1
|
Jazayeri SB, Ghozy S, Hemmeda L, Bilgin C, Elfil M, Kadirvel R, Kallmes DF. Risk of Hemorrhagic Transformation after Mechanical Thrombectomy without versus with IV Thrombolysis for Acute Ischemic Stroke: A Systematic Review and Meta-analysis of Randomized Clinical Trials. AJNR Am J Neuroradiol 2024; 45:1246-1252. [PMID: 39025638 PMCID: PMC11392354 DOI: 10.3174/ajnr.a8307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/01/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND When treating acute ischemic stroke due to large-vessel occlusion, both mechanical thrombectomy and intravenous (IV) thrombolysis carry the risk of intracerebral hemorrhage. PURPOSE This study aimed to delve deeper into the risk of intracerebral hemorrhage and its subtypes associated with mechanical thrombectomy with or without IV thrombolysis to contribute to better decision-making in the treatment of acute ischemic stroke due to large-vessel occlusion. DATA SOURCES PubMed, EMBASE, and Scopus databases were searched for relevant studies from inception to September 6, 2023. STUDY SELECTION The eligibility criteria included randomized clinical trials or post hoc analysis of randomized controlled trials that focused on patients with acute ischemic stroke in the anterior circulation. After screening 4870 retrieved records, we included 9 studies (6 randomized controlled trials and 3 post hoc analyses of randomized controlled trials) with 3241 patients. DATA ANALYSIS The interventions compared were mechanical thrombectomy + IV thrombolysis versus mechanical thrombectomy alone, with the outcome of interest being any form of intracerebral hemorrhage and symptomatic intracerebral hemorrhage after intervention. A common definition for symptomatic intracerebral hemorrhage was pooled from various classification systems, and subgroup analyses were performed on the basis of different definitions and anatomic descriptions of hemorrhage. The quality of the studies was assessed using the revised version of Cochrane Risk of Bias 2 assessment tool. Meta-analysis was performed using the random effects model. DATA SYNTHESIS Eight studies had some concerns, and 1 study was considered high risk. Overall, the risk of symptomatic intracerebral hemorrhage was comparable between mechanical thrombectomy + IV thrombolysis and mechanical thrombectomy alone (risk ratio, 1.24 [95% CI, 0.89-1.72]; P = .20), with no heterogeneity across studies. Subgroup analysis of symptomatic intracerebral hemorrhage showed a non-significant difference between 2 groups based on the National Institute of Neurological Disorders and Stroke (P = .3), the Heidelberg Bleeding Classification (P = .5), the Safe Implementation of Thrombolysis in Stroke-Monitoring Study (P = .4), and the European Cooperative Acute Stroke Study III (P = .7) criteria. Subgroup analysis of different anatomic descriptions of intracerebral hemorrhage showed no difference between the 2 groups. Also, we found no difference in the risk of any intracerebral hemorrhage between two groups (risk ratio, 1.10 [95% CI, 1.00-1.21]; P = .052) with no heterogeneity across studies. LIMITATIONS There was a potential for performance bias in most studies. CONCLUSIONS In this systematic review and meta-analysis, the risk of any intracerebral hemorrhage and symptomatic intracerebral hemorrhage, including its various classifications and anatomic descriptions, was comparable between mechanical thrombectomy + IV thrombolysis and mechanical thrombectomy alone.
Collapse
Affiliation(s)
- Seyed Behnam Jazayeri
- From the Sina Trauma and Surgery Research Center (S.B.J.), Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiology (S.B.J., S.G., C.B., R.K., D.F.K.), Mayo Clinic, Rochester, Minnesota
| | - Sherief Ghozy
- Department of Radiology (S.B.J., S.G., C.B., R.K., D.F.K.), Mayo Clinic, Rochester, Minnesota
- Department of Neurologic Surgery (S.G., R.K.), Mayo Clinic, Rochester, Minnesota
| | - Lina Hemmeda
- Faculty of Medicine (L.H.), University of Khartoum, Khartoum, Sudan
| | - Cem Bilgin
- Department of Radiology (S.B.J., S.G., C.B., R.K., D.F.K.), Mayo Clinic, Rochester, Minnesota
| | - Mohamed Elfil
- Department of Neurological Sciences (M.E.), University of Nebraska Medical Center, Omaha, Nebraska
| | - Ramanathan Kadirvel
- Department of Radiology (S.B.J., S.G., C.B., R.K., D.F.K.), Mayo Clinic, Rochester, Minnesota
- Department of Neurologic Surgery (S.G., R.K.), Mayo Clinic, Rochester, Minnesota
| | - David F Kallmes
- Department of Radiology (S.B.J., S.G., C.B., R.K., D.F.K.), Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
2
|
Haji-Allahverdipoor K, Jalali Javaran M, Rashidi Monfared S, Khadem-Erfan MB, Nikkhoo B, Bahrami Rad Z, Eslami H, Nasseri S. Insights Into The Effects of Amino Acid Substitutions on The Stability of Reteplase Structure: A Molecular Dynamics Simulation Study. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3175. [PMID: 36811105 PMCID: PMC9938932 DOI: 10.30498/ijb.2022.308798.3175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 07/06/2022] [Indexed: 02/24/2023]
Abstract
Background Reteplase (recombinant plasminogen activator, r-PA) is a recombinant protein designed to imitate the endogenous tissue plasminogen activator and catalyze the plasmin production. It is known that the application of reteplase is limited by the complex production processes and protein's stability challenges. Computational redesign of proteins has gained momentum in recent years, particularly as a powerful tool for improving protein stability and consequently its production efficiency. Hence, in the current study, we implemented computational approaches to improve r-PA conformational stability, which fairly correlates with protein's resistance to proteolysis. Objectives The current study was developed in order to evaluate the effect of amino acid substitutions on the stability of reteplase structure using molecular dynamic simulations and computational predictions. Materials and Methods Several web servers designed for mutation analysis were utilized to select appropriate mutations. Additionally, the experimentally reported mutation, R103S, converting wild type r-PA into non-cleavable form, was also employed. Firstly, mutant collection, consisting of 15 structures, was constructed based on the combinations of four designated mutations. Then, 3D structures were generated using MODELLER. Finally, 17 independent 20-ns molecular dynamics (MD) simulations were conducted and different analysis were performed like root-mean-square deviation (RMSD), root-mean-square fluctuations (RMSF), secondary structure analysis, number of hydrogen bonds, principal components analysis (PCA), eigenvector projection, and density analysis. Results Predicted mutations successfully compensated the more flexible conformation caused by R103S substitution, so, improved conformational stability was analyzed from MD simulations. In particular, R103S/A286I/G322I indicated the best results and remarkably enhanced the protein stability. Conclusion The conformational stability conferred by these mutations will probably lead to more protection of r-PA in protease-rich environments in various recombinant systems and potentially enhance its production and expression level.
Collapse
Affiliation(s)
- Kaveh Haji-Allahverdipoor
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mokhtar Jalali Javaran
- Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Sajad Rashidi Monfared
- Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohamad Bagher Khadem-Erfan
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bahram Nikkhoo
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zhila Bahrami Rad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Habib Eslami
- Department of Pharmacology and Toxicology, School of Pharmacy, Hormozgan University of Medicinal sciences, Bandar Abbas, Iran
| | - Sherko Nasseri
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
3
|
Dobrynina LA, Shabalina AA, Shamtieva KV, Kremneva EI, Zabitova MR, Burmak AG, Byrochkina AA, Akhmetshina YI, Gnedovskaya EV, Krotenkova MV. [Nitric oxide availability in cerebral microangiopathy]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:47-54. [PMID: 37682095 DOI: 10.17116/jnevro202312308247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
OBJECTIVE To develop a test of individual nitric oxide (NO) availability based on changes in erythrocyte rheological properties after incubation with a NO donor and to evaluate the role of these disorders in brain damage and development of cognitive impairment (CI) in cerebral small vessel disease (cSVD). MATERIAL AND METHODS In 73 cSVD patients (48 (65.8%) women, mean age 60.1±6.5), the rheological properties of erythrocytes before and after incubation with 10 μmol/L L-arginine-NO donor were evaluated using a laser-optical rotating cell analyzer, and the blood-brain barrier (BBB) permeability by MRI-T1 dynamic contrast. RESULTS Among the studied parameters of erythrocyte rheological properties, the best characteristic by ROC analysis was the rate of erythrocyte disaggregation (y-dis) after incubation with L-arginine (area under the curve 0.733 (0.609-0.856), sensitivity 67%, specificity 79%). Patients with a y-dis threshold >113 sec-1 had more severe CI, arterial hypertension, white matter lesions, and increased BBB permeability in gray matter and normal-appearing white matter. CONCLUSION The prolonged rate of erythrocyte disaggregation in cSVD patients after incubation with L-arginine indicates the risk for disease progression due to decreased NO bioavailability/disruption of the functional L-arginine-eNOS-NO system. This test can be used to assess individual NO bioavailability and potentially identify indications for modifying therapy with NO donors such as L-arginine. Clinical trials are needed to standardize and evaluate the efficacy of NO donor therapy in patients with cSVD and CI.
Collapse
Affiliation(s)
| | | | | | | | | | - A G Burmak
- Research Center of Neurology, Moscow, Russia
| | | | | | | | | |
Collapse
|
4
|
Torrente D, Su EJ, Fredriksson L, Warnock M, Bushart D, Mann KM, Emal CD, Lawrence DA. Compartmentalized Actions of the Plasminogen Activator Inhibitors, PAI-1 and Nsp, in Ischemic Stroke. Transl Stroke Res 2022; 13:801-815. [PMID: 35122213 PMCID: PMC9349468 DOI: 10.1007/s12975-022-00992-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/22/2021] [Accepted: 01/26/2022] [Indexed: 02/08/2023]
Abstract
Tissue plasminogen activator (tPA) is a multifunctional protease. In blood tPA is best understood for its role in fibrinolysis, whereas in the brain tPA is reported to regulate blood-brain barrier (BBB) function and to promote neurodegeneration. Thrombolytic tPA is used for the treatment of ischemic stroke. However, its use is associated with an increased risk of hemorrhagic transformation. In blood the primary regulator of tPA activity is plasminogen activator inhibitor 1 (PAI-1), whereas in the brain, its primary inhibitor is thought to be neuroserpin (Nsp). In this study, we compare the effects of PAI-1 and Nsp deficiency in a mouse model of ischemic stroke and show that tPA has both beneficial and harmful effects that are differentially regulated by PAI-1 and Nsp. Following ischemic stroke Nsp deficiency in mice leads to larger strokes, increased BBB permeability, and increased spontaneous intracerebral hemorrhage. In contrast, PAI-1 deficiency results in smaller infarcts and increased cerebral blood flow recovery. Mechanistically, our data suggests that these differences are largely due to the compartmentalized action of PAI-1 and Nsp, with Nsp deficiency enhancing tPA activity in the CNS which increases BBB permeability and worsens stroke outcomes, while PAI-1 deficiency enhances fibrinolysis and improves recovery. Finally, we show that treatment with a combination therapy that enhances endogenous fibrinolysis by inhibiting PAI-1 with MDI-2268 and reduces BBB permeability by inhibiting tPA-mediated PDGFRα signaling with imatinib significantly reduces infarct size compared to vehicle-treated mice and to mice with either treatment alone.
Collapse
Affiliation(s)
- Daniel Torrente
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Enming Joseph Su
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-0644, USA
| | - Linda Fredriksson
- Biomedicum, Karolinska Institute, Solnavägen 9, Quarter 6D, 17165, Solna, Sweden
| | - Mark Warnock
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-0644, USA
| | - David Bushart
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-0644, USA
- Current affiliation: Ohio State University College of Medicine, Columbus, OH, USA
| | - Kris M Mann
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-0644, USA
| | - Cory D Emal
- Department of Chemistry, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Daniel A Lawrence
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, 7301 MSRB III, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-0644, USA.
| |
Collapse
|
5
|
The Role of Fibrinolytic System in Health and Disease. Int J Mol Sci 2022; 23:ijms23095262. [PMID: 35563651 PMCID: PMC9101224 DOI: 10.3390/ijms23095262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/20/2022] Open
Abstract
The fibrinolytic system is composed of the protease plasmin, its precursor plasminogen and their respective activators, tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), counteracted by their inhibitors, plasminogen activator inhibitor type 1 (PAI-1), plasminogen activator inhibitor type 2 (PAI-2), protein C inhibitor (PCI), thrombin activable fibrinolysis inhibitor (TAFI), protease nexin 1 (PN-1) and neuroserpin. The action of plasmin is counteracted by α2-antiplasmin, α2-macroglobulin, TAFI, and other serine protease inhibitors (antithrombin and α2-antitrypsin) and PN-1 (protease nexin 1). These components are essential regulators of many physiologic processes. They are also involved in the pathogenesis of many disorders. Recent advancements in our understanding of these processes enable the opportunity of drug development in treating many of these disorders.
Collapse
|
6
|
Huang ZX, Li YK, Li SZ, Huang XJ, Chen Y, Hong QL, Cai QK, Han YF. A Dynamic Nomogram for 3-Month Prognosis for Acute Ischemic Stroke Patients After Endovascular Therapy: A Pooled Analysis in Southern China. Front Aging Neurosci 2021; 13:796434. [PMID: 34966271 PMCID: PMC8710662 DOI: 10.3389/fnagi.2021.796434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Cerebral edema (CDE) is a common complication in patients with acute ischemic stroke (AIS) and can reduce the benefit of endovascular therapy (EVT). To determine whether certain risk factors are associated with a poor prognosis mediated by CDE after EVT. The 759 patients with anterior circulation stroke treated by EVT at three comprehensive stroke centers in China from January 2014 to October 2020 were analyzed. Patients underwent follow-up for 3 months after inclusion. The primary endpoint was a measure of a poor prognosis (modified Rankin Scale score ≥ 3) at 3 months assessed in all patients receiving EVT. Least absolute shrinkage and selection operator and multivariate logistic regression were used to select variables for the prognostic nomogram. Based on these variables, the nomogram was established and validated. In addition, structural equation modeling was used to explore the pathways linking CDE and a poor prognosis. Seven predictors were identified, namely, diabetes, age, baseline Alberta Stroke Program Early CT score, modified Thrombolysis in Cerebral Infarction score, early angiogenic CDE, National Institutes of Health Stroke Scale score, and collateral circulation. The nomogram consisting of these variables showed the best performance, with a large area under the curve in both the internal validation set (0.850; sensitivity, 0.737; specificity, 0.887) and external validation set (0.875; sensitivity, 0.752; specificity, 0.878). In addition, CDE (total path coefficient = 0.24, P < 0.001) served as a significant moderator. A nomogram for predicting a poor prognosis after EVT in AIS patients was established and validated with CDE as a moderator.
Collapse
Affiliation(s)
- Zhi-Xin Huang
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, China.,Department of Neurology, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,The School of Medicine, Jinan University, Guangzhou, China
| | - Yong-Kun Li
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, China.,Department of Neurology, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Shi-Zhan Li
- Department of Neurology, The No. 1 People's Hospital of Yulin, Yulin, China
| | - Xian-Jun Huang
- Department of Neurology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Ying Chen
- Department of Neurology, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Quan-Long Hong
- Department of Neurology, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Qian-Kun Cai
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yun-Fei Han
- Department of Neurology, Medical School of Nanjing University, Jinling Hospital, Nanjing, China
| |
Collapse
|
7
|
Achar A, Myers R, Ghosh C. Drug Delivery Challenges in Brain Disorders across the Blood-Brain Barrier: Novel Methods and Future Considerations for Improved Therapy. Biomedicines 2021; 9:1834. [PMID: 34944650 PMCID: PMC8698904 DOI: 10.3390/biomedicines9121834] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Due to the physiological and structural properties of the blood-brain barrier (BBB), the delivery of drugs to the brain poses a unique challenge in patients with central nervous system (CNS) disorders. Several strategies have been investigated to circumvent the barrier for CNS therapeutics such as in epilepsy, stroke, brain cancer and traumatic brain injury. In this review, we summarize current and novel routes of drug interventions, discuss pharmacokinetics and pharmacodynamics at the neurovascular interface, and propose additional factors that may influence drug delivery. At present, both technological and mechanistic tools are devised to assist in overcoming the BBB for more efficient and improved drug bioavailability in the treatment of clinically devastating brain disorders.
Collapse
Affiliation(s)
- Aneesha Achar
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (R.M.)
| | - Rosemary Myers
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (R.M.)
| | - Chaitali Ghosh
- Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (R.M.)
- Department of Biomedical Engineering and Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
8
|
Guo YS, Yuan M, Han Y, Shen XY, Gao ZK, Bi X. Therapeutic Potential of Cytokines in Demyelinating Lesions After Stroke. J Mol Neurosci 2021; 71:2035-2052. [PMID: 33970426 DOI: 10.1007/s12031-021-01851-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022]
Abstract
White matter damage is a component of most human stroke and usually accounts for at least half of the lesion volume. Subcortical white matter stroke (WMS) accounts for 25% of all strokes and causes severe motor and cognitive dysfunction. The adult brain has a very limited ability to repair white matter damage. Pathological analysis shows that demyelination or myelin loss is the main feature of white matter injury and plays an important role in long-term sensorimotor and cognitive dysfunction. This suggests that demyelination is a major therapeutic target for ischemic stroke injury. An acute inflammatory reaction is triggered by brain ischemia, which is accompanied by cytokine production. The production of cytokines is an important factor affecting demyelination and myelin regeneration. Different cytokines have different effects on myelin damage and myelin regeneration. Exploring the role of cytokines in demyelination and remyelination after stroke and the underlying molecular mechanisms of demyelination and myelin regeneration after ischemic injury is very important for the development of rehabilitation treatment strategies. This review focuses on recent findings on the effects of cytokines on myelin damage and remyelination as well as the progress of research on the role of cytokines in ischemic stroke prognosis to provide a new treatment approach for amelioration of white matter damage after stroke.
Collapse
Affiliation(s)
- Yi-Sha Guo
- Shanghai University of Sport, Shanghai, 200438, China
| | - Mei Yuan
- Shanghai University of Sport, Shanghai, 200438, China
| | - Yu Han
- Shanghai University of Sport, Shanghai, 200438, China
| | - Xin-Ya Shen
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200438, China
| | - Zhen-Kun Gao
- Shanghai University of Traditional Chinese Medicine, Shanghai, 200438, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China.
| |
Collapse
|
9
|
Medcalf RL, Keragala CB. Fibrinolysis: A Primordial System Linked to the Immune Response. Int J Mol Sci 2021; 22:3406. [PMID: 33810275 PMCID: PMC8037105 DOI: 10.3390/ijms22073406] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 01/07/2023] Open
Abstract
The fibrinolytic system provides an essential means to remove fibrin deposits and blood clots. The actual protease responsible for this is plasmin, formed from its precursor, plasminogen. Fibrin is heralded as it most renowned substrate but for many years plasmin has been known to cleave many other substrates, and to also activate other proteolytic systems. Recent clinical studies have shown that the promotion of plasmin can lead to an immunosuppressed phenotype, in part via its ability to modulate cytokine expression. Almost all immune cells harbor at least one of a dozen plasminogen receptors that allows plasmin formation on the cell surface that in turn modulates immune cell behavior. Similarly, a multitude of pathogens can also express their own plasminogen activators, or contain surface proteins that provide binding sites host plasminogen. Plasmin formed under these circumstances also empowers these pathogens to modulate host immune defense mechanisms. Phylogenetic studies have revealed that the plasminogen activating system predates the appearance of fibrin, indicating that plasmin did not evolve as a fibrinolytic protease but perhaps has its roots as an immune modifying protease. While its fibrin removing capacity became apparent in lower vertebrates these primitive under-appreciated immune modifying functions still remain and are now becoming more recognised.
Collapse
Affiliation(s)
- Robert L. Medcalf
- Molecular Neurotrauma and Haemostasis Laboratory, Australian Centre for Blood Diseases, Central Clinical School Melbourne, Monash University, Melbourne, VIC 3004, Australia;
| | | |
Collapse
|
10
|
Wang Y, Wang X, Zhang X, Chen S, Sun Y, Liu W, Jin X, Zheng G. D1 receptor-mediated endogenous tPA upregulation contributes to blood-brain barrier injury after acute ischaemic stroke. J Cell Mol Med 2020; 24:9255-9266. [PMID: 32627929 PMCID: PMC7417722 DOI: 10.1111/jcmm.15570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/02/2020] [Accepted: 06/16/2020] [Indexed: 01/09/2023] Open
Abstract
Blood‐brain barrier (BBB) integrity injury within the thrombolytic time window is becoming a critical target to reduce haemorrhage transformation (HT). We have previously reported that BBB damage was initially damaged in non‐infarcted striatum after acute ischaemia stroke. However, the underlying mechanism is not clear. Since acute ischaemic stroke could induce a significant increase of dopamine release in striatum, in current study, our aim is to investigate the role of dopamine receptor signal pathway in BBB integrity injury after acute ischaemia using rat middle cerebral artery occlusion model. Our data showed that 2‐h ischaemia induced a significant increase of endogenous tissue plasminogen activator (tPA) in BBB injury area and intra‐striatum infusion of tPA inhibitor neuroserpin, significantly alleviated 2‐h ischaemia‐induced BBB injury. In addition, intra‐striatum infusion of D1 receptor antagonist SCH23390 significantly decreased ischaemia‐induced upregulation of endogenous tPA, accompanied by decrease of BBB injury and occludin degradation. More important, inhibition of hypoxia‐inducible factor‐1 alpha with inhibitor YC‐1 significantly decreased 2‐h ischaemia‐induced endogenous tPA upregulation and BBB injury. Taken together, our data demonstrate that acute ischaemia disrupted BBB through activation of endogenous tPA via HIF‐1α upregulation, thus representing a new therapeutic target for protecting BBB after acute ischaemic stroke.
Collapse
Affiliation(s)
- Yan Wang
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaona Wang
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinyu Zhang
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuang Chen
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanyun Sun
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenlan Liu
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen University School of Medicine, Shenzhen, China
| | - Xinchun Jin
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Guoqing Zheng
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Ismael S, Nasoohi S, Yoo A, Ahmed HA, Ishrat T. Tissue Plasminogen Activator Promotes TXNIP-NLRP3 Inflammasome Activation after Hyperglycemic Stroke in Mice. Mol Neurobiol 2020; 57:2495-2508. [PMID: 32172516 DOI: 10.1007/s12035-020-01893-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/14/2020] [Indexed: 12/23/2022]
Abstract
Hyperglycemia has been shown to counterbalance the beneficial effects of tissue plasminogen activator (tPA) and increase the risk of intracerebral hemorrhage in ischemic stroke. Thioredoxin interacting protein (TXNIP) mediates hyperglycemia-induced oxidative damage and inflammation in the brain and reduces cerebral glucose uptake/utilization. We have recently reported that TXNIP-induced NLRP3 (NOD-like receptor pyrin domain-containing-3) inflammasome activation contributes to neuronal damage after ischemic stroke. Here, we tested the hypothesis that tPA induces TXNIP-NLRP3 inflammasome activation after ischemic stroke, in hyperglycemic mice. Acute hyperglycemia was induced in mice by intraperitoneal (IP) administration of a 20% glucose solution. This was followed by transient middle cerebral artery occlusion (t-MCAO), with or without intravenous (IV) tPA administered at reperfusion. The IV-tPA exacerbated hyperglycemia-induced neurological deficits, ipsilateral edema and hemorrhagic transformation, and accentuated peroxisome proliferator activated receptor-γ (PPAR-γ) upregulation and TXNIP/NLRP3 inflammasome activation after ischemic stroke. Higher expression of TXNIP in hyperglycemic t-MCAO animals augmented glucose transporter 1 (GLUT-1) downregulation and increased vascular endothelial growth factor-A (VEGF-A) expression/matrix metallopeptidase 9 (MMP-9) signaling, all of which result in blood brain barrier (BBB) disruption and increased permeability to endogenous immunoglobulin G (IgG). It was also associated with a discernible buildup of nitrotyrosine and accumulation of dysfunctional tight junction proteins: zonula occludens-1 (ZO-1), occludin and claudin-5. Moreover, tPA administration triggered activation of high mobility group box protein 1 (HMGB-1), nuclear factor kappa B (NF-κB), and tumor necrosis factor-α (TNF-α) expression in the ischemic penumbra of hyperglycemic animals. All of these observations suggest a powerful role for TXNIP-NLRP3 inflammasome activation in the tPA-induced toxicity seen with hyperglycemic stroke.
Collapse
Affiliation(s)
- Saifudeen Ismael
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA.,Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sanaz Nasoohi
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA.,Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arum Yoo
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA.,Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Heba A Ahmed
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA.,Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA. .,Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA. .,Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
12
|
Dobrynina LA, Shabalina AA, Zabitova MR, Kremneva EI, Gadzhieva ZS, Krotenkova MV, Gnedovskaya EV, Berdalin AB, Kalashnikova LA. Tissue Plasminogen Activator and MRI Signs of Cerebral Small Vessel Disease. Brain Sci 2019; 9:E266. [PMID: 31590405 PMCID: PMC6826933 DOI: 10.3390/brainsci9100266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 01/11/2023] Open
Abstract
Cerebral small vessel disease (SVD) is one of the leading causes of cognitive impairment and stroke. The importance of endothelial dysfunction and high blood-brain barrier (BBB) permeability in pathogenesis, together with ischemia, is under discussion. The aim of this study was to clarify the relationship between tissue plasminogen activator (t-PA), plasminogen activator inhibitor (PAI-1), and magnetic resonance imaging (MRI) signs of SVD. We examined 71 patients (23 men and 48 women; mean age: 60.5 ± 6.9 years) with clinical and MRI signs of SVD, and 21 healthy volunteers with normal MRIs. All subjects underwent 3T MRI and measurements of t-PA and PAI-1 levels. An increase in t-PA level is correlated with the volume of white matter hyperintensities (WMH) (R = 0.289, p = 0.034), severity on the Fazekas scale (p = 0.000), and with the size of subcortical (p = 0.002) and semiovale (p = 0.008) perivascular spaces. The PAI-1 level is not correlated with the t-PA level or MRI signs of SVD. The correlation between t-PA and the degree of WMH and perivascular spaces' enlargement, without a correlation with PAI-1 and lacunes, is consistent with the importance of t-PA in BBB disruption and its role in causing brain damage in SVD.
Collapse
Affiliation(s)
- Larisa A Dobrynina
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia.
| | - Alla A Shabalina
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia.
| | - Maryam R Zabitova
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia.
| | - Elena I Kremneva
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia.
| | - Zukhra Sh Gadzhieva
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia.
| | - Marina V Krotenkova
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia.
| | - Elena V Gnedovskaya
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia.
| | - Alexander B Berdalin
- Federal State Budgetary Institution "Federal Center for Cerebrovascular Pathology and Stroke", 1, stroenie 10, Ostrovityanova, 117342, Moscow, Russia.
| | | |
Collapse
|
13
|
Yoshizaki S, Kijima K, Hara M, Saito T, Tamaru T, Tanaka M, Konno DJ, Nakashima Y, Okada S. Tranexamic acid reduces heme cytotoxicity via the TLR4/TNF axis and ameliorates functional recovery after spinal cord injury. J Neuroinflammation 2019; 16:160. [PMID: 31358003 PMCID: PMC6661785 DOI: 10.1186/s12974-019-1536-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/05/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a catastrophic trauma accompanied by intralesional bleeding and neuroinflammation. Recently, there is increasing interest in tranexamic acid (TXA), an anti-fibrinolytic drug, which can reduce the bleeding volume after physical trauma. However, the efficacy of TXA on the pathology of SCI remains unknown. METHODS After producing a contusion SCI at the thoracic level of mice, TXA was intraperitoneally administered and the bleeding volume in the lesion area was quantified. Tissue damage was evaluated by immunohistochemical and gene expression analyses. Since heme is one of the degraded products of red blood cells (RBCs) and damage-associated molecular pattern molecules (DAMPs), we examined the influence of heme on the pathology of SCI. Functional recovery was assessed using the open field motor score, a foot print analysis, a grid walk test, and a novel kinematic analysis system. Statistical analyses were performed using Wilcoxon's rank-sum test, Dunnett's test, and an ANOVA with the Tukey-Kramer post-hoc test. RESULTS After SCI, the intralesional bleeding volume was correlated with the heme content and the demyelinated area at the lesion site, which were significantly reduced by the administration of TXA. In the injured spinal cord, toll-like receptor 4 (TLR4), which is a DAMP receptor, was predominantly expressed in microglial cells. Heme stimulation increased TLR4 and tumor necrosis factor (TNF) expression levels in primary microglial cells in a dose-dependent manner. Similarly to the in vitro experiments, the injection of non-lysed RBCs had little pathological influence on the spinal cord, whereas the injection of lysed RBCs or heme solution significantly upregulated the TLR4 and TNF expression in microglial cells. In TXA-treated SCI mice, the decreased expressions of TLR4 and TNF were observed at the lesion sites, accompanied by a significant reduction in the number of apoptotic cells and better functional recovery in comparison to saline-treated control mice. CONCLUSION The administration of TXA ameliorated the intralesional cytotoxicity both by reducing the intralesional bleeding volume and preventing heme induction of the TLR4/TNF axis in the SCI lesion. Our findings suggest that TXA treatment may be a therapeutic option for acute-phase SCI.
Collapse
Affiliation(s)
- Shingo Yoshizaki
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
- Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Ken Kijima
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
- Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Masamitsu Hara
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Takeyuki Saito
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Tetsuya Tamaru
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
- Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Masatake Tanaka
- Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Dai-jiro Konno
- Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Yasuharu Nakashima
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Seiji Okada
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
- Department of Immunology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| |
Collapse
|
14
|
Mican J, Toul M, Bednar D, Damborsky J. Structural Biology and Protein Engineering of Thrombolytics. Comput Struct Biotechnol J 2019; 17:917-938. [PMID: 31360331 PMCID: PMC6637190 DOI: 10.1016/j.csbj.2019.06.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022] Open
Abstract
Myocardial infarction and ischemic stroke are the most frequent causes of death or disability worldwide. Due to their ability to dissolve blood clots, the thrombolytics are frequently used for their treatment. Improving the effectiveness of thrombolytics for clinical uses is of great interest. The knowledge of the multiple roles of the endogenous thrombolytics and the fibrinolytic system grows continuously. The effects of thrombolytics on the alteration of the nervous system and the regulation of the cell migration offer promising novel uses for treating neurodegenerative disorders or targeting cancer metastasis. However, secondary activities of thrombolytics may lead to life-threatening side-effects such as intracranial bleeding and neurotoxicity. Here we provide a structural biology perspective on various thrombolytic enzymes and their key properties: (i) effectiveness of clot lysis, (ii) affinity and specificity towards fibrin, (iii) biological half-life, (iv) mechanisms of activation/inhibition, and (v) risks of side effects. This information needs to be carefully considered while establishing protein engineering strategies aiming at the development of novel thrombolytics. Current trends and perspectives are discussed, including the screening for novel enzymes and small molecules, the enhancement of fibrin specificity by protein engineering, the suppression of interactions with native receptors, liposomal encapsulation and targeted release, the application of adjuvants, and the development of improved production systems.
Collapse
Key Words
- EGF, Epidermal growth factor domain
- F, Fibrin binding finger domain
- Fibrinolysis
- K, Kringle domain
- LRP1, Low-density lipoprotein receptor-related protein 1
- MR, Mannose receptor
- NMDAR, N-methyl-D-aspartate receptor
- P, Proteolytic domain
- PAI-1, Inhibitor of tissue plasminogen activator
- Plg, Plasminogen
- Plm, Plasmin
- RAP, Receptor antagonist protein
- SAK, Staphylokinase
- SK, Streptokinase
- Staphylokinase
- Streptokinase
- Thrombolysis
- Tissue plasminogen activator
- Urokinase
- t-PA, Tissue plasminogen activator
Collapse
Affiliation(s)
- Jan Mican
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Martin Toul
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
15
|
Critical Role of Monocyte Recruitment in Optic Nerve Damage Induced by Experimental Optic Neuritis. Mol Neurobiol 2019; 56:7458-7472. [PMID: 31044366 DOI: 10.1007/s12035-019-1608-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/12/2019] [Indexed: 12/13/2022]
Abstract
Neuroinflammatory diseases are characterized by blood-brain barrier disruption (BBB) and leukocyte infiltration. We investigated the involvement of monocyte recruitment in visual pathway damage provoked by primary optic neuritis (ON) induced by a microinjection of bacterial lipopolysaccharide (LPS) into the optic nerve from male Wistar rats. Increased Evans blue extravasation and cellularity were observed at 6 h post-LPS injection. In WT-GFPþ/WT chimeric rat optic nerves, the presence of GFP(+) neutrophils and GFP(+) monocytes, and in wild-type rat optic nerves, an increase in CD11b+CD45low and CD11b+CD45high cell number, were observed at 24 h post-LPS. Gamma-irradiation did not affect the increase in BBB permeability, but significantly lessened the decrease in pupil light reflex (PLR), and retinal ganglion cell (RGC) number induced by LPS. At 6 h post-LPS, an increase in chemokine (C-C motif) ligand 2 (CCL2) immunoreactivity co-localized with neutrophils (but not microglia/macrophages or astrocytes) was observed, while at 24 h post-injection, an increase in Iba-1-immunoreactivity and its co-localization with CCL2 became evident. The co-injection of LPS with bindarit (a CCL2 synthesis inhibitor) lessened the effect of LPS on PLR, and RGC loss. The treatment with etoposide or gadolinium chloride that significantly decreased peripheral monocyte (but not neutrophil or lymphocyte) percentage decreased the effect of LPS on PLR, and RGC number. Moreover, a negative correlation between PRL and monocyte (but not lymphocyte or neutrophil) percentage was observed at 7 days post-LPS. Taken together, these results support that monocytes are key players in the initial events that take place during primary ON.
Collapse
|
16
|
Ziliotto N, Bernardi F, Jakimovski D, Zivadinov R. Coagulation Pathways in Neurological Diseases: Multiple Sclerosis. Front Neurol 2019; 10:409. [PMID: 31068896 PMCID: PMC6491577 DOI: 10.3389/fneur.2019.00409] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 04/04/2019] [Indexed: 12/11/2022] Open
Abstract
Significant progress has been made in understanding the complex interactions between the coagulation system and inflammation and autoimmunity. Increased blood-brain-barrier (BBB) permeability, a key event in the pathophysiology of multiple sclerosis (MS), leads to the irruption into the central nervous system of blood components that include virtually all coagulation/hemostasis factors. Besides their cytotoxic deposition and role as a possible trigger of the coagulation cascade, hemostasis components cause inflammatory response and immune activation, sustaining neurodegenerative events in MS. Early studies showing the contribution of altered hemostasis in the complex pathophysiology of MS have been strengthened by recent studies using methodologies that permitted deeper investigation. Fibrin(ogen), an abundant protein in plasma, has been identified as a key contributor to neuroinflammation. Perturbed fibrinolysis was found to be a hallmark of progressive MS with abundant cortical fibrin(ogen) deposition. The immune-modulatory function of the intrinsic coagulation pathway still remains to be elucidated in MS. New molecular details in key hemostasis components participating in MS pathophysiology, and particularly involved in inflammatory and immune responses, could favor the development of novel therapeutic targets to ameliorate the evolution of MS. This review article introduces essential information on coagulation factors, inhibitors, and the fibrinolytic pathway, and highlights key aspects of their involvement in the immune system and inflammatory response. It discusses how hemostasis components are (dys)regulated in MS, and summarizes histopathological post-mortem human brain evidence, as well as cerebrospinal fluid, plasma, and serum studies of hemostasis and fibrinolytic pathways in MS. Studies of disease-modifying treatments as potential modifiers of coagulation factor levels, and case reports of autoimmunity affecting hemostasis in MS are also discussed.
Collapse
Affiliation(s)
- Nicole Ziliotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Dejan Jakimovski
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Robert Zivadinov
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo, NY, United States.,Clinical Translational Science Institute, Center for Biomedical Imaging, University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
17
|
Gauberti M, Potzeha F, Vivien D, Martinez de Lizarrondo S. Impact of Bradykinin Generation During Thrombolysis in Ischemic Stroke. Front Med (Lausanne) 2018; 5:195. [PMID: 30018956 PMCID: PMC6037726 DOI: 10.3389/fmed.2018.00195] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022] Open
Abstract
Ischemic stroke is one of the leading causes of death and disability worldwide. Current medical management in the acute phase is based on the activation of the fibrinolytic cascade by intravenous injection of a plasminogen activator (such as tissue-type plasminogen activator, tPA) that promotes restauration of the cerebral blood flow and improves stroke outcome. Unfortunately, the use of tPA is associated with deleterious effects such as hemorrhagic transformation, symptomatic brain edema, and angioedema, which limit the efficacy of this therapeutic strategy. Preclinical and clinical evidence suggests that intravenous thrombolysis generates large amounts of bradykinin, a peptide with potent pro-inflammatory, and pro-edematous effects. This tPA-triggered generation of bradykinin could participate in the deleterious effects of thrombolysis and is a potential target to improve neurological outcome in tPA-treated patients. The present review aims at summarizing current evidence linking thrombolysis, bradykinin generation, and neurovascular damage.
Collapse
Affiliation(s)
- Maxime Gauberti
- Normandie Univ, UNICAEN, Institut National de la Santé et de la Recherche Médicale UMR-S U1237, "Physiopathology and Imaging of Neurological Disorders" PhIND, Caen, France.,Department of Diagnostic Imaging and Interventional Radiology, Centre Hospitalier Universitaire Caen Côte de Nacre, Caen, France
| | - Fanny Potzeha
- Normandie Univ, UNICAEN, Institut National de la Santé et de la Recherche Médicale UMR-S U1237, "Physiopathology and Imaging of Neurological Disorders" PhIND, Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, Institut National de la Santé et de la Recherche Médicale UMR-S U1237, "Physiopathology and Imaging of Neurological Disorders" PhIND, Caen, France.,Department of Clinical Research, Centre Hospitalier Universitaire Caen, Caen, France
| | - Sara Martinez de Lizarrondo
- Normandie Univ, UNICAEN, Institut National de la Santé et de la Recherche Médicale UMR-S U1237, "Physiopathology and Imaging of Neurological Disorders" PhIND, Caen, France
| |
Collapse
|
18
|
Wilhelm CJ, Hashimoto JG, Roberts ML, Zhang X, Goeke CM, Bloom SH, Guizzetti M. Plasminogen activator system homeostasis and its dysregulation by ethanol in astrocyte cultures and the developing brain. Neuropharmacology 2018; 138:193-209. [PMID: 29885422 PMCID: PMC6310223 DOI: 10.1016/j.neuropharm.2018.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 10/30/2022]
Abstract
In utero alcohol exposure can cause fetal alcohol spectrum disorders (FASD), characterized by structural brain abnormalities and long-lasting behavioral and cognitive dysfunction. Neuronal plasticity is affected by in utero alcohol exposure and can be modulated by extracellular proteolysis. Plasmin is a major extracellular serine-protease whose activation is tightly regulated by the plasminogen activator (PA) system. In the present study we explored the effect of ethanol on the expression of the main components of the brain PA system in sex-specific cortical astrocyte primary cultures in vitro and in the cortex and hippocampus of post-natal day (PD) 9 male and female rats. We find that ethanol alters the PA system in astrocytes and in the developing brain. In particular, the expression of tissue-type PA (tPA), encoded by the gene Plat, is consistently upregulated by ethanol in astrocytes in vitro and in the cortex and hippocampus in vivo. Astrocytes exhibit endogenous plasmin activity that is increased by ethanol and recombinant tPA and inhibited by tPA silencing. We also find that tPA is expressed by astrocytes of the developing cortex and hippocampus in vivo. All components of the PA system investigated, with the exception of Neuroserpin/Serpini1, are expressed at higher levels in astrocyte cultures than in the developing brain, suggesting that astrocytes are major producers of these proteins in the brain. In conclusion, astrocyte PA system may play a major role in the modulation of neuronal plasticity; ethanol-induced upregulation of tPA levels and plasmin activity may be responsible for altered neuronal plasticity in FASD.
Collapse
Affiliation(s)
- Clare J Wilhelm
- VA Portland Health Care System, Portland, OR, 97239, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Joel G Hashimoto
- VA Portland Health Care System, Portland, OR, 97239, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | | | | | - Calla M Goeke
- VA Portland Health Care System, Portland, OR, 97239, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | | | - Marina Guizzetti
- VA Portland Health Care System, Portland, OR, 97239, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
19
|
Pinocembrin Protects Blood-Brain Barrier Function and Expands the Therapeutic Time Window for Tissue-Type Plasminogen Activator Treatment in a Rat Thromboembolic Stroke Model. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8943210. [PMID: 29850586 PMCID: PMC5937499 DOI: 10.1155/2018/8943210] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/20/2018] [Accepted: 02/13/2018] [Indexed: 12/18/2022]
Abstract
Tissue-type plasminogen activator (t-PA) remains the only approved therapy for acute ischemic stroke but has a restrictive treatment time window of 4.5 hr. Prolonged ischemia causes blood-brain barrier (BBB) damage and increases the incidence of hemorrhagic transformation (HT) secondary to reperfusion. In this study, we sought to determine the effect of pinocembrin (PCB; a pleiotropic neuroprotective agent) on t-PA administration-induced BBB damage in a novel rat thromboembolic stroke model. By assessing the leakage of Evans blue into the ischemic hemisphere, we demonstrated that PCB pretreatment 5 min before t-PA administration significantly reduced BBB damage following 2 hr, 4 hr, 6 hr, and even 8 hr ischemia. Consistently, PCB pretreatment significantly decreased t-PA infusion-resulting brain edema and infarction volume and improved the behavioral outcomes following 6 hr ischemia. Mechanistically, PCB pretreatment inhibited the activation of MMP-2 and MMP-9 and degradation of tight junction proteins (TJPs) occludin and claudin-5 in the ischemic hemisphere. Moreover, PCB pretreatment significantly reduced phosphorylation of platelet-derived growth factor receptor α (PDGFRα) as compared with t-PA alone. In an in vitro BBB model, PCB decreased transendothelial permeability upon hypoxia/aglycemia through inhibiting PDGF-CC secretion. In conclusion, we demonstrated that PCB pretreatment shortly before t-PA infusion significantly protects BBB function and improves neurological outcomes following prolonged ischemia beyond the regular 4.5 hr t-PA time window. PCB pretreatment may represent a novel means of increasing the safety and the therapeutic time window of t-PA following ischemic stroke.
Collapse
|
20
|
Microglial-mediated PDGF-CC activation increases cerebrovascular permeability during ischemic stroke. Acta Neuropathol 2017; 134:585-604. [PMID: 28725968 PMCID: PMC5587628 DOI: 10.1007/s00401-017-1749-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/25/2022]
Abstract
Treatment of acute ischemic stroke with the thrombolytic tissue plasminogen activator (tPA) can significantly improve neurological outcomes; however, thrombolytic therapy is associated with an increased risk of intra-cerebral hemorrhage (ICH). Previously, we demonstrated that during stroke tPA acting on the parenchymal side of the neurovascular unit (NVU) can increase blood–brain barrier (BBB) permeability and ICH through activation of latent platelet-derived growth factor-CC (PDGF-CC) and signaling by the PDGF receptor-α (PDGFRα). However, in vitro, activation of PDGF-CC by tPA is very inefficient and the mechanism of PDGF-CC activation in the NVU is not known. Here, we show that the integrin Mac-1, expressed on brain microglia/macrophages (denoted microglia throughout), acts together with the endocytic receptor LRP1 in the NVU to promote tPA-mediated activation of PDGF-CC. Mac-1-deficient mice (Mac-1−/−) are protected from tPA-induced BBB permeability but not from permeability induced by intracerebroventricular injection of active PDGF-CC. Immunofluorescence analysis demonstrates that Mac-1, LRP1, and the PDGFRα all localize to the NVU of arterioles, and following middle cerebral artery occlusion (MCAO) Mac-1−/− mice show significantly less PDGFRα phosphorylation, BBB permeability, and infarct volume compared to wild-type mice. Bone-marrow transplantation studies indicate that resident CD11b+ cells, but not bone-marrow-derived leukocytes, mediate the early activation of PDGF-CC by tPA after MCAO. Finally, using a model of thrombotic stroke with late thrombolysis, we show that wild-type mice have an increased incidence of spontaneous ICH following thrombolysis with tPA 5 h after MCAO, whereas Mac-1−/− mice are resistant to the development of ICH even with late tPA treatment. Together, these results indicate that Mac-1 and LRP1 act as co-factors for the activation of PDGF-CC by tPA in the NVU, and suggest a novel mechanism for tightly regulating PDGFRα signaling in the NVU and controlling BBB permeability.
Collapse
|
21
|
Liu S, Feng X, Jin R, Li G. Tissue plasminogen activator-based nanothrombolysis for ischemic stroke. Expert Opin Drug Deliv 2017; 15:173-184. [PMID: 28944694 DOI: 10.1080/17425247.2018.1384464] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Thrombolysis with intravenous tissue plasminogen activator (tPA) is the only FDA approved treatment for patients with acute ischemic stroke, but its use is limited by narrow therapeutic window, selective efficacy, and hemorrhagic complication. In the past two decades, extensive efforts have been undertaken to extend its therapeutic time window and explore alternative thrombolytic agents, but both show little progress. Nanotechnology has emerged as a promising strategy to improve the efficacy and safety of tPA. AREAS COVERED We reviewed the biology, thrombolytic mechanism, and pleiotropic functions of tPA in the brain and discussed current applications of various nanocarriers intended for the delivery of tPA for treatment of ischemic stroke. Current challenges and potential further directions of t-PA-based nanothrombolysis in stroke therapy are also discussed. EXPERT OPINION Using nanocarriers to deliver tPA offers many advantages to enhance the efficacy and safety of tPA therapy. Further research is needed to characterize the physicochemical characteristics and in vivo behavior of tPA-loaded nanocarriers. Combination of tPA based nanothrombolysis and neuroprotection represents a promising treatment strategy for acute ischemic stroke. Theranostic nanocarriers co-delivered with tPA and imaging agents are also promising for future stroke management.
Collapse
Affiliation(s)
- Shan Liu
- a Department of Neurosurgery , Pennsylvania State University College of Medicine , Hershey , PA , USA.,b Pharmaceutics Department , Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College , Beijing , PR China
| | - Xiaozhou Feng
- a Department of Neurosurgery , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Rong Jin
- a Department of Neurosurgery , Pennsylvania State University College of Medicine , Hershey , PA , USA
| | - Guohong Li
- a Department of Neurosurgery , Pennsylvania State University College of Medicine , Hershey , PA , USA
| |
Collapse
|
22
|
Medcalf RL, Lawrence DA. Editorial: The Role of the Plasminogen Activating System in Neurobiology. Front Cell Neurosci 2016; 10:222. [PMID: 27757075 PMCID: PMC5048060 DOI: 10.3389/fncel.2016.00222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/09/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Robert L Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University Melbourne, VIC, Australia
| | - Daniel A Lawrence
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School Ann Arbor, MI, USA
| |
Collapse
|