1
|
di Leo N, Moscato S, Borso’ M, Sestito S, Polini B, Bandini L, Grillone A, Battaglini M, Saba A, Mattii L, Ciofani G, Chiellini G. Delivery of Thyronamines (TAMs) to the Brain: A Preliminary Study. Molecules 2021; 26:molecules26061616. [PMID: 33799468 PMCID: PMC7999687 DOI: 10.3390/molecules26061616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
Recent reports highlighted the significant neuroprotective effects of thyronamines (TAMs), a class of endogenous thyroid hormone derivatives. In particular, 3-iodothyronamine (T1AM) has been shown to play a pleiotropic role in neurodegeneration by modulating energy metabolism and neurological functions in mice. However, the pharmacological response to T1AM might be influenced by tissue metabolism, which is known to convert T1AM into its catabolite 3-iodothyroacetic acid (TA1). Currently, several research groups are investigating the pharmacological effects of T1AM systemic administration in the search of novel therapeutic approaches for the treatment of interlinked pathologies, such as metabolic and neurodegenerative diseases (NDDs). A critical aspect in the development of new drugs for NDDs is to know their distribution in the brain, which is fundamentally related to their ability to cross the blood–brain barrier (BBB). To this end, in the present study we used the immortalized mouse brain endothelial cell line bEnd.3 to develop an in vitro model of BBB and evaluate T1AM and TA1 permeability. Both drugs, administered at 1 µM dose, were assayed by high-performance liquid chromatography coupled to mass spectrometry. Our results indicate that T1AM is able to efficiently cross the BBB, whereas TA1 is almost completely devoid of this property.
Collapse
Affiliation(s)
- Nicoletta di Leo
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy or (N.d.L.); (S.M.); (A.G.); (M.B.); (G.C.)
- The Biorobotics Institute, Scuola Superiore Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Stefania Moscato
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy or (N.d.L.); (S.M.); (A.G.); (M.B.); (G.C.)
- Department of Clinical & Experimental Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy;
| | - Marco Borso’
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, 56100 Pisa, Italy; (M.B.); or (S.S.); (B.P.); (L.B.) (A.S.)
| | - Simona Sestito
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, 56100 Pisa, Italy; (M.B.); or (S.S.); (B.P.); (L.B.) (A.S.)
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Beatrice Polini
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, 56100 Pisa, Italy; (M.B.); or (S.S.); (B.P.); (L.B.) (A.S.)
| | - Lavinia Bandini
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, 56100 Pisa, Italy; (M.B.); or (S.S.); (B.P.); (L.B.) (A.S.)
| | - Agostina Grillone
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy or (N.d.L.); (S.M.); (A.G.); (M.B.); (G.C.)
| | - Matteo Battaglini
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy or (N.d.L.); (S.M.); (A.G.); (M.B.); (G.C.)
| | - Alessandro Saba
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, 56100 Pisa, Italy; (M.B.); or (S.S.); (B.P.); (L.B.) (A.S.)
| | - Letizia Mattii
- Department of Clinical & Experimental Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy;
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy or (N.d.L.); (S.M.); (A.G.); (M.B.); (G.C.)
| | - Grazia Chiellini
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, 56100 Pisa, Italy; (M.B.); or (S.S.); (B.P.); (L.B.) (A.S.)
- Correspondence:
| |
Collapse
|
2
|
Comparative Transcriptome Analysis Reveals the Potential Cardiovascular Protective Targets of the Thyroid Hormone Metabolite 3-Iodothyronamine (3-T1AM). BIOMED RESEARCH INTERNATIONAL 2020; 2020:1302453. [PMID: 32685439 PMCID: PMC7322601 DOI: 10.1155/2020/1302453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022]
Abstract
Background The thyroid hormone metabolite 3-iodothyronamine (3-T1AM) is rapidly emerging as a promising compound in decreasing the heart rate and lowering the cardiac output. The aim of our study was to fully understand the molecular mechanism of 3-T1AM on cardiomyocytes and its potential targets in cardiovascular diseases. Materials and Methods In our study, we utilized RNA-Seq to characterize the gene expression in H9C2 cells after 3-T1AM treatment. Comparative transcriptome analysis, including gene ontology, signaling pathways, disease connectivity analysis, and protein-protein interaction networks (PPI), was presented to find the critical gene function, hub genes, and related pathways. Results A total of 1494 differently expressed genes (DEGs) were identified (192 upregulated and 1302 downregulated genes) in H9C2 cells for 3-T1AM treatment. Of these, 90 genes were associated with cardiovascular diseases. The PPI analysis indicated that 5 hub genes might be the targets of 3-T1AM. Subsequently, eight DEGs characterized using RNA-Seq were confirmed by RT-qPCR assays. Conclusions Our study provides a comprehensive analysis of 3-T1AM on H9C2 cells and delineates a new insight into the therapeutic intervention of 3-T1AM for the cardiovascular diseases.
Collapse
|
3
|
Gencarelli M, Laurino A, Landucci E, Buonvicino D, Mazzantini C, Chiellini G, Raimondi L. 3-Iodothyronamine Affects Thermogenic Substrates' Mobilization in Brown Adipocytes. BIOLOGY 2020; 9:biology9050095. [PMID: 32375297 PMCID: PMC7285105 DOI: 10.3390/biology9050095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022]
Abstract
We investigated the effect of 3-iodothyronamine (T1AM) on thermogenic substrates in brown adipocytes (BAs). BAs isolated from the stromal fraction of rat brown adipose tissue were exposed to an adipogenic medium containing insulin in the absence (M) or in the presence of 20 nM T1AM (M+T1AM) for 6 days. At the end of the treatment, the expression of p-PKA/PKA, p-AKT/AKT, p-AMPK/AMPK, p-CREB/CREB, p-P38/P38, type 1 and 3 beta adrenergic receptors (β1–β3AR), GLUT4, type 2 deiodinase (DIO2), and uncoupling protein 1 (UCP-1) were evaluated. The effects of cell conditioning with T1AM on fatty acid mobilization (basal and adrenergic-mediated), glucose uptake (basal and insulin-mediated), and ATP cell content were also analyzed in both cell populations. When compared to cells not exposed, M+T1AM cells showed increased p-PKA/PKA, p-AKT/AKT, p-CREB/CREB, p-P38/P38, and p-AMPK/AMPK, downregulation of DIO2 and β1AR, and upregulation of glycosylated β3AR, GLUT4, and adiponectin. At basal conditions, glycerol release was higher for M+T1AM cells than M cells, without any significant differences in basal glucose uptake. Notably, in M+T1AM cells, adrenergic agonists failed to activate PKA and lipolysis and to increase ATP level, but the glucose uptake in response to insulin exposure was more pronounced than in M cells. In conclusion, our results suggest that BAs conditioning with T1AM promote a catabolic condition promising to fight obesity and insulin resistance.
Collapse
Affiliation(s)
- Manuela Gencarelli
- Department of Neuroscience, Psychology, Drug Sciences, and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy; (M.G.); (A.L.)
| | - Annunziatina Laurino
- Department of Neuroscience, Psychology, Drug Sciences, and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy; (M.G.); (A.L.)
| | - Elisa Landucci
- Department of Health Sciences, Section of Pharmacology, University of Florence, 50139 Florence, Italy; (E.L.); (D.B.); (C.M.)
| | - Daniela Buonvicino
- Department of Health Sciences, Section of Pharmacology, University of Florence, 50139 Florence, Italy; (E.L.); (D.B.); (C.M.)
| | - Costanza Mazzantini
- Department of Health Sciences, Section of Pharmacology, University of Florence, 50139 Florence, Italy; (E.L.); (D.B.); (C.M.)
| | | | - Laura Raimondi
- Department of Neuroscience, Psychology, Drug Sciences, and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy; (M.G.); (A.L.)
- Correspondence: ; Tel.: +390-554-278-375
| |
Collapse
|
4
|
Zhou H, Hu B, Liu X. Thyroid Hormone Metabolite 3-Iodothyronamine (T1AM) Alleviates Hypoxia/Reoxygenation-Induced Cardiac Myocyte Apoptosis via Akt/FoxO1 Pathway. Med Sci Monit 2020; 26:e923195. [PMID: 32162616 PMCID: PMC7081925 DOI: 10.12659/msm.923195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background The thyroid hormone metabolite 3-iodothyronamine (T1AM) is rapidly emerging as promising compound of decreasing heart rate and lowering cardiac output. The aim of our study was to fully understand the molecular mechanism of T1AM on cardiomyocytes and its potential targets in cardiovascular diseases. Material/Methods We developed an in vitro myocardial ischemia-reperfusion injury model of AC-16 cells by hypoxia-reoxygenation injury. Cell viability of AC-16 cells was detected using CCK-8 assay and apoptosis was detected by flow cytometry. RNA-seq was used to characterize the gene expression in H/R-induced AC-16 cells after T1AM treatment. The mRNA levels of FoxO1, PPARα, Akt, and GCK and the protein levels of PPARα, GCK, and components of the Akt/FoxO1 pathway were detected by qRT-PCR and Western blotting, respectively. Results Exogenous T1AM increased the H/R-induced AC-16 cell viability in a relatively low concentration. A total of 210 DEGs, including 142 upregulated and 68 downregulated genes, were determined in H/R-induced AC-16 cells treated with or without T1AM. A Venn diagram showed 135 common DEGs. The FoxO signaling pathway was identified via KEGG enrichment analysis of these 135 DEGs. Moreover, T1AM mediated hypometabolism and reduced the apoptosis of H/R-induced AC-16 cells via the Akt/FoxO1 pathway. Conclusions Exogenous T1AM protects against cell injury induced by H/R in AC-16 cells via regulation of the FoxO signaling pathway. Our results suggest that T1AM can play a preventive role in myocardial H/R injury and also provide new insight for clinical management of AMI patients.
Collapse
Affiliation(s)
- Haiyan Zhou
- Deparment of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China (mainland)
| | - Bailong Hu
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China (mainland)
| | - Xingde Liu
- Deparment of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China (mainland).,Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China (mainland)
| |
Collapse
|