suspension, administered directly into mouse lungs using a Microsprayer®, was proved to be well-tolerated and led to a 3-log decrease of the pulmonary mycobacterial load after 6 administrations as compared to untreated mice. This study paves the way for a future use of pCD NPs for the pulmonary delivery of the [ETH:Booster] pair in TB chemotherapy.
Collapse
MESH Headings
- Administration, Inhalation
- Animals
- Antitubercular Agents/pharmacology
- Disease Models, Animal
- Drug Carriers
- Drug Compounding/methods
- Drug Synergism
- Drug Therapy, Combination/methods
- Ethionamide/pharmacology
- Female
- Humans
- Mice
- Mice, Inbred BALB C
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/growth & development
- Mycobacterium tuberculosis/pathogenicity
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Oxadiazoles/pharmacology
- Piperidines/pharmacology
- Polylactic Acid-Polyglycolic Acid Copolymer/chemistry
- RAW 264.7 Cells
- Solubility
- Treatment Outcome
- Tuberculosis, Multidrug-Resistant/drug therapy
- Tuberculosis, Multidrug-Resistant/microbiology
- Tuberculosis, Multidrug-Resistant/pathology
- Tuberculosis, Pulmonary/drug therapy
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/pathology
- beta-Cyclodextrins/chemistry
Collapse
Affiliation(s)
- Joana Costa-Gouveia
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Elisabetta Pancani
- University of Paris-Sud, University Paris-Saclay, CNRS, UMR 8214 - Institute for Molecular Sciences of Orsay (ISMO), 91405, Orsay, France
| | - Samuel Jouny
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Arnaud Machelart
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Vincent Delorme
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Giuseppina Salzano
- University of Paris-Sud, University Paris-Saclay, CNRS, UMR 8214 - Institute for Molecular Sciences of Orsay (ISMO), 91405, Orsay, France
| | - Raffaella Iantomasi
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Catherine Piveteau
- Univ. Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000, Lille, France
| | - Christophe J Queval
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Ok-Ryul Song
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Marion Flipo
- Univ. Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000, Lille, France
| | - Benoit Deprez
- Univ. Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000, Lille, France
| | | | - José Hureaux
- University Hospital Center of Angers, 49000, Angers, France
| | - Laleh Majlessi
- Pathogénomique Mycobactérienne Intégrée, Département de Génomes et Génétique, Institut Pasteur, Paris, France
| | - Nicolas Willand
- Univ. Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000, Lille, France
| | - Alain Baulard
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Priscille Brodin
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France.
| | - Ruxandra Gref
- University of Paris-Sud, University Paris-Saclay, CNRS, UMR 8214 - Institute for Molecular Sciences of Orsay (ISMO), 91405, Orsay, France.
| |
Collapse
|
16
|
Jaganath D, Schaaf HS, Donald PR. Revisiting the mutant prevention concentration to guide dosing in childhood tuberculosis. J Antimicrob Chemother 2017; 72:1848-1857. [PMID: 28333284 PMCID: PMC5890770 DOI: 10.1093/jac/dkx051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Abstract
The mutant prevention concentration (MPC) is a well-known concept in the chemotherapy of many bacterial infections, but is seldom considered in relation to tuberculosis (TB) treatment, as the required concentrations are generally viewed as unachievable without undue toxicity. Early studies revealed single mutations conferring high MICs of first- and second-line anti-TB agents; however, the growing application of genomics and quantitative drug susceptibility testing in TB suggests a wide range of MICs often determined by specific mutations and strain type. In paediatric TB, pharmacokinetic studies indicate that despite increasing dose recommendations, a proportion of children still do not achieve adult-derived targets. When considering the next stage in anti-TB drug dosing and the introduction of novel therapies for children, we suggest consideration of MPC and its incorporation into pharmacokinetic studies to more accurately determine appropriate concentration targets in children, to restrict the growth of resistant mutants and better manage drug-resistant TB.
Collapse
Affiliation(s)
- Devan Jaganath
- Department of Paediatrics, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA
| | - H. Simon Schaaf
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Peter R. Donald
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| |
Collapse
|
17
|
Delamanid Kills Dormant Mycobacteria In Vitro and in a Guinea Pig Model of Tuberculosis. Antimicrob Agents Chemother 2017; 61:AAC.02402-16. [PMID: 28373190 DOI: 10.1128/aac.02402-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/04/2016] [Accepted: 03/24/2017] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis (TB) treatment is long and requires multiple drugs, likely due to various phenotypes of TB bacilli with variable drug susceptibilities. Drugs with broad activity are urgently needed. This study aimed to evaluate delamanid's activity against growing or dormant bacilli in vitro as well as in vivo Cultures of Mycobacterium bovis BCG Tokyo under aerobic and anaerobic conditions were used to study the activity of delamanid against growing and dormant bacilli, respectively. Delamanid exhibited significant bactericidal activity against replicating and dormant bacilli at or above concentrations of 0.016 and 0.4 mg/liter, respectively. To evaluate delamanid's antituberculosis activity in vivo, we used a guinea pig model of chronic TB infection in which the lung lesions were similar to those in human TB disease. In the guinea pig TB model, a daily dose of 100 mg delamanid/kg of body weight for 4 or 8 weeks demonstrated strong bactericidal activity against Mycobacterium tuberculosis Importantly, histological examination revealed that delamanid killed TB bacilli within hypoxic lesions of the lung. The combination regimens containing delamanid with rifampin and pyrazinamide or delamanid with levofloxacin, ethionamide, pyrazinamide, and amikacin were more effective than the standard regimen (rifampin, isoniazid, and pyrazinamide). Our data show that delamanid is effective in killing both growing and dormant bacilli in vitro and in the guinea pig TB model. Adding delamanid to current TB regimens may improve treatment outcomes, as demonstrated in recent clinical trials with pulmonary multidrug-resistant (MDR) TB patients. Delamanid may be an important drug for consideration in the construction of new regimens to shorten TB treatment duration.
Collapse
|
18
|
Seaworth BJ, Griffith DE. Therapy of Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis. Microbiol Spectr 2017; 5:10.1128/microbiolspec.tnmi7-0042-2017. [PMID: 28361737 PMCID: PMC11687483 DOI: 10.1128/microbiolspec.tnmi7-0042-2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/10/2017] [Indexed: 12/31/2022] Open
Abstract
The global epidemic of multidrug-resistant tuberculosis (MDR-TB) caused by Mycobacterium tuberculosis strains resistant to at least isoniazid and rifampin was recently reported as larger than previously estimated, with at least 580,000 new cases reported in 2015. Extensively drug-resistant tuberculosis (XDR-TB), MDR-TB with additional resistance to a second-line fluoroquinolone and injectable, continues to account for nearly 10% of MDR cases globally. Cases in India, China, and the Russian Federation account for >45% of the cases of MDR-TB. Molecular testing helps identify MDR more quickly, and treatment options have expanded across the globe. Despite this, only 20% are in treatment, and treatment is challenging due to the toxicity of medications and the long duration. In 2016 the World Health Organization updated guidelines for the treatment of MDR-TB. A new short-course regimen is an option for those who qualify. Five effective drugs, including pyrazinamide (PZA) when possible, are recommended during the initial treatment phase and four drugs thereafter. Revised drug classifications include the use of linezolid and clofazimine as key second-line drugs and the option to use bedaquiline and delamanid to complete a five-drug regimen when needed due to poor medication tolerance or extensive resistance. Despite multiple drugs and long-duration treatment regimens, the outcomes for MDR and especially XDR-TB are much worse than for drug-susceptible disease. Better management of toxicity, prevention of transmission, and identification and appropriate management of infected contacts are important challenges for the future.
Collapse
Affiliation(s)
- Barbara J Seaworth
- Heartland National TB Center, University of Texas Health Science Center-UT Health Northeast, San Antonio, TX 78223
| | - David E Griffith
- Heartland National TB Center, University of Texas Health Science Center-UT Health Northeast, San Antonio, TX 78223
| |
Collapse
|
19
|
Garcia-Contreras L, Padilla-Carlin DJ, Sung J, VerBerkmoes J, Muttil P, Elbert K, Peloquin C, Edwards D, Hickey A. Pharmacokinetics of Ethionamide Delivered in Spray-Dried Microparticles to the Lungs of Guinea Pigs. J Pharm Sci 2016; 106:331-337. [PMID: 27842973 DOI: 10.1016/j.xphs.2016.09.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2016] [Revised: 09/24/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
Abstract
The use of ethionamide (ETH) in treating multidrug-resistant tuberculosis is limited by severe side effects. ETH disposition after pulmonary administration in spray-dried particles might minimize systemic exposure and side effects. To explore this hypothesis, spray-dried ETH particles were optimized for performance in a dry powder aerosol generator and exposure chamber. ETH particles were administered by the intravenous (IV), oral, or pulmonary routes to guinea pigs. ETH appearance in plasma, bronchoalveolar lavage, and lung tissues was measured and subjected to noncompartmental pharmacokinetic analysis. Dry powder aerosol generator dispersion of 20% ETH particles gave the highest dose at the exposure chamber ports and fine particle fraction of 72.3%. Pulmonary ETH was absorbed more rapidly and to a greater extent than orally administered drug. At Tmax, ETH concentrations were significantly higher in plasma than lungs from IV dosing, whereas insufflation lung concentrations were 5-fold higher than in plasma. AUC(0-t) (area under the curve) and apparent total body clearance (CL) were similar after IV administration and insufflation. AUC(0-t) after oral administration was 6- to 7-fold smaller and CL was 6-fold faster. Notably, ETH bioavailability after pulmonary administration was significantly higher (85%) than after oral administration (17%). These results suggest that pulmonary ETH delivery would potentially enhance efficacy for tuberculosis treatment given the high lung concentrations and bioavailability.
Collapse
Affiliation(s)
- Lucila Garcia-Contreras
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104.
| | - Danielle J Padilla-Carlin
- Center of Risk and Integrated Sciences, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, RTP, Durham, North Carolina 27709
| | - Jean Sung
- Biomedical Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138; Department of Pharmaceutical Development, Pulmatrix, Lexington, Massachusetts 02421
| | - Jarod VerBerkmoes
- Biomedical Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
| | - Pavan Muttil
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131
| | - Katharina Elbert
- Biomedical Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
| | - Charles Peloquin
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida 32611
| | - David Edwards
- Biomedical Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
| | - Anthony Hickey
- Discovery Science and Technology, RTI International, RTP, Durham, North Carolina 27709
| |
Collapse
|
20
|
Islam MM, Hameed HMA, Mugweru J, Chhotaray C, Wang C, Tan Y, Liu J, Li X, Tan S, Ojima I, Yew WW, Nuermberger E, Lamichhane G, Zhang T. Drug resistance mechanisms and novel drug targets for tuberculosis therapy. J Genet Genomics 2016; 44:21-37. [PMID: 28117224 DOI: 10.1016/j.jgg.2016.10.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2016] [Revised: 09/26/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022]
Abstract
Drug-resistant tuberculosis (TB) poses a significant challenge to the successful treatment and control of TB worldwide. Resistance to anti-TB drugs has existed since the beginning of the chemotherapy era. New insights into the resistant mechanisms of anti-TB drugs have been provided. Better understanding of drug resistance mechanisms helps in the development of new tools for the rapid diagnosis of drug-resistant TB. There is also a pressing need in the development of new drugs with novel targets to improve the current treatment of TB and to prevent the emergence of drug resistance in Mycobacterium tuberculosis. This review summarizes the anti-TB drug resistance mechanisms, furnishes some possible novel drug targets in the development of new agents for TB therapy and discusses the usefulness using known targets to develop new anti-TB drugs. Whole genome sequencing is currently an advanced technology to uncover drug resistance mechanisms in M. tuberculosis. However, further research is required to unravel the significance of some newly discovered gene mutations in their contribution to drug resistance.
Collapse
Affiliation(s)
- Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Julius Mugweru
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chiranjibi Chhotaray
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changwei Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Institute of Chemical Biology and Drug Discovery, Stony Brook University-State University of New York, Stony Brook, NY 11794-3400, USA
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, The Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, The Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Xinjie Li
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, The Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, The Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Iwao Ojima
- Institute of Chemical Biology and Drug Discovery, Stony Brook University-State University of New York, Stony Brook, NY 11794-3400, USA
| | - Wing Wai Yew
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Eric Nuermberger
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, MD 21231-1002, USA
| | - Gyanu Lamichhane
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, MD 21231-1002, USA
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Simultaneous determination of ethionamide and pyrazinamide using poly(l-cysteine) film-modified glassy carbon electrode. Talanta 2016; 154:197-207. [DOI: 10.1016/j.talanta.2016.03.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 11/22/2022]
|
22
|
A review of the use of ethionamide and prothionamide in childhood tuberculosis. Tuberculosis (Edinb) 2015; 97:126-36. [PMID: 26586647 DOI: 10.1016/j.tube.2015.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2015] [Revised: 08/26/2015] [Accepted: 09/16/2015] [Indexed: 11/21/2022]
Abstract
Ethionamide (ETH) and prothionamide (PTH), both thioamides, have proven efficacy in clinical studies and form important components for multidrug-resistant tuberculosis treatment regimens and for treatment of tuberculous meningitis in adults and children. ETH and PTH are pro-drugs that, following enzymatic activation by mycobacterial EthA inhibit InhA, a target shared with isoniazid (INH), and subsequently inhibit mycolic acid synthesis of Mycobacterium tuberculosis. Co-resistance to INH and ETH is conferred by mutations in the mycobacterial inhA promoter region; mutations in the ethA gene often underlie ETH and PTH monoresistance. An oral daily dose of ETH or PTH of 15-20 mg/kg with a maximum daily dose of 1000 mg is recommended in children to achieve adult-equivalent serum concentrations shown to be efficacious in adults, although information on optimal pharmacodynamic targets is still lacking. Gastrointestinal disturbances, and hypothyroidism during long-term therapy, are frequent adverse effects observed in adults and children, but are rarely life-threatening and seldom necessitate cessation of ETH therapy. More thorough investigation of the therapeutic effects and toxicity of ETH and PTH is needed in childhood TB while child-friendly formulations are needed to appropriately dose children.
Collapse
|
23
|
Schaaf HS, Garcia-Prats AJ, Donald PR. Antituberculosis drugs in children. Clin Pharmacol Ther 2015; 98:252-65. [DOI: 10.1002/cpt.164] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2015] [Revised: 06/06/2015] [Accepted: 06/08/2015] [Indexed: 11/10/2022]
Affiliation(s)
- HS Schaaf
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences; Stellenbosch University; Cape Town South Africa
| | - AJ Garcia-Prats
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences; Stellenbosch University; Cape Town South Africa
| | - PR Donald
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences; Stellenbosch University; Cape Town South Africa
| |
Collapse
|
24
|
Svensson EM, Murray S, Karlsson MO, Dooley KE. Rifampicin and rifapentine significantly reduce concentrations of bedaquiline, a new anti-TB drug. J Antimicrob Chemother 2014; 70:1106-14. [PMID: 25535219 PMCID: PMC4356204 DOI: 10.1093/jac/dku504] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022] Open
Abstract
Objectives Bedaquiline is the first drug of a new class approved for the treatment of TB in decades. Bedaquiline is metabolized by cytochrome P450 (CYP) 3A4 to a less-active M2 metabolite. Its terminal half-life is extremely long (5–6 months), complicating evaluations of drug–drug interactions. Rifampicin and rifapentine, two anti-TB drugs now being optimized to shorten TB treatment duration, are potent inducers of CYP3A4. This analysis aimed to predict the effect of repeated doses of rifampicin or rifapentine on the steady-state pharmacokinetics of bedaquiline and its M2 metabolite from single-dose data using a model-based approach. Methods Pharmacokinetic data for bedaquiline and M2 were obtained from a Phase I study involving 32 individuals each receiving two doses of bedaquiline, alone or together with multiple-dose rifampicin or rifapentine. Sampling was performed over 14 days following each bedaquiline dose. Pharmacokinetic analyses were performed using non-linear mixed-effects modelling. Models were used to simulate potential dose adjustments. Results Rifamycin co-administration increased bedaquiline clearance substantially: 4.78-fold [relative standard error (RSE) 9.10%] with rifampicin and 3.96-fold (RSE 5.00%) with rifapentine. Induction of M2 clearance was equally strong. Average steady-state concentrations of bedaquiline and M2 are predicted to decrease by 79% and 75% when given with rifampicin or rifapentine, respectively. Simulations indicated that increasing the bedaquiline dosage to mitigate the interaction would yield elevated M2 concentrations during the first treatment weeks. Conclusions Rifamycin antibiotics reduce bedaquiline concentrations substantially. In line with current treatment guidelines for drug-susceptible TB, concomitant use is not recommended, even with dose adjustment.
Collapse
Affiliation(s)
- Elin M Svensson
- Department of Pharmaceutical Biosciences, Uppsala University, PO Box 591, 751 24 Uppsala, Sweden
| | - Stephen Murray
- Department of Clinical Research, Global Alliance for TB Drug Development, New York, NY, USA
| | - Mats O Karlsson
- Department of Pharmaceutical Biosciences, Uppsala University, PO Box 591, 751 24 Uppsala, Sweden
| | - Kelly E Dooley
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
McLeay SC, Vis P, van Heeswijk RPG, Green B. Population pharmacokinetics of bedaquiline (TMC207), a novel antituberculosis drug. Antimicrob Agents Chemother 2014; 58:5315-24. [PMID: 24957842 PMCID: PMC4135833 DOI: 10.1128/aac.01418-13] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2013] [Accepted: 06/18/2014] [Indexed: 01/28/2023] Open
Abstract
Bedaquiline is a novel agent for the treatment of pulmonary multidrug-resistant Mycobacterium tuberculosis infections, in combination with other agents. The objective of this study was to develop a population pharmacokinetic (PK) model for bedaquiline to describe the concentration-time data from phase I and II studies in healthy subjects and patients with drug-susceptible or multidrug-resistant tuberculosis (TB). A total of 5,222 PK observations from 480 subjects were used in a nonlinear mixed-effects modeling approach. The PK was described with a 4-compartment disposition model with dual zero-order input (to capture dual peaks observed during absorption) and long terminal half-life (t1/2). The model included between-subject variability on apparent clearance (CL/F), apparent central volume of distribution (Vc/F), the fraction of dose via the first input, and bioavailability (F). Bedaquiline was widely distributed, with apparent volume at steady state of >10,000 liters and low clearance. The long terminal t1/2 was likely due to redistribution from the tissue compartments. The final covariate model adequately described the data and had good simulation characteristics. The CL/F was found to be 52.0% higher for subjects of black race than that for subjects of other races, and Vc/F was 15.7% lower for females than that for males, although their effects on bedaquiline exposure were not considered to be clinically relevant. Small differences in F and CL/F were observed between the studies. The residual unexplained variability was 20.6% and was higher (27.7%) for long-term phase II studies.
Collapse
Affiliation(s)
| | - Peter Vis
- Janssen Infectious Diseases BVBA, Beerse, Belgium
| | | | - Bruce Green
- Model Answers Pty Ltd., Brisbane, Queensland, Australia
| |
Collapse
|
26
|
Impact of lopinavir-ritonavir or nevirapine on bedaquiline exposures and potential implications for patients with tuberculosis-HIV coinfection. Antimicrob Agents Chemother 2014; 58:6406-12. [PMID: 25114140 DOI: 10.1128/aac.03246-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Concomitant treatment of tuberculosis (TB) and HIV is recommended and improves outcomes. Bedaquiline is a novel drug for the treatment of multidrug-resistant (MDR) TB; combined use with antiretroviral drugs, nevirapine, or ritonavir-boosted lopinavir (LPV/r) is anticipated, but no clinical data from coinfected patients are available. Plasma concentrations of bedaquiline and its M2 metabolite after single doses were obtained from interaction studies with nevirapine or LPV/r in healthy volunteers. The antiretrovirals' effects on bedaquiline and M2 pharmacokinetics were assessed by nonlinear mixed-effects modeling. Potential dose adjustments were evaluated with simulations. No significant effects of nevirapine on bedaquiline pharmacokinetics were identified. LPV/r decreased bedaquiline and M2 clearances to 35% (relative standard error [RSE], 9.2%) and 58% (RSE, 8.4%), respectively, of those without comedication. As almost 3-fold (bedaquiline) and 2-fold (M2) increases in exposures during chronic treatment with LPV/r are expected, dose adjustments are suggested for evaluation. Efficacious, safe bedaquiline dosing for MDR-TB patients receiving antiretrovirals is important. Modeling results suggest that bedaquiline can be coadministered with nevirapine without dose adjustments. The predicted elevation of bedaquiline and M2 levels during LPV/r coadministration may be a safety concern, and careful monitoring is recommended. Further data are being collected in coinfected patients to determine whether dose adjustments are needed. (These studies have been registered at ClinicalTrials.gov under registration numbers NCT00828529 [study C110] and NCT00910806 [study C117].).
Collapse
|
27
|
Comparative Bioavailability Study of Single-Dose Film-Coated and Sugar-Coated Ethionamide Tablets in Healthy Volunteers. Clin Ther 2014; 36:982-7. [DOI: 10.1016/j.clinthera.2014.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2013] [Revised: 02/28/2014] [Accepted: 04/11/2014] [Indexed: 11/18/2022]
|
28
|
Lange C, Abubakar I, Alffenaar JWC, Bothamley G, Caminero JA, Carvalho ACC, Chang KC, Codecasa L, Correia A, Crudu V, Davies P, Dedicoat M, Drobniewski F, Duarte R, Ehlers C, Erkens C, Goletti D, Günther G, Ibraim E, Kampmann B, Kuksa L, de Lange W, van Leth F, van Lunzen J, Matteelli A, Menzies D, Monedero I, Richter E, Rüsch-Gerdes S, Sandgren A, Scardigli A, Skrahina A, Tortoli E, Volchenkov G, Wagner D, van der Werf MJ, Williams B, Yew WW, Zellweger JP, Cirillo DM. Management of patients with multidrug-resistant/extensively drug-resistant tuberculosis in Europe: a TBNET consensus statement. Eur Respir J 2014; 44:23-63. [PMID: 24659544 PMCID: PMC4076529 DOI: 10.1183/09031936.00188313] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) substantially challenges TB control, especially in the European Region of the World Health Organization, where the highest prevalence of MDR/XDR cases is reported. The current management of patients with MDR/XDR-TB is extremely complex for medical, social and public health systems. The treatment with currently available anti-TB therapies to achieve relapse-free cure is long and undermined by a high frequency of adverse drug events, suboptimal treatment adherence, high costs and low treatment success rates. Availability of optimal management for patients with MDR/XDR-TB is limited even in the European Region. In the absence of a preventive vaccine, more effective diagnostic tools and novel therapeutic interventions the control of MDR/XDR-TB will be extremely difficult. Despite recent scientific advances in MDR/XDR-TB care, decisions for the management of patients with MDR/XDR-TB and their contacts often rely on expert opinions, rather than on clinical evidence. This document summarises the current knowledge on the prevention, diagnosis and treatment of adults and children with MDR/XDR-TB and their contacts, and provides expert consensus recommendations on questions where scientific evidence is still lacking. TBNET consensus statement on the management of patients with MDR/XDR-TB has been released in theEur Respir Jhttp://ow.ly/uizRD
Collapse
Affiliation(s)
- Christoph Lange
- For the authors' affiliations see the Acknowledgements section
| | | | | | | | - Jose A Caminero
- For the authors' affiliations see the Acknowledgements section
| | | | - Kwok-Chiu Chang
- For the authors' affiliations see the Acknowledgements section
| | - Luigi Codecasa
- For the authors' affiliations see the Acknowledgements section
| | - Ana Correia
- For the authors' affiliations see the Acknowledgements section
| | - Valeriu Crudu
- For the authors' affiliations see the Acknowledgements section
| | - Peter Davies
- For the authors' affiliations see the Acknowledgements section
| | - Martin Dedicoat
- For the authors' affiliations see the Acknowledgements section
| | | | - Raquel Duarte
- For the authors' affiliations see the Acknowledgements section
| | - Cordula Ehlers
- For the authors' affiliations see the Acknowledgements section
| | - Connie Erkens
- For the authors' affiliations see the Acknowledgements section
| | - Delia Goletti
- For the authors' affiliations see the Acknowledgements section
| | - Gunar Günther
- For the authors' affiliations see the Acknowledgements section
| | - Elmira Ibraim
- For the authors' affiliations see the Acknowledgements section
| | - Beate Kampmann
- For the authors' affiliations see the Acknowledgements section
| | - Liga Kuksa
- For the authors' affiliations see the Acknowledgements section
| | - Wiel de Lange
- For the authors' affiliations see the Acknowledgements section
| | - Frank van Leth
- For the authors' affiliations see the Acknowledgements section
| | - Jan van Lunzen
- For the authors' affiliations see the Acknowledgements section
| | | | - Dick Menzies
- For the authors' affiliations see the Acknowledgements section
| | | | - Elvira Richter
- For the authors' affiliations see the Acknowledgements section
| | | | | | - Anna Scardigli
- For the authors' affiliations see the Acknowledgements section
| | - Alena Skrahina
- For the authors' affiliations see the Acknowledgements section
| | - Enrico Tortoli
- For the authors' affiliations see the Acknowledgements section
| | | | - Dirk Wagner
- For the authors' affiliations see the Acknowledgements section
| | | | - Bhanu Williams
- For the authors' affiliations see the Acknowledgements section
| | - Wing-Wai Yew
- For the authors' affiliations see the Acknowledgements section
| | | | | | | |
Collapse
|
29
|
Ex vivo conversion of prodrug prothionamide to its metabolite prothionamide sulfoxide with different extraction techniques and their estimation in human plasma by LC-MS/MS. Bioanalysis 2013; 5:185-200. [PMID: 23330561 DOI: 10.4155/bio.12.301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The present work reports an ex vivo conversion study of prothionamide to its active metabolite prothionamide sulfoxide in human plasma during sample preparation by three conventional extraction techniques. RESULTS The chromatography was done on a Hypersil™ Gold C18 (50 × 2.1 mm, 3.0 µm) column using 0.1% acetic acid and acetonitrile (20:80, v/v) as the mobile phase. Quantitation of the analytes was done by MS/MS in the positive ionization mode. The method was validated over a wide concentration range of 30 to 6000 ng/ml for prothionamide and 50 to 10,000 ng/ml for prothionamide sulfoxide. The recovery for both the analytes was greater than 89%. Stability was extensively validated under different storage conditions. CONCLUSION The extraction protocol was optimized using acetonitrile as protein precipitant for their simultaneous determination in human plasma by LC-MS/MS. The method was applied to a bioequivalence study of 250 mg prothionamide tablet formulation in 14 healthy Indian subjects.
Collapse
|
30
|
Dooley KE, Mitnick CD, Ann DeGroote M, Obuku E, Belitsky V, Hamilton CD, Makhene M, Shah S, Brust JCM, Durakovic N, Nuermberger E. Old drugs, new purpose: retooling existing drugs for optimized treatment of resistant tuberculosis. Clin Infect Dis 2012; 55:572-81. [PMID: 22615332 DOI: 10.1093/cid/cis487] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/20/2023] Open
Abstract
Treatment of drug-resistant tuberculosis is hindered by the high toxicity and poor efficacy of second-line drugs. New compounds must be used together with existing drugs, yet clinical trials to optimize combinations of drugs for drug-resistant tuberculosis are lacking. We conducted an extensive review of existing in vitro, animal, and clinical studies involving World Health Organization-defined group 1, 2, and 4 drugs used in drug-resistant tuberculosis regimens to inform clinical trials and identify critical research questions. Results suggest that optimizing the dosing of pyrazinamide, the injectables, and isoniazid for drug-resistant tuberculosis is a high priority. Additional pharmacokinetic, pharmacodynamic, and toxicodynamic studies are needed for pyrazinamide and ethionamide. Clinical trials of the comparative efficacy and appropriate treatment duration of injectables are recommended. For isoniazid, rapid genotypic tests for Mycobacterium tuberculosis mutations should be nested in clinical trials. Further research focusing on optimization of dose and duration of drugs with activity against drug-resistant tuberculosis is paramount.
Collapse
Affiliation(s)
- Kelly E Dooley
- Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Vale N, Mäkilä E, Salonen J, Gomes P, Hirvonen J, Santos HA. New times, new trends for ethionamide: In vitro evaluation of drug-loaded thermally carbonized porous silicon microparticles. Eur J Pharm Biopharm 2012; 81:314-23. [PMID: 22418076 DOI: 10.1016/j.ejpb.2012.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/28/2011] [Revised: 02/21/2012] [Accepted: 02/27/2012] [Indexed: 02/07/2023]
Abstract
Multidrug-resistant tuberculosis (MDR-TB) has become a worldwide problem and a major public health concern. The mechanisms of resistance are fairly well characterized for most agents, but MDR limits the therapeutic usefulness of both new and classical medicines against TB. Ethionamide (ETA) is a thioamide antibiotic and one of the most widely used drugs as second line agent for the treatment of MDR-TB. Over the years, some studies have emerged to improve the bioavailability of this drug and of its active metabolites. However, inactive metabolites of ETA are still a major drawback in its application against TB. Porous silicon (PSi) materials can be applied to improve the dissolution behavior of poorly water-soluble compounds and to overcome toxicity and other drug-related problems in oral delivery. In the present work, we have loaded ETA into thermally carbonized-PSi (TCPSi) microparticles and studied the solubility, toxicity, permeability, and metabolic profiles of the PSi-loaded drug. The solubility and permeability of ETA was clearly enhanced after loaded into TCPSi particles at different pH-values. ETA was in general toxic at concentrations above 0.50mM to HepG2, Caco-2, and RAW macrophage cells, but the toxicity was drastically reduced when the drug was loaded into the microparticles. ETA showed a fast metabolization process in the presence of the TCPSi particles. In addition, new thiolated metabolites were identified from incubation of ETA-loaded PSi with HepG2 liver cells, which opens new perspectives toward both the understanding of ETA metabolism and the development of novel ETA-based systems with improved efficacy against MDR-TB.
Collapse
Affiliation(s)
- Nuno Vale
- Departamento de Química e Bioquímica, Faculdade de Ciências, Centro de Investigação em Química da Universidade do Porto, Universidade do Porto, Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
32
|
Seddon JA, Hesseling AC, Marais BJ, McIlleron H, Peloquin CA, Donald PR, Schaaf HS. Paediatric use of second-line anti-tuberculosis agents: a review. Tuberculosis (Edinb) 2011; 92:9-17. [PMID: 22118883 DOI: 10.1016/j.tube.2011.11.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2011] [Revised: 09/25/2011] [Accepted: 11/01/2011] [Indexed: 11/18/2022]
Abstract
Childhood multidrug-resistant tuberculosis (MDR-TB) is an emerging global epidemic. With the imminent roll-out of rapid molecular diagnostic tests, more children are likely to be identified and require treatment. As MDR-TB is resistant to the most effective first-line drugs, clinicians will have to rely on second-line medications which are less effective and often associated with more pronounced adverse effects than first-line therapy. Despite the fact that most of these agents were discovered many years ago, robust information is lacking regarding their pharmacokinetic and pharmacodynamic properties, adverse effects and drug interactions, especially in children. Children differ from adults in the way that drugs are administered, the manner in which they are metabolised and in the adverse effects experienced. The interaction of these drugs with human immunodeficiency virus infection and antiretroviral therapy is also poorly documented. This article reviews the available second-line drugs currently used in the treatment of MDR-TB in children and discusses medication properties and adverse effects while potential interactions with antiretroviral therapy are explored.
Collapse
Affiliation(s)
- James A Seddon
- Desmond Tutu TB Centre, Faculty of Health Sciences, Stellenbosch University, South Africa.
| | | | | | | | | | | | | |
Collapse
|
33
|
Kumar G, Malhotra S, Shafiq N, Pandhi P, Khuller GK, Sharma S. In vitrophysicochemical characterization and short termin vivotolerability study of ethionamide loaded PLGA nanoparticles: potentially effective agent for multidrug resistant tuberculosis. J Microencapsul 2011; 28:717-28. [DOI: 10.3109/02652048.2011.615948] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022]
|
34
|
Abstract
Ethionamide (ETH), a second-line antituberculosis drug, is frequently used in treating childhood tuberculosis. Data supporting ETH dose recommendations in children are limited. The aim of this study was to determine the pharmacokinetic parameters for ETH in children on antituberculosis treatment including ETH. ETH serum levels were prospectively assessed in 31 children in 3 age groups (0 to 2 years, 2 to 6 years, and 6 to 12 years). Within each age group, half received rifampin (RMP). Following an oral dose of ETH (15 to 20 mg/kg of body weight), blood samples were collected at 0, 1, 2, 3, 4, and 6 h following 1 and 4 months of ETH therapy. The maximum serum concentration (C(max)), time to C(max) (T(max)), and area under the time-concentration curve from 0 to 6 h (AUC(0-6)) were calculated. Younger children were exposed to lower ETH concentrations than older children at the same mg/kg body weight dose. Age correlated significantly with the AUC after both 1 month (r = 0.50, P = 0.001) and 4 months (r = 0.63, P = 0.001) of therapy. There was no difference in the AUC or C(max) between children receiving concomitant treatment with RMP and those who did not. Time on treatment did not influence the pharmacokinetic parameters of ETH following 1 and 4 months of therapy. HIV infection was associated with lower ETH exposure. In conclusion, ETH at an oral dose of 15 to 20 mg/kg results in sufficient serum concentrations compared to current adult recommended levels in the majority of children across all age groups. ETH levels were influenced by young age and HIV status but were not affected by concomitant RMP treatment and duration of therapy.
Collapse
|
35
|
Kumar G, Sharma S, Shafiq N, Pandhi P, Khuller GK, Malhotra S. Pharmacokinetics and tissue distribution studies of orally administered nanoparticles encapsulated ethionamide used as potential drug delivery system in management of multi-drug resistant tuberculosis. Drug Deliv 2010; 18:65-73. [DOI: 10.3109/10717544.2010.509367] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
|
36
|
Dartois V, Barry CE. Clinical pharmacology and lesion penetrating properties of second- and third-line antituberculous agents used in the management of multidrug-resistant (MDR) and extensively-drug resistant (XDR) tuberculosis. CURRENT CLINICAL PHARMACOLOGY 2010; 5:96-114. [PMID: 20156156 PMCID: PMC6344931 DOI: 10.2174/157488410791110797] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/17/2009] [Accepted: 12/17/2009] [Indexed: 11/22/2022]
Abstract
Failure of first-line chemotherapy to cure tuberculosis (TB) patients occurs, in part, because of the development of resistance to isoniazid (INH) and rifampicin (RIF) the two most sterilizing agents in the four-drug regimen used to treat primary infections. Strains resistant to both INH and RIF are termed multidrug-resistant (MDR). Treatment options for MDR patients involve a complex array of twenty different drugs only two classes of which are considered to be highly effective (fluoroquinolones and aminoglycosides). Resistance to these two classes results in strains known as extensively drug-resistant (XDR) and these types of infections are becoming increasingly common. Many of the remaining agents have poorly defined pharmacology but nonetheless are widely used in the treatment of this disease. Several of these agents are known to have highly variable exposures in healthy volunteers and little is known in the patients in which they must be used. Therapeutic drug monitoring (TDM) is infrequently used in the management of MDR or XDR disease yet the clinical pharmacokinetic studies that have been done suggest this might have a large impact on disease outcome. We review what is known about the pharmacologic properties of each of the major classes of second- and third-line antituberculosis agents and suggest where judicious use of TDM would have the maximum possible impact. We summarize the state of knowledge of drug-drug interactions (DDI) in these classes of agents and those that are currently in clinical trials. Finally we consider what little is known about the ability of TB drugs to reach their ultimate site of action--the interior of a granuloma by penetrating the diseased lung area. Careful consideration of the pharmacology of these agents is essential if we are to avoid further fueling the growing epidemic of highly drug-resistant TB and critical in the development of new antituberculosis drugs.
Collapse
Affiliation(s)
- Véronique Dartois
- The Novartis Institute for Tropical Diseases, Biopolis, Singapore, Singapore.
| | | |
Collapse
|
37
|
Synthetic EthR inhibitors boost antituberculous activity of ethionamide. Nat Med 2009; 15:537-44. [PMID: 19412174 DOI: 10.1038/nm.1950] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2008] [Accepted: 03/03/2009] [Indexed: 11/08/2022]
Abstract
The side effects associated with tuberculosis therapy bring with them the risk of noncompliance and subsequent drug resistance. Increasing the therapeutic index of antituberculosis drugs should thus improve treatment effectiveness. Several antituberculosis compounds require in situ metabolic activation to become inhibitory. Various thiocarbamide-containing drugs, including ethionamide, are activated by the mycobacterial monooxygenase EthA, the production of which is controlled by the transcriptional repressor EthR. Here we identify drug-like inhibitors of EthR that boost the bioactivation of ethionamide. Compounds designed and screened for their capacity to inhibit EthR-DNA interaction were co-crystallized with EthR. We exploited the three-dimensional structures of the complexes for the synthesis of improved analogs that boosted the ethionamide potency in culture more than tenfold. In Mycobacterium tuberculosis-infected mice, one of these analogs, BDM31343, enabled a substantially reduced dose of ethionamide to lessen the mycobacterial load as efficiently as the conventional higher-dose treatment. This provides proof of concept that inhibiting EthR improves the therapeutic index of thiocarbamide derivatives, which should prompt reconsideration of their use as first-line drugs.
Collapse
|
38
|
Abstract
INTRODUCTION The treatment of tuberculosis (TB) is a mature discipline, with more than 60 years of clinical experience accrued across the globe. The requisite Multi-drug treatment of drug-susceptible TB, however, lasts 6 months and has never been optimized according to current standards. Multi-drug resistant TB and TB in individuals coinfected with HIV present additional treatment challenges. OBJECTIVE This article reviews the role that existing drugs and new compounds could have in shortening or improving treatment for TB. The key to treatment shortening seems to be sterilizing activity, or the ability of drugs to kill mycobacteria that persist after the initial days of multi-drug treatment. RESULTS Among existing anti-TB drugs, the rifamycins hold the greatest potential for shortening treatment and improving outcomes, in both HIV-infected and HIV-uninfected populations, without dramatic increases in toxicity. Clinical studies underway or being planned, are supported by in vitro , animal and human evidence of increased sterilizing activity--without significant increases in toxicity--at elevated daily doses. Fluoroquinolones also seem to have significant sterilizing activity. At present, at least two class members are being evaluated for treatment shortening with different combinations of first-line drugs. However, in light of apparent rapid selection for fluoroquinolone-resistant mutants, relative frequency of serious adverse events and a perceived need to 'reserve' fluoroquinolones for the treatment of drug-resistant TB, their exact role in TB treatment remains to be determined. Other possible improvements may come from inhaled delivery or split dosing (linezolid) of anti-TB drugs for which toxicity (ethionamide) or lack of absorption (aminoglycosides and polypeptides) precludes delivery of maximally effective, oral doses, once daily. New classes of drugs with novel mechanisms of action, nitroimidazopyrans and a diarylquinoline, among others, may soon provide opportunities for improving treatment of drug-resistant TB or shortening treatment of drug-susceptible TB. CONCLUSION More potential options for improved TB treatment currently exist than at any other time in the last 30 years. The challenge in TB pharmacotherapy is to devise well-tolerated, efficacious, short-duration regimens that can be used successfully against drug-resistant and drug-resistant TB in a heterogeneous population of patients.
Collapse
Affiliation(s)
- Carole D Mitnick
- Department of Global Health & Social Medicine, Harvard Medical School, 643 Huntington Ave., 4th Floor, Boston, MA 02215, USA
| | | | | |
Collapse
|
39
|
Abstract
Synthetic biology provides insight into natural gene-network dynamics and enables assembly of engineered transcription circuitries for production of difficult-to-access therapeutic molecules. In Mycobacterium tuberculosis EthR binds to a specific operator (O(ethR)) thereby repressing ethA and preventing EthA-catalyzed conversion of the prodrug ethionamide, which increases the resistance of the pathogen to this last-line-of-defense treatment. We have designed a synthetic mammalian gene circuit that senses the EthR-O(ethR) interaction in human cells and produces a quantitative reporter gene expression readout. Challenging of the synthetic network with compounds of a rationally designed chemical library revealed 2-phenylethyl-butyrate as a nontoxic substance that abolished EthR's repressor function inside human cells, in mice, and within M. tuberculosis where it triggered derepression of ethA and increased the sensitivity of this pathogen to ethionamide. The discovery of antituberculosis compounds by using synthetic mammalian gene circuits may establish a new line of defense against multidrug-resistant M. tuberculosis.
Collapse
|
40
|
|