1
|
Jin J, Xu X, Li F, Weng F, Zou B, Li Y, Zhao J, Zhang S, Yan D, Qiu F. Physiologically based pharmacokinetic modeling for confirming the role of CYP3A1/2 and P-glycoprotein in detoxification mechanism between glycyrrhizic acid and aconitine in rats. J Appl Toxicol 2024; 44:978-989. [PMID: 38448046 DOI: 10.1002/jat.4595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
Fuzi, an effective common herb, is often combined with Gancao to treat disease in clinical practice with enhancing its efficacy and alleviating its toxicity. The major toxic and bioactive compounds in Fuzi and Gancao are aconitine (AC) and glycyrrhizic acid (GL), respectively. This study aims to elucidate detoxification mechanism between AC and GL from pharmacokinetic perspective using physiologically based pharmacokinetic (PBPK) model. In vitro experiments exhibited that AC was mainly metabolized by CYP3A1/2 in rat liver microsomes and transported by P-glycoprotein (P-gp) in Caco-2 cells. Kinetics assays showed that the Km and Vmax of AC towards CYP3A1/2 were 2.38 μM and 57.3 pmol/min/mg, respectively, whereas that of AC towards P-gp was 11.26 μM and 147.1 pmol/min/mg, respectively. GL markedly induced the mRNA expressions of CYP3A1/2 and MDR1a/b in rat primary hepatocytes. In vivo studies suggested that the intragastric and intravenous administration of GL significantly reduced systemic exposure of AC by 27% and 33%, respectively. Drug-drug interaction (DDI) model of PBPK predicted that co-administration of GL would decrease the exposure of AC by 39% and 45% in intragastric and intravenous dosing group, respectively. The consistency between predicted data and observed data confirmed that the upregulation of CYP3A1/2 and P-gp was the crucial detoxification mechanism between AC and GL. Thus, this study provides a demonstration for elucidating the compatibility mechanisms of herbal formula using PBPK modeling and gives support for the clinical co-medication of Fuzi and Gancao.
Collapse
Affiliation(s)
- Jingyi Jin
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoqing Xu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fengling Li
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fengyi Weng
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Zou
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Li
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhao
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuang Zhang
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongming Yan
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Furong Qiu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Huang Y, Liu Q, Liu M, Xu L, Li Y, Chen Q, Guan D, Xu J, Lin C, Wang S. System pharmacology-based determination of the functional components and mechanisms in chronic heart failure treatment: an example of Zhenwu decoction. J Biomol Struct Dyn 2023:1-19. [PMID: 37921741 DOI: 10.1080/07391102.2023.2274515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/17/2023] [Indexed: 11/04/2023]
Abstract
Chronic heart failure (CHF) is the primary cause of death among patients with cardiovascular diseases, representing the advanced stage in the development of several cardiovascular conditions. Zhenwu decoction (ZWD) has gained widespread recognition as an efficacious remedy for CHF due to its potent therapeutic properties and absence of adverse effects. Nevertheless, the precise molecular mechanisms underlying its actions remain elusive. This study endeavors to unravel the intricate pharmacological underpinnings of five herbs within ZWD concerning CHF through an integrated approach. Initially, pertinent data regarding ZWD and CHF were compiled from established databases, forming the foundation for constructing an intricate network of active component-target interactions. Subsequently, a pioneering method for evaluating node significance was formulated, culminating in the creation of core functional association space (CFAS). To discern vital components, a novel dynamic programming algorithm was devised and used to determine the core component group (CCG) within the CFAS. Enrichment analysis of the CCG targets unveiled the potential coordinated molecular mechanisms of ZWD, illuminating its capacity to ameliorate CHF by modulating genes and related signaling pathways involved in pathological remodeling. Notable pathways encompass PI3K-Akt, diabetic cardiomyopathy, cAMP and MAPK signaling. Concluding the computational analyses, in vitro experiments were executed to assess the effects of vanillic acid, paradol, 10-gingerol and methyl cinnamate. Remarkably, these compounds demonstrated efficacy in reducing the production of ANP and BNP within isoprenaline-induced AC 16 cells, further validating their potential therapeutic utility. This investigation underscores the efficacy of the proposed model in enhancing the precision and reliability of CCG selection within ZWD, thereby presenting a novel avenue for mechanistic inquiries, compound refinement and the secondary development of TCM herbs.
Collapse
Affiliation(s)
- Yisheng Huang
- Department of Anesthesiology, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Anesthesiology, Ganzhou People's Hospital, Ganzhou, China
| | - Qinwen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Meiyu Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liqian Xu
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Yi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Quanlin Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Jindong Xu
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Chunshui Lin
- Department of Anesthesiology, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
| | - Sheng Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Zhang J, Li D, Zhong D, Zhou Q, Yin Y, Gao J, Peng C. Processed lateral root of Aconitum carmichaelii Debx.: A review of cardiotonic effects and cardiotoxicity on molecular mechanisms. Front Pharmacol 2022; 13:1026219. [PMID: 36324672 PMCID: PMC9618827 DOI: 10.3389/fphar.2022.1026219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Fuzi, the lateral root of A. carmichaelii Debx., is a typical traditional herbal medicine with both poisonousness and effectiveness, and often used in the treatment of heart failure and other heart diseases. In this review, we searched domestic and foreign literature to sort out the molecular mechanisms of cardiotonic and cardiotoxicity of Fuzi, also including its components. The major bioactive components of Fuzi for cardiotonic are total alkaloids, polysaccharide and the water-soluble alkaloids, with specific mechanisms manifested in the inhibition of myocardial fibrosis, apoptosis and autophagy, and improvement of mitochondrial energy metabolism, which involves RAAS system, PI3K/AKT, JAK/STAT, AMPK/mTOR signaling pathway, etc. Diester-diterpenoid alkaloids in Fuzi can produce cardiotoxic effects by over-activating Na+ and Ca2+ ion channels, over-activating NLRP3/ASC/caspase-3 inflammatory pathway and mitochondria mediated apoptosis pathway. And three clinically used preparations containing Fuzi are also used as representatives to summarize their cardiac-strengthening molecular mechanisms. To sum up, Fuzi has shown valuable cardiotonic effects due to extensive basic and clinical studies, but its cardiotonic mechanisms have not been systematically sorted out. Therefore, it is a need for deeper investigation in the mechanisms of water-soluble alkaloids with low content but obvious therapeutic effect, as well as polysaccharide.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Li
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Zhong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinmei Zhou
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanpeng Yin
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jihai Gao
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jihai Gao, ; Cheng Peng,
| | - Cheng Peng
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jihai Gao, ; Cheng Peng,
| |
Collapse
|
4
|
Chen DT, Rao W, Shen X, Chen L, Wan ZJ, Sheng XP, Fan TY. Pharmacological effects of higenamine based on signalling pathways and mechanism of action. Front Pharmacol 2022; 13:981048. [PMID: 36188548 PMCID: PMC9520082 DOI: 10.3389/fphar.2022.981048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Higenamine (HG) is a chemical compound found in various plants, such as aconite. Recent pharmacological studies have demonstrated its effectiveness in the management of many diseases. Several mechanisms of action of HG have been proposed; however, they have not yet been classified. This review summarises the signalling pathways and pharmacological targets of HG, focusing on its potential as a naturally extracted drug. Articles related to the pharmacological effects, signalling pathways and pharmacological targets of HG were selected by searching the keyword "Higenamine" in the PubMed, Web of Science and Google Scholar databases without limiting the search by publication years. HG possesses anti-oxidant, anti-apoptotic, anti-inflammatory, electrophysiology regulatory, anti-fibrotic and lipid-lowering activities. It is a structural analogue of catecholamines and possesses characteristics similar to those of adrenergic receptor ligands. It can modulate multiple targets, including anti-inflammation- and anti-apoptosis-related targets and some transcription factors, which directly or indirectly influence the disease course. Other naturally occurring compounds, such as cucurbitacin B (Cu B) and 6-gingerol (6-GR), can be combined with HG to enhance its anti-apoptotic activity. Although significant research progress has been made, follow-up pharmacological studies are required to determine the exact mechanism of action, new signalling pathways and targets of HG and the effects of using it in combination with other drugs.
Collapse
Affiliation(s)
- De-ta Chen
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wu Rao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Shen
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Chen
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zi-jian Wan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-ping Sheng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-you Fan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Effects of the Higenamine, a Potent Compound from Aconitum, on UVB-Induced Photoaging in Hairless Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9116642. [PMID: 35529934 PMCID: PMC9068300 DOI: 10.1155/2022/9116642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/13/2022] [Indexed: 01/01/2023]
Abstract
Aim Higenamine [1-[(4-hydroxyphenyl) methyl]-1, 2, 3, 4-tetrahydroisoquinoline-6, 7-diol], a potent cardiotonic compound from Aconitum, contributes to vascular relaxation and bronchodilation. However, the effects and mechanisms of action of higenamine on skin aging remain poorly understood. In this study, the effects of higenamine on UVB-induced photoaging were examined in the hairless mouse model. Methods The dorsal skin of hairless mice (CrlOri : SKH1) was exposed to chronic UVB irradiation (100–300 mJ/cm2 for 6 weeks), with subsequent administration of higenamine (1–20 mg/kg, p.o.) for 2 weeks. TGF-β, Smad3 DNA-binding phosphorylation, and COL1A1 levels were analyzed by immunohistochemistry, and histological analysis of the skin was performed via H&E and MT staining. Results Higenamine increased TGF-β, Smad3 DNA-binding phosphorylation, and COL1A1 expression in primary human fibroblast cells and mouse skin. Higenamine suppressed UVB-induced photoaging via skin recovery, improved epidermal thickness, and prevented Smad3, DNA-binding phosphorylation, and COL1A1 depletion via TGF-β signaling. Conclusion Higenamine enhances collagen production in the skin through TGF-β/Smad3 signaling and potentially suppresses UVB-induced skin aging.
Collapse
|
6
|
Peña-Torres EF, Castillo-Salas C, Jiménez-Estrada I, Muhlia-Almazán A, Peña-Ramos EA, Pinelli-Saavedra A, Avendaño-Reyes L, Hinojosa-Rodríguez C, Valenzuela-Melendres M, Macias-Cruz U, González-Ríos H. Growth performance, carcass traits, muscle fiber characteristics and
skeletal muscle mRNA abundance in hair lambs supplemented with ferulic
acid. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:52-69. [PMID: 35174342 PMCID: PMC8819324 DOI: 10.5187/jast.2022.e3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 01/08/2022] [Indexed: 01/03/2023]
Abstract
Ferulic acid (FA) is a phytochemical with various bioactive properties. It has
recently been proposed that due to its phytogenic action it can be used as an
alternative growth promoter additive to synthetic compounds. The objective of
the present study was to evaluate the growth performance, carcass traits, fiber
characterization and skeletal muscle gene expression on hair-lambs supplemented
with two doses of FA. Thirty-two male lambs (n = 8 per treatment) were
individually housed during a 32 d feeding trial to evaluate the effect of FA
(300 and 600 mg d−1) or zilpaterol hydrochloride (ZH; 6 mg
d−1) on growth performance, and then slaughtered to
evaluate the effects on carcass traits, and muscle fibers morphometry from
Longissimus thoracis (LT) and mRNA abundance of
β2-adrenergic receptor (β2-AR), MHC-I,
MHC-IIX and IGF-I genes. FA increased final weight and average daily gain with
respect to non-supplemented animals (p < 0.05). The ZH
supplementation increased LT muscle area, with respect to FA doses and control
(p < 0.05). Cross-sectional area (CSA) of oxidative
fibers was larger with FA doses and ZH (p < 0.05).
Feeding ZH increased mRNA abundance for β2-AR compared to FA
and control (p < 0.05), and expression of MHC-I was
affected by FA doses and ZH (p < 0.05). Overall, FA
supplementation of male hair lambs enhanced productive variables due to skeletal
muscle hypertrophy caused by MHC-I up-regulation. Results suggest that FA has
the potential like a growth promoter in lambs.
Collapse
Affiliation(s)
- Edgar Fernando Peña-Torres
- División de Ciencias de la Salud,
Universidad de Quintana Roo, Quintana Roo 77039, Mexico
- Centro de Investigación en
Alimentación y Desarrollo, A.C. (CIAD, A.C.), Sonora
83304, Mexico
| | - Candelario Castillo-Salas
- Departamento de Ciencias
Agronómicas y Veterinarias, Instituto Tecnológico de
Sonora, Sonora 85000, Mexico
| | - Ismael Jiménez-Estrada
- Departamento de Fisiología,
Biofísica y Neurociencias, Centro de Investigación y Estudios
Avanzados del IPN, San Pedro Zacatenco 07000, Mexico
| | - Adriana Muhlia-Almazán
- Centro de Investigación en
Alimentación y Desarrollo, A.C. (CIAD, A.C.), Sonora
83304, Mexico
| | - Etna Aida Peña-Ramos
- Centro de Investigación en
Alimentación y Desarrollo, A.C. (CIAD, A.C.), Sonora
83304, Mexico
| | | | - Leonel Avendaño-Reyes
- Instituto de Ciencias Agrícolas,
Universidad Autónoma de Baja California, Baja
California 21705, Mexico
| | - Cindy Hinojosa-Rodríguez
- Departamento de Fisiología,
Biofísica y Neurociencias, Centro de Investigación y Estudios
Avanzados del IPN, San Pedro Zacatenco 07000, Mexico
| | | | - Ulises Macias-Cruz
- Instituto de Ciencias Agrícolas,
Universidad Autónoma de Baja California, Baja
California 21705, Mexico
| | - Humberto González-Ríos
- Centro de Investigación en
Alimentación y Desarrollo, A.C. (CIAD, A.C.), Sonora
83304, Mexico
- Corresponding author: Humberto
González-Ríos, Centro de Investigación en
Alimentación y Desarrollo, A.C. (CIAD, A.C.), Sonora 83304, Mexico. Tel:
+52-662-289-2400, E-mail:
| |
Collapse
|
7
|
Wen J, Li M, Zhang W, Wang H, Bai Y, Hao J, Liu C, Deng K, Zhao Y. Role of Higenamine in Heart Diseases: A Mini-Review. Front Pharmacol 2022; 12:798495. [PMID: 35082678 PMCID: PMC8784381 DOI: 10.3389/fphar.2021.798495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/29/2021] [Indexed: 01/22/2023] Open
Abstract
Higenamine, a natural product with multiple targets in heart diseases, is originally derived from Aconitum, which has been traditionally used in China for the treatment of heart disease, including heart failure, arrhythmia, bradycardia, cardiac ischemia/reperfusion injury, cardiac fibrosis, etc. This study is aimed to clarify the role of higenamine in heart diseases. Higenamine has effects on improving energy metabolism of cardiomyocytes, anti-cardiac fibroblast activation, anti-oxidative stress and anti-apoptosis. Accumulating evidence from various studies has shown that higenamine exerts a wide range of cardiovascular pharmacological effects in vivo and in vitro, including alleviating heart failure, reducing cardiac ischemia/reperfusion injury, attenuating pathological cardiac fibrosis and dysfunction. In addition, several clinical studies have reported that higenamine could continuously increase the heart rate levels of healthy volunteers as well as patients with heart disease, but there are variable effects on systolic blood pressure and diastolic blood pressure. Moreover, the heart protection and therapeutic effects of higenamine on heart disease are related to regulating LKB1/AMPKα/Sirt1, mediating the β2-AR/PI3K/AKT cascade, induction of heme oxygenase-1, suppressing TGF-β1/Smad signaling, and targeting ASK1/MAPK (ERK, P38)/NF-kB signaling pathway. However, the interventional effects of higenamine on heart disease and its underlying mechanisms based on experimental studies have not yet been systematically reviewed. This paper reviewed the potential pharmacological mechanisms of higenamine on the prevention, treatment, and diagnosis of heart disease and clarified its clinical applications. The literature shows that higenamine may have a potent effect on complex heart diseases, and proves the profound medicinal value of higenamine in heart disease.
Collapse
Affiliation(s)
- Jianxia Wen
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Mingjie Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenwen Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Haoyu Wang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yan Bai
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Junjie Hao
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Chuan Liu
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Ke Deng
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Rangelov Kozhuharov V, Ivanov K, Ivanova S. Higenamine in Plants as a Source of Unintentional Doping. PLANTS (BASEL, SWITZERLAND) 2022; 11:354. [PMID: 35161335 PMCID: PMC8838985 DOI: 10.3390/plants11030354] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Higenamine is a β2 agonist of plant origin. The compound has been included in WADA's prohibited list since 2017. Higenamine may be detected in different plants and many food supplements of natural origin. METHODS Our literature search was conducted through PubMed, Science Direct, Google Scholar, and Web of Science studies investigating the presence of higenamine in plants that are used in traditional folk medicine or included in food supplements. Our study aimed to assess the risk of adverse analytical findings caused by higenamine-containing plants. RESULTS Based on our literature search, Nelumbo nucifera, Tinospora crispa, Nandina domestica, Gnetum parvifolium, Asarum siebodii,Asarum heterotropoides, Aconitum carmichaelii, and Aristolochia brasiliensis are higenamine-containing plants. Based on data from Eastern folk medicine, these plants can provide numerous health benefits. Professional athletes likely ingest these plants without knowing that they contain higenamine; these herbs are used in treatments for different conditions and various foods/food supplements in addition to folk medicine. CONCLUSION Athletes and their teams must be aware of the issues associated with the use of plant-based products. They should avoid consuming higenamine-containing plants during and outside of competition periods.
Collapse
Affiliation(s)
- Vanya Rangelov Kozhuharov
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (K.I.); (S.I.)
| | | | | |
Collapse
|
9
|
Chang WCW, Yen CC, Liu WY, Hsieh YS, Hsu MC, Wu YT. Blood-to-muscle distribution and urinary excretion of higenamine in rats. Drug Test Anal 2021; 13:1776-1782. [PMID: 34309209 DOI: 10.1002/dta.3132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/17/2021] [Accepted: 07/18/2021] [Indexed: 11/11/2022]
Abstract
Higenamine is a β2 -agonist that has been prohibited in sports by the World Anti-Doping Agency. Higenamine could potentially promote anabolism and lipolysis; however, its crucial pharmacokinetics data, particularly muscle distribution, remain unavailable. The present study aims to investigate the blood-to-muscle distribution as well as the urinary excretion of higenamine in laboratory rats. In the first experiment, the microdialysis technique was employed to continuously measure free, protein-unbound concentrations in blood and muscle for 90 min (sampling at a 5-min interval) after rats received IV infusion of higenamine. The mean half-lives of higenamine in blood and muscle were 17.9 and 19.0 min, respectively. The blood-to-muscle distribution ratio (AUCmuscle /AUCblood ) of higenamine was estimated to be 22%. In the second experiment, rats were orally administered with a single-dose higenamine and their urine samples were profiled at a 12-h interval for up to 48 h. Results showed only a small portion of total consumption (1.44%, ranging 0.71%-2.50%) was excreted in the urine. Among these time points, about 43% cumulative amount of higenamine was eliminated within the first 12 h. Our data suggested that one-quarter of the unbound higenamine rapidly penetrates from the vessels into muscle, distributes to the interstitial fluid, then eliminates from the rat in a short span of time. The muscle tissue is likely to have a low binding affinity for higenamine, and renal excretion plays a minor role in its elimination. Together, our findings provide valuable pharmacokinetics data that may gain deeper insights into higenamine's role in skeletal muscle functions.
Collapse
Affiliation(s)
| | - Ching-Chi Yen
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Yi Liu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yun-Shan Hsieh
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Chich Hsu
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Tse Wu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Higenamine mitigates interleukin-1β-induced human nucleus pulposus cell apoptosis by ROS-mediated PI3K/Akt signaling. Mol Cell Biochem 2021; 476:3889-3897. [PMID: 34146182 DOI: 10.1007/s11010-021-04197-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Intervertebral disc degeneration (IDD) is a natural problem linked to the inflammation. Higenamine exerts multiple pharmacological properties in inflammation-related disorders. Our study aimed to explore the function of higenamine on interleukin (IL)-1β-caused apoptosis of human nucleus pulposus cells (HNPCs). Cell apoptosis was investigated by TUNEL and flow cytometry. Apoptosis-related biomarkers were determined by qRT-PCR or Western blotting. The protein in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling was measured by Western blotting. We found that higenamine showed little effect on cell apoptosis, but mitigated IL-1β-caused apoptosis in a dose-dependent pattern. Higenamine attenuated IL-1β-induced decrease of Bcl-2 and increase of Bax and cleaved caspase-3. Higenamine did not affect the reactive oxygen species (ROS) level and the PI3K/Akt signaling, but attenuated IL-1β-induced ROS production and inhibition of the PI3K/Akt signaling. IL-1β repressed the activation of the PI3K/Akt pathway, but ROS inhibition using N-acetylcysteine (NAC) rescued this pathway. The PI3K/Akt signaling suppression using LY294002 reversed the inhibitive effect of higenamine on IL-1β-caused apoptosis, and this effect was weakened by ROS inhibition. In conclusion, higenamine attenuates IL-1β-caused apoptosis of HNPCs via ROS-mediated PI3K/Akt pathway.
Collapse
|
11
|
Hudzik TJ, Patel M, Brown A. β 2 -Adrenoceptor agonist activity of higenamine. Drug Test Anal 2021; 13:261-267. [PMID: 33369180 PMCID: PMC7898339 DOI: 10.1002/dta.2992] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/24/2020] [Accepted: 12/04/2020] [Indexed: 12/29/2022]
Abstract
Higenamine was included in the World Anti-Doping Agency (WADA) Prohibited Substances and Methods List as a β2 -adrenoceptor agonist in 2017, thereby resulting in its prohibition both in and out of competition. The present mini review describes the physiology and pharmacology of adrenoceptors, summarizes the literature addressing the mechanism of action of higenamine and extends these findings with previously unpublished in silico and in vitro work. Studies conducted in isolated in vitro systems, whole-animal preparations and a small number of clinical studies suggest that higenamine acts in part as a β2 -adrenoceptor agonist. In silico predictive tools indicated that higenamine and possibly a metabolite have a high probability of interacting with the β2 -receptor as an agonist. Stable expression of human β2 -receptors in Chinese hamster ovary (CHO) cells to measure agonist activity not only confirmed the activity of higenamine at β2 but also closely agreed with the in silico prediction of potency for this compound. These data confirm and extend literature findings supporting the inclusion of higenamine in the Prohibited List.
Collapse
Affiliation(s)
- Thomas J. Hudzik
- Department of ResearchGlaxoSmithKline1250 S. Collegeville RdCollegevillePA1926USA
| | - Metul Patel
- Department of ResearchGlaxoSmithKlineGunnels Wood RdStevenageSG1 2NYUK
| | - Andrew Brown
- Department of ResearchGlaxoSmithKlineGunnels Wood RdStevenageSG1 2NYUK
| |
Collapse
|
12
|
Advances in G protein-coupled receptor high-throughput screening. Curr Opin Biotechnol 2020; 64:210-217. [PMID: 32653805 DOI: 10.1016/j.copbio.2020.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 02/08/2023]
Abstract
G protein-coupled receptors (GPCRs) detect compounds on the cell surface and are the starting point of a number of medically relevant signaling cascades. Indeed, over 30% of FDA approved drugs target GPCRs, making them a primary target for drug discovery. Computational and experimental high-throughput screening (HTS) approaches of clinically relevant GPCRs are a first-line drug discovery effort in biomedical research. In this opinion, we review recent advances in GPCR HTS. We focus primarily on cell-based assays, and highlight recent advances in in vitro assays using purified receptors, and computational approaches for GPCR HTS. To date, GPCR HTS has led to the identification of new and repurposing of existing drugs, and the deorphanization of GPCRs with unknown ligands. As automation equipment becomes more common, GPCR HTS will move beyond a drug discovery tool to a key technology to probe basic biological processes that will have an outsized impact on personalized medicine.
Collapse
|
13
|
Wen J, Zhang L, Wang J, Wang J, Wang L, Wang R, Li R, Liu H, Wei S, Li H, Zou W, Zhao Y. Therapeutic effects of higenamine combined with [6]-gingerol on chronic heart failure induced by doxorubicin via ameliorating mitochondrial function. J Cell Mol Med 2020; 24:4036-4050. [PMID: 32073745 PMCID: PMC7171398 DOI: 10.1111/jcmm.15041] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/04/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Higenamine (HG) is a natural benzylisoquinoline alkaloid isolated from Aconitum with positive inotropic and chronotropic effects. This study aimed to investigate the possible cardioprotective effects of HG combined with [6]-gingerol (HG/[6]-GR) against DOX-induced chronic heart failure (CHF) by comprehensive approaches. DOX-induced cardiotoxicity model in rats and H9c2 cells was established. Therapeutic effects of HG/[6]-GR on haemodynamics, serum indices and histopathology of cardiac tissue were analysed. Cell mitochondrial energy phenotype and cell mitochondrial fuel flex were measured by a Seahorse XFp analyser. Moreover, UHPLC-Q-TOF/MS was performed to explore the potential metabolites affecting the therapeutic effects and pathological process of CHF. To further investigate the potential mechanism of HG/[6]-GR, mRNA and protein expression levels of RAAS and LKB1/AMPK/Sirt1-related pathways were detected. The present data demonstrated that the therapeutic effects of HG/[6]-GR combination on CHF were presented in ameliorating heart function, down-regulation serum indices and alleviating histological damage of heart tissue. Besides, HG/[6]-GR has an effect on increasing cell viability of H9c2 cells, ameliorating DOX-induced mitochondrial dysfunction and elevating mitochondrial OCR and ECAR value. Metabolomics analyses showed that the therapeutic effect of HG/[6]-GR combination is mainly associated with the regulation of fatty acid metabolites and energy metabolism pathways. Furthermore, HG/[6]-GR has an effect on down-regulating RAAS pathway-related molecules and up-regulating LKB1/AMPKα/Sirt1-related pathway. The present work demonstrates that HG/[6]-GR prevented DOX-induced cardiotoxicity via the cardiotonic effect and promoting myocardial energy metabolism through the LKB1/AMPKα/Sirt1 signalling pathway, which promotes mitochondrial energy metabolism and protects against CHF.
Collapse
Affiliation(s)
- Jianxia Wen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Lu Zhang
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jian Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiabo Wang
- Integrative Medical Center, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Lifu Wang
- Department of Traditional Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ruilin Wang
- Department of Traditional Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Honghong Liu
- Department of Traditional Chinese Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Shizhang Wei
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Haotian Li
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Wenjun Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
14
|
Carbajal-García A, Reyes-García J, Montaño LM. Androgen Effects on the Adrenergic System of the Vascular, Airway, and Cardiac Myocytes and Their Relevance in Pathological Processes. Int J Endocrinol 2020; 2020:8849641. [PMID: 33273918 PMCID: PMC7676939 DOI: 10.1155/2020/8849641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/17/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Androgen signaling comprises nongenomic and genomic pathways. Nongenomic actions are not related to the binding of the androgen receptor (AR) and occur rapidly. The genomic effects implicate the binding to a cytosolic AR, leading to protein synthesis. Both events are independent of each other. Genomic effects have been associated with different pathologies such as vascular ischemia, hypertension, asthma, and cardiovascular diseases. Catecholamines play a crucial role in regulating vascular smooth muscle (VSM), airway smooth muscle (ASM), and cardiac muscle (CM) function and tone. OBJECTIVE The aim of this review is an updated analysis of the role of androgens in the adrenergic system of vascular, airway, and cardiac myocytes. Body. Testosterone (T) favors vasoconstriction, and its concentration fluctuation during life stages can affect the vascular tone and might contribute to the development of hypertension. In the VSM, T increases α1-adrenergic receptors (α 1-ARs) and decreases adenylyl cyclase expression, favoring high blood pressure and hypertension. Androgens have also been associated with asthma. During puberty, girls are more susceptible to present asthma symptoms than boys because of the increment in the plasmatic concentrations of T in young men. In the ASM, β 2-ARs are responsible for the bronchodilator effect, and T augments the expression of β 2-ARs evoking an increase in the relaxing response to salbutamol. The levels of T are also associated with an increment in atherosclerosis and cardiovascular risk. In the CM, activation of α 1A-ARs and β 2-ARs increases the ionotropic activity, leading to the development of contraction, and T upregulates the expression of both receptors and improves the myocardial performance. CONCLUSIONS Androgens play an essential role in the adrenergic system of vascular, airway, and cardiac myocytes, favoring either a state of health or disease. While the use of androgens as a therapeutic tool for treating asthma symptoms or heart disease is proposed, the vascular system is warmly affected.
Collapse
Affiliation(s)
- Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Luis M. Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico
| |
Collapse
|