1
|
Luo AL, Ravi A, Arvisais-Anhalt S, Muniyappa AN, Liu X, Wang S. Development and Internal Validation of an Interpretable Machine Learning Model to Predict Readmissions in a United States Healthcare System. INFORMATICS 2023. [DOI: 10.3390/informatics10020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
(1) One in four hospital readmissions is potentially preventable. Machine learning (ML) models have been developed to predict hospital readmissions and risk-stratify patients, but thus far they have been limited in clinical applicability, timeliness, and generalizability. (2) Methods: Using deidentified clinical data from the University of California, San Francisco (UCSF) between January 2016 and November 2021, we developed and compared four supervised ML models (logistic regression, random forest, gradient boosting, and XGBoost) to predict 30-day readmissions for adults admitted to a UCSF hospital. (3) Results: Of 147,358 inpatient encounters, 20,747 (13.9%) patients were readmitted within 30 days of discharge. The final model selected was XGBoost, which had an area under the receiver operating characteristic curve of 0.783 and an area under the precision-recall curve of 0.434. The most important features by Shapley Additive Explanations were days since last admission, discharge department, and inpatient length of stay. (4) Conclusions: We developed and internally validated a supervised ML model to predict 30-day readmissions in a US-based healthcare system. This model has several advantages including state-of-the-art performance metrics, the use of clinical data, the use of features available within 24 h of discharge, and generalizability to multiple disease states.
Collapse
|
2
|
Shanbehzadeh M, Yazdani A, Shafiee M, Kazemi-Arpanahi H. Predictive modeling for COVID-19 readmission risk using machine learning algorithms. BMC Med Inform Decis Mak 2022; 22:139. [PMID: 35596167 PMCID: PMC9122247 DOI: 10.1186/s12911-022-01880-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction The COVID-19 pandemic overwhelmed healthcare systems with severe shortages in hospital resources such as ICU beds, specialized doctors, and respiratory ventilators. In this situation, reducing COVID-19 readmissions could potentially maintain hospital capacity. By employing machine learning (ML), we can predict the likelihood of COVID-19 readmission risk, which can assist in the optimal allocation of restricted resources to seriously ill patients. Methods In this retrospective single-center study, the data of 1225 COVID-19 patients discharged between January 9, 2020, and October 20, 2021 were analyzed. First, the most important predictors were selected using the horse herd optimization algorithms. Then, three classical ML algorithms, including decision tree, support vector machine, and k-nearest neighbors, and a hybrid algorithm, namely water wave optimization (WWO) as a precise metaheuristic evolutionary algorithm combined with a neural network were used to construct predictive models for COVID-19 readmission. Finally, the performance of prediction models was measured, and the best-performing one was identified. Results The ML algorithms were trained using 17 validated features. Among the four selected ML algorithms, the WWO had the best average performance in tenfold cross-validation (accuracy: 0.9705, precision: 0.9729, recall: 0.9869, specificity: 0.9259, F-measure: 0.9795). Conclusions Our findings show that the WWO algorithm predicts the risk of readmission of COVID-19 patients more accurately than other ML algorithms. The models developed herein can inform frontline clinicians and healthcare policymakers to manage and optimally allocate limited hospital resources to seriously ill COVID-19 patients.
Collapse
Affiliation(s)
- Mostafa Shanbehzadeh
- Department of Health Information Technology, School of Paramedical, Ilam University of Medical Sciences, Ilam, Iran
| | - Azita Yazdani
- Clinical Education Research Center, Health Human Resources Research Center, Department of Health Information Management, School of Health Management and Information Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Shafiee
- Department of Nursing, Abadan University of Medical Sciences, Abadan, Iran
| | - Hadi Kazemi-Arpanahi
- Department of Health Information Technology, Abadan University of Medical Sciences, Abadan, Iran. .,Department of Student Research Committee, Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
3
|
Teo K, Yong CW, Chuah JH, Hum YC, Tee YK, Xia K, Lai KW. Current Trends in Readmission Prediction: An Overview of Approaches. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021; 48:1-18. [PMID: 34422543 PMCID: PMC8366485 DOI: 10.1007/s13369-021-06040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/30/2021] [Indexed: 12/03/2022]
Abstract
Hospital readmission shortly after discharge threatens the quality of patient care and leads to increased medical care costs. In the United States, hospitals with high readmission rates are subject to federal financial penalties. This concern calls for incentives for healthcare facilities to reduce their readmission rates by predicting patients who are at high risk of readmission. Conventional practices involve the use of rule-based assessment scores and traditional statistical methods, such as logistic regression, in developing risk prediction models. The recent advancements in machine learning driven by improved computing power and sophisticated algorithms have the potential to produce highly accurate predictions. However, the value of such models could be overrated. Meanwhile, the use of other flexible models that leverage simple algorithms offer great transparency in terms of feature interpretation, which is beneficial in clinical settings. This work presents an overview of the current trends in risk prediction models developed in the field of readmission. The various techniques adopted by researchers in recent years are described, and the topic of whether complex models outperform simple ones in readmission risk stratification is investigated.
Collapse
Affiliation(s)
- Kareen Teo
- Department of Biomedical Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ching Wai Yong
- Department of Biomedical Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Joon Huang Chuah
- Department of Electrical Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yan Chai Hum
- Department of Mechatronics and Biomedical Engineering, Universiti Tunku Abdul Rahman, 43000 Sungai Long, Malaysia
| | - Yee Kai Tee
- Department of Mechatronics and Biomedical Engineering, Universiti Tunku Abdul Rahman, 43000 Sungai Long, Malaysia
| | - Kaijian Xia
- Changshu Institute of Technology, Changshu, 215500 Jiangsu China
| | - Khin Wee Lai
- Department of Biomedical Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Wu CX, Suresh E, Phng FWL, Tai KP, Pakdeethai J, D'Souza JLA, Tan WS, Phan P, Lew KSM, Tan GYH, Chua GSW, Hwang CH. Effect of a Real-Time Risk Score on 30-day Readmission Reduction in Singapore. Appl Clin Inform 2021; 12:372-382. [PMID: 34010978 DOI: 10.1055/s-0041-1726422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To develop a risk score for the real-time prediction of readmissions for patients using patient specific information captured in electronic medical records (EMR) in Singapore to enable the prospective identification of high-risk patients for enrolment in timely interventions. METHODS Machine-learning models were built to estimate the probability of a patient being readmitted within 30 days of discharge. EMR of 25,472 patients discharged from the medicine department at Ng Teng Fong General Hospital between January 2016 and December 2016 were extracted retrospectively for training and internal validation of the models. We developed and implemented a real-time 30-day readmission risk score generation in the EMR system, which enabled the flagging of high-risk patients to care providers in the hospital. Based on the daily high-risk patient list, the various interfaces and flow sheets in the EMR were configured according to the information needs of the various stakeholders such as the inpatient medical, nursing, case management, emergency department, and postdischarge care teams. RESULTS Overall, the machine-learning models achieved good performance with area under the receiver operating characteristic ranging from 0.77 to 0.81. The models were used to proactively identify and attend to patients who are at risk of readmission before an actual readmission occurs. This approach successfully reduced the 30-day readmission rate for patients admitted to the medicine department from 11.7% in 2017 to 10.1% in 2019 (p < 0.01) after risk adjustment. CONCLUSION Machine-learning models can be deployed in the EMR system to provide real-time forecasts for a more comprehensive outlook in the aspects of decision-making and care provision.
Collapse
Affiliation(s)
- Christine Xia Wu
- Quality, Innovation and Improvement, Ng Teng Fong General Hospital, Singapore
| | - Ernest Suresh
- Department of Medicine, Ng Teng Fong General Hospital, Singapore
| | | | - Kai Pik Tai
- Quality, Innovation and Improvement, Ng Teng Fong General Hospital, Singapore
| | | | | | - Woan Shin Tan
- Health Services and Outcomes Research, National Healthcare Group, Singapore
| | - Phillip Phan
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States.,Department of Medicine, National University of Singapore, Singapore
| | - Kelvin Sin Min Lew
- Quality, Innovation and Improvement, Ng Teng Fong General Hospital, Singapore
| | | | | | - Chi Hong Hwang
- Quality, Innovation and Improvement, Ng Teng Fong General Hospital, Singapore
| |
Collapse
|
5
|
Huang Y, Talwar A, Chatterjee S, Aparasu RR. Application of machine learning in predicting hospital readmissions: a scoping review of the literature. BMC Med Res Methodol 2021; 21:96. [PMID: 33952192 PMCID: PMC8101040 DOI: 10.1186/s12874-021-01284-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/15/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Advances in machine learning (ML) provide great opportunities in the prediction of hospital readmission. This review synthesizes the literature on ML methods and their performance for predicting hospital readmission in the US. METHODS This review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews (PRISMA-ScR) Statement. The extraction of items was also guided by the Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies (CHARMS). Electronic databases PUBMED, MEDLINE, and EMBASE were systematically searched from January 1, 2015, through December 10, 2019. The articles were imported into COVIDENCE online software for title/abstract screening and full-text eligibility. Observational studies using ML techniques for hospital readmissions among US patients were eligible for inclusion. Articles without a full text available in the English language were excluded. A qualitative synthesis included study characteristics, ML algorithms utilized, and model validation, and quantitative analysis assessed model performance. Model performances in terms of Area Under the Curve (AUC) were analyzed using R software. Quality in Prognosis Studies (QUIPS) tool was used to assess the quality of the reviewed studies. RESULTS Of 522 citations reviewed, 43 studies met the inclusion criteria. A majority of the studies used electronic health records (24, 56%), followed by population-based data sources (15, 35%) and administrative claims data (4, 9%). The most common algorithms were tree-based methods (23, 53%), neural network (NN) (14, 33%), regularized logistic regression (12, 28%), and support vector machine (SVM) (10, 23%). Most of these studies (37, 85%) were of high quality. A majority of these studies (28, 65%) reported ML algorithms with an AUC above 0.70. There was a range of variability within AUC reported by these studies with a median of 0.68 (IQR: 0.64-0.76; range: 0.50-0.90). CONCLUSIONS The ML algorithms involving tree-based methods, NN, regularized logistic regression, and SVM are commonly used to predict hospital readmission in the US. Further research is needed to compare the performance of ML algorithms for hospital readmission prediction.
Collapse
Affiliation(s)
- Yinan Huang
- Department of Pharmaceutical Health Outcomes and Policy, College of Pharmacy, University of Houston, 4849 Calhoun Road, Health & Sciences Bldg 2, Houston, TX, 77204, USA
| | - Ashna Talwar
- Department of Pharmaceutical Health Outcomes and Policy, College of Pharmacy, University of Houston, 4849 Calhoun Road, Health & Sciences Bldg 2, Houston, TX, 77204, USA
| | - Satabdi Chatterjee
- Department of Pharmaceutical Health Outcomes and Policy, College of Pharmacy, University of Houston, 4849 Calhoun Road, Health & Sciences Bldg 2, Houston, TX, 77204, USA
| | - Rajender R Aparasu
- Department of Pharmaceutical Health Outcomes and Policy, College of Pharmacy, University of Houston, 4849 Calhoun Road, Health & Sciences Bldg 2, Houston, TX, 77204, USA.
| |
Collapse
|
6
|
Patel A, Gan K, Li AA, Weiss J, Nouraie M, Tayur S, Novelli EM. Machine-learning algorithms for predicting hospital re-admissions in sickle cell disease. Br J Haematol 2021; 192:158-170. [PMID: 33169861 PMCID: PMC11423862 DOI: 10.1111/bjh.17107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/04/2020] [Accepted: 08/21/2020] [Indexed: 01/25/2023]
Abstract
Reducing preventable hospital re-admissions in Sickle Cell Disease (SCD) could potentially improve outcomes and decrease healthcare costs. In a retrospective study of electronic health records, we hypothesized Machine-Learning (ML) algorithms may outperform standard re-admission scoring systems (LACE and HOSPITAL indices). Participants (n = 446) included patients with SCD with at least one unplanned inpatient encounter between January 1, 2013, and November 1, 2018. Patients were randomly partitioned into training and testing groups. Unplanned hospital admissions (n = 3299) were stratified to training and testing samples. Potential predictors (n = 486), measured from the last unplanned inpatient discharge to the current unplanned inpatient visit, were obtained via both data-driven methods and clinical knowledge. Three standard ML algorithms, Logistic Regression (LR), Support-Vector Machine (SVM), and Random Forest (RF) were applied. Prediction performance was assessed using the C-statistic, sensitivity, and specificity. In addition, we reported the most important predictors in our best models. In this dataset, ML algorithms outperformed LACE [C-statistic 0·6, 95% Confidence Interval (CI) 0·57-0·64] and HOSPITAL (C-statistic 0·69, 95% CI 0·66-0·72), with the RF (C-statistic 0·77, 95% CI 0·73-0·79) and LR (C-statistic 0·77, 95% CI 0·73-0·8) performing the best. ML algorithms can be powerful tools in predicting re-admission in high-risk patient groups.
Collapse
Affiliation(s)
- Arisha Patel
- Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kyra Gan
- Operations Research, Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Andrew A Li
- Operations Research, Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jeremy Weiss
- Heinz College, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sridhar Tayur
- Operations Management, Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Enrico M Novelli
- Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Romero-Brufau S, Wyatt KD, Boyum P, Mickelson M, Moore M, Cognetta-Rieke C. Implementation of Artificial Intelligence-Based Clinical Decision Support to Reduce Hospital Readmissions at a Regional Hospital. Appl Clin Inform 2020; 11:570-577. [PMID: 32877943 DOI: 10.1055/s-0040-1715827] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Hospital readmissions are a key quality metric, which has been tied to reimbursement. One strategy to reduce readmissions is to direct resources to patients at the highest risk of readmission. This strategy necessitates a robust predictive model coupled with effective, patient-centered interventions. OBJECTIVE The aim of this study was to reduce unplanned hospital readmissions through the use of artificial intelligence-based clinical decision support. METHODS A commercially vended artificial intelligence tool was implemented at a regional hospital in La Crosse, Wisconsin between November 2018 and April 2019. The tool assessed all patients admitted to general care units for risk of readmission and generated recommendations for interventions intended to decrease readmission risk. Similar hospitals were used as controls. Change in readmission rate was assessed by comparing the 6-month intervention period to the same months of the previous calendar year in exposure and control hospitals. RESULTS Among 2,460 hospitalizations assessed using the tool, 611 were designated by the tool as high risk. Sensitivity and specificity for risk assignment were 65% and 89%, respectively. Over 6 months following implementation, readmission rates decreased from 11.4% during the comparison period to 8.1% (p < 0.001). After accounting for the 0.5% decrease in readmission rates (from 9.3 to 8.8%) at control hospitals, the relative reduction in readmission rate was 25% (p < 0.001). Among patients designated as high risk, the number needed to treat to avoid one readmission was 11. CONCLUSION We observed a decrease in hospital readmission after implementing artificial intelligence-based clinical decision support. Our experience suggests that use of artificial intelligence to identify patients at the highest risk for readmission can reduce quality gaps when coupled with patient-centered interventions.
Collapse
Affiliation(s)
- Santiago Romero-Brufau
- Mayo Clinic Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, Minnesota, United States.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, Massachusetts, United States
| | - Kirk D Wyatt
- Division of Pediatric Hematology/Oncology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Patricia Boyum
- Mayo Clinic Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, Minnesota, United States
| | - Mindy Mickelson
- Mayo Clinic Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, Minnesota, United States
| | - Matthew Moore
- Mayo Clinic Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, Minnesota, United States
| | - Cheristi Cognetta-Rieke
- Department of Nursing, Mayo Clinic Health System, La Crosse, La Crosse, Wisconsin, United States
| |
Collapse
|
8
|
Su MC, Wang YJ, Chen TJ, Chiu SH, Chang HT, Huang MS, Hu LH, Li CC, Yang SJ, Wu JC, Chen YC. Assess the Performance and Cost-Effectiveness of LACE and HOSPITAL Re-Admission Prediction Models as a Risk Management Tool for Home Care Patients: An Evaluation Study of a Medical Center Affiliated Home Care Unit in Taiwan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030927. [PMID: 32024309 PMCID: PMC7037289 DOI: 10.3390/ijerph17030927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023]
Abstract
The LACE index and HOSPITAL score models are the two most commonly used prediction models identifying patients at high risk of readmission with limited information for home care patients. This study compares the effectiveness of these two models in predicting 30-day readmission following acute hospitalization of such patients in Taiwan. A cohort of 57 home care patients were enrolled and followed-up for one year. We compared calibration, discrimination (area under the receiver operating curve, AUC), and net reclassification improvement (NRI) to identify patients at risk of 30-day readmission for both models. Moreover, the cost-effectiveness of the models was evaluated using microsimulation analysis. A total of 22 readmissions occurred after 87 acute hospitalizations during the study period (readmission rate = 25.2%). While the LACE score had poor discrimination (AUC = 0.598, 95% confidence interval (CI) = 0.488–0.702), the HOSPITAL score achieved helpful discrimination (AUC = 0.691, 95% CI = 0.582–0.785). Moreover, the HOSPITAL score had improved the risk prediction in 38.3% of the patients, compared with the LACE index (NRI = 0.383, 95% CI = 0.068–0.697, p = 0.017). Both prediction models effectively reduced readmission rates compared to an attending physician’s model (readmission rate reduction: LACE, 39.2%; HOSPITAL, 43.4%; physician, 10.1%; p < 0.001). The HOSPITAL score provides a better prediction of readmission and has potential as a risk management tool for home care patients.
Collapse
Affiliation(s)
- Mei-Chin Su
- Department of Nursing, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (M.-C.S.); (S.-H.C.); (M.-S.H.); (C.-C.L.); (L.-H.H.); (S.-J.Y.)
- Institute of Hospital and Health Care Administration, National Yang-Ming University, Taipei 11221, Taiwan;
| | - Yi-Jen Wang
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan (H.-T.C.)
- Department of Primary Care and Public Health, Imperial College London, London W6 8RP, UK
| | - Tzeng-Ji Chen
- Institute of Hospital and Health Care Administration, National Yang-Ming University, Taipei 11221, Taiwan;
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan (H.-T.C.)
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
| | - Shiao-Hui Chiu
- Department of Nursing, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (M.-C.S.); (S.-H.C.); (M.-S.H.); (C.-C.L.); (L.-H.H.); (S.-J.Y.)
| | - Hsiao-Ting Chang
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan (H.-T.C.)
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
| | - Mei-Shu Huang
- Department of Nursing, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (M.-C.S.); (S.-H.C.); (M.-S.H.); (C.-C.L.); (L.-H.H.); (S.-J.Y.)
| | - Li-Hui Hu
- Department of Nursing, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (M.-C.S.); (S.-H.C.); (M.-S.H.); (C.-C.L.); (L.-H.H.); (S.-J.Y.)
| | - Chu-Chuan Li
- Department of Nursing, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (M.-C.S.); (S.-H.C.); (M.-S.H.); (C.-C.L.); (L.-H.H.); (S.-J.Y.)
| | - Su-Ju Yang
- Department of Nursing, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (M.-C.S.); (S.-H.C.); (M.-S.H.); (C.-C.L.); (L.-H.H.); (S.-J.Y.)
| | - Jau-Ching Wu
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
- Department of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yu-Chun Chen
- Institute of Hospital and Health Care Administration, National Yang-Ming University, Taipei 11221, Taiwan;
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan (H.-T.C.)
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
- Correspondence: ; Tel.: +886-28712121#7460
| |
Collapse
|