1
|
da Costa NMM, Parisi L, Ghezzi B, Elviri L, de Souza SLS, Novaes AB, de Oliveira PT, Macaluso GM, Palioto DB. Anti-Fibronectin Aptamer Modifies Blood Clot Pattern and Stimulates Osteogenesis: An Ex Vivo Study. Biomimetics (Basel) 2023; 8:582. [PMID: 38132522 PMCID: PMC10741424 DOI: 10.3390/biomimetics8080582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Scaffold (SCA) functionalization with aptamers (APT) provides adsorption of specific bioactive molecules on biomaterial surfaces. The aim of this study was to observe if SCA enriched with anti-fibronectin APT can favor coagulum (PhC) and osteoblasts (OSB) differentiation. METHODS 20 μg of APT was functionalized on SCA by simple adsorption. For PhC formation, SCAs were inserted into rat calvaria defects for 17 h. Following proper transportation (buffer solution PB), OSBs (UMR-106 lineage) were seeded over PhC + SCAs with and without APT. Cells and PhC morphology, PhC cell population, protein labeling and gene expression were observed in different time points. RESULTS The APT induced higher alkaline phosphatase and bone sialoprotein immunolabeling in OSB. Mesenchymal stem cells, leukocytes and lymphocytes cells were detected more in the APT group than when scaffolds were not functionalized. Additionally, an enriched and dense fibrin network and different cell types were observed, with more OSB and white blood cells in PhC formed on SCA with APT. The gene expression showed higher transforming growth factor beta 1 (TGF-b1) detection in SCA with APT. CONCLUSIONS The SCA functionalization with fibronectin aptamers may alter key morphological and functional features of blood clot formation, and provides a selective expression of proteins related to osteo differentiation. Additionally, aptamers increase TGF-b1 gene expression, which is highly associated with improvements in regenerative therapies.
Collapse
Affiliation(s)
- Natacha Malu Miranda da Costa
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida Do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil; (N.M.M.d.C.); (S.L.S.d.S.); (A.B.N.J.)
| | - Ludovica Parisi
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland;
| | - Benedetta Ghezzi
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, University of Parma, Via Gramsci 14, 43126 Parma, Italy;
| | - Lisa Elviri
- Istituto dei Materiali per l’Elettronica ed il Magnetismo, Consiglio Nazionale Delle Ricerche, Parco Area Delle Scienze 37/A, 43124 Parma, Italy;
| | - Sergio Luis Scombatti de Souza
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida Do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil; (N.M.M.d.C.); (S.L.S.d.S.); (A.B.N.J.)
| | - Arthur Belém Novaes
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida Do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil; (N.M.M.d.C.); (S.L.S.d.S.); (A.B.N.J.)
| | - Paulo Tambasco de Oliveira
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida Do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil;
| | - Guido Maria Macaluso
- Dipartimento di Scienze Degli Alimenti e del Farmaco, Parco Area Delle Scienze 27/A, 43124 Parma, Italy;
| | - Daniela Bazan Palioto
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida Do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil; (N.M.M.d.C.); (S.L.S.d.S.); (A.B.N.J.)
| |
Collapse
|
2
|
Verdier H, Thomas P, Batista J, Kempster C, McKinney H, Gleadall N, Danesh J, Mumford A, Heemskerk JWM, Ouwehand WH, Downes K, Astle WJ, Turro E. A signature of platelet reactivity in CBC scattergrams reveals genetic predictors of thrombotic disease risk. Blood 2023; 142:1895-1908. [PMID: 37647652 PMCID: PMC10733829 DOI: 10.1182/blood.2023021100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/27/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Genetic studies of platelet reactivity (PR) phenotypes may identify novel antiplatelet drug targets. However, such studies have been limited by small sample sizes (n < 5000) because of the complexity of measuring PR. We trained a model to predict PR from complete blood count (CBC) scattergrams. A genome-wide association study of this phenotype in 29 806 blood donors identified 21 distinct associations implicating 20 genes, of which 6 have been identified previously. The effect size estimates were significantly correlated with estimates from a study of flow cytometry-measured PR and a study of a phenotype of in vitro thrombus formation. A genetic score of PR built from the 21 variants was associated with the incidence rates of myocardial infarction and pulmonary embolism. Mendelian randomization analyses showed that PR was causally associated with the risks of coronary artery disease, stroke, and venous thromboembolism. Our approach provides a blueprint for using phenotype imputation to study the determinants of hard-to-measure but biologically important hematological traits.
Collapse
Affiliation(s)
- Hippolyte Verdier
- Institut Pasteur, CNRS UMR 3751, Decision and Bayesian Computation, Université Paris Cité, Paris, France
| | - Patrick Thomas
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Joana Batista
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Carly Kempster
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Harriet McKinney
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Nicholas Gleadall
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Andrew Mumford
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- South West National Health Service Genomic Medicine Service Alliance, Bristol, United Kingdom
| | | | - Willem H. Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Kate Downes
- Cambridge Genomics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - William J. Astle
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Medical Research Council Biostatistics Unit, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, United Kingdom
| | - Ernest Turro
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
3
|
Yang S, Tang X, Wang L, Ni C, Wu Y, Zhou L, Zeng Y, Zhao C, Wu A, Wang Q, Xu X, Wang Y, Chen R, Zhang X, Zou L, Huang X, Wu J. Targeting TLR2/Rac1/cdc42/JNK Pathway to Reveal That Ruxolitinib Promotes Thrombocytopoiesis. Int J Mol Sci 2022; 23:ijms232416137. [PMID: 36555781 PMCID: PMC9787584 DOI: 10.3390/ijms232416137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Thrombocytopenia has long been considered an important complication of chemotherapy and radiotherapy, which severely limits the effectiveness of cancer treatment and the overall survival of patients. However, clinical treatment options are extremely limited so far. Ruxolitinib is a potential candidate. METHODS The impact of ruxolitinib on the differentiation and maturation of K562 and Meg-01 cells megakaryocytes (MKs) was examined by flow cytometry, Giemsa and Phalloidin staining. A mouse model of radiation-injured thrombocytopenia (RIT) was employed to evaluate the action of ruxolitinib on thrombocytopoiesis. Network pharmacology, molecular docking, drug affinity responsive target stability assay (DARTS), RNA sequencing, protein blotting and immunofluorescence analysis were applied to explore the targets and mechanisms of action of ruxolitinib. RESULTS Ruxolitinib can stimulate MK differentiation and maturation in a dose-dependent manner and accelerates recovery of MKs and thrombocytopoiesis in RIT mice. Biological targeting analysis showed that ruxolitinib binds directly to Toll Like Receptor 2 (TLR2) to activate Rac1/cdc42/JNK, and this action was shown to be blocked by C29, a specific inhibitor of TLR2. CONCLUSIONS Ruxolitinib was first identified to facilitate MK differentiation and thrombocytopoiesis, which may alleviate RIT. The potential mechanism of ruxolitinib was to promote MK differentiation via activating the Rac1/cdc42/JNK pathway through binding to TLR2.
Collapse
Affiliation(s)
- Shuo Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiaoqin Tang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Chengyang Ni
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yuesong Wu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Ling Zhou
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yueying Zeng
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Chunling Zhao
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Anguo Wu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qiaozhi Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Xiyan Xu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yiwei Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Rong Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Xiao Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Lile Zou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Xinwu Huang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Correspondence: (X.H.); (J.W.); Tel.: +86-13808285526 (X.H.); +86-13982416641 (J.W.)
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
- Correspondence: (X.H.); (J.W.); Tel.: +86-13808285526 (X.H.); +86-13982416641 (J.W.)
| |
Collapse
|
4
|
Wei X, Zhang B, Wei F, Ding M, Luo Z, Han X, Tan X. Gegen Qinlian pills alleviate carrageenan-induced thrombosis in mice model by regulating the HMGB1/NF-κB/NLRP3 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154083. [PMID: 35413645 PMCID: PMC9759718 DOI: 10.1016/j.phymed.2022.154083] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/19/2022] [Accepted: 03/26/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND The high incidence of thrombotic events is one of the clinical characteristics of coronavirus disease of 2019 (COVID-19), due to a hyperinflammatory response caused by the virus. Gegen Qinlian Pills (GQP) is a Traditional Chinese Medicine that is included in the Chinese Pharmacopoeia and played an important role in the clinical fight against COVID-19. Although GQP has shown the potential to treat thrombosis, there is no relevant research on its treatment of thrombosis so far. HYPOTHESIS We hypothesized that GQP may be capable inhibit inflammation-induced thrombosis. STUDY DESIGN We tested our hypothesis in a carrageenan-induced thrombosis mouse model in vivo and lipopolysaccharide (LPS)-induced human endothelial cells (HUVECs) in vitro. METHODS We used a carrageenan-induced mouse thrombus model to confirm the inhibitory effect of GQP on inflammation-induced thrombus. In vitro, studies in human umbilical vein endothelial cells (HUVECs) and in silico network pharmacology analyses were performed to reveal the underlying mechanisms of GQP and determine the main components, targets, and pathways of GQP, respectively. RESULTS Oral administration of 227.5 mg/kg, 445 mg/kg and 910 mg/kg of GQP significantly inhibited thrombi in the lung, liver, and tail and augmented tail blood flow of carrageenan-induced mice with reduced plasma tumor necrosis factor α (TNF-α) and diminished expression of high mobility group box 1 (HMGB1) in lung tissues. GQP ethanol extract (1, 2, or 5 μg/ml) also reduced the adhesion of platelets to LPS stimulated HUVECs. The TNF-α and the expression of HMGB1, nuclear factor kappa B (NF-κB), and NLR family pyrin domain containing 3 (NLRP3) in LPS stimulated HUVECs were also attenuated. Moreover, we analyzed the components of GQP and inferred the main targets, biological processes, and pathways of GQP in the treatment of inflammation-induced thrombosis through network pharmacology. CONCLUSION Overall, we demonstrated that GQP could reduce inflammation-induced thrombosis by inhibiting HMGB1/NFκB/NLRP3 signaling and provided an accurate explanation for the multi-target, multi-function mechanism of GQP in the treatment of thromboinflammation, and provides a reference for the clinical usage of GQP.
Collapse
Affiliation(s)
- Xiaohan Wei
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China
| | - Baoping Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China
| | - Feiyan Wei
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China
| | - Mengze Ding
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China
| | - Zhenye Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China
| | - Xinlong Han
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China
| | - Xiaomei Tan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China.
| |
Collapse
|
5
|
Karpov AA, Vaulina DD, Smirnov SS, Moiseeva OM, Galagudza MM. Rodent models of pulmonary embolism and chronic thromboembolic pulmonary hypertension. Heliyon 2022; 8:e09014. [PMID: 35295664 PMCID: PMC8919224 DOI: 10.1016/j.heliyon.2022.e09014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/06/2021] [Accepted: 02/21/2022] [Indexed: 11/26/2022] Open
Abstract
Pulmonary embolism (PE) is the third most prevalent cardiovascular disease. It is associated with high in-hospital mortality and the development of acute and chronic complications. New approaches aimed at improving the prognosis of patients with PE are largely dependent on reliable animal models. Mice, rats, hamsters, and rabbits, are currently most commonly used for PE modeling because of their ethical acceptability and economic feasibility. This article provides an overview of the main approaches to PE modeling, and the advantages and disadvantages of each method. Special attention is paid to experimental endpoints, including morphological, functional, and molecular endpoints. All approaches to PE modeling can be broadly divided into three main groups: 1) induction of thromboembolism, either by thrombus formation in vivo or by injection of in vitro prepared blood clots; 2) introduction of particles of non-thrombotic origin; and 3) surgical procedures. The choice of a specific model and animal species is determined based on the objectives of the study. Rodent models of chronic thromboembolic pulmonary hypertension (CTEPH), which is the most devastating complication of PE, are also described. CTEPH models are especially challenging because of insufficient knowledge about the pathogenesis and high fibrinolytic activity of rodent plasma. The CTEPH model should demonstrate a persistent increase in pulmonary artery pressure and stable reduction of the vascular bed due to recurrent embolism. Based on the analysis of available evidence, one might conclude that currently, there is no single optimal method for modeling PE and CTEPH.
Collapse
|