1
|
Kolevar MP, Koshar A, Hirsch J, Choe RH, Wu J, Rocca MS, McLoughlin S, Venable-Croft A, Fisher JP, Packer JD. Development of a patient specific cartilage graft using magnetic resonance imaging and 3D printing. J ISAKOS 2024; 9:519-525. [PMID: 38556170 DOI: 10.1016/j.jisako.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/25/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVES The goal of this project was to develop and validate a patient-specific, anatomically correct graft for cartilage restoration using magnetic resonance imaging (MRI) data and 3-dimensional (3D) printing technology. The specific aim was to test the accuracy of a novel method for 3D printing and implanting individualized, anatomically shaped bio-scaffolds to treat cartilage defects in a human cadaveric model. We hypothesized that an individualized, anatomic 3D-printed scaffold designed from MRI data would provide a more optimal fill for a large cartilage defect compared to a generic flat scaffold. METHODS Four focal cartilage defects (FCDs) were created in paired human cadaver knees, age <40 years, in the weight-bearing surfaces of the medial femoral condyle (MFC), lateral femoral condyle (LFC), patella, and trochlea of each knee. MRIs were obtained, anatomic grafts were designed and 3D printed for the left knee as an experimental group, and generic flat grafts for the right knee as a control group. Grafts were implanted into corresponding defects and fixed using tissue adhesive. Repeat post-implant MRIs were obtained. Graft step-off was measured as the distance in mm between the surface of the graft and the native cartilage surface in a direction perpendicular to the subchondral bone. Graft contour was measured as the gap between the undersurface of the graft and the subchondral bone in a direction perpendicular to the joint surface. RESULTS Graft step-off was statistically significantly better for the anatomic grafts compared to the generic grafts in the MFC (0.0 ± 0.2 mm vs. 0.7 ± 0.5 mm, p < 0.001), LFC (0.1 ± 0.3 mm vs. 1.0 ± 0.2 mm, p < 0.001), patella (-0.2 ± 0.3 mm vs. -1.2 ± 0.4 mm, p < 0.001), and trochlea (-0.4 ± 0.3 vs. 0.4 ± 0.7, p = 0.003). Graft contour was statistically significantly better for the anatomic grafts in the LFC (0.0 ± 0.0 mm vs. 0.2 ± 0.4 mm, p = 0.022) and trochlea (0.0 ± 0.0 mm vs. 1.4 ± 0.7 mm, p < 0.001). The anatomic grafts had an observed maximum step-off of -0.9 mm and a maximum contour mismatch of 0.8 mm. CONCLUSION This study validates a process designed to fabricate anatomically accurate cartilage grafts using MRI and 3D printing technology. Anatomic grafts demonstrated superior fit compared to generic flat grafts. LEVEL OF EVIDENCE Level IV.
Collapse
Affiliation(s)
- Matthew P Kolevar
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Antoan Koshar
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jeffrey Hirsch
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Robert H Choe
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Jocelyn Wu
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Michael S Rocca
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Shannon McLoughlin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | | | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Jonathan D Packer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
2
|
Forcier RJ, Heussner RT, Newsom L, Giers MB, Al Rawashdeh W, Buchanan KA, Woods EJ, Johnstone BH, Higgins AZ. Accelerating cryoprotectant delivery using vacuum infiltration. Cryobiology 2023; 112:104558. [PMID: 37451668 PMCID: PMC10530370 DOI: 10.1016/j.cryobiol.2023.104558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/22/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The ability to cryopreserve bone marrow within the vertebral body (VB) would offer significant clinical and research benefits. However, cryopreservation of large structures, such as VBs, is challenging due to mass transport limitations that prevent the effective delivery of cryoprotectants into the tissue. To overcome this challenge, we examined the potential of vacuum infiltration, along with carbonation, to increase the penetration of cryoprotectants. In particular, we hypothesized that initial exposure to high-pressure carbon dioxide gas would introduce bubbles into the tissue and that subsequent vacuum cycling would cause expansion and contraction of the bubbles, thus enhancing the transport of cryoprotectant into the tissue. Experiments were carried out using colored dye and agarose gel as a model revealing that carbonation and vacuum cycling result in a 14% increase in dye penetration compared to the atmospheric controls. Experiments were also carried out by exposing VBs isolated from human vertebrae to 40% (v/v) DMSO solution. CT imaging showed the presence of gas bubbles within the tissue pores for carbonated VBs as well as control VBs. Vacuum cycling reduced the bubble volume by more than 50%, most likely resulting in replacement of this volume with DMSO solution. However, we were unable to detect a statistically significant increase in DMSO concentration within the VBs using CT imaging. This research suggests that there may be a modest benefit to carbonation and vacuum cycling for introduction of cryoprotectants into larger structures, like VBs.
Collapse
Affiliation(s)
- Ryan J Forcier
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - Robert T Heussner
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - Lauren Newsom
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Morgan B Giers
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | | | | | | | | | - Adam Z Higgins
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
3
|
Chen J, Liu X, Hu Y, Chen X, Tan S. Cryopreservation of tissues and organs: present, bottlenecks, and future. Front Vet Sci 2023; 10:1201794. [PMID: 37303729 PMCID: PMC10248239 DOI: 10.3389/fvets.2023.1201794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Tissue and organ transplantation continues to be an effective measure for saving the lives of certain critically ill patients. The organ preservation methods that are commonly utilized in clinical practice are presently only capable of achieving short-term storage, which is insufficient for meeting the demand for organ transplantation. Ultra-low temperature storage techniques have garnered significant attention due to their capacity for achieving long-term, high-quality preservation of tissues and organs. However, the experience of cryopreserving cells cannot be readily extrapolated to the cryopreservation of complex tissues and organs, and the latter still confronts numerous challenges in its clinical application. This article summarizes the current research progress in the cryogenic preservation of tissues and organs, discusses the limitations of existing studies and the main obstacles facing the cryopreservation of complex tissues and organs, and finally introduces potential directions for future research efforts.
Collapse
|
4
|
Chahla J, Williams BT, Yanke AB, Farr J. The Large Focal Isolated Chondral Lesion. J Knee Surg 2023; 36:368-381. [PMID: 34507359 DOI: 10.1055/s-0041-1735278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Focal chondral defects (FCDs) of the knee can be a debilitating condition that can clinically translate into pain and dysfunction in young patients with high activity demands. Both the understanding of the etiology of FCDs and the surgical management of these chondral defects has exponentially grown in recent years. This is reflected by the number of surgical procedures performed for FCDs, which is now approximately 200,000 annually. This fact is also apparent in the wide variety of available surgical approaches to FCDs. Although simple arthroscopic debridement or microfracture are usually the first line of treatment for smaller lesions, chondral lesions that involve a larger area or depth require restorative procedures such as osteochondral allograft transplantation or other cell-based techniques. Given the prevalence of FCDs and the increased attention on treating these lesions, a comprehensive understanding of management from diagnosis to rehabilitation is imperative for the treating surgeon. This narrative review aims to describe current concepts in the treatment of large FCDs through providing an algorithmic approach to selecting interventions to address these lesions as well as the reported outcomes in the literature.
Collapse
Affiliation(s)
- Jorge Chahla
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Brady T Williams
- Department of Orthopedic Surgery, University of Colorado, Aurora, Colorado
| | - Adam B Yanke
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Jack Farr
- Knee Preservation and Cartilage Restoration Center, OrthoIndy, Indianapolis, Indiana
| |
Collapse
|
5
|
Guo X, Ma Y, Min Y, Sun J, Shi X, Gao G, Sun L, Wang J. Progress and prospect of technical and regulatory challenges on tissue-engineered cartilage as therapeutic combination product. Bioact Mater 2023; 20:501-518. [PMID: 35846847 PMCID: PMC9253051 DOI: 10.1016/j.bioactmat.2022.06.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/19/2022] [Accepted: 06/19/2022] [Indexed: 12/18/2022] Open
Abstract
Hyaline cartilage plays a critical role in maintaining joint function and pain. However, the lack of blood supply, nerves, and lymphatic vessels greatly limited the self-repair and regeneration of damaged cartilage, giving rise to various tricky issues in medicine. In the past 30 years, numerous treatment techniques and commercial products have been developed and practiced in the clinic for promoting defected cartilage repair and regeneration. Here, the current therapies and their relevant advantages and disadvantages will be summarized, particularly the tissue engineering strategies. Furthermore, the fabrication of tissue-engineered cartilage under research or in the clinic was discussed based on the traid of tissue engineering, that is the materials, seed cells, and bioactive factors. Finally, the commercialized cartilage repair products were listed and the regulatory issues and challenges of tissue-engineered cartilage repair products and clinical application would be reviewed. Tissue engineered cartilage, a promising strategy for articular cartilage repair. Nearly 20 engineered cartilage repair products in clinic based on clinical techniques. Combination product, the classification of tissue-engineered cartilage. Key regulatory compliance issues for combination products.
Collapse
Affiliation(s)
- Xiaolei Guo
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
- Corresponding author.
| | - Yuan Ma
- State Key Laboratory of Tribology, Tsinghua University, Beijing, PR China
| | - Yue Min
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
| | - Jiayi Sun
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
| | - Xinli Shi
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
- Corresponding author. Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, PR China
| | - Guobiao Gao
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
| | - Lei Sun
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
| | - Jiadao Wang
- State Key Laboratory of Tribology, Tsinghua University, Beijing, PR China
- Corresponding author. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Composite silk fibroin hydrogel scaffolds for cartilage tissue regeneration. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Hinckel BB, Thomas D, Vellios EE, Hancock KJ, Calcei JG, Sherman SL, Eliasberg CD, Fernandes TL, Farr J, Lattermann C, Gomoll AH. Algorithm for Treatment of Focal Cartilage Defects of the Knee: Classic and New Procedures. Cartilage 2021; 13:473S-495S. [PMID: 33745340 PMCID: PMC8808924 DOI: 10.1177/1947603521993219] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To create a treatment algorithm for focal grade 3 or 4 cartilage defects of the knee using both classic and novel cartilage restoration techniques. DESIGN A comprehensive review of the literature was performed highlighting classic as well as novel cartilage restoration techniques supported by clinical and/or basic science research and currently being employed by orthopedic surgeons. RESULTS There is a high level of evidence to support the treatment of small to medium size lesions (<2-4 cm2) without subchondral bone involvement with traditional techniques such as marrow stimulation, osteochondral autograft transplant (OAT), or osteochondral allograft transplant (OCA). Newer techniques such as autologous matrix-induced chondrogenesis and bone marrow aspirate concentrate implantation have also been shown to be effective in select studies. If subchondral bone loss is present OAT or OCA should be performed. For large lesions (>4 cm2), OCA or matrix autologous chondrocyte implantation (MACI) may be performed. OCA is preferred over MACI in the setting of subchondral bone involvement while cell-based modalities such as MACI or particulated juvenile allograft cartilage are preferred in the patellofemoral joint. CONCLUSIONS Numerous techniques exist for the orthopedic surgeon treating focal cartilage defects of the knee. Treatment strategies should be based on lesion size, lesion location, subchondral bone involvement, and the level of evidence supporting each technique in the literature.
Collapse
Affiliation(s)
- Betina B. Hinckel
- Department of Orthopedic Surgery,
William Beaumont Hospital, Taylor, MI, USA
| | - Dimitri Thomas
- UNC Orthopedics and Sports Medicine at
Lenoir, Kinston, NC, USA
| | - Evan E. Vellios
- Sports Medicine and Shoulder Surgeon
Southern California Orthopedic Institute (SCOI), Van Nuys, CA, USA
| | | | - Jacob G. Calcei
- Department of Orthopaedic Surgery,
University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH,
USA
| | - Seth L. Sherman
- Division of Sports Medicine, Department
of Orthopedic Surgery, School of Medicine, Stanford University, Palo Alto, CA,
USA
| | | | - Tiago L. Fernandes
- University of São Paulo, Institute of
Orthopedics and Traumatology, Sports Medicine–FIFA, São Paulo, SP, Brazil
| | - Jack Farr
- OrthoIndy Knee Preservation and
Cartilage Restoration Center, School of Medicine, Indiana University, Indianapolis,
IN, USA
| | - Christian Lattermann
- Division of Sports Medicine,
Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA,
USA
| | | |
Collapse
|
8
|
Wu Z, Korntner SH, Mullen AM, Skoufos I, Tzora A, Zeugolis DI. In the quest of the optimal tissue source (porcine male and female articular, tracheal and auricular cartilage) for the development of collagen sponges for articular cartilage. BIOMEDICAL ENGINEERING ADVANCES 2021. [DOI: 10.1016/j.bea.2021.100002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
9
|
Dekker TJ, Aman ZS, DePhillipo NN, Dickens JF, Anz AW, LaPrade RF. Chondral Lesions of the Knee: An Evidence-Based Approach. J Bone Joint Surg Am 2021; 103:629-645. [PMID: 33470591 DOI: 10.2106/jbjs.20.01161] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
➤ Management of chondral lesions of the knee is challenging and requires assessment of several factors including the size and location of the lesion, limb alignment and rotation, and the physical and mental health of the individual patient. ➤ There are a multitude of options to address chondral pathologies of the knee that allow individualized treatment for the specific needs and demands of the patient. ➤ Osteochondral autograft transfer remains a durable and predictable graft option in smaller lesions (<2 cm2) in the young and active patient population. ➤ Both mid-term and long-term results for large chondral lesions (≥3 cm2) of the knee have demonstrated favorable results with the use of osteochondral allograft or matrix-associated chondrocyte implantation. ➤ Treatment options for small lesions (<2 cm2) include osteochondral autograft transfer and marrow stimulation and/or microfracture with biologic adjunct, while larger lesions (≥2 cm2) are typically treated with osteochondral allograft transplantation, particulated juvenile articular cartilage, or matrix-associated chondrocyte implantation. ➤ Emerging technologies, such as allograft scaffolds and cryopreserved allograft, are being explored for different graft sources to address complex knee chondral pathology; however, further study is needed.
Collapse
Affiliation(s)
- Travis J Dekker
- Division of Orthopaedics, Department of Surgery, Eglin Air Force Base, Eglin, Florida
| | - Zachary S Aman
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Jonathan F Dickens
- Division of Orthopaedics, Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Adam W Anz
- Andrews Research & Education Foundation, Gulf Breeze, Florida
| | | |
Collapse
|
10
|
Bennett CH, Nadarajah V, Moore MC, Jauregui JJ, Dubina AG, Burt C, Davis DL, Uppal A, Henn RF. Cartiform Implantation for focal cartilage defects in the knee: A 2-year clinical and magnetic resonance imaging follow-up study. J Orthop 2021; 24:135-144. [PMID: 33716418 PMCID: PMC7932855 DOI: 10.1016/j.jor.2021.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/14/2021] [Indexed: 01/18/2023] Open
Abstract
The purpose of this study was to evaluate clinical and magnetic resonance imaging (MRI) outcomes in patients who underwent cryopreserved viable osteochondral allograft (CVOCA) implantation for focal cartilage defects in the knee at a minimum of 2-years postoperatively. This is a retrospective follow-up study of twelve patients who underwent CVOCA implantation from 2013 to 2015 by a single surgeon for a International Cartilage Repair Society (ICRS) grade 3 or 4 chondral defect. Patient-reported outcome (PRO) measurements and MRI were obtained 2-years postoperatively. Collected PRO measures included: International Knee Documentation Committee (IKDC) form; Visual Analog Scale (VAS) pain score; Veterans RAND 12-Item Health Survey (VR-12); Knee Injury and Osteoarthritis Outcome Score (KOOS); and Western Ontario McMaster Universities Osteoarthritis Index (WOMAC). Patients completed a standard return to work and sports/recreation survey. A blinded, fellowship-trained musculoskeletal radiologist independently evaluated each MRI to determine the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score. Mean follow-up was 2.1 years (2.0-2.3). There were 6 women and 6 men with a mean age of 46.2 ± 11.9 years. Mean PRO scores were: IKDC 72.6 ± 17.4; VAS 2.9 ± 2.8; WOMAC 84.2 ± 15.1; KOOS- Pain 83.8 ± 18.5, Symptoms 77.6 ± 16.0, ADL 88.0 ± 16.9, Sports/Rec 67.7 ± 33.3, QOL 54.8 ± 24.2; and VR-12 PCS 45.0 ± 8.5 and MCS 51.1 ± 9.5. The mean MOCART score was 59.5 ± 12.9. To our knowledge, this is the largest study to report clinical and MRI outcomes of CVOCA implantation in the knee. With positive functional outcomes and lack of failures at 2-year follow-up, CVOCA is a promising treatment option for focal chondral defects in the knee. STUDY DESIGN Retrospective case series, Level of evidence 4.
Collapse
Affiliation(s)
- Craig H. Bennett
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
- LifeBridge Health Sports Medicine Institute, Owings Mills, MD, USA
| | - Vidushan Nadarajah
- Department of Orthopaedic Surgery and Rehabilitation, SUNY Health Sciences University, Brooklyn, NY, USA
| | - Michelle C. Moore
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Julio J. Jauregui
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrew G. Dubina
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cameran Burt
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Derik L. Davis
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - R. Frank Henn
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Calcei JG, Ray T, Sherman SL, Farr J. Management of Large Focal Chondral and Osteochondral Defects in the Knee. J Knee Surg 2020; 33:1187-1200. [PMID: 33260221 DOI: 10.1055/s-0040-1721053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Large, focal articular cartilage defects of the knee (> 4 cm2) can be a source of significant morbidity and often require surgical intervention. Patient- and lesion-specific factors must be identified when evaluating a patient with an articular cartilage defect. In the management of large cartilage defects, the two classically utilized cartilage restoration procedures are osteochondral allograft (OCA) transplantation and cell therapy, or autologous chondrocyte implantation (ACI). Alternative techniques that are available or currently in clinical trials include a hyaluronan-based scaffold plus bone marrow aspirate concentrate, a third-generation autologous chondrocyte implant, and an aragonite-based scaffold. In this review, we will focus on OCA and ACI as the mainstay in management of large chondral and osteochondral defects of the knee. We will discuss the techniques and associated clinical outcomes for each, while including a brief mention of alternative treatments. Overall, cartilage restoration techniques have yielded favorable clinical outcomes and can be successfully employed to treat these challenging large focal lesions.
Collapse
Affiliation(s)
- Jacob G Calcei
- Department of Orthopaedic Surgery, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, Ohio
| | - Taylor Ray
- Department of Orthopaedic Surgery, Stanford University Medical Center, Palo Alto, California
| | - Seth L Sherman
- Department of Orthopaedic Surgery, Stanford University Medical Center, Palo Alto, California
| | - Jack Farr
- Knee Preservation and Cartilage Restoration Center, OrthoIndy, Indianapolis, Indiana
| |
Collapse
|
12
|
Advances in cartilage repair: The influence of inorganic clays to improve mechanical and healing properties of antibacterial Gellan gum-Manuka honey hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110444. [DOI: 10.1016/j.msec.2019.110444] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/31/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022]
|
13
|
Connelly ST, Silva R, Gupta R, O'Hare M, Danilkovitch A, Tartaglia G. Temporomandibular Joint Discectomy Followed by Disc Replacement Using Viable Osteochondral and Umbilical Cord Allografts Results in Improved Patient Outcomes. J Oral Maxillofac Surg 2019; 78:63-74. [PMID: 31278938 DOI: 10.1016/j.joms.2019.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 01/08/2023]
Abstract
PURPOSE The ideal surgical solution to reconstruct the temporomandibular joint (TMJ) disc after it has been removed has remained elusive. The major obstacle has been identifying a durable biocompatible material that will provide for restoration of TMJ function. The present study evaluated the outcomes of the interpositional implantation of a cryopreserved viable osteochondral allograft (CVOCA) combined with a viable cryopreserved umbilical cord tissue (vCUT) allograft after TMJ discectomy in patients with internal derangement and/or degenerative joint disease (DJD). PATIENTS AND METHODS We implemented a retrospective case series study and enrolled patients with DJD or disc displacement diagnosed using the Diagnostic Criteria of Temporomandibular Disorders, who had undergone interpositional CVOCA and vCUT implantation after TMJ discectomy. The primary outcome variable was pain, measured using a visual analog scale (VAS). The secondary outcomes variables included maximal incisal opening (MIO) and Glasgow Benefit Inventory (GBI) general subscale scores. The primary analysis compared the preoperative measures with those at the last follow-up visit. Descriptive and analytic statistics were computed to summarize the sample's characteristics and assess the pre- and postoperative differences. RESULTS The study sample included 9 patients with a mean age of 36 years, and 44% were men. The VAS scores had decreased significantly from 9.0 ± 2.0 to 3.0 ± 3.0 postoperatively (P = .001). The MIO had increased from 31 ± 5 to 36 ± 5 mm (P = .178). The average GBI general subscale score of 13 ± 46 for the 9 patients showed a trend toward improved quality of life and patient satisfaction with the surgery. The median postoperative follow-up at the time of our report was 15 months (interquartile range, 10; range, 2 to 27) without treatment-related complications. CONCLUSIONS The reported outcomes suggest that the interpositional implantation of CVOCA and vCUT after TMJ discectomy could be a solution for reducing TMJ-related pain and restoring TMJ function. Longer follow-up and prospective multicenter studies are warranted.
Collapse
Affiliation(s)
- S Thaddeus Connelly
- Assistant Professor, Department of Oral and Maxillofacial Surgery, San Francisco Veterans Affairs Health Care System, University of California, San Francisco, San Francisco, CA.
| | - Rebeka Silva
- Associate Professor, Department of Oral and Maxillofacial Surgery, San Francisco Veterans Affairs Health Care System, University of California, San Francisco, San Francisco, CA
| | - Rishi Gupta
- Assistant Professor, Department of Oral and Maxillofacial Surgery, San Francisco Veterans Affairs Health Care System, University of California, San Francisco, San Francisco, CA
| | - Molly O'Hare
- Dental Student and DDS Candidate, United States Air Force; and Department of Oral and Maxillofacial Surgery, University of California, San Francisco, San Francisco, CA
| | | | - Gianluca Tartaglia
- Professor, Department of Biomedical Sciences for Health, Functional Anatomy Research Center, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
14
|
Mirzayan R, Sherman B, Chahla J. Cryopreserved, Viable Osteochondral Allograft for the Treatment of a Full-Thickness Cartilage Defect of the Glenoid. Arthrosc Tech 2018; 7:e1269-e1273. [PMID: 30591873 PMCID: PMC6306272 DOI: 10.1016/j.eats.2018.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/05/2018] [Indexed: 02/03/2023] Open
Abstract
Glenoid chondral injuries constitute challenging injuries to treat because of the limited access and the limited options and evidence available for their resolution. The purpose of this Technical Note is to describe the procedure, pearls, and pitfalls of implantation of a cryopreserved osteochondral allograft (Cartiform) for the treatment of full-thickness cartilage defects of the shoulder. Cartiform is a cryopreserved osteochondral allograft composed of chondrocytes, chondrogenic growth factors, and extracellular matrix proteins that can be implanted through a single-stage procedure.
Collapse
Affiliation(s)
- Raffy Mirzayan
- Kaiser Permanente, Baldwin Park, California, U.S.A.,Address correspondence to Raffy Mirzayan, M.D., Kaiser Permanente, 1011 Baldwin Park Blvd, Baldwin Park, CA 91706, U.S.A.
| | - Benjamin Sherman
- Riverside University Health System, Moreno Valley, California, U.S.A
| | - Jorge Chahla
- Cedars-Sinai Kerlan-Jobe Institute, Santa Monica, California, U.S.A
| |
Collapse
|