1
|
Wanjari M, Prasad R. Managing pediatric intracranial hemorrhage: a neurosurgical approach to trauma. Neurosurg Rev 2024; 47:727. [PMID: 39365349 DOI: 10.1007/s10143-024-02980-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Affiliation(s)
- Mayur Wanjari
- Department of Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, India.
| | - Roshan Prasad
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, India
| |
Collapse
|
2
|
Grassi DC, Zaninotto AL, Feltrin FS, Macruz FBC, Otaduy MCG, Leite CC, Guirado VMP, Paiva WS, Santos Andrade C. Dynamic changes in white matter following traumatic brain injury and how diffuse axonal injury relates to cognitive domain. Brain Inj 2021; 35:275-284. [PMID: 33507820 DOI: 10.1080/02699052.2020.1859615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objective: The goal is to evaluate longitudinally with diffusion tensor imaging (DTI) the integrity of cerebral white matter in patients with moderate and severe DAI and to correlate the DTI findings with cognitive deficits.Methods: Patients with DAI (n = 20) were scanned at three timepoints (2, 6 and 12 months) after trauma. A healthy control group (n = 20) was evaluated once with the same high-field MRI scanner. The corpus callosum (CC) and the bilateral superior longitudinal fascicles (SLFs) were assessed by deterministic tractography with ExploreDTI. A neuropschychological evaluation was also performed.Results: The CC and both SLFs demonstrated various microstructural abnormalities in between-groups comparisons. All DTI parameters demonstrated changes across time in the body of the CC, while FA (fractional anisotropy) increases were seen on both SLFs. In the splenium of the CC, progressive changes in the mean diffusivity (MD) and axial diffusivity (AD) were also observed. There was an improvement in attention and memory along time. Remarkably, DTI parameters demonstrated several correlations with the cognitive domains.Conclusions: Our findings suggest that microstructural changes in the white matter are dynamic and may be detectable by DTI throughout the first year after trauma. Likewise, patients also demonstrated improvement in some cognitive skills.
Collapse
Affiliation(s)
- Daphine Centola Grassi
- Department of Radiology, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil.,Laboratory of Medical Investigation 44, Hospital Das Clínicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ana Luiza Zaninotto
- Speech and Feeding Disorders Lab, MGH Institute of Health Professions (MGHIHP), Boston, Massachusetts, USA.,Department of Neurology, Hospital Das Clínicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Fabrício Stewan Feltrin
- Department of Radiology, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil.,Laboratory of Medical Investigation 44, Hospital Das Clínicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Fabíola Bezerra Carvalho Macruz
- Department of Radiology, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil.,Laboratory of Medical Investigation 44, Hospital Das Clínicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Maria Concepción García Otaduy
- Department of Radiology, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil.,Laboratory of Medical Investigation 44, Hospital Das Clínicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Claudia Costa Leite
- Department of Radiology, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil.,Laboratory of Medical Investigation 44, Hospital Das Clínicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Wellingson Silva Paiva
- Department of Neurology, Hospital Das Clínicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Celi Santos Andrade
- Department of Radiology, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil.,Laboratory of Medical Investigation 44, Hospital Das Clínicas, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Traumatic Microbleeds in the Hippocampus and Corpus Callosum Predict Duration of Posttraumatic Amnesia. J Head Trauma Rehabil 2020; 34:E10-E18. [PMID: 31033742 DOI: 10.1097/htr.0000000000000479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Radiologic predictors of posttraumatic amnesia (PTA) duration are lacking. We hypothesized that the number and distribution of traumatic microbleeds (TMBs) detected by gradient recalled echo (GRE) magnetic resonance imaging (MRI) predicts PTA duration. SETTING Academic, tertiary medical center. PARTICIPANTS Adults with traumatic brain injury (TBI). DESIGN We identified 65 TBI patients with acute GRE MRI. PTA duration was determined with the Galveston Orientation and Amnesia Test, Orientation Log, or chart review. TMBs were identified within memory regions (hippocampus, corpus callosum, fornix, thalamus, and temporal lobe) and control regions (internal capsule and global). Regression tree analysis was performed to identify radiologic predictors of PTA duration, controlling for clinical PTA predictors. MAIN MEASURES TMB distribution, PTA duration. RESULTS Sixteen patients (25%) had complicated mild, 4 (6%) had moderate, and 45 (69%) had severe TBI. Median PTA duration was 43 days (range, 0-240 days). In univariate analysis, PTA duration correlated with TMBs in the corpus callosum (R = 0.29, P = .02) and admission Glasgow Coma Scale (GCS) score (R = -0.34, P = .01). In multivariate regression analysis, admission GCS score was the only significant contributor to PTA duration. However, in regression tree analysis, hippocampal TMBs, callosal TMBs, age, and admission GCS score explained 26% of PTA duration variance and distinguished a subgroup with prolonged PTA. CONCLUSIONS Hippocampal and callosal TMBs are potential radiologic predictors of PTA duration.
Collapse
|
4
|
Diekfuss JA, Yuan W, Barber Foss KD, Dudley JA, DiCesare CA, Reddington DL, Zhong W, Nissen KS, Shafer JL, Leach JL, Bonnette S, Logan K, Epstein JN, Clark J, Altaye M, Myer GD. The effects of internal jugular vein compression for modulating and preserving white matter following a season of American tackle football: A prospective longitudinal evaluation of differential head impact exposure. J Neurosci Res 2020; 99:423-445. [PMID: 32981154 DOI: 10.1002/jnr.24727] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/17/2023]
Abstract
The purpose of this clinical trial was to examine whether internal jugular vein compression (JVC)-using an externally worn neck collar-modulated the relationships between differential head impact exposure levels and pre- to postseason changes in diffusion tensor imaging (DTI)-derived diffusivity and anisotropy metrics of white matter following a season of American tackle football. Male high-school athletes (n = 284) were prospectively assigned to a non-collar group or a collar group. Magnetic resonance imaging data were collected from participants pre- and postseason and head impact exposure was monitored by accelerometers during every practice and game throughout the competitive season. Athletes' accumulated head impact exposure was systematically thresholded based on the frequency of impacts of progressively higher magnitudes (10 g intervals between 20 to 150 g) and modeled with pre- to postseason changes in DTI measures of white matter as a function of JVC neck collar wear. The findings revealed that the JVC neck collar modulated the relationships between greater high-magnitude head impact exposure (110 to 140 g) and longitudinal changes to white matter, with each group showing associations that varied in directionality. Results also revealed that the JVC neck collar group partially preserved longitudinal changes in DTI metrics. Collectively, these data indicate that a JVC neck collar can provide a mechanistic response to the diffusion and anisotropic properties of brain white matter following the highly diverse exposure to repetitive head impacts in American tackle football. Clinicaltrials.gov: NCT# 04068883.
Collapse
Affiliation(s)
- Jed A Diekfuss
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Weihong Yuan
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Departments of Pediatrics and Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kim D Barber Foss
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jonathan A Dudley
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christopher A DiCesare
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Danielle L Reddington
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Wen Zhong
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Departments of Pediatrics and Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Katharine S Nissen
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jessica L Shafer
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James L Leach
- Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Scott Bonnette
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kelsey Logan
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jeffery N Epstein
- Departments of Pediatrics and Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - Joseph Clark
- Departments of Pediatrics and Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mekibib Altaye
- Departments of Pediatrics and Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gregory D Myer
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Departments of Pediatrics and Orthopaedic Surgery, University of Cincinnati, Cincinnati, OH, USA.,The Micheli Center for Sports Injury Prevention, Waltham, MA, USA
| |
Collapse
|
5
|
Sultan E, Gandjbakhche AH, Pourrezaei K, Daryoush AS. High spatial resolution identification of hematoma in inhomogeneous head phantom using broadband fNIR system. Biomed Eng Online 2018; 17:176. [PMID: 30482252 PMCID: PMC6260698 DOI: 10.1186/s12938-018-0605-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 11/19/2018] [Indexed: 11/10/2022] Open
Abstract
This paper presents a novel method for early detection of hematomas using highly sensitive optical fNIR imaging methods based on broadband photon migration. The NIR experimental measurements of inhomogeneous multi-layer phantoms representing human head are compared to 3D numerical modeling over broadband frequencies of 30-1000 MHz. A finite element method (FEM) simulation of the head phantom are compared to measurements of insertion loss and phase using custom-designed broadband free space optical transmitter (Tx) and receiver (Rx) modules that are developed for photon migration at wavelengths of 670 nm, 795 nm, 850 nm, though results of 670 nm are discussed here. Standard error is used to compute error between 3D FEM modeling and experimental measurements by fitting experimental data to the [Formula: see text]. Error results are shown at narrowband and broadband frequency modulation in order to have confidence in 3D numerical modeling. A novel method is established here to identify presence of hematoma based on first and second derivatives of changes in insertion loss and phase (∆IL and ∆IP), where frequency modulated photons sensitive to different sizes of hematoma is identified for wavelength of 670 nm. The high accuracy of this comparison provides confidence in optical bio-imaging and its eventual application to TBI detection.
Collapse
Affiliation(s)
- E Sultan
- Dept. of Electronics Engineering, College of Technological Studies, PAAET, Kuwait, Kuwait.
| | - A H Gandjbakhche
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - K Pourrezaei
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - A S Daryoush
- Dept. of ECE, Drexel University, Philadelphia, PA, 19104, USA
| |
Collapse
|
6
|
Makinde HM, Just TB, Cuda CM, Bertolino N, Procissi D, Schwulst SJ. Monocyte depletion attenuates the development of posttraumatic hydrocephalus and preserves white matter integrity after traumatic brain injury. PLoS One 2018; 13:e0202722. [PMID: 30383765 PMCID: PMC6211627 DOI: 10.1371/journal.pone.0202722] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/17/2018] [Indexed: 01/06/2023] Open
Abstract
Monocytes are amongst the first cells recruited into the brain after traumatic brain injury (TBI). We have shown monocyte depletion 24 hours prior to TBI reduces brain edema, decreases neutrophil infiltration and improves behavioral outcomes. Additionally, both lesion and ventricle size correlate with poor neurologic outcome after TBI. Therefore, we aimed to determine the association between monocyte infiltration, lesion size, and ventricle volume. We hypothesized that monocyte depletion would attenuate lesion size, decrease ventricle enlargement, and preserve white matter in mice after TBI. C57BL/6 mice underwent pan monocyte depletion via intravenous injection of liposome-encapsulated clodronate. Control mice were injected with liposome-encapsulated PBS. TBI was induced via an open-head, controlled cortical impact. Mice were imaged using magnetic resonance imaging (MRI) at 1, 7, and 14 days post-injury to evaluate progression of lesion and to detect morphological changes associated with injury (3D T1-weighted MRI) including regional alterations in white matter patterns (multi-direction diffusion MRI). Lesion size and ventricle volume were measured using semi-automatic segmentation and active contour methods with the software program ITK-SNAP. Data was analyzed with the statistical software program PRISM. No significant effect of monocyte depletion on lesion size was detected using MRI following TBI (p = 0.4). However, progressive ventricle enlargement following TBI was observed to be attenuated in the monocyte-depleted cohort (5.3 ± 0.9mm3) as compared to the sham-depleted cohort (13.2 ± 3.1mm3; p = 0.02). Global white matter integrity and regional patterns were evaluated and quantified for each mouse after extracting fractional anisotropy maps from the multi-direction diffusion-MRI data using Siemens Syngo DTI analysis package. Fractional anisotropy (FA) values were preserved in the monocyte-depleted cohort (123.0 ± 4.4mm3) as compared to sham-depleted mice (94.9 ± 4.6mm3; p = 0.025) by 14 days post-TBI. All TBI mice exhibited FA values lower than those from a representative naïve control group with intact white matter tracts and FA~200 mm3). The MRI derived assessment of injury progression suggests that monocyte depletion at the time of injury may be a novel therapeutic strategy in the treatment of TBI. Furthermore, non-invasive longitudinal imaging allows for the evaluation of both TBI progression as well as therapeutic response over the course of injury.
Collapse
Affiliation(s)
- Hadijat M. Makinde
- Department of Surgery, Division of Trauma and Critical Care, Northwestern University, Chicago, Illinois, United States of America
| | - Talia B. Just
- Department of Surgery, Division of Trauma and Critical Care, Northwestern University, Chicago, Illinois, United States of America
| | - Carla M. Cuda
- Department of Medicine, Division of Rheumatology, Northwestern University, Chicago, Illinois, United States of America
| | - Nicola Bertolino
- Department of Radiology, Northwestern University, Chicago, Illinois, United States of America
| | - Daniele Procissi
- Department of Radiology, Northwestern University, Chicago, Illinois, United States of America
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, United States of America
| | - Steven J. Schwulst
- Department of Surgery, Division of Trauma and Critical Care, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
7
|
Clark AL, Delano-Wood L, Sorg SF, Werhane ML, Hanson KL, Schiehser DM. Cognitive fatigue is associated with reduced anterior internal capsule integrity in veterans with history of mild to moderate traumatic brain injury. Brain Imaging Behav 2018; 11:1548-1554. [PMID: 27738990 DOI: 10.1007/s11682-016-9594-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
No known studies have directly examined white matter microstructural correlates of cognitive fatigue post-TBI in a Veteran sample. We therefore investigated the relationship between cognitive fatigue and white matter integrity in Veterans with history of mild to moderate TBI (mmTBI). 59 Veterans (TBI = 34, Veteran Controls [VCs] = 25]) with and without history of mmTBI underwent structural 3T DTI scans and completed questionnaires related to cognitive fatigue and psychiatric symptoms. Tractography was employed on six regions of interest, including the anterior and posterior limbs of the internal capsule; genu; body and splenium of the corpus callosum; and cingulum bundle. Group analyses revealed that those with history of mmTBI displayed significantly greater levels of cognitive fatigue relative to those with no history of head injury (p = .02). Within the mmTBI group, independent of psychiatric symptoms, decreased white matter microstructural integrity of the left anterior internal capsule was associated with greater levels of cognitive fatigue (p = .01). Results show that the subjective experience of cognitive fatigue following neurotrauma may be linked to the disruption of striato-thalamo-cortical tracts that are important in mediating arousal and higher-order cognitive processes. These findings build upon those from existing functional neuroimaging studies in those with history of TBI, providing further evidence for the neural basis of cognitive fatigue in head injured adults.
Collapse
Affiliation(s)
- Alexandra L Clark
- Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego (SDSU/UCSD), San Diego, CA, USA.,VA San Diego Healthcare System (VASDHS), 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
| | - Lisa Delano-Wood
- VA San Diego Healthcare System (VASDHS), 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.,Center of Excellence for Stress and Mental Health, VASDHS, San Diego, CA, USA.,School of Medicine, Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Scott F Sorg
- VA San Diego Healthcare System (VASDHS), 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.,School of Medicine, Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Madeleine L Werhane
- Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego (SDSU/UCSD), San Diego, CA, USA.,VA San Diego Healthcare System (VASDHS), 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
| | - Karen L Hanson
- VA San Diego Healthcare System (VASDHS), 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.,School of Medicine, Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Dawn M Schiehser
- VA San Diego Healthcare System (VASDHS), 3350 La Jolla Village Drive, San Diego, CA, 92161, USA. .,Center of Excellence for Stress and Mental Health, VASDHS, San Diego, CA, USA. .,School of Medicine, Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Arnerić SP, Kern VD, Stephenson DT. Regulatory-accepted drug development tools are needed to accelerate innovative CNS disease treatments. Biochem Pharmacol 2018; 151:291-306. [PMID: 29410157 DOI: 10.1016/j.bcp.2018.01.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/26/2018] [Indexed: 02/07/2023]
Abstract
Central Nervous System (CNS) diseases represent one of the most challenging therapeutic areas for successful drug approvals. Developing quantitative biomarkers as Drug Development Tools (DDTs) can catalyze the path to innovative treatments, and improve the chances of drug approvals. Drug development and healthcare management requires sensitive, reliable, validated, and regulatory accepted biomarkers and endpoints. This review highlights the regulatory paths and considerations for developing DDTs required to advance biomarker and endpoint use in clinical development (e.g., consensus CDISC [Clinical Data Interchange Standards Consortium] data standards, precompetitive sharing of anonymized patient-level data, and continual alignment with regulators). Summarized is the current landscape of biomarkers in a range of CNS diseases including Alzheimer disease, Parkinson Disease, Amyotrophic Lateral Sclerosis, Autism Spectrum Disorders, Depression, Huntington's disease, Multiple Sclerosis and Traumatic Brain Injury. Advancing DDTs for these devastating diseases that are both validated and qualified will require an integrated, cross-consortium approach to accelerate the delivery of innovative CNS therapeutics.
Collapse
Affiliation(s)
- Stephen P Arnerić
- Critical Path for Alzheimer's Disease, Crititcal Path Institute, United States.
| | - Volker D Kern
- Critical Path for Alzheimer's Disease, Crititcal Path Institute, United States
| | | |
Collapse
|
9
|
Guglielmetti C, Chou A, Krukowski K, Najac C, Feng X, Riparip LK, Rosi S, Chaumeil MM. In vivo metabolic imaging of Traumatic Brain Injury. Sci Rep 2017; 7:17525. [PMID: 29235509 PMCID: PMC5727520 DOI: 10.1038/s41598-017-17758-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/29/2017] [Indexed: 11/10/2022] Open
Abstract
Complex alterations in cerebral energetic metabolism arise after traumatic brain injury (TBI). To date, methods allowing for metabolic evaluation are highly invasive, limiting our understanding of metabolic impairments associated with TBI pathogenesis. We investigated whether 13C MRSI of hyperpolarized (HP) [1-13C] pyruvate, a non-invasive metabolic imaging method, could detect metabolic changes in controlled cortical injury (CCI) mice (n = 57). Our results show that HP [1-13C] lactate-to-pyruvate ratios were increased in the injured cortex at acute (12/24 hours) and sub-acute (7 days) time points after injury, in line with decreased pyruvate dehydrogenase (PDH) activity, suggesting impairment of the oxidative phosphorylation pathway. We then used the colony-stimulating factor-1 receptor inhibitor PLX5622 to deplete brain resident microglia prior to and after CCI, in order to confirm that modulations of HP [1-13C] lactate-to-pyruvate ratios were linked to microglial activation. Despite CCI, the HP [1-13C] lactate-to-pyruvate ratio at the injury cortex of microglia-depleted animals at 7 days post-injury remained unchanged compared to contralateral hemisphere, and PDH activity was not affected. Altogether, our results demonstrate that HP [1-13C] pyruvate has great potential for in vivo non-invasive detection of cerebral metabolism post-TBI, providing a new tool to monitor the effect of therapies targeting microglia/macrophages activation after TBI.
Collapse
Affiliation(s)
- Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Surbeck Laboratory of Advanced Imaging, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Austin Chou
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, 1001 Potrero Ave, Bldg. 1, Room 101, San Francisco, CA, 94110, USA
| | - Karen Krukowski
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, 1001 Potrero Ave, Bldg. 1, Room 101, San Francisco, CA, 94110, USA
| | - Chloe Najac
- Surbeck Laboratory of Advanced Imaging, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| | - Xi Feng
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, 1001 Potrero Ave, Bldg. 1, Room 101, San Francisco, CA, 94110, USA
| | - Lara-Kirstie Riparip
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.,Brain and Spinal Injury Center, University of California, 1001 Potrero Ave, Bldg. 1, Room 101, San Francisco, CA, 94110, USA
| | - Susanna Rosi
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA. .,Brain and Spinal Injury Center, University of California, 1001 Potrero Ave, Bldg. 1, Room 101, San Francisco, CA, 94110, USA. .,Department of Neurological Surgery, University of California, San Francisco, CA, USA. .,Weill Institute for Neuroscience, University of California, San Francisco, CA, USA. .,Kavli Institute of Fundamental Neuroscience, University of California, San Francisco, CA, USA.
| | - Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA. .,Surbeck Laboratory of Advanced Imaging, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States.
| |
Collapse
|
10
|
Marehbian J, Muehlschlegel S, Edlow BL, Hinson HE, Hwang DY. Medical Management of the Severe Traumatic Brain Injury Patient. Neurocrit Care 2017; 27:430-446. [PMID: 28573388 PMCID: PMC5700862 DOI: 10.1007/s12028-017-0408-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Severe traumatic brain injury (sTBI) is a major contributor to long-term disability and a leading cause of death worldwide. Medical management of the sTBI patient, beginning with prehospital triage, is aimed at preventing secondary brain injury. This review discusses prehospital and emergency department management of sTBI, as well as aspects of TBI management in the intensive care unit where advances have been made in the past decade. Areas of emphasis include intracranial pressure management, neuromonitoring, management of paroxysmal sympathetic hyperactivity, neuroprotective strategies, prognostication, and communication with families about goals of care. Where appropriate, differences between the third and fourth editions of the Brain Trauma Foundation guidelines for the management of severe traumatic brain injury are highlighted.
Collapse
Affiliation(s)
- Jonathan Marehbian
- Division of Neurocritical Care and Emergency Neurology, Yale School of Medicine, P.O. Box 208018, New Haven, CT, 06520, USA
| | - Susanne Muehlschlegel
- Departments of Neurology, Anesthesia/Critical Care, and Surgery, University of Massachusetts Medical School, 55 Lake Ave North, S-5, Worcester, MA, 01655, USA
| | - Brian L Edlow
- Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital, 55 Fruit Street - Lunder 650, Boston, MA, 02114, USA
| | - Holly E Hinson
- Oregon Health and Science University, 3181 SW Sam Jackson Park Road, CR-127, Portland, OR, 97239, USA
| | - David Y Hwang
- Division of Neurocritical Care and Emergency Neurology, Yale School of Medicine, P.O. Box 208018, New Haven, CT, 06520, USA.
| |
Collapse
|
11
|
Abstract
Severe brain injury may cause disruption of neural networks that sustain arousal and awareness, the two essential components of consciousness. Despite the potentially devastating immediate and long-term consequences, disorders of consciousness (DoC) are poorly understood in terms of their underlying neurobiology, the relationship between pathophysiology and recovery, and the predictors of treatment efficacy. Recent advances in neuroimaging techniques have enabled the study of network connectivity, providing great potential to improve the clinical care of patients with DoC. Initial discoveries in this field were made using positron emission tomography (PET). More recently, functional magnetic resonance (fMRI) techniques have added to our understanding of functional network dynamics in this population. Both methods have shown that whether at rest or performing a goal-oriented task, functional networks essential for processing intrinsic thoughts and extrinsic stimuli are disrupted in patients with DoC compared with healthy subjects. Atypical connectivity has been well established in the default mode network as well as in other cortical and subcortical networks that may be required for consciousness. Moreover, the degree of altered connectivity may be related to the severity of impaired consciousness, and recovery of consciousness has been shown to be associated with restoration of connectivity. In this review, we discuss PET and fMRI studies of functional and effective connectivity in patients with DoC and suggest how this field can move toward clinical application of functional network mapping in the future.
Collapse
Affiliation(s)
- Yelena G. Bodien
- Center for Neurotechnology and Neurorecovery, Department of
Neurology, Massachusetts General Hospital, Boston, MA
- Department of Physical Medicine and Rehabilitation, Spaulding
Rehabilitation Hospital, Charlestown, MA
- Harvard Medical School, Boston, MA
| | - Camille Chatelle
- Center for Neurotechnology and Neurorecovery, Department of
Neurology, Massachusetts General Hospital, Boston, MA
- Coma Science Group, GIGA-Research, University of Liège
& Neurology Department, University Hospital of Liège, Liège,
Belgium
| | - Brian L. Edlow
- Center for Neurotechnology and Neurorecovery, Department of
Neurology, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts
General Hospital, Charlestown, MA
| |
Collapse
|
12
|
Edlow BL, Copen WA, Izzy S, Bakhadirov K, van der Kouwe A, Glenn MB, Greenberg SM, Greer DM, Wu O. Diffusion tensor imaging in acute-to-subacute traumatic brain injury: a longitudinal analysis. BMC Neurol 2016; 16:2. [PMID: 26754948 PMCID: PMC4707723 DOI: 10.1186/s12883-015-0525-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 12/31/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Diffusion tensor imaging (DTI) may have prognostic utility in patients with traumatic brain injury (TBI), but the optimal timing of DTI data acquisition is unknown because of dynamic changes in white matter water diffusion during the acute and subacute stages of TBI. We aimed to characterize the direction and magnitude of early longitudinal changes in white matter fractional anisotropy (FA) and to determine whether acute or subacute FA values correlate more reliably with functional outcomes after TBI. METHODS From a prospective TBI outcomes database, 11 patients who underwent acute (≤7 days) and subacute (8 days to rehabilitation discharge) DTI were retrospectively analyzed. Longitudinal changes in FA were measured in 11 white matter regions susceptible to traumatic axonal injury. Correlations were assessed between acute FA, subacute FA and the disability rating scale (DRS) score, which was ascertained at discharge from inpatient rehabilitation. RESULTS FA declined from the acute-to-subacute period in the genu of the corpus callosum (0.70 ± 0.02 vs. 0.55 ± 0.11, p < 0.05) and inferior longitudinal fasciculus (0.54+/-0.07 vs. 0.49+/-0.07, p < 0.01). Acute correlations between FA and DRS score were variable: higher FA in the body (R = -0.78, p = 0.02) and splenium (R = -0.83, p = 0.003) of the corpus callosum was associated with better outcomes (i.e. lower DRS scores), whereas higher FA in the genu of the corpus callosum (R = 0.83, p = 0.02) corresponded with worse outcomes (i.e. higher DRS scores). In contrast, in the subacute period higher FA in the splenium correlated with better outcomes (R = -0.63, p < 0.05) and no inverse correlations were observed. CONCLUSIONS White matter FA declined during the acute-to-subacute stages of TBI. Variability in acute FA correlations with outcome suggests that the optimal timing of DTI for TBI prognostication may be in the subacute period.
Collapse
Affiliation(s)
- Brian L Edlow
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
| | - William A Copen
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Saef Izzy
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Khamid Bakhadirov
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Andre van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
| | - Mel B Glenn
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA.
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - David M Greer
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Neurology, Yale-New Haven Hospital, Yale School of Medicine, New Haven, CT, USA.
| | - Ona Wu
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
13
|
Reis C, Wang Y, Akyol O, Ho WM, Ii RA, Stier G, Martin R, Zhang JH. What's New in Traumatic Brain Injury: Update on Tracking, Monitoring and Treatment. Int J Mol Sci 2015; 16:11903-65. [PMID: 26016501 PMCID: PMC4490422 DOI: 10.3390/ijms160611903] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI), defined as an alteration in brain functions caused by an external force, is responsible for high morbidity and mortality around the world. It is important to identify and treat TBI victims as early as possible. Tracking and monitoring TBI with neuroimaging technologies, including functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), positron emission tomography (PET), and high definition fiber tracking (HDFT) show increasing sensitivity and specificity. Classical electrophysiological monitoring, together with newly established brain-on-chip, cerebral microdialysis techniques, both benefit TBI. First generation molecular biomarkers, based on genomic and proteomic changes following TBI, have proven effective and economical. It is conceivable that TBI-specific biomarkers will be developed with the combination of systems biology and bioinformation strategies. Advances in treatment of TBI include stem cell-based and nanotechnology-based therapy, physical and pharmaceutical interventions and also new use in TBI for approved drugs which all present favorable promise in preventing and reversing TBI.
Collapse
Affiliation(s)
- Cesar Reis
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Yuechun Wang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Physiology, School of Medicine, University of Jinan, Guangzhou 250012, China.
| | - Onat Akyol
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
| | - Wing Mann Ho
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, University Hospital Innsbruck, Tyrol 6020, Austria.
| | - Richard Applegate Ii
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Gary Stier
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Robert Martin
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - John H Zhang
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
14
|
Shi H, Hu X, Leak RK, Shi Y, An C, Suenaga J, Chen J, Gao Y. Demyelination as a rational therapeutic target for ischemic or traumatic brain injury. Exp Neurol 2015; 272:17-25. [PMID: 25819104 DOI: 10.1016/j.expneurol.2015.03.017] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/15/2015] [Accepted: 03/18/2015] [Indexed: 12/11/2022]
Abstract
Previous research on stroke and traumatic brain injury (TBI) heavily emphasized pathological alterations in neuronal cells within gray matter. However, recent studies have highlighted the equal importance of white matter integrity in long-term recovery from these conditions. Demyelination is a major component of white matter injury and is characterized by loss of the myelin sheath and oligodendrocyte cell death. Demyelination contributes significantly to long-term sensorimotor and cognitive deficits because the adult brain only has limited capacity for oligodendrocyte regeneration and axonal remyelination. In the current review, we will provide an overview of the major causes of demyelination and oligodendrocyte cell death following acute brain injuries, and discuss the crosstalk between myelin, axons, microglia, and astrocytes during the process of demyelination. Recent discoveries of molecules that regulate the processes of remyelination may provide novel therapeutic targets to restore white matter integrity and improve long-term neurological recovery in stroke or TBI patients.
Collapse
Affiliation(s)
- Hong Shi
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Department of Anesthesiology of Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Xiaoming Hu
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Yejie Shi
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Chengrui An
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jun Suenaga
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jun Chen
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA.
| | - Yanqin Gao
- The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
15
|
Disrupted structural connectome is associated with both psychometric and real-world neuropsychological impairment in diffuse traumatic brain injury. J Int Neuropsychol Soc 2014; 20:887-96. [PMID: 25287217 PMCID: PMC4275544 DOI: 10.1017/s1355617714000812] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Traumatic brain injury (TBI) is likely to disrupt structural network properties due to diffuse white matter pathology. The present study aimed to detect alterations in structural network topology in TBI and relate them to cognitive and real-world behavioral impairment. Twenty-two people with moderate to severe TBI with mostly diffuse pathology and 18 demographically matched healthy controls were included in the final analysis. Graph theoretical network analysis was applied to diffusion tensor imaging (DTI) data to characterize structural connectivity in both groups. Neuropsychological functions were assessed by a battery of psychometric tests and the Frontal Systems Behavior Scale (FrSBe). Local connection-wise analysis demonstrated reduced structural connectivity in TBI arising from subcortical areas including thalamus, caudate, and hippocampus. Global network metrics revealed that shortest path length in participants with TBI was longer compared to controls, and that this reduced network efficiency was associated with worse performance in executive function and verbal learning. The shortest path length measure was also correlated with family-reported FrSBe scores. These findings support the notion that the diffuse form of neuropathology caused by TBI results in alterations in structural connectivity that contribute to cognitive and real-world behavioral impairment.
Collapse
|
16
|
Edlow BL, Giacino JT, Hirschberg RE, Gerrard J, Wu O, Hochberg LR. Unexpected recovery of function after severe traumatic brain injury: the limits of early neuroimaging-based outcome prediction. Neurocrit Care 2014; 19:364-75. [PMID: 23860665 DOI: 10.1007/s12028-013-9870-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Prognostication in the early stage of traumatic coma is a common challenge in the neuro-intensive care unit. We report the unexpected recovery of functional milestones (i.e., consciousness, communication, and community reintegration) in a 19-year-old man who sustained a severe traumatic brain injury. The early magnetic resonance imaging (MRI) findings, at the time, suggested a poor prognosis. METHODS During the first year of the patient's recovery, MRI with diffusion tensor imaging and T2*-weighted imaging was performed on day 8 (coma), day 44 (minimally conscious state), day 198 (post-traumatic confusional state), and day 366 (community reintegration). Mean apparent diffusion coefficient (ADC) and fractional anisotropy values in the corpus callosum, cerebral hemispheric white matter, and thalamus were compared with clinical assessments using the Disability Rating Scale (DRS). RESULTS Extensive diffusion restriction in the corpus callosum and bihemispheric white matter was observed on day 8, with ADC values in a range typically associated with neurotoxic injury (230-400 × 10(-6 )mm(2)/s). T2*-weighted MRI revealed widespread hemorrhagic axonal injury in the cerebral hemispheres, corpus callosum, and brainstem. Despite the presence of severe axonal injury on early MRI, the patient regained the ability to communicate and perform activities of daily living independently at 1 year post-injury (DRS = 8). CONCLUSIONS MRI data should be interpreted with caution when prognosticating for patients in traumatic coma. Recovery of consciousness and community reintegration are possible even when extensive traumatic axonal injury is demonstrated by early MRI.
Collapse
Affiliation(s)
- Brian L Edlow
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 175 Cambridge Street, Suite 300, Boston, MA, 02114, USA,
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Advances in task-based functional MRI (fMRI), resting-state fMRI (rs-fMRI), and arterial spin labeling (ASL) perfusion MRI have occurred at a rapid pace in recent years. These techniques for measuring brain function have great potential to improve the accuracy of prognostication for civilian and military patients with traumatic coma. In addition, fMRI, rs-fMRI, and ASL perfusion MRI have provided novel insights into the pathophysiology of traumatic disorders of consciousness, as well as the mechanisms of recovery from coma. However, functional neuroimaging techniques have yet to achieve widespread clinical use as prognostic tests for patients with traumatic coma. Rather, a broad spectrum of methodological hurdles currently limits the feasibility of clinical implementation. In this review, we discuss the basic principles of fMRI, rs-fMRI, and ASL perfusion MRI and their potential applications as prognostic tools for patients with traumatic coma. We also discuss future strategies for overcoming the current barriers to clinical implementation.
Collapse
Affiliation(s)
- Brian L Edlow
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street - Lunder 650, Boston, MA 02114, USA.
| | | | | |
Collapse
|
18
|
Camprodon JA, Stern TA. Selecting neuroimaging techniques: a review for the clinician. Prim Care Companion CNS Disord 2013; 15:12f01490. [PMID: 24392248 DOI: 10.4088/pcc.12f01490] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/21/2012] [Indexed: 10/26/2022] Open
|
19
|
Abstract
Traumatic coma is associated with disruption of axonal pathways throughout the brain, but the specific pathways involved in humans are incompletely understood. In this study, we used high angular resolution diffusion imaging to map the connectivity of axonal pathways that mediate the 2 critical components of consciousness-arousal and awareness-in the postmortem brain of a 62-year-old woman with acute traumatic coma and in 2 control brains. High angular resolution diffusion imaging tractography guided tissue sampling in the neuropathologic analysis. High angular resolution diffusion imaging tractography demonstrated complete disruption of white matter pathways connecting brainstem arousal nuclei to the basal forebrain and thalamic intralaminar and reticular nuclei. In contrast, hemispheric arousal pathways connecting the thalamus and basal forebrain to the cerebral cortex were only partially disrupted, as were the cortical "awareness pathways." Neuropathologic examination, which used β-amyloid precursor protein and fractin immunomarkers, revealed axonal injury in the white matter of the brainstem and cerebral hemispheres that corresponded to sites of high angular resolution diffusion imaging tract disruption. Axonal injury was also present within the gray matter of the hypothalamus, thalamus, basal forebrain, and cerebral cortex. We propose that traumatic coma may be a subcortical disconnection syndrome related to the disconnection of specific brainstem arousal nuclei from the thalamus and basal forebrain.
Collapse
|