1
|
LeMaire SA, Zhang L, Zhang NS, Luo W, Barrish JP, Zhang Q, Coselli JS, Shen YH. Ciprofloxacin accelerates aortic enlargement and promotes dissection and rupture in Marfan mice. J Thorac Cardiovasc Surg 2022; 163:e215-e226. [PMID: 34586071 DOI: 10.1016/j.jtcvs.2020.09.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Aortic aneurysm and dissection are major life-threatening complications of Marfan syndrome. Avoiding factors that promote aortic damage is critical in managing the care of these patients. Findings from clinical and animal studies raise concerns regarding fluoroquinolone use in patients at risk for aortic aneurysm and dissection. Therefore, we examined the effects of ciprofloxacin on aortic aneurysm and dissection development in Marfan mice. METHODS Eight-week-old Marfan mice (Fbn1C1041G/+) were given ciprofloxacin (100 mg/kg/d; n = 51) or vehicle (n = 59) for 4 weeks. Mice were monitored for 16 weeks. Aortic diameters were measured by using ultrasonography, and aortic structure was examined by using histopathologic and immunostaining analyses. RESULTS Vehicle-treated Fbn1C1041G/+ mice showed progressive aortic enlargement, with aortic rupture occurring in 5% of these mice. Compared with vehicle-treated Fbn1C1041G/+ mice, ciprofloxacin-treated Fbn1C1041G/+ mice showed accelerated aortic enlargement (P = .01) and increased incidences of aortic dissection (25% vs 47%, P = .03) and rupture (5% vs 25%, P = .005). Furthermore, ciprofloxacin-treated Fbn1C1041G/+ mice had higher levels of elastic fiber fragmentation, matrix metalloproteinase expression, and apoptosis than did vehicle-treated Fbn1C1041G/+ mice. CONCLUSIONS Ciprofloxacin accelerates aortic root enlargement and increases the incidence of aortic dissection and rupture in Marfan mice, partially by suppressing lysyl oxidase expression and further compromising the inherited defect in aortic elastic fibers. Our findings substantiate that ciprofloxacin should be avoided in patients with Marfan syndrome.
Collapse
Affiliation(s)
- Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Tex; Cardiovascular Research Institute, Baylor College of Medicine, Houston, Tex.
| | - Lin Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Tex
| | - Nicholas S Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Wei Luo
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Tex
| | - James P Barrish
- Department of Pathology, Texas Children's Hospital, Houston, Tex
| | - Qianzi Zhang
- Surgical Research Core, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Joseph S Coselli
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Tex; Cardiovascular Research Institute, Baylor College of Medicine, Houston, Tex
| | - Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Tex; Cardiovascular Research Institute, Baylor College of Medicine, Houston, Tex
| |
Collapse
|
2
|
Patients at Risk for Aortic Rupture Often Exposed to Fluoroquinolones during Hospitalization. Antimicrob Agents Chemother 2019; 63:AAC.01712-18. [PMID: 30478167 DOI: 10.1128/aac.01712-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/20/2018] [Indexed: 11/20/2022] Open
Abstract
Several studies have indicated that fluoroquinolone use may be associated with an increased risk of aortic aneurysm or dissection (AAD). Because patients with AAD or Marfan syndrome are at increased risk for aortic rupture, we performed a retrospective cohort study to determine the prevalence of systemic fluoroquinolone exposure and predictors of fluoroquinolone use in these patients. Data were obtained from the advisory board billing and administrative database, which contained information on 22 million adult hospitalizations in the United States for the study period (2009 to 2015). International Classification of Diseases (9/10) and Current Procedural Terminology codes were used to identify patients who had AAD or Marfan syndrome or underwent aortic repair. We identified 136,789 admissions for AAD, which involved 99,818 unique patients, 20% of whom received fluoroquinolone during a hospital admission. Of the 7,045 patients with dissection, 18% were exposed to fluoroquinolone. Of the 27,876 AAD patients who underwent aortic repair, 19% received fluoroquinolone during a hospitalization before the repair. In the AAD patients, having a diagnosis of pneumonia or urinary tract infection increased the likelihood of receiving fluoroquinolone during admission by 46% and 40%, respectively (P < 0.001). Additionally, we identified 2,871 admissions for Marfan syndrome, which involved 1,872 patients, 14% of whom received fluoroquinolone during an admission. In these patients, pneumonia and urinary tract infections also increased the risk of fluoroquinolone exposure. If the deleterious effects of fluoroquinolone on aortic integrity are substantiated, reducing fluoroquinolone use in hospitalized patients with aortic disorders will become an urgent safety issue for antibiotic stewardship programs.
Collapse
|
3
|
LeMaire SA, Zhang L, Luo W, Ren P, Azares AR, Wang Y, Zhang C, Coselli JS, Shen YH. Effect of Ciprofloxacin on Susceptibility to Aortic Dissection and Rupture in Mice. JAMA Surg 2018; 153:e181804. [PMID: 30046809 PMCID: PMC6233654 DOI: 10.1001/jamasurg.2018.1804] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/22/2018] [Indexed: 12/12/2022]
Abstract
Importance Fluoroquinolones are among the most commonly prescribed antibiotics. Recent clinical studies indicated an association between fluoroquinolone use and increased risk of aortic aneurysm and dissection (AAD). This alarming association has raised concern, especially in patients with AAD with risk of rupture and in individuals at risk for developing AAD. Objective To examine the effect of ciprofloxacin on AAD development in mice. Design, Setting, and Participants In a mouse model of moderate, sporadic AAD, 4-week-old male and female C57BL/6J mice were challenged with a high-fat diet and low-dose angiotensin infusion (1000 ng/min/kg). Control unchallenged mice were fed a normal diet and infused with saline. After randomization, challenged and unchallenged mice received ciprofloxacin (100 mg/kg/d) or vehicle through daily gavage during angiotensin or saline infusion. Aortic aneurysm and dissection development and aortic destruction were compared between mice. The direct effects of ciprofloxacin on aortic smooth muscle cells were examined in cultured cells. Results No notable aortic destruction was observed in unchallenged mice that received ciprofloxacin alone. Aortic challenge induced moderate aortic destruction with development of AAD in 17 of 38 mice (45%) and severe AAD in 9 (24%) but no rupture or death. However, challenged mice that received ciprofloxacin had severe aortic destruction and a significantly increased incidence of AAD (38 of 48 [79%]; P = .001; χ2 = 10.9), severe AAD (32 of 48 [67%]; P < .001; χ2 = 15.7), and rupture and premature death (7 of 48 [15%]; P = .01; χ2 = 6.0). The increased AAD incidence was observed in different aortic segments and was similar between male and female mice. Compared with aortic tissues from challenged control mice, those from challenged mice that received ciprofloxacin showed decreased expression of lysyl oxidase, an enzyme that is critical in the assembly and stabilization of elastic fibers and collagen. These aortas also showed increased matrix metalloproteinase levels and activity, elastic fiber fragmentation, and aortic cell injury. In cultured smooth muscle cells, ciprofloxacin treatment significantly reduced lysyl oxidase expression and activity, increased matrix metalloproteinase expression and activity, suppressed cell proliferation, and induced cell death. Furthermore, ciprofloxacin-a DNA topoisomerase inhibitor-caused nuclear and mitochondrial DNA damage and the release of DNA into the cytosol, subsequently inducing mitochondrial dysfunction, reactive oxygen species production, and activation of the cytosolic DNA sensor STING, which we further showed was involved in the suppression of lysyl oxidase expression and induction of matrix metalloproteinase expression. Conclusions and Relevance Ciprofloxacin increases susceptibility to aortic dissection and rupture in a mouse model of moderate, sporadic AAD. Ciprofloxacin should be used with caution in patients with aortic dilatation, as well as in those at high risk for AAD.
Collapse
Affiliation(s)
- Scott A. LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
| | - Lin Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston
| | - Wei Luo
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston
| | - Pingping Ren
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston
| | | | - Yidan Wang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston
| | - Joseph S. Coselli
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
| | - Ying H. Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
| |
Collapse
|