1
|
Paiva WS, Fonoff ET, dos Santos Silva RP, Schiavao L, Brunoni AR, de Almeida CC, Júnior CC. Preoperative Cortical Mapping for Brain Tumor Surgery Using Navigated Transcranial Stimulation: Analysis of Accuracy. Brain Sci 2024; 14:867. [PMID: 39335363 PMCID: PMC11430880 DOI: 10.3390/brainsci14090867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Transcranial magnetic stimulation (TMS) represents a distinctive technique for non-invasive brain stimulation. Recent advancements in image processing have enabled the enhancement of TMS by integrating magnetic resonance imaging (MRI) modalities with TMS via a neuronavigation system. The aim of this study is to assess the efficacy of navigated TMS for cortical mapping in comparison to surgical mapping using direct electrical stimulation (DES). This study involved 30 neurosurgical procedures for tumors located in or adjacent to the precentral gyrus. The DES points were compared with TMS responses based on the original distances of vectorial modules. There was a notable similarity in the points obtained from the two mapping methods. The distances between the geometric centers of TMS and DCS were 4.85 ± 1.89 mm. A strong correlation was identified between these vectorial points (r = 0.901, p < 0.001). The motor threshold in TMS was highest in the motor cortex adjacent to the tumor compared to the normal cortex (p < 0.001). Patients with deficits exhibited excellent accuracy in both methods. In view of this, TMS demonstrated reliable and precise application in brain mapping, which is a promising method for preoperative functional mapping in motor cortex tumor surgery.
Collapse
Affiliation(s)
- Wellingson Silva Paiva
- Neurosurgery Division, University of São Paulo, São Paulo 14040-906, Brazil; (W.S.P.); (E.T.F.); (L.S.); (A.R.B.); (C.C.d.A.); (C.C.J.)
| | - Erich Talamoni Fonoff
- Neurosurgery Division, University of São Paulo, São Paulo 14040-906, Brazil; (W.S.P.); (E.T.F.); (L.S.); (A.R.B.); (C.C.d.A.); (C.C.J.)
| | | | - Lucas Schiavao
- Neurosurgery Division, University of São Paulo, São Paulo 14040-906, Brazil; (W.S.P.); (E.T.F.); (L.S.); (A.R.B.); (C.C.d.A.); (C.C.J.)
| | - André Russowsky Brunoni
- Neurosurgery Division, University of São Paulo, São Paulo 14040-906, Brazil; (W.S.P.); (E.T.F.); (L.S.); (A.R.B.); (C.C.d.A.); (C.C.J.)
| | - César Cimonari de Almeida
- Neurosurgery Division, University of São Paulo, São Paulo 14040-906, Brazil; (W.S.P.); (E.T.F.); (L.S.); (A.R.B.); (C.C.d.A.); (C.C.J.)
| | - Carlos Carlotti Júnior
- Neurosurgery Division, University of São Paulo, São Paulo 14040-906, Brazil; (W.S.P.); (E.T.F.); (L.S.); (A.R.B.); (C.C.d.A.); (C.C.J.)
| |
Collapse
|
2
|
Beyh A, Howells H, Giampiccolo D, Cancemi D, De Santiago Requejo F, Citro S, Keeble H, Lavrador JP, Bhangoo R, Ashkan K, Dell'Acqua F, Catani M, Vergani F. Connectivity defines the distinctive anatomy and function of the hand-knob area. Brain Commun 2024; 6:fcae261. [PMID: 39239149 PMCID: PMC11375856 DOI: 10.1093/braincomms/fcae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 05/19/2024] [Accepted: 08/10/2024] [Indexed: 09/07/2024] Open
Abstract
Control of the hand muscles during fine digit movements requires a high level of sensorimotor integration, which relies on a complex network of cortical and subcortical hubs. The components of this network have been extensively studied in human and non-human primates, but discrepancies in the findings obtained from different mapping approaches are difficult to interpret. In this study, we defined the cortical and connectional components of the hand motor network in the same cohort of 20 healthy adults and 3 neurosurgical patients. We used multimodal structural magnetic resonance imaging (including T1-weighted imaging and diffusion tractography), as well as functional magnetic resonance imaging and navigated transcranial magnetic stimulation (nTMS). The motor map obtained from nTMS compared favourably with the one obtained from functional magnetic resonance imaging, both of which overlapped well within the 'hand-knob' region of the precentral gyrus and in an adjacent region of the postcentral gyrus. nTMS stimulation of the precentral and postcentral gyri led to motor-evoked potentials in the hand muscles in all participants, with more responses recorded from precentral stimulations. We also observed that precentral stimulations tended to produce motor-evoked potentials with shorter latencies and higher amplitudes than postcentral stimulations. Tractography showed that the region of maximum overlap between terminations of precentral-postcentral U-shaped association fibres and somatosensory projection tracts colocalizes with the functional motor maps. The relationships between the functional maps, and between them and the tract terminations, were replicated in the patient cohort. Three main conclusions can be drawn from our study. First, the hand-knob region is a reliable anatomical landmark for the functional localization of fine digit movements. Second, its distinctive shape is determined by the convergence of highly myelinated long projection fibres and short U-fibres. Third, the unique role of the hand-knob area is explained by its direct action on the spinal motoneurons and the access to high-order somatosensory information for the online control of fine movements. This network is more developed in the hand region compared to other body parts of the homunculus motor strip, and it may represent an important target for enhancing motor learning during early development.
Collapse
Affiliation(s)
- Ahmad Beyh
- NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Henrietta Howells
- NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Davide Giampiccolo
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Department of Neurosurgery, Institute of Neurosciences, Cleveland Clinic London, London SW1X 7HY, UK
| | - Daniele Cancemi
- NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | | | | | - Hannah Keeble
- NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | | | - Ranjeev Bhangoo
- Neurosurgical Department, King's College Hospital, London SE5 9RS, UK
| | - Keyoumars Ashkan
- Neurosurgical Department, King's College Hospital, London SE5 9RS, UK
| | - Flavio Dell'Acqua
- NatBrainLab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | | | - Francesco Vergani
- Neurosurgical Department, King's College Hospital, London SE5 9RS, UK
| |
Collapse
|
3
|
Lavrador JP, Mirallave-Pescador A, Soumpasis C, Díaz Baamonde A, Aliaga-Arias J, Baig Mirza A, Patel S, David Siado Mosquera J, Gullan R, Ashkan K, Bhangoo R, Vergani F. Transcranial Magnetic Stimulation-Based Machine Learning Prediction of Tumor Grading in Motor-Eloquent Gliomas. Neurosurgery 2024; 95:347-356. [PMID: 38511960 DOI: 10.1227/neu.0000000000002902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 01/04/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Navigated transcranial magnetic stimulation (nTMS) is a well-established preoperative mapping tool for motor-eloquent glioma surgery. Machine learning (ML) and nTMS may improve clinical outcome prediction and histological correlation. METHODS This was a retrospective cohort study of patients who underwent surgery for motor-eloquent gliomas between 2018 and 2022. Ten healthy subjects were included. Preoperative nTMS-derived variables were collected: resting motor threshold (RMT), interhemispheric RMT ratio (iRMTr)-abnormal if above 10%-and cortical excitability score-number of abnormal iRMTrs. World Health Organization (WHO) grade and molecular profile were collected to characterize each tumor. ML models were fitted to the data after statistical feature selection to predict tumor grade. RESULTS A total of 177 patients were recruited: WHO grade 2-32 patients, WHO grade 3-65 patients, and WHO grade 4-80 patients. For the upper limb, abnormal iRMTr were identified in 22.7% of WHO grade 2, 62.5% of WHO grade 3, and 75.4% of WHO grade 4 patients. For the lower limb, iRMTr was abnormal in 23.1% of WHO grade 2, 67.6% of WHO grade 3%, and 63.6% of WHO grade 4 patients. Cortical excitability score ( P = .04) was statistically significantly related with WHO grading. Using these variables as predictors, the ML model had an accuracy of 0.57 to predict WHO grade 4 lesions. In subgroup analysis of high-grade gliomas vs low-grade gliomas, the accuracy for high-grade gliomas prediction increased to 0.83. The inclusion of molecular data into the model-IDH mutation and 1p19q codeletion status-increases the accuracy of the model in predicting tumor grading (0.95 and 0.74, respectively). CONCLUSION ML algorithms based on nTMS-derived interhemispheric excitability assessment provide accurate predictions of HGGs affecting the motor pathway. Their accuracy is further increased when molecular data are fitted onto the model paving the way for a joint preoperative approach with radiogenomics.
Collapse
Affiliation(s)
- José Pedro Lavrador
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
| | - Ana Mirallave-Pescador
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
- Department of Clinical Neurophysiology, King's College Hospital Foundation Trust, London , UK
| | - Christos Soumpasis
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
| | - Alba Díaz Baamonde
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
- Department of Clinical Neurophysiology, King's College Hospital Foundation Trust, London , UK
| | - Jahard Aliaga-Arias
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
| | - Asfand Baig Mirza
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
| | - Sabina Patel
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
| | - José David Siado Mosquera
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
- Department of Clinical Neurophysiology, King's College Hospital Foundation Trust, London , UK
| | - Richard Gullan
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
| | - Ranjeev Bhangoo
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
| | - Francesco Vergani
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
| |
Collapse
|
4
|
Riaz H, Uzair M, Arshad M, Hamza A, Bukhari N, Azam F, Bashir S. Navigated Transcranial Magnetic Stimulation (nTMS) based Preoperative Planning for Brain Tumor Treatment. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:883-893. [PMID: 37340739 DOI: 10.2174/1871527322666230619103429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/22/2023]
Abstract
Transcranial Magnetic Stimulation (TMS) is a non-invasive technique for analyzing the central and peripheral nervous system. TMS could be a powerful therapeutic technique for neurological disorders. TMS has also shown potential in treating various neurophysiological complications, such as depression, anxiety, and obsessive-compulsive disorders, without pain and analgesics. Despite advancements in diagnosis and treatment, there has been an increase in the prevalence of brain cancer globally. For surgical planning, mapping brain tumors has proven challenging, particularly those localized in expressive regions. Preoperative brain tumor mapping may lower the possibility of postoperative morbidity in surrounding areas. A navigated TMS (nTMS) uses magnetic resonance imaging (MRI) to enable precise mapping during navigated brain stimulation. The resulting magnetic impulses can be precisely applied to the target spot in the cortical region by employing nTMS. This review focuses on nTMS for preoperative planning for brain cancer. This study reviews several studies on TMS and its subtypes in treating cancer and surgical planning. nTMS gives wider and improved dimensions of preoperative planning of the motor-eloquent areas in brain tumor patients. nTMS also predicts postoperative neurological deficits, which might be helpful in counseling patients. nTMS have the potential for finding possible abnormalities in the motor cortex areas.
Collapse
Affiliation(s)
- Hammad Riaz
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Pakistan
| | - Ali Hamza
- Brno University of Technology, Brno, Czech Republic
| | - Nedal Bukhari
- Oncology Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
- Department of Internal Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Faisal Azam
- Oncology Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
5
|
Sinha S, Kalyal N, Gallagher MJ, Richardson D, Kalaitzoglou D, Abougamil A, Silva M, Oviedova A, Patel S, Mirallave-Pescador A, Bleil C, Zebian B, Gullan R, Ashkan K, Vergani F, Bhangoo R, Pedro Lavrador J. Impact of Preoperative Mapping and Intraoperative Neuromonitoring in Minimally Invasive Parafascicular Surgery for Deep-Seated Lesions. World Neurosurg 2024; 181:e1019-e1037. [PMID: 37967744 DOI: 10.1016/j.wneu.2023.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Transsulcal tubular retractor-assisted minimally invasive parafascicular surgery changes the surgical strategy for deep-seated lesions by promoting a deficit-sparing approach. When integrated with preoperative brain mapping and intraoperative neuromonitoring (IONM), this approach may potentially improve patient outcomes. In this study, we assessed the impact of preoperative brain mapping and IONM in tubular retractor-assisted neuro-oncological surgery. METHODS This retrospective single-center cohort study included patients who underwent transsulcal tubular retractor-assisted minimally invasive parafascicular surgery for resection of deep-seated brain tumors from 2016 to 2022. The cohort was divided into 3 groups: group 1, no preoperative mapping or IONM (17 patients); group 2, IONM only (25 patients); group 3, both preoperative mapping and IONM (38 patients). RESULTS We analyzed 80 patients (33 males and 47 females) with a median age of 46.5 years (range: 1-81 years). There was no significant difference in mean tumor volume (26.2 cm3 [range 1.07-97.4 cm3]; P = 0.740) and mean preoperative depth of the tumor (31 mm [range 3-65 mm], P = 0.449) between the groups. A higher proportion of high-grade gliomas and metastases was present within group 3 (P = 0.003). IONM was related to fewer motor (P = 0.041) and language (P = 0.032) deficits at hospital discharge. Preoperative mapping and IONM were also related to shorter length of stay (P = 0.008). CONCLUSIONS Preoperative and intraoperative brain mapping and monitoring enhance transsulcal tubular retractor-assisted minimally invasive parafascicular surgery in neuro-oncology. Patients had a reduced length of stay and prolonged overall survival. IONM alone reduces postoperative neurological deficit.
Collapse
Affiliation(s)
- Siddharth Sinha
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, United Kingdom.
| | - Nida Kalyal
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, United Kingdom
| | - Mathew J Gallagher
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, United Kingdom
| | - Daniel Richardson
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, United Kingdom
| | - Dimitrios Kalaitzoglou
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, United Kingdom
| | - Ahmed Abougamil
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, United Kingdom
| | - Melissa Silva
- Department of Neurosurgery, Intraoperative Neurophysiology, King's College Hospital Foundation Trust, London, United Kingdom
| | - Anna Oviedova
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, United Kingdom
| | - Sabina Patel
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, United Kingdom
| | - Ana Mirallave-Pescador
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, United Kingdom; Departamento de Neurocirurgia, Hospital Garcia de Orta, Almada, Portugal
| | - Cristina Bleil
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, United Kingdom
| | - Bassel Zebian
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, United Kingdom
| | - Richard Gullan
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, United Kingdom
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, United Kingdom
| | - Francesco Vergani
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, United Kingdom
| | - Ranjeev Bhangoo
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, United Kingdom
| | - José Pedro Lavrador
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, United Kingdom
| |
Collapse
|
6
|
Sangha MS, Rajwani KM, Price SA, Wren H, Pescador AM, Gullan R, Ashkan K, Vergani F, Bhangoo R, Lavrador JP. Awake minimally invasive parafascicular approach to a language eloquent brain tumour-surgical video. J Surg Case Rep 2023; 2023:rjad519. [PMID: 37854516 PMCID: PMC10581696 DOI: 10.1093/jscr/rjad519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/30/2023] [Indexed: 10/20/2023] Open
Abstract
Deep-seated brain tumours are surgically challenging to access. When planning approaches to these lesions, it is important to take into account eloquent cortical areas, grey matter nuclei, and subcortical white matter tracts. Traditionally, access to deep-seated lesions would require brain retraction; however, this is associated with secondary brain damage, which may impair neurological function. A trans-sulcal minimally invasive parafascicular approach allows gentle splitting of brain fibres and is thought to splay rather than sever white matter tracts. This is particularly important when approaching medially located, language-eloquent tumours, which lack brain surface expression. This video describes a minimally invasive approach to a deep-seated, language-eloquent brain tumour. We utilized preoperative cortical and subcortical planning to define a safe surgical corridor. We then demonstrate using intraoperative neuro-monitoring and mapping of the motor and language functions to define the boundaries of surgical resection. We find trans-sulcal minimally invasive parafascicular approach to be a safe and effective technique when approaching language-eloquent lesions medial to the main language subcortical networks.
Collapse
Affiliation(s)
- Miljyot S Sangha
- Department of Neurosurgery, Kings College Hospital NHS Foundation, Denmark Hill, London, United Kingdom
| | - Kapil M Rajwani
- Department of Neurosurgery, Kings College Hospital NHS Foundation, Denmark Hill, London, United Kingdom
| | - Sally-Ann Price
- Department of Neurosurgery, Kings College Hospital NHS Foundation, Denmark Hill, London, United Kingdom
| | - Hilary Wren
- Department of Neurosurgery, Kings College Hospital NHS Foundation, Denmark Hill, London, United Kingdom
| | - Ana M Pescador
- Department of Neurosurgery, Kings College Hospital NHS Foundation, Denmark Hill, London, United Kingdom
| | - Richard Gullan
- Department of Neurosurgery, Kings College Hospital NHS Foundation, Denmark Hill, London, United Kingdom
| | - Keyoumars Ashkan
- Department of Neurosurgery, Kings College Hospital NHS Foundation, Denmark Hill, London, United Kingdom
| | - Francesco Vergani
- Department of Neurosurgery, Kings College Hospital NHS Foundation, Denmark Hill, London, United Kingdom
| | - Ranjeev Bhangoo
- Department of Neurosurgery, Kings College Hospital NHS Foundation, Denmark Hill, London, United Kingdom
| | - Jose P Lavrador
- Department of Neurosurgery, Kings College Hospital NHS Foundation, Denmark Hill, London, United Kingdom
| |
Collapse
|
7
|
Awan M, Pinheiro T, Soumpasis C, Mirallave-Pescador A, Gullan R, Vergani F, Bhangoo R, Ashkan K, Lavrador JP. Letter: The Impact of Extent of Ablation on Survival of Patients With Newly Diagnosed Glioblastoma Treated With Laser Interstitial Thermal Therapy: A Large Single-Institutional Cohort. Neurosurgery 2023; 93:e110-e111. [PMID: 37477435 DOI: 10.1227/neu.0000000000002621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 07/22/2023] Open
Affiliation(s)
- Mariam Awan
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
| | - Teresa Pinheiro
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
- Department of Neurosurgery, Centro Hospitalar Lisboa Central, Lisboa , Portugal
| | - Christos Soumpasis
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
| | - Ana Mirallave-Pescador
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
- Department of Neurophysiology, King's College Hospital Foundation Trust, London , UK
| | - Richard Gullan
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
| | - Francesco Vergani
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
| | - Ranjeev Bhangoo
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
| | - Jose Pedro Lavrador
- Department of Neurosurgery, King's College Hospital Foundation Trust, London , UK
| |
Collapse
|
8
|
Mofatteh M, Mashayekhi MS, Arfaie S, Adeleye AO, Jolayemi EO, Ghomsi NC, Shlobin NA, Morsy AA, Esene IN, Laeke T, Awad AK, Labuschagne JJ, Ruan R, Abebe YN, Jabang JN, Okunlola AI, Barrie U, Lekuya HM, Idi Marcel E, Kabulo KDM, Bankole NDA, Edem IJ, Ikwuegbuenyi CA, Nguembu S, Zolo Y, Bernstein M. Awake Craniotomy in Africa: A Scoping Review of Literature and Proposed Solutions to Tackle Challenges. Neurosurgery 2023; 93:274-291. [PMID: 36961213 PMCID: PMC10319364 DOI: 10.1227/neu.0000000000002453] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/10/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Awake craniotomy (AC) is a common neurosurgical procedure for the resection of lesions in eloquent brain areas, which has the advantage of avoiding general anesthesia to reduce associated complications and costs. A significant resource limitation in low- and middle-income countries constrains the usage of AC. OBJECTIVE To review the published literature on AC in African countries, identify challenges, and propose pragmatic solutions by practicing neurosurgeons in Africa. METHODS We conducted a scoping review under Preferred Reporting Items for Systematic Reviews and Meta-Analysis-Scoping Review guidelines across 3 databases (PubMed, Scopus, and Web of Science). English articles investigating AC in Africa were included. RESULTS Nineteen studies consisting of 396 patients were included. Egypt was the most represented country with 8 studies (42.1%), followed by Nigeria with 6 records (31.6%). Glioma was the most common lesion type, corresponding to 120 of 396 patients (30.3%), followed by epilepsy in 71 patients (17.9%). Awake-awake-awake was the most common protocol used in 7 studies (36.8%). Sixteen studies (84.2%) contained adult patients. The youngest reported AC patient was 11 years old, whereas the oldest one was 92. Nine studies (47.4%) reported infrastructure limitations for performing AC, including the lack of funding, intraoperative monitoring equipment, imaging, medications, and limited human resources. CONCLUSION Despite many constraints, AC is being safely performed in low-resource settings. International collaborations among centers are a move forward, but adequate resources and management are essential to make AC an accessible procedure in many more African neurosurgical centers.
Collapse
Affiliation(s)
- Mohammad Mofatteh
- School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | | | - Saman Arfaie
- School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, UK
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Amos Olufemi Adeleye
- Department of Surgery, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Nathalie C. Ghomsi
- Neurosurgery Department, Felix Houphouet Boigny Unversity Abidjan, Cote d’Ivoire
| | - Nathan A. Shlobin
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ahmed A. Morsy
- Department of Neurosurgery, Zagazig University, Zagazig, Egypt
| | - Ignatius N. Esene
- Neurosurgery Division, Faculty of Health Sciences, University of Bamenda, Bambili, Cameroon
| | - Tsegazeab Laeke
- Neurosurgery Division, Department of Surgery, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ahmed K. Awad
- Faculty of Medicine, Ain-shams University, Cairo, Egypt
| | - Jason J. Labuschagne
- Department of Neurosurgery, University of the Witwatersrand, Johannesburg, South Africa
| | - Richard Ruan
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Yared Nigusie Abebe
- Department of Neurosurgery, Haramaya University Hiwot Fana Comprehensive Specialized Hospital, Harar, Ethiopia
| | | | - Abiodun Idowu Okunlola
- Department of Surgery, Federal Teaching Hospital Ido Ekiti and Afe Babalola University, Ado Ekiti, Nigeria
| | - Umaru Barrie
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hervé Monka Lekuya
- Department of Neurosurgery, Makerere University/Mulago Hospital, Kampala, Uganda
| | - Ehanga Idi Marcel
- Department of Neurosurgery, College of Surgeons of East, Central and Southern Africa/Mulago Hospital, Kampala, Uganda
| | - Kantenga Dieu Merci Kabulo
- Department of Neurosurgery, Jason Sendwe General Provincial Hospital, Lubumbashi, Democratic Republic of the Congo
| | - Nourou Dine Adeniran Bankole
- Department of Neurosurgery, Hôpital Des Spécialités, WFNS Rabat Training Center For Young, African Neurosurgeons, Faculty of Medicine, Mohammed V University, Rabat, Morocco
| | - Idara J. Edem
- Department of Surgery, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | | | - Stephane Nguembu
- Department of Neurosurgery, Higher Institute of Health Sciences, Université des Montagnes, Bangangté, Cameroon
| | - Yvan Zolo
- Global Surgery Division, University of Cape Town, Cape Town, South Africa
| | - Mark Bernstein
- Division of Neurosurgery, Department of Surgery, University of Toronto, University Health Network, Toronto, Ontario, Canada
- Temmy Latner Center for Palliative Care, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Asman P, Pellizzer G, Tummala S, Tasnim I, Bastos D, Bhavsar S, Prabhu S, Ince NF. Long-latency gamma modulation after median nerve stimulation delineates the central sulcus and contrasts the states of consciousness. Clin Neurophysiol 2023; 145:1-10. [PMID: 36370685 DOI: 10.1016/j.clinph.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To evaluate the functional use of sub-band modulations in somatosensory evoked potentials (SSEPs) to discriminate between the primary somatosensory (S1) and motor (M1) areas and contrast the states of consciousness. METHODS During routine intraoperative cortical mapping, SSEPs were recorded with electrocorticography (ECoG) grids from the sensorimotor cortex of eight patients in the anesthetized and awake states. We conducted a time-frequency analysis on the SSEP trace to extract the spectral modulations in each state and visualize their spatial topography. RESULTS We observed late gamma modulation (60-250 Hz) in all subjects approximately 50 ms after stimulation onset, extending up to 250 ms in each state. The late gamma activity enhancement was predominant in S1 in the awake state, where it discriminated S1 from M1 at a higher accuracy (92 %) than in the anesthetized state (accuracy = 70 %). CONCLUSIONS These results showed that sensorimotor mapping does not need to rely on only SSEP phase reversal. The long latency gamma modulation can serve as a biomarker for primary sensorimotor localization and monitor the level of consciousness in neurosurgical practice. SIGNIFICANCE While the intraoperative assessment of SSEP phase reversal with ECoG is widely employed to delineate the central sulcus, the median nerve stimulation-induced spatio-spectral patterns can distinctly localize it and distinguish between conscious states.
Collapse
Affiliation(s)
- Priscella Asman
- Biomedical Engineering Department, University of Houston, Houston, TX, USA
| | - Giuseppe Pellizzer
- Research Service, Minneapolis VA Health Care System, and Departments of Neurology, and of Neuroscience, University of Minnesota, Minnesota, MN, USA
| | - Sudhakar Tummala
- Department of Neurosurgery, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Israt Tasnim
- Biomedical Engineering Department, University of Houston, Houston, TX, USA
| | - Dhiego Bastos
- Department of Neurosurgery, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Shreyas Bhavsar
- Department of Anesthesiology and Perioperative Medicine, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Sujit Prabhu
- Department of Neurosurgery, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Nuri F Ince
- Biomedical Engineering Department, University of Houston, Houston, TX, USA.
| |
Collapse
|
10
|
Rajashekar D, Lavrador JP, Ghimire P, Keeble H, Harris L, Pereira N, Patel S, Beyh A, Gullan R, Ashkan K, Bhangoo R, Vergani F. Simultaneous Motor and Visual Intraoperative Neuromonitoring in Asleep Parietal Lobe Surgery: Dual Strip Technique. J Pers Med 2022; 12:jpm12091478. [PMID: 36143263 PMCID: PMC9500827 DOI: 10.3390/jpm12091478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The role played by the non-dominant parietal lobe in motor cognition, attention and spatial awareness networks has potentiated the use of awake surgery. When this is not feasible, asleep monitoring and mapping techniques should be used to achieve an onco-functional balance. Objective: This study aims to assess the feasibility of a dual-strip method to obtain direct cortical stimulation for continuous real-time cortical monitoring and subcortical mapping of motor and visual pathways simultaneously in parietal lobe tumour surgery. Methods: Single-centre prospective study between 19 May−20 November of patients with intrinsic non-dominant parietal-lobe tumours. Two subdural strips were used to simultaneously map and monitor motor and visual pathways. Results: Fifteen patients were included. With regards to motor function, a large proportion of patients had abnormal interhemispheric resting motor threshold ratio (iRMTr) (71.4%), abnormal Cortical Excitability Score (CES) (85.7%), close distance to the corticospinal tract—Lesion-To-Tract Distance (LTD)—4.2 mm, Cavity-To-Tract Distance (CTD)—7 mm and intraoperative subcortical distance—6.4 mm. Concerning visual function, the LTD and CTD for optic radiations (OR) were 0.5 mm and 3.4 mm, respectively; the mean intensity for positive subcortical stimulation of OR was 12 mA ± 2.3 mA and 5/6 patients with deterioration of VEPs > 50% had persistent hemianopia and transgression of ORs. Twelve patients remained stable, one patient had a de-novo transitory hemiparesis, and two showed improvements in motor symptoms. A higher iRMTr for lower limbs was related with a worse motor outcome (p = 0.013) and a longer CTD to OR was directly related with a better visual outcome (p = 0.041). At 2 weeks after hospital discharge, all patients were ambulatory at home, and all proceeded to have oncological treatment. Conclusion: We propose motor and visual function boundaries for asleep surgery of intrinsic non-dominant parietal tumours. Pre-operative abnormal cortical excitability of the motor cortex, deterioration of the VEP recordings and CTD < 2 mm from the OR were related to poorer outcomes.
Collapse
Affiliation(s)
- Devika Rajashekar
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Jose Pedro Lavrador
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Prajwal Ghimire
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
- Correspondence:
| | | | - Lauren Harris
- Neurosurgery Department, Queen’s Hospital, Barking, Havering and Redbridge University Hospitals NHS Trust, London RM7 0AG, UK
| | | | - Sabina Patel
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Ahmad Beyh
- NatBrainLab, Neuroimaging Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London SE5 8AF, UK
| | - Richard Gullan
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Keyoumars Ashkan
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Ranjeev Bhangoo
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Francesco Vergani
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| |
Collapse
|
11
|
Einstein EH, Dadario NB, Khilji H, Silverstein JW, Sughrue ME, D'Amico RS. Transcranial magnetic stimulation for post-operative neurorehabilitation in neuro-oncology: a review of the literature and future directions. J Neurooncol 2022; 157:435-443. [PMID: 35338454 DOI: 10.1007/s11060-022-03987-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Transcranial magnetic stimulation (TMS) is a neuromodulation technology capable of targeted stimulation and inhibition of cortical areas. Repetitive TMS (rTMS) has demonstrated efficacy in the treatment of several neuropsychiatric disorders, and novel uses of rTMS for neurorehabilitation in patients with acute and chronic neurologic deficits are being investigated. However, studies to date have primarily focused on neurorehabilitation in stroke patients, with little data supporting its use for neurorehabilitation in brain tumor patients. METHODS We performed a review of the current available literature regarding uses of rTMS for neurorehabilitation in post-operative neuro-oncologic patients. RESULTS Data have demonstrated that rTMS is safe in the post-operative neuro-oncologic patient population, with minimal adverse effects and no documented seizures. The current evidence also demonstrates potential effectiveness in terms of neurorehabilitation of motor and language deficits. CONCLUSIONS Although data are overall limited, both safety and effectiveness have been demonstrated for the use of rTMS for neurorehabilitation in the neuro-oncologic population. More randomized controlled trials and specific comparisons of contralateral versus ipsilateral rTMS protocols should be explored. Further work may also focus on individualized, patient-specific TMS treatment protocols for optimal functional recovery.
Collapse
Affiliation(s)
- Evan H Einstein
- Department of Neurological Surgery, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra, New York, NY, USA.
| | - Nicholas B Dadario
- Robert Wood Johnson School of Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Hamza Khilji
- Department of Neurological Surgery, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra, New York, NY, USA
| | - Justin W Silverstein
- Department of Neurology, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra, New York, NY, USA
- Neuro Protective Solutions, New York, NY, USA
| | - Michael E Sughrue
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, NSW, Australia
| | - Randy S D'Amico
- Department of Neurological Surgery, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra, New York, NY, USA
| |
Collapse
|
12
|
Rahman R, Rahman S, Al-Salihi MM, Sarwar ASM, Rahman MM, Habib R, Hoq MZ. Letter: Fluorescence Guidance and Intraoperative Adjuvants to Maximize Extent of Resection. Neurosurgery 2022; 90:e137-e138. [PMID: 35238808 DOI: 10.1227/neu.0000000000001916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/19/2021] [Indexed: 01/09/2023] Open
Affiliation(s)
- Raphia Rahman
- Department of Osteopathic Medicine, Rowan School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - Sabrina Rahman
- Department of Public Health, Independent University-Bangladesh, Dhaka, Bangladesh
| | | | | | - Md Moshiur Rahman
- Department of Neurosurgery, Holy Family Red Crescent Medical College, Dhaka, Bangladesh
| | | | - Md Ziaul Hoq
- Department of Pediatric Neurosurgery, NINS, Bangladesh
| |
Collapse
|
13
|
Asman P, Prabhu S, Bastos D, Tummala S, Bhavsar S, McHugh TM, Ince NF. Unsupervised machine learning can delineate central sulcus by using the spatiotemporal characteristic of somatosensory evoked potentials. J Neural Eng 2021; 18. [PMID: 33836520 PMCID: PMC8718352 DOI: 10.1088/1741-2552/abf68a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/09/2021] [Indexed: 11/16/2022]
Abstract
Objective. Somatosensory evoked potentials (SSEPs) recorded with electrocorticography (ECoG) for central sulcus (CS) identification is a widely accepted procedure in routine intraoperative neurophysiological monitoring. Clinical practices test the short-latency SSEPs for the phase reversal over strip electrodes. However, assessments based on waveform morphology are susceptible to variations in interpretations due to the hand area’s localized nature and usually require multiple electrode placements or electrode relocation. We investigated the feasibility of unsupervised delineation of the CS by using the spatiotemporal patterns of the SSEP captured with the ECoG grid. Approach. Intraoperatively, SSEPs were recorded from eight patients using ECoG grids placed over the sensorimotor cortex. Neurosurgeons blinded to the electrophysiology identified the sensory and motor gyri using neuronavigation based on sulcal anatomy. We quantified the most discriminatory time points in SSEPs temporal profile between the primary motor (M1) and somatosensory (S1) cortex using the Fisher discrimination criterion. We visualized the amplitude gradient of the SSEP over a 2D heat map to provide visual feedback for the delineation of the CS based on electrophysiology. Subsequently, we employed spectral clustering using the entire the SSEP waveform without selecting any time points and grouped ECoG channels in an unsupervised fashion. Main results. Consistently in all patients, two different time points provided almost equal discrimination between anterior and posterior channels, which vividly outlined the CS when we viewed the SSEP amplitude distribution as a spatial 2D heat map. The first discriminative time point was in proximity to the conventionally favored ~20 ms peak (N20), and the second time point was slightly later than the markedly high ~30 ms peak (P30). Still, the location of these time points varied noticeably across subjects. Unsupervised clustering approach separated the anterior and posterior channels with an accuracy of 96.3% based on the time derivative of the SSEP trace without the need for a subject-specific time point selection. In contrast, the raw trace resulted in an accuracy of 88.0%. Significance. We show that the unsupervised clustering of the SSEP trace assessed with subdural electrode grids can delineate the CS automatically with high precision, and the constructed heat maps can localize the motor cortex. We anticipate that the spatiotemporal patterns of SSEP fused with machine learning can serve as a useful tool to assist in surgical planning.
Collapse
Affiliation(s)
- Priscella Asman
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States of America
| | - Sujit Prabhu
- Department of Neurosurgery, UT MD Anderson Cancer Center, Houston, TX, United States of America
| | - Dhiego Bastos
- Department of Neurosurgery, UT MD Anderson Cancer Center, Houston, TX, United States of America
| | - Sudhakar Tummala
- Department of Neurosurgery, UT MD Anderson Cancer Center, Houston, TX, United States of America
| | - Shreyas Bhavsar
- Department of Anesthesiology, UT MD Anderson Cancer Center, Houston, TX, United States of America
| | - Thomas Michael McHugh
- Department of Anesthesiology, UT MD Anderson Cancer Center, Houston, TX, United States of America
| | - Nuri Firat Ince
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States of America
| |
Collapse
|
14
|
Intraoperative mapping of pre-central motor cortex and subcortex: a proposal for supplemental cortical and novel subcortical maps to Penfield's motor homunculus. Brain Struct Funct 2021; 226:1601-1611. [PMID: 33871691 PMCID: PMC8096772 DOI: 10.1007/s00429-021-02274-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Penfield’s motor homunculus describes a caricaturised yet useful representation of the map of various body parts on the pre-central cortex. We propose a supplemental map of the clinically represented areas of human body in pre-central cortex and a novel subcortical corticospinal tract map. We believe this knowledge is essential for safe surgery in patients with eloquent brain lesions. A single-institution retrospective cohort study of patients who underwent craniotomy for motor eloquent lesions with intraoperative motor neuromonitoring (cortical and subcortical) between 2015 and 2020 was performed. All positive cortical and subcortical stimulation points were taken into account and cartographic maps were produced to demonstrate cortical and subcortical areas of motor representation and their configuration. A literature review in PubMed was performed. One hundred and eighty consecutive patients (58.4% male, 41.6% female) were included in the study with 81.6% asleep and 18.4% awake craniotomies for motor eloquent lesions (gliomas 80.7%, metastases 13.8%) with intraoperative cortical and subcortical motor mapping. Based on the data, we propose a supplemental clinical cortical and a novel subcortical motor map to the original Penfield’s motor homunculus, including demonstration of localisation of intercostal muscles both in the cortex and subcortex which has not been previously described. The supplementary clinical cortical and novel subcortical motor maps of the homunculus presented here have been derived from a large cohort of patients undergoing direct cortical and subcortical brain mapping. The information will have direct relevance for improving the safety and outcome of patients undergoing resection of motor eloquent brain lesions.
Collapse
|
15
|
Hazem SR, Awan M, Lavrador JP, Patel S, Wren HM, Lucena O, Semedo C, Irzan H, Melbourne A, Ourselin S, Shapey J, Kailaya-Vasan A, Gullan R, Ashkan K, Bhangoo R, Vergani F. Middle Frontal Gyrus and Area 55b: Perioperative Mapping and Language Outcomes. Front Neurol 2021; 12:646075. [PMID: 33776898 PMCID: PMC7988187 DOI: 10.3389/fneur.2021.646075] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/29/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The simplistic approaches to language circuits are continuously challenged by new findings in brain structure and connectivity. The posterior middle frontal gyrus and area 55b (pFMG/area55b), in particular, has gained a renewed interest in the overall language network. Methods: This is a retrospective single-center cohort study of patients who have undergone awake craniotomy for tumor resection. Navigated transcranial magnetic simulation (nTMS), tractography, and intraoperative findings were correlated with language outcomes. Results: Sixty-five awake craniotomies were performed between 2012 and 2020, and 24 patients were included. nTMS elicited 42 positive responses, 76.2% in the inferior frontal gyrus (IFG), and hesitation was the most common error (71.4%). In the pMFG/area55b, there were seven positive errors (five hesitations and two phonemic errors). This area had the highest positive predictive value (43.0%), negative predictive value (98.3%), sensitivity (50.0%), and specificity (99.0%) among all the frontal gyri. Intraoperatively, there were 33 cortical positive responses—two (6.0%) in the superior frontal gyrus (SFG), 15 (45.5%) in the MFG, and 16 (48.5%) in the IFG. A total of 29 subcortical positive responses were elicited−21 in the deep IFG–MFG gyri and eight in the deep SFG–MFG gyri. The most common errors identified were speech arrest at the cortical level (20 responses−13 in the IFG and seven in the MFG) and anomia at the subcortical level (nine patients—eight in the deep IFG–MFG and one in the deep MFG–SFG). Moreover, 83.3% of patients had a transitory deterioration of language after surgery, mainly in the expressive component (p = 0.03). An increased number of gyri with intraoperative positive responses were related with better preoperative (p = 0.037) and worse postoperative (p = 0.029) outcomes. The involvement of the SFG–MFG subcortical area was related with worse language outcomes (p = 0.037). Positive nTMS mapping in the IFG was associated with a better preoperative language outcome (p = 0.017), relating to a better performance in the expressive component, while positive mapping in the MFG was related to a worse preoperative receptive component of language (p = 0.031). Conclusion: This case series suggests that the posterior middle frontal gyrus, including area 55b, is an important integration cortical hub for both dorsal and ventral streams of language.
Collapse
Affiliation(s)
- Sally Rosario Hazem
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Mariam Awan
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Jose Pedro Lavrador
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Sabina Patel
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Hilary Margaret Wren
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Oeslle Lucena
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Carla Semedo
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Hassna Irzan
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Andrew Melbourne
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Jonathan Shapey
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Ahilan Kailaya-Vasan
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Richard Gullan
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Ranjeev Bhangoo
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Francesco Vergani
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| |
Collapse
|