1
|
Benibol Y, Önenerk Men AM, Hakalmaz AE, Çomunoğlu N, Topuzlu Tekant G, Özcan R. The Effect of the Ganglionic Segment Inflammatory Response to Postoperative Enterocolitis in Hirschsprung Disease. Fetal Pediatr Pathol 2024; 43:140-150. [PMID: 38268442 DOI: 10.1080/15513815.2024.2306280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
INTRODUCTION We examined the relationship between proinflammatory cytokines that occur in the inflammatory reaction in the intestine in Hirschsprung disease (HD) and Hirschsprung-associated enterocolitis (HAEC). METHODS Thirty cases (M:27, F:3) operated on due to HD. The cases were divided into three groups: group 1 with pre and post operative EC, group 2 with post-operative, and group 3 with pre-operative EC. The intestinal segments were evaluated by immunohistochemistry for interleukin 1 beta (IL-1ß), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6). RESULTS IL-1β staining was significantly higher in the ganglionic zone of groups with enterocolitis compared to the control group (p = 0.012). TNF-α staining in the transitional zone of Group 3 and IL-1β staining in the ganglionic zone of Group 1 was significantly higher than the control group (p = 0.030, p = 0.020). CONCLUSION In our study, older age at diagnosis and more than 20% IL-1ß staining in the ganglionic segment were found to be risk factors for HAEC. It is noteworthy that the increase in IL-1ß can be associated with HAEC.
Collapse
Affiliation(s)
- Yalım Benibol
- Cerrahpasa Faculty of Medicine, Department of Pediatric Surgery, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ayşe Mine Önenerk Men
- Cerrahpasa Faculty of Medicine, Department of Pathology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ali Ekber Hakalmaz
- Cerrahpasa Faculty of Medicine, Department of Pediatric Surgery, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nil Çomunoğlu
- Cerrahpasa Faculty of Medicine, Department of Pathology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gonca Topuzlu Tekant
- Cerrahpasa Faculty of Medicine, Department of Pediatric Surgery, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Rahşan Özcan
- Cerrahpasa Faculty of Medicine, Department of Pediatric Surgery, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
2
|
Wang Y, Jaggers RM, Mar P, Galley JD, Shaffer T, Rajab A, Deshpande S, Mashburn-Warren L, Buzzo JR, Goodman SD, Bailey MT, Besner GE. Lactobacillus reuteri in its biofilm state promotes neurodevelopment after experimental necrotizing enterocolitis in rats. Brain Behav Immun Health 2021; 14. [PMID: 34296201 PMCID: PMC8294173 DOI: 10.1016/j.bbih.2021.100256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating disease affecting premature newborns with no known cure. Up to half of survivors subsequently exhibit cognitive impairment and neurodevelopmental defects. We created a novel probiotics delivery system in which the probiotic Lactobacillus reuteri (Lr) was induced to form a biofilm [Lr (biofilm)] by incubation with dextranomer microspheres loaded with maltose (Lr-DM-maltose). We have previously demonstrated that a single dose of the probiotic Lr administered in its biofilm state significantly reduces the incidence of NEC and decreases inflammatory cytokine production in an animal model of the disease. The aim of our current study was to determine whether a single dose of the probiotic Lr administered in its biofilm state protects the brain after experimental NEC. We found that rat pups exposed to NEC reached developmental milestones significantly slower than breast fed pups, with mild improvement with Lr (biofilm) treatment. Exposure to NEC had a negative effect on cognitive behavior, which was prevented by Lr (biofilm) treatment. Lr administration also reduced anxiety-like behavior in NEC-exposed rats. The behavioral effects of NEC were associated with increased numbers of activated microglia, decreased myelin basic protein (MBP), and decreased neurotrophic gene expression, which were prevented by administration of Lr (biofilm). Our data indicate early enteral treatment with Lr in its biofilm state prevented the deleterious effects of NEC on developmental impairments. Early treatment with Lr in its biofilm state improves cognitive function in pups that survive experimental NEC. Lr in its biofilm state reduces microglia activation and MBP loss, and maintains memory and learning-related gene expression. Administration of Lr in its biofilm state protects the brain, as well as intestines, during experimental NEC.
Collapse
Affiliation(s)
- Yijie Wang
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatric Surgery, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Robert M Jaggers
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Pamela Mar
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatric Surgery, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Jeffrey D Galley
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatric Surgery, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Terri Shaffer
- Preclinical Imaging and Behavior Core/Animal Resources Core, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Adrian Rajab
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatric Surgery, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Shivani Deshpande
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatric Surgery, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Lauren Mashburn-Warren
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - John R Buzzo
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Steven D Goodman
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Michael T Bailey
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Gail E Besner
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatric Surgery, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| |
Collapse
|
3
|
Weis VG, Deal AC, Mekkey G, Clouse C, Gaffley M, Whitaker E, Peeler CB, Weis JA, Schwartz MZ, Atala A. Human placental-derived stem cell therapy ameliorates experimental necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2021; 320:G658-G674. [PMID: 33566727 PMCID: PMC8238163 DOI: 10.1152/ajpgi.00369.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Necrotizing enterocolitis (NEC), a life-threatening intestinal disease, is becoming a larger proportionate cause of morbidity and mortality in premature infants. To date, therapeutic options remain elusive. Based on recent cell therapy studies, we investigated the effect of a human placental-derived stem cell (hPSC) therapy on intestinal damage in an experimental NEC rat pup model. NEC was induced in newborn Sprague-Dawley rat pups for 4 days via formula feeding, hypoxia, and LPS. NEC pups received intraperitoneal (ip) injections of either saline or hPSC (NEC-hPSC) at 32 and 56 h into NEC induction. At 4 days, intestinal macroscopic and histological damage, epithelial cell composition, and inflammatory marker expression of the ileum were assessed. Breastfed (BF) littermates were used as controls. NEC pups developed significant bowel dilation and fragility in the ileum. Further, NEC induced loss of normal villi-crypt morphology, disruption of epithelial proliferation and apoptosis, and loss of critical progenitor/stem cell and Paneth cell populations in the crypt. hPSC treatment improved macroscopic intestinal health with reduced ileal dilation and fragility. Histologically, hPSC administration had a significant reparative effect on the villi-crypt morphology and epithelium. In addition to a trend of decreased inflammatory marker expression, hPSC-NEC pups had increased epithelial proliferation and decreased apoptosis when compared with NEC littermates. Further, the intestinal stem cell and crypt niche that include Paneth cells, SOX9+ cells, and LGR5+ stem cells were restored with hPSC therapy. Together, these data demonstrate hPSC can promote epithelial healing of NEC intestinal damage.NEW & NOTEWORTHY These studies demonstrate a human placental-derived stem cell (hPSC) therapeutic strategy for necrotizing enterocolitis (NEC). In an experimental model of NEC, hPSC administration improved macroscopic intestinal health, ameliorated epithelial morphology, and supported the intestinal stem cell niche. Our data suggest that hPSC are a potential therapeutic approach to attenuate established intestinal NEC damage. Further, we show hPSC are a novel research tool that can be utilized to elucidate critical neonatal repair mechanisms to overcome NEC.
Collapse
Affiliation(s)
- Victoria G Weis
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
| | - Anna C Deal
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
| | - Gehad Mekkey
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
- Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Cara Clouse
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
| | - Michaela Gaffley
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
- General Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Emily Whitaker
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
| | - Cole B Peeler
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, Virginia
| | - Jared A Weis
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, Virginia
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Marshall Z Schwartz
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
| |
Collapse
|
4
|
Recombinant human soluble thrombomodulin reduces the severity and incidence of necrotizing enterocolitis in a newborn rat model. Surg Today 2019; 49:971-976. [PMID: 31190184 DOI: 10.1007/s00595-019-01832-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/31/2019] [Indexed: 01/14/2023]
Abstract
PURPOSE Necrotizing enterocolitis (NEC) remains the leading cause of death in preterm infants. Recombinant human soluble thrombomodulin (rTM) has been reported to have anti-inflammatory effects as well as antithrombogenic effects. The aim of this study was to evaluate the effect of rTM in a rat NEC model. METHODS NEC was induced by enteral feeding with hyperosmolar formula, gavage administration of lipopolysaccharide and asphyxia stress. Controls were fed by their mother ad libitum. In the treatment group, rTM was administered subcutaneously twice (once each on the first and second day). All animals surviving beyond 96 h or that developed signs of distress were euthanized. The ileum was harvested for a histological evaluation and the measurement of the mRNA and protein expression. RESULTS The rate of NEC-like intestinal injury in the treatment group (9/25, 36%) was significantly lower than in the NEC group (25/34, 73.5%). Tissue levels of TNF-α, IL-6 and HMGB1 were significantly elevated in the NEC group, whereas those in the treatment group were decreased to similar values as in the control group. CONCLUSIONS Our experimental study showed that rTM is able to reduce the severity and incidence of NEC. It may be an alternative option for the treatment of NEC.
Collapse
|
5
|
Burge K, Gunasekaran A, Eckert J, Chaaban H. Curcumin and Intestinal Inflammatory Diseases: Molecular Mechanisms of Protection. Int J Mol Sci 2019; 20:ijms20081912. [PMID: 31003422 PMCID: PMC6514688 DOI: 10.3390/ijms20081912] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
Intestinal inflammatory diseases, such as Crohn’s disease, ulcerative colitis, and necrotizing enterocolitis, are becoming increasingly prevalent. While knowledge of the pathogenesis of these related diseases is currently incomplete, each of these conditions is thought to involve a dysfunctional, or overstated, host immunological response to both bacteria and dietary antigens, resulting in unchecked intestinal inflammation and, often, alterations in the intestinal microbiome. This inflammation can result in an impaired intestinal barrier allowing for bacterial translocation, potentially resulting in systemic inflammation and, in severe cases, sepsis. Chronic inflammation of this nature, in the case of inflammatory bowel disease, can even spur cancer growth in the longer-term. Recent research has indicated certain natural products with anti-inflammatory properties, such as curcumin, can help tame the inflammation involved in intestinal inflammatory diseases, thus improving intestinal barrier function, and potentially, clinical outcomes. In this review, we explore the potential therapeutic properties of curcumin on intestinal inflammatory diseases, including its antimicrobial and immunomodulatory properties, as well as its potential to alter the intestinal microbiome. Curcumin may play a significant role in intestinal inflammatory disease treatment in the future, particularly as an adjuvant therapy.
Collapse
Affiliation(s)
- Kathryn Burge
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Aarthi Gunasekaran
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Jeffrey Eckert
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Hala Chaaban
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| |
Collapse
|
6
|
Meister AL, Doheny KK, Travagli RA. Necrotizing enterocolitis attenuates developmental heart rate variability increases in newborn rats. Neurogastroenterol Motil 2019; 31:e13484. [PMID: 30298607 PMCID: PMC6386597 DOI: 10.1111/nmo.13484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND We have shown previously that a decreased high-frequency spectrum of heart rate variability (HF-HRV), indicative of reduced vagal tone, shows promise in predicting neonates likely to develop necrotizing enterocolitis (NEC) before its clinical onset. We hypothesized that NEC induction in rat pups decreases HF-HRV power; subdiaphragmatic vagotomy worsens the severity of the NEC phenotype, increases levels of pro-inflammatory cytokines, and alters the myenteric phenotype. METHODS Newborn Sprague-Dawley rats, representative of preterm human neonates, were subjected to 7-8 days of brief periods of cold stress and hypoxia to induce NEC with or without unilateral subdiaphragmatic vagotomy. HRV was measured at postnatal days one and five, pups were sacrificed at day 8/9, and gastrointestinal tissues and blood were collected for immunohistochemical, corticosterone, and cytokine analysis. KEY RESULTS Compared to control, NEC-induced rats showed the following: (a) typical histological signs of grade 2 NEC, which were more severe in rats that underwent vagotomy; (b) reduced developmental increases in time (RMSSD) and frequency (HF) HRV spectra when combined with the stress of laparotomy/vagotomy; (c) increases in nitric oxide synthase-immunoreactivity in the myenteric plexus of jejunum and ileum; furthermore, compared to mild NEC and controls, vagotomized NEC rats had increased plasma values of pro-inflammatory cytokines IL-1β and IL-6. CONCLUSIONS AND INFERENCES Our data suggest that in rodents, similar to neonatal observations, NEC induction attenuated developmental HF-HRV increases, furthermore, subdiaphragmatic vagotomy worsened the histological severity, increased pro-inflammatory cytokines, and altered the nitrergic myenteric phenotype, suggesting a role of the vagus in the development of NEC pathology.
Collapse
Affiliation(s)
- Alissa L. Meister
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey PA
| | - Kim K. Doheny
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey PA,Neonatal-Perinatal Medicine, Penn State College of Medicine, Hershey PA
| | | |
Collapse
|
7
|
Role of intestinal Hsp70 in barrier maintenance: contribution of milk to the induction of Hsp70.2. Pediatr Surg Int 2018; 34:323-330. [PMID: 29196880 DOI: 10.1007/s00383-017-4211-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/05/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a gastrointestinal disease of complex etiology resulting in devastating systemic inflammation and often death in premature newborns. We previously demonstrated that formula feeding inhibits ileal expression of heat shock protein-70 (Hsp70), a critical stress protein within the intestine. Barrier function for the premature intestine is critical. We sought to determine whether reduced Hsp70 protein expression increases neonatal intestinal permeability. METHODS Young adult mouse colon cells (YAMC) were utilized to evaluate barrier function as well as intestine from Hsp70-/- pups (KO). Sections of intestine were analyzed by Western blot, immunohistochemistry, and real time PCR. YAMC cells were sub-lethally heated or treated with expressed milk (EM) to induce Hsp70. RESULTS Immunostaining demonstrates co-localized Hsp70 and tight junction protein zona occludens-1 (ZO-1), suggesting physical interaction to protect tight junction function. The permeability of YAMC monolayers increases following oxidant injury and is partially blocked by Hsp70 induction either by prior heat stress or EM. RT-PCR analysis demonstrated that the Hsp70 isoforms, 70.1 and 70.3, predominate in WT pup; however, Hsp70.2 predominates in the KO pups. While Hsp70 is present in WT milk, it is not present in KO EM. Hsp70 associates with ZO-1 to maintain epithelial barrier function. CONCLUSION Both induction of Hsp70 and exposure to EM prevent stress-induced increased permeability. Hsp70.2 is present in both WT and KO neonatal intestine, suggesting a crucial role in epithelial integrity. Induction of the Hsp70.2 isoform appears to be mediated by mother's milk. These results suggest that mother's milk feeding modulates Hsp70.2 expression and could attenuate injury leading to NEC. LEVEL OF EVIDENCE Level III.
Collapse
|
8
|
Shinyama S, Kaji T, Mukai M, Nakame K, Matsufuji H, Takamatsu H, Ieiri S. The novel preventive effect of Daikenchuto (TJ-100), a Japanese herbal drug, against neonatal necrotizing enterocolitis in rats. Pediatr Surg Int 2017; 33:1109-1114. [PMID: 28815293 DOI: 10.1007/s00383-017-4145-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE Necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease of premature infants. Daikenchuto, a Japanese herbal drug, has several effects on the digestive system, so we investigated its preventive effects in a rat model of NEC. METHODS NEC was induced in newborn rats via asphyxia (100% N2 for 90 s; every 4 h) + LPS (4 mg/kg/day [administered orally on days 0 and 1]). The effects of Daikenchuto were evaluated in four groups (control: 0 g/kg/day, I: 0.3 g/kg/day, II: 0.6 g/kg/day, and III: 1.0 g/kg/day). Daikenchuto was administered into the stomach through a microcatheter. The incidence and severity of NEC were pathologically assessed using the NEC grade in accordance with Dovorak's previous report. Cell positivity for inflammatory cytokine (IL-6) was also evaluated. RESULTS Daikenchuto reduced the incidence of NEC in control, Groups I, II, and III to 68.7, 30.0, 30.7, and 13.3%, respectively. High-dose Daikenchuto significantly improved the incidence of NEC, and the rate of IL-6 positive cells in group III was significantly lower than in the control group (p = 0.04). CONCLUSION We evaluated the effect of Daikenchuto against NEC and found that it reduced the incidence rate of NEC due to a decrease in the IL-6 production.
Collapse
Affiliation(s)
- Shin Shinyama
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Tatsuru Kaji
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Motoi Mukai
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Kazuhiko Nakame
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Hiroshi Matsufuji
- Ambulatory Care Center for Children, St. Luke's International Hospital, Tokyo, Japan
| | - Hideo Takamatsu
- Research and Education Assembly, Kagoshima University, Kagoshima, Japan
| | - Satoshi Ieiri
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan.
| |
Collapse
|
9
|
Inhibition of corticotropin-releasing hormone receptor 1 and activation of receptor 2 protect against colonic injury and promote epithelium repair. Sci Rep 2017; 7:46616. [PMID: 28492284 PMCID: PMC5425914 DOI: 10.1038/srep46616] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/21/2017] [Indexed: 12/16/2022] Open
Abstract
Maternal separation (MS) in neonates can lead to intestinal injury. MS in neonatal mice disrupts mucosal morphology, induces colonic inflammation and increases trans-cellular permeability. Several studies indicate that intestinal epithelial stem cells are capable of initiating gut repair in a variety of injury models but have not been reported in MS. The pathophysiology of MS-induced gut injury and subsequent repair remains unclear, but communication between the brain and gut contribute to MS-induced colonic injury. Corticotropin-releasing hormone (CRH) is one of the mediators involved in the brain–gut axis response to MS-induced damage. We investigated the roles of the CRH receptors, CRHR1 and CRHR2, in MS-induced intestinal injury and subsequent repair. To distinguish their specific roles in mucosal injury, we selectively blocked CRHR1 and CRHR2 with pharmacological antagonists. Our results show that in response to MS, CRHR1 mediates gut injury by promoting intestinal inflammation, increasing gut permeability, altering intestinal morphology, and modulating the intestinal microbiota. In contrast, CRHR2 activates intestinal stem cells and is important for gut repair. Thus, selectively blocking CRHR1 and promoting CRHR2 activity could prevent the development of intestinal injuries and enhance repair in the neonatal period when there is increased risk of intestinal injury such as necrotizing enterocolitis.
Collapse
|
10
|
Abstract
Necrotising enterocolitis (NEC) is an uncommon, but devastating intestinal inflammatory disease that predominantly affects preterm infants. NEC is sometimes dubbed the spectre of neonatal intensive care units, as its onset is insidiously non-specific, and once the disease manifests, the damage inflicted on the baby's intestine is already disastrous. Subsequent sepsis and multi-organ failure entail a mortality of up to 65%. Development of effective treatments for NEC has stagnated, largely because of our lack of understanding of NEC pathogenesis. It is clear, however, that NEC is driven by a profoundly dysregulated immune system. NEC is associated with local increases in pro-inflammatory mediators, e.g. Toll-like receptor (TLR) 4, nuclear factor-κB, tumour necrosis factor, platelet-activating factor (PAF), interleukin (IL)-18, interferon-gamma, IL-6, IL-8 and IL-1β. Deficiencies in counter-regulatory mechanisms, including IL-1 receptor antagonist (IL-1Ra), TLR9, PAF-acetylhydrolase, transforming growth factor beta (TGF-β)1&2, IL-10 and regulatory T cells likely facilitate a pro-inflammatory milieu in the NEC-afflicted intestine. There is insufficient evidence to conclude a predominance of an adaptive Th1-, Th2- or Th17-response in the disease. Our understanding of the accompanying regulation of systemic immunity remains poor; however, IL-1Ra, IL-6, IL-8 and TGF-β1 show promise as biomarkers. Here, we chart the emerging immunological landscape that underpins NEC by reviewing the involvement and potential clinical implications of innate and adaptive immune mediators and their regulation in NEC.
Collapse
|
11
|
Fawley J, Gourlay DM. Intestinal alkaline phosphatase: a summary of its role in clinical disease. J Surg Res 2016; 202:225-34. [PMID: 27083970 PMCID: PMC4834149 DOI: 10.1016/j.jss.2015.12.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 11/07/2015] [Accepted: 12/08/2015] [Indexed: 12/19/2022]
Abstract
Over the past few years, there is increasing evidence implicating a novel role for Intestinal Alkaline Phosphatase (IAP) in mitigating inflammatory mediated disorders. IAP is an endogenous protein expressed by the intestinal epithelium that is believed to play a vital role in maintaining gut homeostasis. Loss of IAP expression or function is associated with increased intestinal inflammation, dysbiosis, bacterial translocation and subsequently systemic inflammation. As these events are a cornerstone of the pathophysiology of many diseases relevant to surgeons, we sought to review recent research in both animal and humans on IAP's physiologic function, mechanisms of action and current research in specific surgical diseases.
Collapse
Affiliation(s)
- Jason Fawley
- Department of Surgery, Division of Pediatric Surgery, Medical College of Wisconsin, Milwaukee; Department of Surgery, Division of Pediatric Surgery, Children's Hospital of Wisconsin, Milwaukee
| | - David M Gourlay
- Department of Surgery, Division of Pediatric Surgery, Medical College of Wisconsin, Milwaukee; Department of Surgery, Division of Pediatric Surgery, Children's Hospital of Wisconsin, Milwaukee.
| |
Collapse
|
12
|
Biesterveld BE, Koehler SM, Heinzerling NP, Rentea RM, Fredrich K, Welak SR, Gourlay DM. Intestinal alkaline phosphatase to treat necrotizing enterocolitis. J Surg Res 2015; 196:235-40. [PMID: 25840489 DOI: 10.1016/j.jss.2015.02.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/09/2015] [Accepted: 02/13/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND Intestinal alkaline phosphatase (IAP) activity is decreased in necrotizing enterocolitis (NEC), and IAP supplementation prevents NEC development. It is not known if IAP given after NEC onset can reverse the course of the disease. We hypothesized that enteral IAP given after NEC induction would not reverse intestinal injury. MATERIALS AND METHODS NEC was induced in Sprague-Dawley pups by delivery preterm followed by formula feedings with lipopolysaccharide (LPS) and hypoxia exposure and continued up to 4 d. IAP was added to feeds on day 2 until being sacrificed on day 4. NEC severity was scored based on hematoxylin and eosin-stained terminal ileum sections, and AP activity was measured using a colorimetric assay. IAP and interleukin-6 expression were measured using real time polymerase chain reaction. RESULTS NEC pups' alkaline phosphatase (AP) activity was decreased to 0.18 U/mg compared with controls of 0.57 U/mg (P < 0.01). Discontinuation of LPS and hypoxia after 2 d increased AP activity to 0.36 U/mg (P < 0.01). IAP supplementation in matched groups did not impact total AP activity or expression. Discontinuing LPS and hypoxia after NEC onset improved intestinal injury scores to 1.14 compared with continued stressors, score 2.25 (P < 0.01). IAP supplementation decreased interleukin-6 expression two-fold (P < 0.05), though did not reverse NEC intestinal damage (P = 0.5). CONCLUSIONS This is the first work to demonstrate that removing the source of NEC improves intestinal damage and increases AP activity. When used as a rescue treatment, IAP decreased intestinal inflammation though did not impact injury making it likely that IAP is best used preventatively to those neonates at risk.
Collapse
Affiliation(s)
| | - Shannon M Koehler
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | | | - Rebecca M Rentea
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Scott R Welak
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Wisconsin, Milwaukee, Wisconsin; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David M Gourlay
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Wisconsin, Milwaukee, Wisconsin; Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
13
|
Welak SR, Rentea RM, Teng RJ, Heinzerling N, Biesterveld B, Liedel JL, Pritchard KA, Fredrich KM, Gourlay DM. Intestinal NADPH oxidase 2 activity increases in a neonatal rat model of necrotizing enterocolitis. PLoS One 2014; 9:e115317. [PMID: 25517730 PMCID: PMC4269454 DOI: 10.1371/journal.pone.0115317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a complication of prematurity. The etiology is unknown, but is related to enteral feeding, ischemia, infection, and inflammation. Reactive oxygen species production, most notably superoxide, increases in NEC. NADPH oxidase (NOX) generates superoxide, but its activity in NEC remains unknown. We hypothesize that NOX-derived superoxide production increases in NEC. Newborn Sprague-Dawley rats were divided into control, formula-fed, formula/LPS, formula/hypoxia, and NEC (formula, hypoxia, and LPS). Intestinal homogenates were analyzed for NADPH-dependent superoxide production. Changes in superoxide levels on days 0-4 were measured. Inhibitors for nitric oxide synthase (L-NAME) and NOX2 (GP91-ds-tat) were utilized. RT-PCR for eNOS, NOX1, GP91phox expression was performed. Immunofluorescence studies estimated the co-localization of p47phox and GP91phox in control and NEC animals on D1, D2, and D4. NEC pups generated more superoxide than controls on D4, while all other groups were unchanged. NADPH-dependent superoxide production was greater in NEC on days 0, 3, and 4. GP91-ds-tat decreased superoxide production in both groups, with greater inhibition in NEC. L-NAME did not alter superoxide production. Temporally, superoxide production varied minimally in controls. In NEC, superoxide generation was decreased on day 1, but increased on days 3-4. GP91phox expression was higher in NEC on days 2 and 4. NOX1 and eNOS expression were unchanged from controls. GP91phox and p47phox had minimal co-localization in all control samples and NEC samples on D1 and D2, but had increased co-localization on D4. In conclusion, this study proves that experimentally-induced NEC increases small intestinal NOX activity. All components of NEC model are necessary for increased NOX activity. NOX2 is the major source, especially as the disease progresses.
Collapse
Affiliation(s)
- Scott R. Welak
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Translational Vascular Biology Program, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| | - Rebecca M. Rentea
- Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Division of Pediatric Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Ru-Jeng Teng
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Translational Vascular Biology Program, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Nathan Heinzerling
- Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Division of Pediatric Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Ben Biesterveld
- Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Division of Pediatric Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Jennifer L. Liedel
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Division of Critical Care, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Kirkwood A. Pritchard
- Translational Vascular Biology Program, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Division of Pediatric Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Katherine M. Fredrich
- Translational Vascular Biology Program, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Division of Pediatric Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - David M. Gourlay
- Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Translational Vascular Biology Program, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Division of Pediatric Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
14
|
Heinzerling NP, Liedel JL, Welak SR, Fredrich K, Biesterveld BE, Pritchard KA, Gourlay DM. Intestinal alkaline phosphatase is protective to the preterm rat pup intestine. J Pediatr Surg 2014; 49:954-60; discussion 960. [PMID: 24888842 PMCID: PMC4130394 DOI: 10.1016/j.jpedsurg.2014.01.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 01/27/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is the most common surgical emergency in neonates, with a mortality rate between 10 and 50%. The onset of necrotizing enterocolitis is highly variable and associated with numerous risk factors. Prior research has shown that enteral supplementation with intestinal alkaline phosphatase (IAP) decreases the severity of NEC. The aim of this study is to investigate whether IAP is protective to the preterm intestine in the presence of formula feeding and in the absence of NEC. METHODS Preterm rat pups were fed formula with or without supplementation with IAP, and intestine was obtained on day of life 3 for analysis of IAP activity, mRNA expression of TNFα, IL-6 and iNOS and permeability and cytokine expression after LPS exposure. RESULTS There was no difference in the absolute and intestine specific alkaline phosphatase activity in both groups. Rat pups fed IAP had decreased mRNA expression of the inflammatory cytokines TNFα, IL-6 and iNOS. Pups supplemented with IAP had decreased permeability and inflammatory cytokine expression after exposure to LPS ex vivo when compared to formula fed controls. CONCLUSIONS Our results support that IAP is beneficial to preterm intestine and decreases intestinal injury and inflammation caused by LPS.
Collapse
Affiliation(s)
| | - Jennifer L Liedel
- Division of Neonatology, Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA; Division of Critical Care, Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Scott R Welak
- Division of Neonatology, Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Katherine Fredrich
- Division of Pediatric Surgery, Medical College of Wisconsin, Children's Research Institute, Milwaukee, WI 53226, USA
| | | | - Kirkwood A Pritchard
- Division of Pediatric Surgery, Medical College of Wisconsin, Children's Research Institute, Milwaukee, WI 53226, USA
| | - David M Gourlay
- Division of Pediatric Surgery, Medical College of Wisconsin, Children's Hospital of Wisconsin, Children's Research Institute, Milwaukee, WI 53226, USA.
| |
Collapse
|