1
|
Iwai T, Ikeguchi R, Aoyama T, Noguchi T, Yoshimoto K, Sakamoto D, Fujita K, Miyazaki Y, Akieda S, Nagamura-Inoue T, Nagamura F, Nakayama K, Matsuda S. Nerve regeneration using a Bio 3D conduit derived from umbilical cord-Derived mesenchymal stem cells in a rat sciatic nerve defect model. PLoS One 2024; 19:e0310711. [PMID: 39715170 DOI: 10.1371/journal.pone.0310711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 09/05/2024] [Indexed: 12/25/2024] Open
Abstract
Human umbilical cord-derived mesenchymal stromal cells (UC-MSCs), which can be prepared in advance and are presumed to be advantageous for nerve regeneration, have potential as a cell source for Bio 3D conduits. The purpose of this study was to evaluate the nerve regeneration ability of Bio 3D conduits made from UC-MSCs using a rat sciatic nerve defect model. METHODS A Bio 3D conduit was fabricated using a Bio 3D printer by placing UC-MSC spheroids into thin needles according to predesigned 3D data. The conduit was transplanted to bridge the 5-mm gaps of Lewis rat sciatic nerve, and nerve regeneration was evaluated at 8 weeks (Bio 3D group). Transplantation of autologous nerve segments (autograft) and silicone tubes represented the positive and negative control groups, respectively. In a second experiment, immunological reactions were evaluated in Bio 3D, autograft, and allograft groups by histochemical staining of transplanted segments in Brown Norway rats. RESULTS The mean angle of attack value in the kinematic analysis was significantly better in the Bio 3D group (‒20.1 ± 0.5°) than in the silicone group (‒33.7 ± 1.5°) 8 weeks after surgery. The average diameters of myelinated axons were significantly larger in the Bio 3D group (3.61 ± 0.15 μm) than in the silicone group (3.07 ± 0.12 μm), and the number of myelinated axons was significantly higher in the Bio 3D group (11,201 ± 980) than in the silicone group (8117 ± 646). Histological findings (hematoxylin and eosin [HE] staining and anti-CD3 fluorescent immunostaining) showed that rejection was suppressed in the Bio 3D group compared to the allograft group. Based on macroscopic findings and histological findings (anti-human mitochondrial fluorescent immunostaining), UC-MSCs in the Bio 3D conduit disappeared gradually from week 1 to week 8. CONCLUSIONS The Bio 3D conduit prepared from UC-MSCs was superior to the silicone tube and achieved comparable nerve regeneration to the autologous (autograft) group. Rejection was suppressed in the Bio 3D group compared to the allograft group. Although this study used a xenograft model, we speculate that rejection was low due to the characteristics of UC-MSCs. UC-MSCs are a useful cell source for Bio 3D conduits.
Collapse
Affiliation(s)
- Terunobu Iwai
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Ryosuke Ikeguchi
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
- Department of Rehabilitation Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Aoyama
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Noguchi
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Koichi Yoshimoto
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Daichi Sakamoto
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Kazuaki Fujita
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | | | | | - Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, The Institute of Medical Science, IMSUT CORD, Research Hospital, The University of Tokyo, Tokyo, Japan
| | - Fumitaka Nagamura
- Division of Advanced Medicine Promotion, The Advanced Clinical Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koichi Nakayama
- Department of Regenerative Medicine and Biomedical Engineering, Faculty of Medicine, Saga University, Saga, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Ikeguchi R, Aoyama T, Noguchi T, Ushimaru M, Amino Y, Nakakura A, Matsuyama N, Yoshida S, Nagai-Tanima M, Matsui K, Arai Y, Torii Y, Miyazaki Y, Akieda S, Matsuda S. Peripheral nerve regeneration following scaffold-free conduit transplant of autologous dermal fibroblasts: a non-randomised safety and feasibility trial. COMMUNICATIONS MEDICINE 2024; 4:12. [PMID: 38278956 PMCID: PMC10817910 DOI: 10.1038/s43856-024-00438-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND The use of Bio 3D nerve conduits is a promising approach for peripheral nerve reconstruction. This study aimed to assess their safety in three patients with peripheral nerve defects in their hands. METHODS We describe a single institution, non-blinded, non-randomised control trial conducted at Kyoto University Hospital. Eligibility criteria included severed peripheral nerve injuries or a defect in the region distal to the wrist joint not caused by a congenital anomaly; a defect with a length of ≤20 mm in a nerve with a diameter ≤2 mm; failed results of sensory functional tests; ability to register in the protocol within 6 months from the day of injury; refusal of artificial nerve or autologous nerve transplantation; age 20-60 years; and willingness to participate and provide informed written consent. Six weeks before transplantation, skin was harvested, dermal fibroblasts were isolated and expanded, and Bio 3D nerve conduits were created using a Bio 3D printer. Bio 3D nerve conduits were transplanted into the patients' nerve defects. The safety of Bio 3D nerve conduits in patients with a peripheral nerve injury in the distal part of the wrist joint were assessed over a 48-week period after transplantation. RESULTS No adverse events related to the use of Bio 3D nerve conduits were observed in any patient, and all three patients completed the trial. CONCLUSIONS Bio 3D nerve conduits were successfully used for clinical nerve reconstruction without adverse events and are a possible treatment option for peripheral nerve injuries.
Collapse
Affiliation(s)
- Ryosuke Ikeguchi
- Department of Rehabilitation Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Tomoki Aoyama
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Noguchi
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mika Ushimaru
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Yoko Amino
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Akiyoshi Nakakura
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Noriko Matsuyama
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Shiori Yoshida
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Momoko Nagai-Tanima
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiko Matsui
- Center for Research and Application of Cellular Therapy, Kyoto University Hospital, Kyoto, Japan
| | - Yasuyuki Arai
- Center for Research and Application of Cellular Therapy, Kyoto University Hospital, Kyoto, Japan
| | | | | | | | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
3
|
Otsuka K, Takata T, Sasaki H, Shikano M. Horizon Scanning in Tissue Engineering Using Citation Network Analysis. Ther Innov Regul Sci 2023; 57:810-822. [PMID: 37204641 PMCID: PMC10276778 DOI: 10.1007/s43441-023-00529-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/28/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Establishing a horizon scanning method is critical for identifying technologies that require new guidelines or regulations. We studied the application of bibliographic citation network analysis to horizon scanning. OBJECTIVE The possibility of applying the proposed method to interdisciplinary fields was investigated with the emphasis on tissue engineering and its example, three-dimensional bio-printing. METHODOLOGY AND RESULTS In all, 233,968 articles on tissue engineering, regenerative medicine, biofabrication, and additive manufacturing published between January 1, 1900 and November 3, 2021 were obtained from the Web of Science Core Collection. The citation network of the articles was analyzed for confirmation that the evolution of 3D bio-printing is reflected by tracking the key articles in the field. However, the results revealed that the major articles on the clinical application of 3D bio-printed products are located in clusters other than that of 3D bio-printers. We investigated the research trends in this field by analyzing the articles published between 2019 and 2021 and detected various basic technologies constituting tissue engineering, including microfluidics and scaffolds such as electrospinning and conductive polymers. The results suggested that the research trend of technologies required for product development and future clinical applications of the product are sometimes detected independently by bibliographic citation network analysis, particularly for interdisciplinary fields. CONCLUSION This method can be applied to the horizon scanning of an interdisciplinary field. However, identifying basic technologies of the targeted field and following the progress of research and the integration process of each component of technology are critical.
Collapse
Affiliation(s)
- Kouhei Otsuka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Takuya Takata
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Hajime Sasaki
- Institute for Future Initiatives, The University of Tokyo, Tokyo, Japan
| | - Mayumi Shikano
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan.
| |
Collapse
|
4
|
Liu H, Gong Y, Zhang K, Ke S, Wang Y, Wang J, Wang H. Recent Advances in Decellularized Matrix-Derived Materials for Bioink and 3D Bioprinting. Gels 2023; 9:gels9030195. [PMID: 36975644 PMCID: PMC10048399 DOI: 10.3390/gels9030195] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
As an emerging 3D printing technology, 3D bioprinting has shown great potential in tissue engineering and regenerative medicine. Decellularized extracellular matrices (dECM) have recently made significant research strides and have been used to create unique tissue-specific bioink that can mimic biomimetic microenvironments. Combining dECMs with 3D bioprinting may provide a new strategy to prepare biomimetic hydrogels for bioinks and hold the potential to construct tissue analogs in vitro, similar to native tissues. Currently, the dECM has been proven to be one of the fastest growing bioactive printing materials and plays an essential role in cell-based 3D bioprinting. This review introduces the methods of preparing and identifying dECMs and the characteristic requirements of bioink for use in 3D bioprinting. The most recent advances in dECM-derived bioactive printing materials are then thoroughly reviewed by examining their application in the bioprinting of different tissues, such as bone, cartilage, muscle, the heart, the nervous system, and other tissues. Finally, the potential of bioactive printing materials generated from dECM is discussed.
Collapse
Affiliation(s)
- Huaying Liu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100091, China
| | - Yuxuan Gong
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100091, China
| | - Kaihui Zhang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100091, China
- College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shen Ke
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100091, China
| | - Yue Wang
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: (J.W.); (H.W.)
| | - Haibin Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100091, China
- Correspondence: (J.W.); (H.W.)
| |
Collapse
|
5
|
Nerve regeneration using the Bio 3D nerve conduit fabricated with spheroids. J Artif Organs 2022; 25:289-297. [PMID: 35970971 DOI: 10.1007/s10047-022-01358-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
Autologous nerve grafting is the gold standard method for peripheral nerve injury with defects. Artificial nerve conduits have been developed to prevent morbidity at the harvest site. However, the artificial conduit regeneration capacity is not sufficient. A Bio 3D printer is technology that creates three-dimensional tissue using only cells. Using this technology, a three-dimensional nerve conduit (Bio 3D nerve conduit) was created from several cell spheroids. We reported the first application of the Bio 3D nerve conduit for peripheral nerve injury. A Bio 3D nerve conduit that was created from several cells promotes peripheral nerve regeneration. The Bio 3D nerve conduit may be useful clinically to treat peripheral nerve defects.
Collapse
|
6
|
Li Y, Cheng Z, Yu F, Zhang Q, Yu S, Ding F, He Q. Activin A Secreted From Peripheral Nerve Fibroblasts Promotes Proliferation and Migration of Schwann Cells. Front Mol Neurosci 2022; 15:859349. [PMID: 35875658 PMCID: PMC9301483 DOI: 10.3389/fnmol.2022.859349] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
The peripheral nervous system has remarkable regenerative capabilities. Schwann cells and fibroblasts are known to play crucial roles in these processes. In this study, we delineated the differential effects of peripheral nerve fibroblasts and cardiac fibroblasts on Schwann cells. We found that peripheral nerve fibroblasts significantly promoted Schwann cell proliferation and migration compared with cardiac fibroblasts. The cytokine array results identified 32 of 67 proteins that were considered differentially expressed in peripheral nerve fibroblasts versus cardiac fibroblasts. Among them, 25 were significantly upregulated in peripheral nerve fibroblasts compared with cardiac fibroblasts. Activin A, the protein with the greatest differential expression, clearly co-localized with fibroblasts in the in vivo sciatic never injury rat model. In vitro experiments proved that activin A secreted from nerve fibroblasts is the key factor responsible for boosting proliferation and migration of Schwann cells through ALK4, ALK5, and ALK7. Overall, these findings suggest that peripheral nerve fibroblasts and cardiac fibroblasts exhibit different patterns of cytokine secretion and activin A secreted from peripheral nerve fibroblasts can promote the proliferation and migration of Schwann cells.
Collapse
Affiliation(s)
- Yan Li
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhenghang Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fanhui Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shu Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- *Correspondence: Fei Ding,
| | - Qianru He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Qianru He,
| |
Collapse
|
7
|
Ando M, Ikeguchi R, Aoyama T, Tanaka M, Noguchi T, Miyazaki Y, Akieda S, Nakayama K, Matsuda S. Long-Term Outcome of Sciatic Nerve Regeneration Using Bio3D Conduit Fabricated from Human Fibroblasts in a Rat Sciatic Nerve Model. Cell Transplant 2021; 30:9636897211021357. [PMID: 34105391 PMCID: PMC8193652 DOI: 10.1177/09636897211021357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
Previously, we developed a Bio3D conduit fabricated from human fibroblasts and reported a significantly better outcome compared with artificial nerve conduit in the treatment of rat sciatic nerve defect. The purpose of this study is to investigate the long-term safety and nerve regeneration of Bio3D conduit compared with treatments using artificial nerve conduit and autologous nerve transplantation.We used 15 immunodeficient rats and randomly divided them into three groups treated with Bio3D (n = 5) conduit, silicon tube (n = 5), and autologous nerve transplantation (n = 5). We developed Bio3D conduits composed of human fibroblasts and bridged the 5 mm nerve gap created in the rat sciatic nerve. The same procedures were performed to bridge the 5 mm gap with a silicon tube. In the autologous nerve group, we removed the 5 mm sciatic nerve segment and transplanted it. We evaluated the nerve regeneration 24 weeks after surgery.Toe dragging was significantly better in the Bio3D group (0.20 ± 0.28) than in the silicon group (0.6 ± 0.24). The wet muscle weight ratios of the tibial anterior muscle of the Bio3D group (79.85% ± 5.47%) and the autologous nerve group (81.74% ± 2.83%) were significantly higher than that of the silicon group (66.99% ± 3.51%). The number of myelinated axons and mean myelinated axon diameter was significantly higher in the Bio3D group (14708 ± 302 and 5.52 ± 0.44 μm) and the autologous nerve group (14927 ± 5089 and 6.04 ± 0.85 μm) than the silicon group (7429 ± 1465 and 4.36 ± 0.21 μm). No tumors were observed in any of the rats in the Bio3D group at 24 weeks after surgery.The Bio3D group showed significantly better nerve regeneration and there was no significant difference between the Bio3D group and the nerve autograft group in all endpoints.
Collapse
Affiliation(s)
| | - Ryosuke Ikeguchi
- Ryosuke Ikeguchi, Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|