1
|
Jiang N, Chen Y, Li T, Sun Y, Su Y, Wang Y, Shen Y, Cao J. Proteomic analysis of mouse liver lesions at all three stages of Echinococcus granulosus infection. PLoS Negl Trop Dis 2024; 18:e0012659. [PMID: 39625960 PMCID: PMC11614251 DOI: 10.1371/journal.pntd.0012659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/25/2024] [Indexed: 12/06/2024] Open
Abstract
Echinococcus granulosus, a zoonotic parasite, can severely damage host health or even lead to host death. In humans, early diagnosis of E. granulosus infection is difficult because the initial stages of the infection tend to be asymptomatic, this delays treatment and worsens prognosis in most patients. Herein, we present a comprehensive, temporal proteomic atlas of the liver at three stages of E. granulosus infection and analyze the changes in the proteome of host focal lesions; this atlas may provide an overview of the effects of E. granulosus in the host, as well as the interactions between them. We identified 3,197 proteins from mice model at 1, 3, and 6 months after E. granulosus infection; of these proteins, 760 were differentially expressed (520 upregulated; 240 downregulated). Moreover, 228 differentially expressed proteins were screened through cluster analysis and classified into four clusters according to their changing trends. Subsequently, candidate molecules related to cyst invasion, growth, candidate pathways and proteins related to angiogenesis were noted to demonstrate important value in mouse liver. Next, we used western blotting to verify the presence of the aforementioned proteins in mouse liver. In the later stages, E. granulosus infection was noted to result in significant enrichment of crucial proteins facilitating protoscoleces growth and development and inhibition of amino acid and lipid metabolic enzyme expression in mouse liver; it was also noted to transform host metabolism by weakening oxidative phosphorylation and enhancing glycolysis. In conclusion, we explored the molecular mechanisms underlying the parasitic processes of E. granulosus through proteomic analysis. Our results provide evidence that may enable the exploration of core regulatory targets for early and effective diagnosis and immunotherapy of E. granulosus infection, as well as parasite-host interactions involved in cystic echinococcosis development.
Collapse
Affiliation(s)
- Nan Jiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, Shanghai, China
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China
- The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, China
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Teng Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, Shanghai, China
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Yeting Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, Shanghai, China
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Yaxin Su
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, Shanghai, China
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Ying Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, Shanghai, China
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Yujuan Shen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, Shanghai, China
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Jianping Cao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People’s Republic of China, Shanghai, China
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China
- The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Chen L, Yang Y, Wang Y, Qiu L, Xia H, Wang A, Liu H, Shi H, Chen K. Proteomic response of the rat liver in differential swimming modes. Clin Exp Pharmacol Physiol 2018; 45:581-590. [DOI: 10.1111/1440-1681.12905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 11/09/2017] [Accepted: 11/12/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Liang Chen
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu Province China
| | - Yanhua Yang
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu Province China
| | - Yiting Wang
- College of Athletic Sports; Yangzhou University; Yangzhou Jiangsu Province China
| | - Lipeng Qiu
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu Province China
| | - Hengchuan Xia
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu Province China
| | - Aiai Wang
- College of Athletic Sports; Yangzhou University; Yangzhou Jiangsu Province China
| | - Hailong Liu
- College of Life Sciences; Nanjing Normal University; Nanjing Jiangsu Province China
| | - Hongfei Shi
- Second Clinical College of Medicine; Nanjing University of Chinese Medicine; Nanjing Jiangsu Province China
| | - Keping Chen
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu Province China
| |
Collapse
|
3
|
Calabro SR, Maczurek AE, Morgan AJ, Tu T, Wen VW, Yee C, Mridha A, Lee M, d'Avigdor W, Locarnini SA, McCaughan GW, Warner FJ, McLennan SV, Shackel NA. Hepatocyte produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis. PLoS One 2014; 9:e90571. [PMID: 25076423 PMCID: PMC4116334 DOI: 10.1371/journal.pone.0090571] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/02/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The classical paradigm of liver injury asserts that hepatic stellate cells (HSC) produce, remodel and turnover the abnormal extracellular matrix (ECM) of fibrosis via matrix metalloproteinases (MMPs). In extrahepatic tissues MMP production is regulated by a number of mechanisms including expression of the glycoprotein CD147. Previously, we have shown that CD147 is expressed on hepatocytes but not within the fibrotic septa in cirrhosis [1]. Therefore, we investigated if hepatocytes produce MMPs, regulated by CD147, which are capable of remodelling fibrotic ECM independent of the HSC. METHODS Non-diseased, fibrotic and cirrhotic livers were examined for MMP activity and markers of fibrosis in humans and mice. CD147 expression and MMP activity were co-localised by in-situ zymography. The role of CD147 was studied in-vitro with siRNA to CD147 in hepatocytes and in-vivo in mice with CCl4 induced liver injury using ãCD147 antibody intervention. RESULTS In liver fibrosis in both human and mouse tissue MMP expression and activity (MMP-2, -9, -13 and -14) increased with progressive injury and localised to hepatocytes. Additionally, as expected, MMPs were abundantly expressed by activated HSC. Further, with progressive fibrosis there was expression of CD147, which localised to hepatocytes but not to HSC. Functionally significant in-vitro regulation of hepatocyte MMP production by CD147 was demonstrated using siRNA to CD147 that decreased hepatocyte MMP-2 and -9 expression/activity. Further, in-vivo α-CD147 antibody intervention decreased liver MMP-2, -9, -13, -14, TGF-β and α-SMA expression in CCl4 treated mice compared to controls. CONCLUSION We have shown that hepatocytes produce active MMPs and that the glycoprotein CD147 regulates hepatocyte MMP expression. Targeting CD147 regulates hepatocyte MMP production both in-vitro and in-vivo, with the net result being reduced fibrotic matrix turnover in-vivo. Therefore, CD147 regulation of hepatocyte MMP is a novel pathway that could be targeted by future anti-fibrogenic agents.
Collapse
Affiliation(s)
- Sarah R. Calabro
- Liver Cell Biology, Centenary Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Annette E. Maczurek
- Liver Cell Biology, Centenary Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Alison J. Morgan
- Liver Cell Biology, Centenary Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Thomas Tu
- Liver Cell Biology, Centenary Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Victoria W. Wen
- Liver Cell Biology, Centenary Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Christine Yee
- Liver Cell Biology, Centenary Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Auvro Mridha
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Maggie Lee
- Liver Cell Biology, Centenary Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - William d'Avigdor
- Liver Cell Biology, Centenary Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | | | - Geoffrey W. McCaughan
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, Australia
- Liver Injury and Cancer, Centenary Institute, Sydney, NSW, Australia
| | - Fiona J. Warner
- Liver Cell Biology, Centenary Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Susan V. McLennan
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, Australia
| | - Nicholas A. Shackel
- Liver Cell Biology, Centenary Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, Australia
| |
Collapse
|
4
|
Proteomic analysis of the effect of fuzheng huayu recipe on fibrotic liver in rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:972863. [PMID: 23431353 PMCID: PMC3569931 DOI: 10.1155/2013/972863] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/04/2012] [Indexed: 01/07/2023]
Abstract
Hepatic fibrosis is a common pathological process of chronic liver diseases and would lead to cirrhosis, and Fuzheng Huayu (FZHY) is an effective Chinese herbal product against liver fibrosis. This study observes FZHY influence on proteome of fibrotic liver with differential proteomic approach and aims to understand FZHY multiple action mechanisms on liver fibrosis.
The liver fibrosis models were induced with intraperitoneal injection of dimethylnitrosamine for 4 weeks in rats and divided into model control (model) and FZHY-treated (FZHY) groups, while normal rats were used as normal control (normal). After model establishment, rats in FZHY groups were administered 4 g/kg wt of FZHY for 4 weeks, and normal and model groups were given the same volume of saline. The liver proteins in the above 3 groups were separated by two-dimensional gel electrophoresis (2-DE), the differentially expressed spots were analyzed and compared between normal and model or model and FZHY groups, and then the proteins were identified with mass spectrum analysis and validated partially with western blot and real-time PCR. 1000~1200 spots were displayed on each 2D gel, and a total of 61 protein spots were found with significant intensity difference between normal control or FZHY and model control. 23 most obviously differential spots were excised, and in-gel digestion and 21 peptide mass fingerprints (PMF) were obtained with MALDI-TOF MS analysis, and 14 proteins were identified through protein database searching. Among 14 differentially expressed proteins, 8 proteins in normal and FZHY groups had the same tendency of differential expression compared with the ones in model group. And one of them, vimentin, was validated by western blot and real-time PCR analyses. Our study reveals 12 proteins responsible for fibrogenesis induced by DMN in rats, and among them, 8 proteins in fibrotic liver were regulated by FZHY, including aldehyde dehydrogenase, vimentin isoform (CRA_b), gamma-actin, vimentin, fructose-bisphosphate aldolase B, aldo-keto reductase, S-adenosylhomocysteine hydrolase isoform, and HSP90. It indicates that the action mechanism of FZHY antiliver fibrosis may be associated with modulation of proteins associated with metabolism and stress response, as well as myofibroblast activation. The study provides new insights and data for exploring the liver fibrogenesis pathophysiology and FZHY action mechanism against liver fibrosis.
Collapse
|
5
|
Li B, Reed JC, Kim HR, Chae HJ. Proteomic profiling of differentially expressed proteins from Bax inhibitor-1 knockout and wild type mice. Mol Cells 2012; 34:15-23. [PMID: 22736268 PMCID: PMC3887783 DOI: 10.1007/s10059-012-0001-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 04/04/2012] [Accepted: 05/12/2012] [Indexed: 02/02/2023] Open
Abstract
Bax inhibitor-1 (BI-1) is an anti-apoptotic protein located in the endoplasmic reticulum (ER). The role of BI-1 has been studied in different physiopathological models including ischemia, diabetes, liver regeneration and cancer. However, fundamental knowledge about the effects of BI-1 deletion on the proteome is lacking. To further explore this protein, we compared the levels of different proteins in bi-1 (-/-) and bi-1 (+/+) mouse tissues by two-dimensional electrophoresis (2-DE) and mass spectrometry (MS). In several bi-1 (-/-) mice, glucose-regulated protein 75 (GRP75/mortalin/ PBP74/mthsp70), peroxiredoxin6 (Prx6) and fumarylacetoacetate hydrolase (FAH) showed a pI shift that could be attributed to post-translational modifications. Selenium-binding protein 2 (SBP2) and ferritin light chain 1 levels were significantly increased. Phosphatidylethanolamine-binding protein-1 (PEBP-1) was dramatically decreased in bi-1 (-/-) mice, which was confirmed by Western blotting. The phosphorylation of GRP75, Prx6 and FAH were compared between bi-1 (+/+) and bi-1 (-/-) mice using liver tissue lysates. Of these three proteins, only one exhibited modified phosphorylation; Tyr phosphorylation of Prx6 was increased in bi-1 (-/-) mice. Our protein profiling results provide fundamental knowledge about the physiopathological function of BI-1.
Collapse
Affiliation(s)
- Bo Li
- Department of Pharmacology and Cardiovascular Research Center, Chonbuk National University, Jeonju 561-182,
Korea
| | - John C. Reed
- Burnham Institute for Medical Research, California 92037,
USA
| | - Hyung-Ryong Kim
- Department of Dental Pharmacology, School of Dentistry, Wonkwang University, Iksan 570-749,
Korea
| | - Han-Jung Chae
- Department of Pharmacology and Cardiovascular Research Center, Chonbuk National University, Jeonju 561-182,
Korea
- Research Center for Pulmonary Disorders, Chonbuk National University Hospital, Jeonju 561-182,
Korea
| |
Collapse
|
6
|
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is a common worldwide clinical and major public health problem affecting both adults and children in developed nations. Increased hepatic iron stores are observed in about one-third of adult NAFLD patients. Iron deposition may occur in parenchymal and/or non-parenchymal cells of the reticuloendothelial system (RES). Similar patterns of iron deposition have been associated with increased severity of other chronic liver diseases including HCV infection and dysmetabolic iron overload, suggesting there may be a common mechanism for hepatic iron deposition in these diseases. In NAFLD, iron may potentiate the onset and progression of disease by increasing oxidative stress and altering insulin signaling and lipid metabolism. The impact of iron in these processes may depend upon the sub-cellular location of iron deposition in hepatocytes or RES cells. Iron depletion therapy has shown efficacy at reducing serum aminotransferase levels and improving insulin sensitivity in subjects with NAFLD.
Collapse
|
7
|
Wang Y, Yang B, Wu C, Zheng Z, Yuan Y, Hu Z, Ma H, Li S, Liao M, Wang Q. Plasma and liver proteomic analysis of 3Z-3-[(1H-pyrrol-2-yl)-methylidene]-1-(1-piperidinylmethyl)-1,3-2H-indol-2-one-induced hepatotoxicity in Wistar rats. Proteomics 2010; 10:2927-41. [PMID: 20544730 DOI: 10.1002/pmic.200900699] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
3Z-3-[(1H-pyrrol-2-yl)-methylidene]-1-(1-piperidinylmethyl)-1,3-2H-indol-2-one (Z24), a synthetic anti-angiogenic compound, inhibits the growth and metastasis of certain tumors. Previous works have shown that Z24 induces hepatotoxicity in rodents. We examined the hepatotoxic mechanism of Z24 at the protein level and looked for potential biomarkers. We used 2-DE and MALDI-TOF/TOF MS to analyze alternatively expressed proteins in rat liver and plasma after Z24 administration. We also examined apoptosis in rat liver and measured levels of intramitochondrial ROS and NAD(P)H redox in liver cells. We found that 22 nonredundant proteins in the liver and 11 in the plasma were differentially expressed. These proteins were involved in several important metabolic pathways, including carbohydrate, lipid, amino acid, and energy metabolism, biotransformation, apoptosis, etc. Apoptosis in rat liver was confirmed with the terminal deoxynucleotidyl transferase dUTP-nick end labeling assay. In mitochondria, Z24 increased the ROS and decreased the NAD(P)H levels. Thus, inhibition of carbohydrate aerobic oxidation, fatty acid beta-oxidation, and oxidative phosphorylation is a potential mechanism of Z24-induced hepatotoxicity, resulting in mitochondrial dysfunction and apoptosis-mediated cell death. In addition, fetub protein and argininosuccinate synthase in plasma may be potential biomarkers of Z24-induced hepatotoxicity.
Collapse
Affiliation(s)
- Ying Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, P R China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kirpich IA, Gobejishvili LN, Bon Homme M, Waigel S, Cave M, Arteel G, Barve SS, McClain CJ, Deaciuc IV. Integrated hepatic transcriptome and proteome analysis of mice with high-fat diet-induced nonalcoholic fatty liver disease. J Nutr Biochem 2010; 22:38-45. [PMID: 20303728 DOI: 10.1016/j.jnutbio.2009.11.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 11/10/2009] [Accepted: 11/17/2009] [Indexed: 12/26/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common form of liver disease in the US and refers to a wide spectrum of liver damage, including simple steatosis, steatohepatitis, fibrosis and cirrhosis. The goal of the present study was to achieve a more detailed understanding of the molecular changes in response to high fat-induced liver steatosis through the identification of a differentially expressed liver transcriptome and proteome. Male C57/BL6 mice fed a high-fat lard diet for 8 weeks developed visceral obesity and hepatic steatosis characterized by significantly increased liver and plasma free fatty acid and triglyceride levels and plasma alanine aminotransferase activities. Transcriptome analysis demonstrated that, compared to the control diet (CD), high-fat diet changed the expression of 309 genes (132 up- and 177 down-regulated; by a twofold change and more, P<.05). Multiple genes encoding proteins involved in lipogenesis were down-regulated, whereas genes involved in fatty acid oxidation were up-regulated. Proteomic analysis revealed 12 proteins which were differentially expressed. Of these, glutathione S-transferases mu1 and pi1 and selenium-binding protein 2 were decreased at both the gene and protein levels. This is the first study to perform a parallel transcriptomic and proteomic analysis of diet-induced hepatic steatosis. Several key pathways involving xenobiotic and lipid metabolism, the inflammatory response and cell-cycle control were identified. These pathways provide targets for future mechanistic and therapeutic studies as related to the development and prevention of NAFLD.
Collapse
Affiliation(s)
- Irina A Kirpich
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tenorio-Laranga J, Männistö PT, Karayiorgou M, Gogos JA, García-Horsman JA. Sex-dependent compensated oxidative stress in the mouse liver upon deletion of catechol O-methyltransferase. Biochem Pharmacol 2009; 77:1541-52. [DOI: 10.1016/j.bcp.2009.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 02/09/2009] [Accepted: 02/11/2009] [Indexed: 11/30/2022]
|
10
|
Abstract
Liver fibrosis is a serious health issue for many liver patients and is currently diagnosed using liver biopsy. The erroneous nature of this technique urges the search for better, noninvasive alternatives. In this regard, proteomics has been described as a useful biomarker discovery tool and has become increasingly applied in the study of liver fibrosis. Experimental and clinical studies have already provided deeper insights in the molecular pathways of liver fibrosis and even confirmed previous findings. Recent advances in proteomic strategies and tools enable multiple fractionation, multiple protein identifications and parallel analyses of multiple samples. Despite its increasing popularity, proteomics still faces certain pitfalls concerning preanalytical variability, protein coverage and statistic reliability. Proteomics is still evolving, but will undoubtedly contribute to a better understanding of the basics of the pathology and certainly offer opportunities in liver fibrosis diagnostics and therapeutics.
Collapse
|
11
|
Liver proteomics for therapeutic drug discovery: inhibition of the cyclophilin receptor CD147 attenuates sepsis-induced acute renal failure. Crit Care Med 2007; 35:2319-28. [PMID: 17944020 DOI: 10.1097/01.ccm.0000281858.44387.a2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Sepsis-induced multi-organ failure continues to have a high mortality. The liver is an organ central to the disease pathogenesis. The objective of this study was to identify the liver proteins that change in abundance with sepsis and subsequently identify new drug targets. DESIGN Proteomic discovery study and drug target validation. For the proteomics study, three biological replicate mice were used per group. SETTING Research institute laboratory. SUBJECTS Three-month-old C57BL/6 mice. INTERVENTIONS We used a mouse model of sepsis based on cecal ligation and puncture, but with fluid and antibiotic resuscitation. Liver proteins that changed in abundance were identified by difference in gel electrophoresis. We compared liver proteins from 6-hr post-cecal ligation and puncture to sham-operated mice ("early proteins") and 24-hr post-cecal ligation and puncture with 6-hr post-cecal ligation and puncture ("late proteins"). Proteins that changed in abundance were identified by tandem mass spectrometry. We then inhibited the receptor for one protein and determined the effect on sepsis-induced organ dysfunction. RESULTS The liver proteins that changed in abundance after sepsis had a range of functions such as acute phase response, coagulation, endoplasmic reticulum stress, oxidative stress, apoptosis, mitochondrial electron transfer proteins, and nitric oxide metabolism. We found that cyclophilin increased in abundance after cecal ligation and puncture. When the receptor for this protein, CD147, was inhibited, sepsis-induced renal dysfunction was reduced. There was also a significant reduction in serum cytokine production when CD147 was inhibited. CONCLUSION By applying proteomics to a clinically relevant mouse model of sepsis, we identified a number of novel proteins that changed in abundance. The inhibition of the receptor for one of these proteins, cyclophilin, attenuated sepsis-induced acute renal failure. The application of proteomics to sepsis research can facilitate the discovery of new therapeutic targets.
Collapse
|
12
|
Deng Z, Zhang X, Tang W, Oses-Prieto JA, Suzuki N, Gendron JM, Chen H, Guan S, Chalkley RJ, Peterman TK, Burlingame AL, Wang ZY. A proteomics study of brassinosteroid response in Arabidopsis. Mol Cell Proteomics 2007; 6:2058-71. [PMID: 17848588 PMCID: PMC2966871 DOI: 10.1074/mcp.m700123-mcp200] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The plant steroid hormones brassinosteroids (BRs) play an important role in a wide range of developmental and physiological processes. How BR signaling regulates diverse processes remains unclear. To understand the molecular details of BR responses, we performed a proteomics study of BR-regulated proteins in Arabidopsis using two-dimensional DIGE coupled with LC-MS/MS. We identified 42 BR-regulated proteins, which are predicted to play potential roles in BR regulation of specific cellular processes, such as signaling, cytoskeleton rearrangement, vesicle trafficking, and biosynthesis of hormones and vitamins. Analyses of the BR-insensitive mutant bri1-116 and BR-hypersensitive mutant bzr1-1D identified five proteins (PATL1, PATL2, THI1, AtMDAR3, and NADP-ME2) affected both by BR treatment and in the mutants, suggesting their importance in BR action. Selected proteins were further studied using insertion knock-out mutants or immunoblotting. Interestingly about 80% of the BR-responsive proteins were not identified in previous microarray studies, and direct comparison between protein and RNA changes in BR mutants revealed a very weak correlation. RT-PCR analysis of selected genes revealed gene-specific kinetic relationships between RNA and protein responses. Furthermore BR-regulated posttranslational modification of BiP2 protein was detected as spot shifts in two-dimensional DIGE. This study provides novel insights into the molecular networks that link BR signaling to specific cellular and physiological responses.
Collapse
Affiliation(s)
- Zhiping Deng
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305
| | - Xin Zhang
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco CA 94143
| | - Wenqiang Tang
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305
| | - Juan A Oses-Prieto
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco CA 94143
| | - Nagi Suzuki
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco CA 94143
| | - Joshua M Gendron
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305
- Department of Biological Sciences, Stanford University, Stanford, CA 94305
| | - Huanjing Chen
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305
| | - Shenheng Guan
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco CA 94143
| | - Robert J. Chalkley
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco CA 94143
| | - T. Kaye Peterman
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481
| | - Alma L. Burlingame
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco CA 94143
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305
- To whom correspondence should be addressed: Department of Plant Biology, Carnegie Institution of Washington, 260 Panama Street, Stanford, CA 94305. Phone: 650-325-1521 ext 205. Fax: 650-325-6857
| |
Collapse
|
13
|
Petrak J, Myslivcova D, Halada P, Cmejla R, Cmejlova J, Vyoral D, Vulpe CD. Iron-independent specific protein expression pattern in the liver of HFE-deficient mice. Int J Biochem Cell Biol 2007; 39:1006-15. [PMID: 17376729 DOI: 10.1016/j.biocel.2007.01.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 01/19/2007] [Accepted: 01/22/2007] [Indexed: 12/01/2022]
Abstract
Hereditary hemochromatosis type I is an autosomal-recessive iron overload disease associated with a mutation in HFE gene. The most common mutation, C282Y, disrupts the disulfide bond necessary for the association of HFE with beta-2-microglobulin and abrogates cell surface HFE expression. HFE-deficient mice develop iron overload indicating a central role of the protein in the pathogenesis of hereditary hemochromatosis type I. However, despite significant effort, the role of the HFE protein in iron metabolism is still unknown. To shed a light on the molecular mechanism of HFE-related hemochromatosis we studied protein expression changes elicited by HFE-deficiency in the liver which is the organ critical for the regulation of iron metabolism. We undertook a proteomic study comparing protein expression in the liver of HFE deficient mice with control animals. We compared HFE-deficient animals with control animals with identical iron levels obtained by dietary treatment to identify changes specific to HFE deficiency rather than iron loading. We found 11 proteins that were differentially expressed in the HFE-deficient liver using two-dimensional electrophoresis and mass spectrometry identification. Of particular interest were urinary proteins 1, 2 and 6, glutathione-S-transferase P1, selenium binding protein 2, sarcosine dehydrogenase and thioredoxin-like protein 2. Our data suggest possible involvement of lipocalins, TNF-alpha signaling and PPAR alpha regulatory pathway in the pathogenesis of hereditary hemochromatosis and suggest future targeted research addressing the roles of the identified candidate genes in the molecular mechanism of hereditary hemochromatosis.
Collapse
Affiliation(s)
- Jiri Petrak
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
14
|
Henkel C, Roderfeld M, Weiskirchen R, Berres ML, Hillebrandt S, Lammert F, Meyer HE, Stühler K, Graf J, Roeb E. Changes of the hepatic proteome in murine models for toxically induced fibrogenesis and sclerosing cholangitis. Proteomics 2006; 6:6538-48. [PMID: 17109383 DOI: 10.1002/pmic.200600580] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated the changes in the hepatic proteome in murine models for toxic-induced fibrogenesis and sclerosing cholangitis. A comprehensive comparison of protein changes observed is made and the mechanistical basis of the expression changes is discussed. Hepatic fibrosis was induced by repetitive intraperitoneal CCl4 treatment of BALB/c mice or developed spontaneously in BALB/c-ATP-binding cassette, subfamily B, member 4 (Abcb4) knock out mice. Fibrosis was verified by a morphometric score and assessment of hydroxyproline content of liver tissue, respectively. The innovative difference in-gel electrophoresis (DIGE) technique was used to analyse protein expression levels of the mouse proteome. Results were confirmed by Western blotting and real-time RT-PCR. In CCl4-induced fibrosis 20 out of 40 and in BALB/c-Abcb4(-/-) mice 8 out of 28 differentially expressed proteins were identified utilizing DIGE. Only two proteins, selenium-binding protein (Sbp2) and carbonic anhydrase 3, have been unidirectionally expressed (i.e. down-regulated) in both models. Relevant differences in the pathogenesis of toxically induced liver fibrosis and sclerosing cholangitis exist. The only novel protein with regard to liver fibrosis depicting a unidirectional expression pattern in both animal models was Sbp2. An explicit protein function could not be clarified yet.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/deficiency
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Animals
- Blotting, Western
- Carbon Tetrachloride/toxicity
- Cholangitis, Sclerosing/chemically induced
- Cholangitis, Sclerosing/metabolism
- Cholangitis, Sclerosing/pathology
- Disease Models, Animal
- Electrophoresis, Gel, Two-Dimensional
- Humans
- Immunohistochemistry
- Liver/metabolism
- Liver Cirrhosis/chemically induced
- Liver Cirrhosis/metabolism
- Liver Cirrhosis/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Proteome/genetics
- Proteome/isolation & purification
- Proteome/metabolism
- Proteomics/methods
- Reverse Transcriptase Polymerase Chain Reaction
- Selenium-Binding Proteins/genetics
- Selenium-Binding Proteins/isolation & purification
- Selenium-Binding Proteins/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Corinna Henkel
- University Hospital Giessen & Marburg, Campus Giessen, Department of Medicine II, Gastroenterology, Giessen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mattow J, Demuth I, Haeselbarth G, Jungblut PR, Klose J. Selenium-binding protein 2, the major hepatic target for acetaminophen, shows sex differences in protein abundance. Electrophoresis 2006; 27:1683-91. [PMID: 16532517 DOI: 10.1002/elps.200500703] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Liver samples from female and male mice of two subspecies, Mus musculus musculus and Mus musculus domesticus, were investigated by a combination of 2-DE and MALDI-MS. The image analysis of the generated 2-DE patterns revealed several protein spots with significant differences in intensity/abundance between the sexes. Seven protein spots, which were prominent in 2-DE patterns of male mice, but which showed very low intensities in females, were identified as selenium-binding protein 2 (SBP2) also known as 56-kDa acetaminophen-binding protein. Edman degradation indicated that at least three of these protein spots represent N-terminally truncated SBP2 variants. Furthermore, it was shown that the observed differences in SBP2 abundance correlate with sex differences in transcription of the gene encoding SBP2, selenbp2, as revealed by RT-PCR and restriction digest as well as sequence analysis of the products. Since SBP2 has been described as the major target for acetaminophen in mouse liver cytosol, these findings are discussed with respect to their possible relevance for sex differences in acetaminophen-mediated toxicity, which have been described in a variety of mammals including mice and rats.
Collapse
Affiliation(s)
- Jens Mattow
- Institute of Human Genetics, Charité, Berlin, Germany.
| | | | | | | | | |
Collapse
|
16
|
Santamaría E, Muñoz J, Fernandez-Irigoyen J, Sesma L, Mora MI, Berasain C, Lu SC, Mato JM, Prieto J, Avila MA, Corrales FJ. Molecular profiling of hepatocellular carcinoma in mice with a chronic deficiency of hepatic s-adenosylmethionine: relevance in human liver diseases. J Proteome Res 2006; 5:944-953. [PMID: 16602702 DOI: 10.1021/pr050429v] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
S-adenosylmethionine arises as a central molecule in the preservation of liver homeostasis as a chronic hepatic deficiency results in spontaneous development of steatohepatitis and hepatocellular carcinoma. In the present work, we have attempted a comprehensive analysis of proteins associated with hepatocarcinogenesis in MAT1A knock out mice using a combination of two-dimensional electrophoresis and mass spectrometry, to then apply the resulting information to identify hallmarks of human HCC. Our results suggest the existence of individual-specific factors that might condition the development of preneoplastic lesions. Proteomic analysis allowed the identification of 151 differential proteins in MAT1A-/- mice tumors. Among all differential proteins, 27 changed in at least 50% of the analyzed tumors, and some of these alterations were already detected months before the development of HCC in the KO liver. The expression level of genes coding for 13 of these proteins was markedly decreased in human HCC. Interestingly, seven of these genes were also found to be down-regulated in a pretumoral condition such as cirrhosis, while depletion of only one marker was assessed in less severe liver disorders.
Collapse
Affiliation(s)
- Enrique Santamaría
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|