1
|
Kalampounias G, Varemmenou A, Aronis C, Mamali I, Shaukat AN, Chartoumpekis DV, Katsoris P, Michalaki M. Recombinant Human TSH Fails to Induce the Proliferation and Migration of Papillary Thyroid Carcinoma Cell Lines. Cancers (Basel) 2024; 16:2604. [PMID: 39061242 PMCID: PMC11275150 DOI: 10.3390/cancers16142604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Thyrotropin (TSH) suppression is required in the management of patients with papillary thyroid carcinoma (PTC) to improve their outcomes, inevitably causing iatrogenic thyrotoxicosis. Nevertheless, the evidence supporting this practice remains limited and weak, and in vitro studies examining the mitogenic effects of TSH in cancerous cells used supraphysiological doses of bovine TSH, which produced conflicting results. Our study explores, for the first time, the impact of human recombinant thyrotropin (rh-TSH) on human PTC cell lines (K1 and TPC-1) that were transformed to overexpress the thyrotropin receptor (TSHR). The cells were treated with escalating doses of rh-TSH under various conditions, such as the presence or absence of insulin. The expression levels of TSHR and thyroglobulin (Tg) were determined, and subsequently, the proliferation and migration of both transformed and non-transformed cells were assessed. Under the conditions employed, rh-TSH was not adequate to induce either the proliferation or the migration rate of the cells, while Tg expression was increased. Our experiments indicate that clinically relevant concentrations of rh-TSH cannot induce proliferation and migration in PTC cell lines, even after the overexpression of TSHR. Further research is warranted to dissect the underlying molecular mechanisms, and these results could translate into better management of treatment for PTC patients.
Collapse
Affiliation(s)
- Georgios Kalampounias
- Division of Genetics, Cell Biology and Development, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece; (G.K.); (A.V.); (C.A.)
| | - Athina Varemmenou
- Division of Genetics, Cell Biology and Development, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece; (G.K.); (A.V.); (C.A.)
| | - Christos Aronis
- Division of Genetics, Cell Biology and Development, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece; (G.K.); (A.V.); (C.A.)
| | - Irene Mamali
- Endocrine Division, Department of Internal Medicine, School of Medicine, University of Patras, 26504 Patras, Greece; (I.M.); (D.V.C.); (M.M.)
| | | | - Dionysios V. Chartoumpekis
- Endocrine Division, Department of Internal Medicine, School of Medicine, University of Patras, 26504 Patras, Greece; (I.M.); (D.V.C.); (M.M.)
| | - Panagiotis Katsoris
- Division of Genetics, Cell Biology and Development, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece; (G.K.); (A.V.); (C.A.)
| | - Marina Michalaki
- Endocrine Division, Department of Internal Medicine, School of Medicine, University of Patras, 26504 Patras, Greece; (I.M.); (D.V.C.); (M.M.)
| |
Collapse
|
2
|
Makkonen K, Jännäri M, Crisóstomo L, Kuusi M, Patyra K, Melnyk V, Linnossuo V, Ojala J, Ravi R, Löf C, Mäkelä JA, Miettinen P, Laakso S, Ojaniemi M, Jääskeläinen J, Laakso M, Bossowski F, Sawicka B, Stożek K, Bossowski A, Kleinau G, Scheerer P, FinnGen F, Reeve MP, Kero J. Mechanisms of thyrotropin receptor-mediated phenotype variability deciphered by gene mutations and M453T-knockin model. JCI Insight 2024; 9:e167092. [PMID: 38194289 PMCID: PMC11143923 DOI: 10.1172/jci.insight.167092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
The clinical spectrum of thyrotropin receptor-mediated (TSHR-mediated) diseases varies from loss-of-function mutations causing congenital hypothyroidism to constitutively active mutations (CAMs) leading to nonautoimmune hyperthyroidism (NAH). Variation at the TSHR locus has also been associated with altered lipid and bone metabolism and autoimmune thyroid diseases. However, the extrathyroidal roles of TSHR and the mechanisms underlying phenotypic variability among TSHR-mediated diseases remain unclear. Here we identified and characterized TSHR variants and factors involved in phenotypic variability in different patient cohorts, the FinnGen database, and a mouse model. TSHR CAMs were found in all 16 patients with NAH, with 1 CAM in an unexpected location in the extracellular leucine-rich repeat domain (p.S237N) and another in the transmembrane domain (p.I640V) in 2 families with distinct hyperthyroid phenotypes. In addition, screening of the FinnGen database revealed rare functional variants as well as distinct common noncoding TSHR SNPs significantly associated with thyroid phenotypes, but there was no other significant association between TSHR variants and more than 2,000 nonthyroid disease endpoints. Finally, our TSHR M453T-knockin model revealed that the phenotype was dependent on the mutation's signaling properties and was ameliorated by increased iodine intake. In summary, our data show that TSHR-mediated disease risk can be modified by variants at the TSHR locus both inside and outside the coding region as well as by altered TSHR-signaling and dietary iodine, supporting the need for personalized treatment strategies.
Collapse
Affiliation(s)
- Kristiina Makkonen
- Department of Clinical Sciences, Faculty of Medicine, and
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Meeri Jännäri
- Department of Clinical Sciences, Faculty of Medicine, and
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Luís Crisóstomo
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Matilda Kuusi
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Konrad Patyra
- Department of Clinical Sciences, Faculty of Medicine, and
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Veli Linnossuo
- Department of Clinical Sciences, Faculty of Medicine, and
| | - Johanna Ojala
- Department of Clinical Sciences, Faculty of Medicine, and
| | - Rowmika Ravi
- Department of Clinical Sciences, Faculty of Medicine, and
| | - Christoffer Löf
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Juho-Antti Mäkelä
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Päivi Miettinen
- New Children’s Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Saila Laakso
- New Children’s Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Marja Ojaniemi
- Department of Pediatrics and Adolescence, PEDEGO Research Unit and Medical Research Center, University and University Hospital of Oulu, Oulu, Finland
| | | | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Filip Bossowski
- Department of Pediatrics, Endocrinology, Diabetes with a Cardiology Unit, Medical University in Białystok, Bialystok, Poland
| | - Beata Sawicka
- Department of Pediatrics, Endocrinology, Diabetes with a Cardiology Unit, Medical University in Białystok, Bialystok, Poland
| | - Karolina Stożek
- Department of Pediatrics, Endocrinology, Diabetes with a Cardiology Unit, Medical University in Białystok, Bialystok, Poland
| | - Artur Bossowski
- Department of Pediatrics, Endocrinology, Diabetes with a Cardiology Unit, Medical University in Białystok, Bialystok, Poland
| | - Gunnar Kleinau
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and
- Humboldt - Universität zu Berlin, Institute of Medical Physics, Biophysics, Group Structural Biology of Cellular Signaling, Berlin, Germany
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and
- Humboldt - Universität zu Berlin, Institute of Medical Physics, Biophysics, Group Structural Biology of Cellular Signaling, Berlin, Germany
| | - FinnGen FinnGen
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- FinnGen is detailed in Supplemental Acknowledgments
| | - Mary Pat Reeve
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jukka Kero
- Department of Clinical Sciences, Faculty of Medicine, and
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
| |
Collapse
|
3
|
Nagel M, Moretti R, Paschke R, von Bergen M, Meiler J, Kalkhof S. Integrative model of the FSH receptor reveals the structural role of the flexible hinge region. Structure 2022; 30:1424-1431.e3. [PMID: 35973423 DOI: 10.1016/j.str.2022.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/16/2021] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
The follicle-stimulating hormone receptor (FSHR) belongs to the glycoprotein hormone receptors, a subfamily of G-protein-coupled receptors (GPCRs). FSHR is involved in reproductive processes such as gonadal development and maturation. Structurally, the extensive extracellular domain, which contains the hormone-binding site and is linked to the transmembrane domain by the hinge region (HR), is characteristic for these receptors. How this HR is involved in hormone binding and signal transduction is still an open question. We combined in vitro and in situ chemical crosslinking, disulfide pattern analysis, and mutation data with molecular modeling to generate experimentally driven full-length models. These models provide insights into the interface, important side-chain interactions, and activation mechanism. The interface indicates a strong involvement of the connecting loop. A major rearrangement of the HR seems implausible due to the tight arrangement and fixation by disulfide bonds. The models are expected to allow for testable hypotheses about signal transduction and drug development for GPHRs.
Collapse
Affiliation(s)
- Marcus Nagel
- Department for Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Center for Structural Biology, Vanderbilt University, Nashville, TN 37212, USA; Division of Endocrinology, Department of Endocrinology and Nephrology, University Clinic Leipzig, Germany
| | - Rocco Moretti
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37212, USA
| | - Ralf Paschke
- Division of Endocrinology, Department of Endocrinology and Nephrology, University Clinic Leipzig, Germany; Department of Medicine, Division of Endocrinology, Departments of Oncology, Pathology, and Biochemistry and Molecular Biology & Arnie Charbonneau Cancer Institute Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Martin von Bergen
- Department for Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37212, USA; Leipzig University Medical School, Institute for Drug Discovery, 04103 Leipzig, Germany.
| | - Stefan Kalkhof
- Department for Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Institute for Bioanalysis, University of Applied Sciences Coburg, Coburg, Germany; Fraunhofer Institute for Cell Therapy and Immunology, Department of Preclinical Development and Validation, 04103 Leipzig, Germany.
| |
Collapse
|
4
|
Watts SW, Flood ED, Thompson JM. Is the 5-hydroxytryptamine 7 Receptor Constitutively Active in the Vasculature? A Study in Veins/Vein. J Cardiovasc Pharmacol 2022; 80:314-322. [PMID: 35939654 PMCID: PMC9373064 DOI: 10.1097/fjc.0000000000001296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/17/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The 5-hydroxytryptamine 7 (5-HT 7 ) receptor is reported to have considerable constitutive activity when transfected into cells. Constitutive activity-receptor activity in the absence of known agonist-is important for understanding the contributions of a receptor to (patho)physiology. We test the hypothesis that the 5-HT 7 receptor possesses constitutive activity in a physiological situation. Isolated veins from male and female Sprague Dawley rats were used as models for measuring isometric force; the abdominal vena cava possesses a functional 5-HT 7 receptor that mediates relaxation, whereas the small mesenteric vein does not. Compounds reported to act as inverse agonists were investigated for their ability to cause contraction (moving a constitutively active relaxant receptor to an inactive state, removing relaxation). Compared with a vehicle control, clozapine, risperidone, ketanserin, and SB269970 caused no contraction in the isolated male abdominal vena cava. By contrast, methiothepin caused a concentration-dependent contraction of the male but not female abdominal vena cava, although with low potency (-log EC 50 [M] = 5.50 ± 0.45) and efficacy (∼12% of contraction to endothelin-1). Methiothepin-induced contraction was not reduced by the 5-HT 7 receptor antagonist (SB269970, 1 μM, not active in the vena cava). These same compounds showed little to no effect in the isolated mesenteric vein. We conclude that the 5-HT 7 receptor in the isolated veins of the Sprague Dawley rat does not possess constitutive activity. We raise the question of the physiological relevance of constitutive activity of this receptor important to such diverse physiological functions as sleep, circadian rhythm, temperature, and blood pressure regulation.
Collapse
Affiliation(s)
- Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI
| | | | | |
Collapse
|
5
|
Bezdicka M, Kleiblova P, Soucek J, Borecka M, El-Lababidi E, Smrz D, Rataj M, Sumnik Z, Malikova J, Soucek O. Novel presentation of the c.1856A > G (p.Asp619Gly) TSHR gene-activating variant: relapsing hyperthyroidism in three subsequent generations manifesting in early childhood and an in vitro functional study. Hormones (Athens) 2021; 20:803-812. [PMID: 34142359 DOI: 10.1007/s42000-021-00299-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Familial non-autoimmune hyperthyroidism is a rare disease caused by germline activating variants in the thyroid-stimulating hormone receptor (TSHR) gene. The c.1856A > G (p.Asp619Gly) pathogenic variant has been described in cases of toxic adenoma but never before, to our knowledge, in a case of familial non-autoimmune hyperthyroidism. PATIENT FINDINGS A 3-year-old boy was admitted for acute gastroenteritis presenting with goiter and tall stature. Laboratory findings revealed peripheral hyperthyroidism and negativity for thyroid autoantibodies. Antithyroid drug treatment was effective, but relapses occurred shortly after attempts to decrease the drug dose. As the boy's father and paternal grandmother also experienced relapsing hyperthyroidism manifesting in early childhood, genetic testing of TSHR was indicated. The c.1856A > G (p.Asp619Gly) pathogenic variant was found in all three affected family members. Functional in vitro characterization of the variant verified that it enhances constitutional activation of the receptor, leading to increased production of cyclic adenosine monophosphate. Total thyroidectomy was indicated in the boy due to an unsatisfactory prognosis. Due to persistent positive thyroglobulin serum concentration, a diagnostic radioiodine scan was performed approximately 2 years later. Residual thyroid tissue was revealed; therefore, radioiodine ablative therapy was performed. Despite adequate thyroxine substitution over a long period of follow-up, TSH remained suppressed. CONCLUSIONS Unlike Graves' disease, familial non-autoimmune hyperthyroidism cases present with antithyroid drug-dependence. Not ultrasound but positive thyroglobulin serum concentration indicated residual thyroid tissue. Early detection of residual thyroid tissue and radioiodine ablation prevented the subject from experiencing relapsing hyperthyroidism and undergoing unnecessary repeated surgery. Life-long hormone substitution should be adjusted to free thyroxine rather than TSH serum concentrations.
Collapse
Affiliation(s)
- Martin Bezdicka
- Vera Vavrova Laboratory/VIAL, Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Petra Kleiblova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiri Soucek
- Private Paediatric Endocrinology Practice, Carlsbad, Czech Republic
| | - Marianna Borecka
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva El-Lababidi
- Department of Pediatrics, Third Faculty of Medicine, Charles University and Kralovske Vinohrady University Hospital, Prague, Czech Republic
| | - Daniel Smrz
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Michal Rataj
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Zdenek Sumnik
- Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jana Malikova
- Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Ondrej Soucek
- Vera Vavrova Laboratory/VIAL, Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.
- Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.
| |
Collapse
|
6
|
Jaeschke H, Undeutsch H, Patyra K, Löf C, Eszlinger M, Khalil M, Jännäri M, Makkonen K, Toppari J, Zhang FP, Poutanen M, Paschke R, Kero J. Hyperthyroidism and Papillary Thyroid Carcinoma in Thyrotropin Receptor D633H Mutant Mice. Thyroid 2018; 28:1372-1386. [PMID: 30132406 DOI: 10.1089/thy.2018.0041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Constitutively active thyrotropin receptor (TSHR) mutations are the most common etiology of non-autoimmune hyperthyroidism (NAH). Thus far, the functionality of these mutations has been tested in vitro, but the in vivo models are lacking. METHODS To understand the pathophysiology of NAH, the patient-derived constitutively active TSHR D633H mutation was introduced into the murine Tshr by homologous recombination. RESULTS In this model, both subclinical and overt hyperthyroidism was observed, depending on the age, sex, and genotype. Homozygous mice presented hyperthyroidism at two months of age, while heterozygous animals showed only suppressed thyrotropin. Interestingly, at six months of age, thyroid hormone concentrations in all mutant mice were analogous to wild-type mice, and they showed colloid goiter with flattened thyrocytes. Strikingly, at one year of age, nearly all homozygous mice presented large papillary thyroid carcinomas. Mechanistically, this papillary thyroid carcinoma phenotype was associated with an overactive thyroid and strongly increased stainings of proliferation-, pERK-, and NKX2-1 markers, but no mutations in the "hot-spot" areas of common oncogenes (Braf, Nras, and Kras) were found. CONCLUSIONS This is the first study to reveal the dynamic age-, sex-, and genotype-dependent development of NAH. Furthermore, the study shows that a constitutively active TSHR can trigger a malignant transformation of thyrocytes.
Collapse
Affiliation(s)
- Holger Jaeschke
- 1 Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku , Turku, Finland
| | - Henriette Undeutsch
- 1 Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku , Turku, Finland
| | - Konrad Patyra
- 1 Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku , Turku, Finland
| | - Christoffer Löf
- 1 Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku , Turku, Finland
| | - Markus Eszlinger
- 2 Departments of Medicine, Oncology, Pathology, and Biochemistry, and Molecular Biology & Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Moosa Khalil
- 3 Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, Canada
| | - Meeri Jännäri
- 1 Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku , Turku, Finland
| | - Kristiina Makkonen
- 1 Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku , Turku, Finland
| | - Jorma Toppari
- 1 Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku , Turku, Finland
- 4 Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Fu-Ping Zhang
- 1 Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku , Turku, Finland
| | - Matti Poutanen
- 1 Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku , Turku, Finland
| | - Ralf Paschke
- 2 Departments of Medicine, Oncology, Pathology, and Biochemistry, and Molecular Biology & Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Jukka Kero
- 1 Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku , Turku, Finland
- 4 Department of Pediatrics, Turku University Hospital, Turku, Finland
| |
Collapse
|
7
|
Basavanhally T, Fonseca R, Uversky VN. Born This Way: Using Intrinsic Disorder to Map the Connections between SLITRKs, TSHR, and Male Sexual Orientation. Proteomics 2018; 18:e1800307. [PMID: 30156382 DOI: 10.1002/pmic.201800307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/03/2018] [Indexed: 12/15/2022]
Abstract
Recently, genome-wide association study reveals a significant association between specific single nucleotide polymorphisms (SNPs) in men and their sexual orientation. These SNPs (rs9547443 and rs1035144) reside in the intergenic region between the SLITRK5 and SLITRK6 genes and in the intronic region of the TSHR gene and might affect functionality of SLITRK5, SLITRK6, and TSHR proteins that are engaged in tight control of key developmental processes, such as neurite outgrowth and modulation, cellular differentiation, and hormonal regulation. SLITRK5 and SLITRK6 are single-pass transmembrane proteins, whereas TSHR is a heptahelical G protein-coupled receptor (GPCR). Mutations in these proteins are associated with various diseases and are linked to phenotypes found at a higher rate in homosexual men. A bioinformatics analysis of SLITRK5, SLITRK6, and TSHR proteins is conducted to look at their structure, protein interaction networks, and propensity for intrinsic disorder. It is assumed that this information might improve understanding of the roles that SLITRK5, SLITRK6, and TSHR play within neuronal and thyroidal tissues and give insight into the phenotypes associated with male homosexuality.
Collapse
Affiliation(s)
- Tara Basavanhally
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Renée Fonseca
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.,USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.,Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, 142290, Pushchino, Moscow, Russia
| |
Collapse
|
8
|
Sanders AR, Beecham GW, Guo S, Dawood K, Rieger G, Badner JA, Gershon ES, Krishnappa RS, Kolundzija AB, Duan J, Gejman PV, Bailey JM, Martin ER. Genome-Wide Association Study of Male Sexual Orientation. Sci Rep 2017; 7:16950. [PMID: 29217827 PMCID: PMC5721098 DOI: 10.1038/s41598-017-15736-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/31/2017] [Indexed: 11/11/2022] Open
Abstract
Family and twin studies suggest that genes play a role in male sexual orientation. We conducted a genome-wide association study (GWAS) of male sexual orientation on a primarily European ancestry sample of 1,077 homosexual men and 1,231 heterosexual men using Affymetrix single nucleotide polymorphism (SNP) arrays. We identified several SNPs with p < 10-5, including regions of multiple supporting SNPs on chromosomes 13 (minimum p = 7.5 × 10-7) and 14 (p = 4.7 × 10-7). The genes nearest to these peaks have functions plausibly relevant to the development of sexual orientation. On chromosome 13, SLITRK6 is a neurodevelopmental gene mostly expressed in the diencephalon, which contains a region previously reported as differing in size in men by sexual orientation. On chromosome 14, TSHR genetic variants in intron 1 could conceivably help explain past findings relating familial atypical thyroid function and male homosexuality. Furthermore, skewed X chromosome inactivation has been found in the thyroid condition, Graves' disease, as well as in mothers of homosexual men. On pericentromeric chromosome 8 within our previously reported linkage peak, we found support (p = 4.1 × 10-3) for a SNP association previously reported (rs77013977, p = 7.1 × 10-8), with the combined analysis yielding p = 6.7 × 10-9, i.e., a genome-wide significant association.
Collapse
Affiliation(s)
- Alan R Sanders
- Department of Psychiatry and Behavioral Sciences, NorthShore University HealthSystem Research Institute, Evanston, Illinois, 60201, United States of America.
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, 60637, United States of America.
| | - Gary W Beecham
- Department of Human Genetics, University of Miami, Miami, Florida, 33136, United States of America
| | - Shengru Guo
- Department of Human Genetics, University of Miami, Miami, Florida, 33136, United States of America
| | - Khytam Dawood
- Department of Psychology, Pennsylvania State University, University Park, Pennsylvania, 16802, United States of America
| | - Gerulf Rieger
- Department of Psychology, University of Essex, Colchester, England, CO4 3SQ, United Kingdom
| | - Judith A Badner
- Department of Psychiatry, Rush University Medical Center, Chicago, Illinois, 60612, United States of America
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Ritesha S Krishnappa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Elmhurst, New York, 11373, United States of America
| | - Alana B Kolundzija
- Department of Sociomedical Sciences, Mailman School of Public Health, Columbia University, New York, New York, 10027, United States of America
| | - Jubao Duan
- Department of Psychiatry and Behavioral Sciences, NorthShore University HealthSystem Research Institute, Evanston, Illinois, 60201, United States of America
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Pablo V Gejman
- Department of Psychiatry and Behavioral Sciences, NorthShore University HealthSystem Research Institute, Evanston, Illinois, 60201, United States of America
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - J Michael Bailey
- Department of Psychology, Northwestern University, Evanston, Illinois, 60208, United States of America
| | - Eden R Martin
- Department of Human Genetics, University of Miami, Miami, Florida, 33136, United States of America
| |
Collapse
|
9
|
Abstract
INTRODUCTION Graves' disease (GD) and thyroid-associated ophthalmopathy (TAO) are thought to result from actions of pathogenic antibodies mediated through the thyrotropin receptor (TSHR). This leads to the unregulated consequences of the antibody-mediated receptor activity in the thyroid and connective tissues of the orbit. Recent studies reveal antibodies that appear to be directed against the insulin-like growth factor-I receptor (IGF-IR). Areas covered: In this brief article, I attempt to review the fundamental characteristics of the TSHR, its role in GD and TAO, and its relationship to IGF-IR. Strong evidence supports the concept that the two receptors form a physical and functional complex and that IGF-IR activity is required for some of the down-stream signaling initiated through TSHR. Recently developed small molecules and monoclonal antibodies that block TSHR and IGF-IR signaling are also reviewed in the narrow context of their potential utility as therapeutics in GD and TAO. The Pubmed database was searched from its inception for relevant publications. Expert opinion: Those agents that can interrupt the TSHR and IGF-IR pathways possess the potential for offering more specific and better tolerated treatments of both hyperthyroidism and TAO. This would spare patients exposure to toxic drugs, ionizing radiation and potentially hazardous surgeries.
Collapse
Affiliation(s)
- Terry Smith
- a Department of Ophthalmology and Visual Sciences , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
10
|
Zheng H, Wang M, Jiang L, Chu H, Hu J, Ning J, Li B, Wang D, Xu J. BRAF-Activated Long Noncoding RNA Modulates Papillary Thyroid Carcinoma Cell Proliferation through Regulating Thyroid Stimulating Hormone Receptor. Cancer Res Treat 2015; 48:698-707. [PMID: 26323637 PMCID: PMC4843736 DOI: 10.4143/crt.2015.118] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/09/2015] [Indexed: 12/22/2022] Open
Abstract
PURPOSE The importance of long noncoding RNAs (lncRNAs) in tumorigenesis has recently been demonstrated. However, the role of lncRNAs in development of thyroid cancer remains largely unknown. MATERIALS AND METHODS Using quantitative reverse transcription polymerase chain reaction, expression of three lncRNAs, including BRAF-activated long noncoding RNA (BANCR), papillary thyroid cancer susceptibility candidate 3 (PTCSC3), and noncoding RNA associated with mitogen-activated protein kinase pathway and growth arrest (NAMA), was investigated in the current study. RESULTS Of the three lncRNAs (BANCR, PTCSC3, and NAMA), expression of BANCR was significantly up-regulated while PTCSC3 and NAMA were significantly down-regulated in papillary thyroid carcinoma (PTC) compared to that in normal tissue. BANCR-knockdown in a PTC-derived cell line (IHH-4) resulted in significant suppression of thyroid stimulating hormone receptor (TSHR). BANCR-knockdown also led to inhibition of cell growth and cell cycle arrest at G0/G1 phase through down-regulation of cyclin D1. In addition, BANCR was enriched by polycomb enhancer of zeste homolog 2 (EZH2), and silencing BANCR led to decreased chromatin recruitment of EZH2, which resulted significantly reduced expression of TSHR. CONCLUSION These findings indicate that BANCR may contribute to the tumorigenesis of PTC through regulation of cyclin D1 and TSHR.
Collapse
Affiliation(s)
- Haitao Zheng
- Department of Surgery, Yantai Yuhuangding Hospital, Affiliated with Medical College of Qingdao University, Yantai, China
| | - Meng Wang
- Department of Surgery, Yantai Yuhuangding Hospital, Affiliated with Medical College of Qingdao University, Yantai, China
| | - Lixin Jiang
- Department of Surgery, Yantai Yuhuangding Hospital, Affiliated with Medical College of Qingdao University, Yantai, China
| | - Haidi Chu
- Department of Surgery, Yantai Yuhuangding Hospital, Affiliated with Medical College of Qingdao University, Yantai, China
| | - Jinchen Hu
- Department of Surgery, Yantai Yuhuangding Hospital, Affiliated with Medical College of Qingdao University, Yantai, China
| | - Jinyao Ning
- Department of Surgery, Yantai Yuhuangding Hospital, Affiliated with Medical College of Qingdao University, Yantai, China
| | - Baoyuan Li
- Department of Surgery, Yantai Yuhuangding Hospital, Affiliated with Medical College of Qingdao University, Yantai, China
| | - Dong Wang
- Department of Surgery, Yantai Yuhuangding Hospital, Affiliated with Medical College of Qingdao University, Yantai, China
| | - Jie Xu
- Department of Surgery, Yantai Yuhuangding Hospital, Affiliated with Medical College of Qingdao University, Yantai, China
| |
Collapse
|