1
|
The long-term effect of removing the UV-protectant usnic acid from the thalli of the lichen Cladonia foliacea. Mycol Prog 2022; 21:83. [PMID: 36065212 PMCID: PMC9433529 DOI: 10.1007/s11557-022-01831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 10/25/2022]
Abstract
AbstractTerricolous lichens are abundant in semi-arid areas, where they are exposed to high irradiation. Photoprotection is essential for the algae as the photobiont provides the primer carbon source for both symbionts. The UV-protectant lichen metabolites and different quenching procedures of the alga ensure adequate photoprotection. Since the long-term effect of diminishing UV-protectant lichen metabolites is unknown, a major part of lichen secondary metabolites was removed from Cladonia foliacea thalli by acetone rinsing, and the lichens were then maintained under field conditions to investigate the effect on both symbionts for 3 years. Our aim was to determine if the decreased level of UV-protectant metabolites caused an elevated photoprotection in the algae and to reveal the dynamics of production of the metabolites. Photosynthetic activity and light protection were checked by chlorophyll a fluorescence kinetics measurements every 6 months. The concentrations of fumarprotocetraric and usnic acids were monitored by chromatographic methods. Our results proved that seasonality had a more pronounced effect than that of acetone treatment on the function of lichens over a long-term scale. Even after 3 years, the acetone-treated thalli contained half as much usnic acid as the control thalli, and the level of photoprotection remained unchanged in the algae. However, the amount of available humidity was a more critical limiting environmental factor than the amount of incoming irradiation affecting usnic acid production. The lichenicolous fungus Didymocyrtis cladoniicola became relatively more abundant in the acetone-treated samples than in the control samples, indicating a slight change caused by the treatment.
Collapse
|
2
|
Putzier CC, Polich SB, Verhoeven AS. Sustained zeaxanthin-dependent thermal dissipation is induced by desiccation and low temperatures in the fern Polypodium virginianum. PHYSIOLOGIA PLANTARUM 2022; 174:e13743. [PMID: 35773786 DOI: 10.1111/ppl.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/10/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Desiccation and low temperatures inhibit photosynthetic carbon reduction and, in combination with light, result in severe oxidative stress, thus, tolerant organisms must utilize enhanced photoprotective mechanisms to prevent damaging reactions from occurring. We sought to characterize the desiccation tolerance of the fern Polypodium virginianum and to assess the role of the xanthophyll cycle and sustained forms of thermal dissipation in its response to desiccation, as well as to low temperatures during winter. Our results demonstrate that P. virginianum is desiccation-tolerant and that it increases its utilization of sustained forms of zexanthin (Z)-dependent thermal dissipation in response to desiccation and low temperatures during winter. Experiments with detached fronds were conducted in dark and natural light conditions and demonstrated that some dark-formation of Z occurs in this species. In addition, desiccation in the light resulted in more pronounced declines in maximal photochemical efficiency (Fv /Fm ) and higher Z levels than desiccation in the dark, indicating a substantial fraction of the sustained reduction in Fv /Fm is due to Z-dependent sustained dissipation. Recovery from desiccation and from low temperatures exhibited biphasic kinetics with a more rapid phase (1-4 h), which was accompanied by an increase in minimal fluorescence yield (Fo ) but no change in Z, and a slower phase (up to 24 h) correlating with reconversion of Z to violaxanthin. These data suggest that two mechanisms of sustained thermal dissipation occur in response to desiccation and low temperatures, possibly corresponding to sustained forms of the energy-dependent and zeaxanthin-dependent mechanisms of dynamic thermal dissipation.
Collapse
Affiliation(s)
| | - Sidney B Polich
- Biology Department, University of St. Thomas, St. Paul, Minnesota, USA
| | - Amy S Verhoeven
- Biology Department, University of St. Thomas, St. Paul, Minnesota, USA
| |
Collapse
|
3
|
Photoprotection and high-light acclimation in semi-arid grassland lichens – a cooperation between algal and fungal partners. Symbiosis 2021. [DOI: 10.1007/s13199-021-00823-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractIn lichens, each symbiotic partner cooperates for the survival of the symbiotic association. The protection of the susceptible photosynthetic apparatus is essential for both participants. The mycobiont and photobiont contribute to the protection against the damaging effect of excess light by various mechanisms. The present study investigated the effect of seasonality and microhabitat exposure on photoprotection and photoacclimation in the photo- and the mycobiont of six lichen species with different thallus morphology in inland dune system in the Kiskunság region (Hungary) with shaded, more humid and exposed, drier dune sides. High-Performance Liquid Chromatography, spectrophotometry, chlorophyll a fluorescence kinetic technique were used, and micrometeorological data were collected. The four years data series revealed that the north-east-facing side was characterized by higher relative humidity and lower light intensities compared to the south-west-facing drier and more exposed sides. The south-west facing side was exposed to direct illumination 3–4 hours longer in winter and 1–2 hours shorter in summer than the north-east facing side of the dune, influencing the metabolism of sun and shade populations of various species. Because rapid desiccation caused short active periods of lichens during bright and drier seasons and on exposed microhabitats, the rapid, non-regulated non-photochemical quenching mechanisms in the photobiont had a significant role in protecting the photosynthetic system in the hydrated state. In dehydrated conditions, thalli were mainly defended by the solar screening metabolites produced by the mycobiont and curling during desiccation (also caused by the mycobiont). Furthermore, the efficacy of light use (higher chlorophyll and carotenoid concentration) increased because of short hydrated periods. Still, a lower level of received irradiation was appropriate for photosynthesis in dry seasons and on sun exposed habitats. In humid seasons and microhabitats, more extended active periods lead to increased photosynthesis and production of solar radiation protectant fungal metabolites, allowing a lower level of photoprotection in the form of regulated non-photochemical quenching by the photobiont. Interspecific differences were more pronounced than the intraspecific ones among seasons and microhabitat types.
Collapse
|
4
|
Bednaříková M, Váczi P, Lazár D, Barták M. Photosynthetic performance of Antarctic lichen Dermatocarpon polyphyllizum when affected by desiccation and low temperatures. PHOTOSYNTHESIS RESEARCH 2020; 145:159-177. [PMID: 32720111 DOI: 10.1007/s11120-020-00773-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Lichens are symbiotic organisms that are well adapted to desiccation/rehydration cycles. Over the last decades, the physiological background of their photosynthetic response-specifically activation of the protective mechanism during desiccation-has been studied at the level of photosystem II of the lichen photobiont by means of several biophysical methods. In our study, the effects of desiccation and low temperatures on chlorophyll fluorescence and spectral reflectance parameters were investigated in Antarctic chlorolichen Dermatocarpon polyphyllizum. Lichen thalli were collected from James Ross Island, Antarctica, and following transfer to a laboratory, samples were fully hydrated and exposed to desiccation at temperatures of 18, 10, and 4 °C. During the desiccation process, the relative water content (RWC) was measured gravimetrically and photosynthetic parameters related to the fast transient of chlorophyll fluorescence (OJIP) were measured repeatedly. Similarly, the change in spectral reflectance parameters (e.g., NDVI, PRI, G, NPCI) was monitored during thallus dehydration. The dehydration-response curves showed a decrease in a majority of the OJIP-derived parameters (e.g., maximum quantum yield of photosystem II photochemistry: FV/FM, and performance index: PI in D. polyphyllizum, which were more apparent at RWCs below 20%. The activation of protective mechanisms in severely dehydrated thalli was documented by increased thermal dissipation (DI0/RC) and its quantum yield (Phi_D0). Low temperature accelerated these processes. An analysis of the OJIP shape reveals the presence of K-bands (300 μs), and L-bands (80 μs), which can be attributed to dehydration-induced stress. Spectral reflectance indices decreased in a majority of cases with an RWC decrease and were positively related to the OJIP-derived parameters: FV/FM (capacity of photosynthetic processes in PSII), Phi_E0 (effectiveness of electron transport), and PI_tot (total performance index), which was more apparent in NDVI. A negative relation was found for NPCI. These indices could be used in follow-up ecophysiological photosynthetic studies of lichens that are undergoing rehydration/dehydration cycles.
Collapse
Affiliation(s)
- Michaela Bednaříková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic.
| | - Peter Váczi
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Dušan Lazár
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 793 71, Olomouc, Czech Republic
| | - Miloš Barták
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| |
Collapse
|
5
|
López-Pozo M, Flexas J, Gulías J, Carriquí M, Nadal M, Perera-Castro AV, Clemente-Moreno MJ, Gago J, Núñez-Olivera E, Martínez-Abaigar J, Hernández A, Artetxe U, Bentley J, Farrant JM, Verhoeven A, García-Plazaola JI, Fernández-Marín B. A field portable method for the semi-quantitative estimation of dehydration tolerance of photosynthetic tissues across distantly related land plants. PHYSIOLOGIA PLANTARUM 2019; 167:540-555. [PMID: 30515832 DOI: 10.1111/ppl.12890] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 05/22/2023]
Abstract
Desiccation tolerant (DT) plants withstand complete cellular dehydration, reaching relative water contents (RWC) below 30% in their photosynthetic tissues. Desiccation sensitive (DS) plants exhibit different degrees of dehydration tolerance (DHT), never surviving water loss >70%. To date, no procedure for the quantitative evaluation of DHT extent exists that is able to discriminate DS species with differing degrees of DHT from truly DT plants. We developed a simple, feasible and portable protocol to differentiate between DT and different degrees of DHT in the photosynthetic tissues of seed plants and between fast desiccation (< 24 h) tolerant (FDT) and sensitive (FDS) bryophytes. The protocol is based on (1) controlled desiccation inside Falcon tubes equilibrated at three different relative humidities that, consequently, induce three different speeds and extents of dehydration and (2) an evaluation of the average percentage of maximal photochemical efficiency of PSII (Fv /fm) recovery after rehydration. Applying the method to 10 bryophytes and 28 tracheophytes from various locations, we found that (1) imbibition of absorbent material with concentrated salt-solutions inside the tubes provides stable relative humidity and avoids direct contact with samples; (2) for 50 ml capacity tubes, the optimal plant amount is 50-200 mg fresh weight; (3) the method is useful in remote locations due to minimal instrumental requirements; and (4) a threshold of 30% recovery of the initial Fv /fm upon reaching RWC ≤ 30% correctly categorises DT species, with three exceptions: two poikilochlorophyllous species and one gymnosperm. The protocol provides a semi-quantitative expression of DHT that facilitates comparisons of species with different morpho-physiological traits and/or ecological attributes.
Collapse
Affiliation(s)
- Marina López-Pozo
- Department Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears/Institute of Agro-Environmental and Water Economy Research -INAGEA, Palma, Spain
| | - Javier Gulías
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears/Institute of Agro-Environmental and Water Economy Research -INAGEA, Palma, Spain
| | - Marc Carriquí
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears/Institute of Agro-Environmental and Water Economy Research -INAGEA, Palma, Spain
| | - Miquel Nadal
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears/Institute of Agro-Environmental and Water Economy Research -INAGEA, Palma, Spain
| | - Alicia V Perera-Castro
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears/Institute of Agro-Environmental and Water Economy Research -INAGEA, Palma, Spain
| | - María José Clemente-Moreno
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears/Institute of Agro-Environmental and Water Economy Research -INAGEA, Palma, Spain
| | - Jorge Gago
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears/Institute of Agro-Environmental and Water Economy Research -INAGEA, Palma, Spain
| | | | | | - Antonio Hernández
- Department Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Unai Artetxe
- Department Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Joanne Bentley
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Amy Verhoeven
- Biology Department (OWS352), University of St. Thomas, St. Paul, MN, USA
| | | | - Beatriz Fernández-Marín
- Department Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
6
|
Guéra A, Gasulla F, Barreno E. Formation of photosystem II reaction centers that work as energy sinks in lichen symbiotic Trebouxiophyceae microalgae. PHOTOSYNTHESIS RESEARCH 2016; 128:15-33. [PMID: 26482588 DOI: 10.1007/s11120-015-0196-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
Lichens are poikilohydric symbiotic organisms that can survive in the absence of water. Photosynthesis must be highly regulated in these organisms, which live under continuous desiccation-rehydration cycles, to avoid photooxidative damage. Analysis of chlorophyll a fluorescence induction curves in the lichen microalgae of the Trebouxiophyceae Asterochloris erici and in Trebouxia jamesii (TR1) and Trebouxia sp. (TR9) phycobionts, isolated from the lichen Ramalina farinacea, shows differences with higher plants. In the presence of the photosynthetic electron transport inhibitor DCMU, the kinetics of Q(A) reduction is related to variable fluorescence by a sigmoidal function that approaches a horizontal asymptote. An excellent fit to these curves was obtained by applying a model based on the following assumptions: (1) after closure, the reaction centers (RCs) can be converted into "energy sink" centers (sRCs); (2) the probability of energy leaving the sRCs is very low or zero and (3) energy is not transferred from the antenna of PSII units with sRCs to other PSII units. The formation of sRCs units is also induced by repetitive light saturating pulses or at the transition from dark to light and probably requires the accumulation of reduced Q(A), as well as structural changes in the reaction centers of PSII. This type of energy sink would provide a very efficient way to protect symbiotic microalgae against abrupt changes in light intensity.
Collapse
Affiliation(s)
- Alfredo Guéra
- Departamento de Ciencias de la Vida, Universidad de Alcalá, Edificio de Ciencias, Campus externo, 28871, Alcalá de Henares, Madrid, Spain.
| | - Francisco Gasulla
- Departamento de Ciencias de la Vida, Universidad de Alcalá, Edificio de Ciencias, Campus externo, 28871, Alcalá de Henares, Madrid, Spain
- Botánica, ICBIBE, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Eva Barreno
- Botánica, ICBIBE, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
7
|
Wu L, Zhang G, Lan S, Zhang D, Hu C. Longitudinal photosynthetic gradient in crust lichens' thalli. MICROBIAL ECOLOGY 2014; 67:888-96. [PMID: 24477924 DOI: 10.1007/s00248-014-0366-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/06/2014] [Indexed: 05/25/2023]
Abstract
In order to evaluate the self-shading protection for inner photobionts, the photosynthetic activities of three crust lichens were detected using Microscope-Imaging-PAM. The false color images showed that longitudinal photosynthetic gradient was found in both the green algal lichen Placidium sp. and the cyanolichen Peltula sp. In longitudinal direction, all the four chlorophyll fluorescence parameters Fv/Fm, Yield, qP, and rETR gradually decreased with depth in the thalli of both of these two lichens. In Placidium sp., qN values decreased with depth, whereas an opposite trend was found in Peltula sp. However, no such photosynthetic heterogeneity was found in the thalli of Collema sp. in longitudinal direction. Microscope observation showed that photobiont cells are compactly arranged in Placidium sp. and Peltula sp. while loosely distributed in Collema sp. It was considered that the longitudinal photosynthetic heterogeneity was ascribed to the result of gradual decrease of incidence caused by the compact arrangement of photobiont cells in the thalli. The results indicate a good protection from the self-shading for the inner photobionts against high radiation in crust lichens.
Collapse
Affiliation(s)
- Li Wu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China
| | | | | | | | | |
Collapse
|
8
|
Vardar Ç, Basaran E, Cansaran-Duman D, Aras S. Air-quality biomonitoring: Assessment of genotoxicity of air pollution in the Province of Kayseri (Central Anatolia) by use of the lichen Pseudevernia furfuracea (L.) Zopf and amplified fragment-length polymorphism markers. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 759:43-50. [DOI: 10.1016/j.mrgentox.2013.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 07/31/2013] [Accepted: 09/28/2013] [Indexed: 10/25/2022]
|
9
|
Slavov C, Reus M, Holzwarth AR. Two different mechanisms cooperate in the desiccation-induced excited state quenching in Parmelia lichen. J Phys Chem B 2013; 117:11326-36. [PMID: 23841476 DOI: 10.1021/jp402881f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The highly efficient desiccation-induced quenching in the poikilohydric lichen Parmelia sulcata has been studied by ultrafast fluorescence spectroscopy at room temperature (r.t.) and cryogenic temperatures in order to elucidate the quenching mechanism(s) and kinetic reaction models. Analysis of the r.t. data by kinetic target analysis reveals that two different quenching mechanisms contribute to the protection of photosystem II (PS II). The first mechanism is a direct quenching of the PS II antenna and is related to the characteristic F740 nm fluorescence band. Based on the temperature dependence of its spectra and the kinetics, this mechanism is proposed to reflect the formation of a fluorescent (F740) chlorophyll-chlorophyll charge-transfer state. It is discussed in relation to a similar fluorescence band and quenching mechanism observed in light-induced nonphotochemical quenching in higher plants. The second and more efficient quenching process (providing more than 70% of the total PS II quenching) is shown to involve an efficient spillover (energy transfer) from PS II to PS I which can be prevented by a short glutaraldehyde treatment. Desiccation causes a thylakoid-membrane rearrangement which brings into direct contact the PS II and PS I units. The energy transferred to PS I in the spillover process is then quenched highly efficiently in PS I due to the formation of a long-lived P700(+) state in the dried state in the light. As a consequence, both PS II and PS I are protected very efficiently against photodestruction. This dual quenching mechanism is supported by the low temperature kinetics data.
Collapse
Affiliation(s)
- Chavdar Slavov
- Max Planck Institute for Chemical Energy Conversion , D-45470 Mülheim a.d. Ruhr, Germany
| | | | | |
Collapse
|
10
|
Nguyen KH, Chollet-Krugler M, Gouault N, Tomasi S. UV-protectant metabolites from lichens and their symbiotic partners. Nat Prod Rep 2013; 30:1490-508. [DOI: 10.1039/c3np70064j] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
García-Plazaola JI, Esteban R, Fernández-Marín B, Kranner I, Porcar-Castell A. Thermal energy dissipation and xanthophyll cycles beyond the Arabidopsis model. PHOTOSYNTHESIS RESEARCH 2012; 113:89-103. [PMID: 22772904 DOI: 10.1007/s11120-012-9760-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/18/2012] [Indexed: 05/20/2023]
Abstract
Thermal dissipation of excitation energy is a fundamental photoprotection mechanism in plants. Thermal energy dissipation is frequently estimated using the quenching of the chlorophyll fluorescence signal, termed non-photochemical quenching. Over the last two decades, great progress has been made in the understanding of the mechanism of thermal energy dissipation through the use of a few model plants, mainly Arabidopsis. Nonetheless, an emerging number of studies suggest that this model represents only one strategy among several different solutions for the environmental adjustment of thermal energy dissipation that have evolved among photosynthetic organisms in the course of evolution. In this review, a detailed analysis of three examples highlights the need to use models other than Arabidopsis: first, overwintering evergreens that develop a sustained form of thermal energy dissipation; second, desiccation tolerant plants that induce rapid thermal energy dissipation; and third, understorey plants in which a complementary lutein epoxide cycle modulates thermal energy dissipation. The three examples have in common a shift from a photosynthetically efficient state to a dissipative conformation, a strategy widely distributed among stress-tolerant evergreen perennials. Likewise, they show a distinct operation of the xanthophyll cycle. Expanding the list of model species beyond Arabidopsis will enhance our knowledge of these mechanisms and increase the synergy of the current studies now dispersed over a wide number of species.
Collapse
Affiliation(s)
- José Ignacio García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo 644, 48080, Bilbao, Spain.
| | | | | | | | | |
Collapse
|
12
|
Heber U, Soni V, Strasser RJ. Photoprotection of reaction centers: thermal dissipation of absorbed light energy vs charge separation in lichens. PHYSIOLOGIA PLANTARUM 2011; 142:65-78. [PMID: 21029105 DOI: 10.1111/j.1399-3054.2010.01417.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
During desiccation, fluorescence emission and stable light-dependent charge separation in the reaction centers (RCs) of photosystem II (PSII) declined strongly in three different lichens: in Parmelia sulcata with an alga as the photobiont, in Peltigera neckeri with a cyanobacterium and in the tripartite lichen Lobaria pulmonaria. Most of the decline of fluorescence was caused by a decrease in the quantum efficiency of fluorescence emission. It indicated the activation of photoprotective thermal energy dissipation. Photochemical activity of the RCs was retained even after complete desiccation. It led to light-dependent absorption changes and found expression in reversible increases in fluorescence or in fluorescence quenching. Lowering the temperature changed the direction of fluorescence responses in P. sulcata. The observations are interpreted to show that reversible light-induced increases in fluorescence emission in desiccated lichens indicate the functionality of the RCs of PSII. Photoprotection is achieved by the drainage of light energy to dissipating centers outside the RCs before stable charge separation can take place. Reversible quenching of fluorescence by strong illumination is suggested to indicate the conversion of the RCs from energy conserving to energy dissipating units. This permits them to avoid photoinactivation. On hydration, re-conversion occurs to energy-conserving RCs.
Collapse
Affiliation(s)
- Ulrich Heber
- Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Würzburg 97082, Germany.
| | | | | |
Collapse
|
13
|
del Hoyo A, Álvarez R, del Campo EM, Gasulla F, Barreno E, Casano LM. Oxidative stress induces distinct physiological responses in the two Trebouxia phycobionts of the lichen Ramalina farinacea. ANNALS OF BOTANY 2011; 107:109-18. [PMID: 21051454 PMCID: PMC3002467 DOI: 10.1093/aob/mcq206] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 08/27/2010] [Accepted: 09/17/2010] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS Most lichens form associations with Trebouxia phycobionts and some of them simultaneously include genetically different algal lineages. In other symbiotic systems involving algae (e.g. reef corals), the relative abundances of different endosymbiotic algal clades may change over time. This process seems to provide a mechanism allowing the organism to respond to environmental stress. A similar mechanism may operate in lichens with more than one algal lineage, likewise protecting them against environmental stresses. Here, the physiological responses to oxidative stress of two distinct Trebouxia phycobionts (provisionally named TR1 and TR9) that coexist within the lichen Ramalina farinacea were analysed. METHODS Isolated phycobionts were exposed to oxidative stress through the reactive oxygen species propagator cumene hydroperoxide (CuHP). Photosynthetic pigments and proteins, photosynthesis (through modulated chlorophyll fluorescence), the antioxidant enzymes superoxide dismutase (SOD) and glutathione reductase (GR), and the stress-related protein HSP70 were analysed. KEY RESULTS Photosynthetic performance was severely impaired by CuHP in phycobionts, as indicated by decreases in the maximal PSII photochemical efficiency (F(v)/F(m)), the quantum efficiency of PSII (Φ(PSII)) and the non-photochemical dissipation of energy (NPQ). However, the CuHP-dependent decay in photosynthesis was significantly more severe in TR1, which also showed a lower NPQ and a reduced ability to preserve chlorophyll a, carotenoids and D1 protein. Additionally, differences were observed in the capacities of the two phycobionts to modulate antioxidant activities and HPS70 levels when exposed to oxidative stress. In TR1, CuHP significantly diminished HSP70 and GR but did not change SOD activities. In contrast, in TR9 the levels of both antioxidant enzymes and those of HSP70 increased in response to CuHP. CONCLUSIONS The better physiological performance of TR9 under oxidative conditions may reflect its greater capacity to undertake key metabolic adjustments, including increased non-photochemical quenching, higher antioxidant protection and the induction of repair mechanisms.
Collapse
Affiliation(s)
- Alicia del Hoyo
- Department of Plant Biology, University of Alcalá, 28871-Alcalá de Henares, Madrid, Spain
| | - Raquel Álvarez
- Department of Plant Biology, University of Alcalá, 28871-Alcalá de Henares, Madrid, Spain
| | - Eva M. del Campo
- Department of Plant Biology, University of Alcalá, 28871-Alcalá de Henares, Madrid, Spain
| | - Francisco Gasulla
- Universitat de València, Botánica, ICBIBE, Fac. C. Biológicas, C/ Dr. Moliner 50. 46100-Burjassot, Valencia, Spain
| | - Eva Barreno
- Universitat de València, Botánica, ICBIBE, Fac. C. Biológicas, C/ Dr. Moliner 50. 46100-Burjassot, Valencia, Spain
| | - Leonardo M. Casano
- Department of Plant Biology, University of Alcalá, 28871-Alcalá de Henares, Madrid, Spain
| |
Collapse
|
14
|
Casano LM, del Campo EM, García-Breijo FJ, Reig-Armiñana J, Gasulla F, del Hoyo A, Guéra A, Barreno E. Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus Competition? Environ Microbiol 2010; 13:806-18. [DOI: 10.1111/j.1462-2920.2010.02386.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Heber U, Bilger W, Türk R, Lange OL. Photoprotection of reaction centres in photosynthetic organisms: mechanisms of thermal energy dissipation in desiccated thalli of the lichen Lobaria pulmonaria. THE NEW PHYTOLOGIST 2010; 185:459-70. [PMID: 19863730 DOI: 10.1111/j.1469-8137.2009.03064.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
*The photobionts of lichens have previously been shown to reversibly inactivate their photosystem II (PSII) upon desiccation, presumably as a photoprotective mechanism. The mechanism and the consequences of this process have been investigated in the green algal lichen Lobaria pulmonaria. *Lichen thalli were collected from a shaded and a sun-exposed site. The activation of PSII was followed by chlorophyll fluorescence measurements. *Inactivation of PSII, as indicated by the total loss of variable fluorescence, was accompanied by a strong decrease of basal fluorescence (F(0)). Sun-grown thalli, as well as thalli exposed to low irradiance during drying, showed a larger reduction of F(0) than shade-grown thalli or thalli desiccated in the dark. Desiccation increased phototolerance, which was positively correlated to enhanced quenching of F(0). Quenching of F(0) could be reversed by heating, and could be inhibited by glutaraldehyde but not by the uncoupler nigericin. *Activation of energy dissipation, apparent as F(0) quenching, is proposed to be based on an alteration in the conformation of a pigment protein complex. This permits thermal energy dissipation and gives considerable flexibility to photoprotection. Zeaxanthin formation apparently did not contribute to the enhancement of photoprotection by desiccation in the light. Light-induced absorbance changes indicated the involvement of chlorophyll and carotenoid cation radicals.
Collapse
Affiliation(s)
- Ulrich Heber
- Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, D-97082 Würzburg, Germany
| | | | | | | |
Collapse
|
16
|
Komura M, Yamagishi A, Shibata Y, Iwasaki I, Itoh S. Mechanism of strong quenching of photosystem II chlorophyll fluorescence under drought stress in a lichen, Physciella melanchla, studied by subpicosecond fluorescence spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:331-8. [PMID: 19962955 DOI: 10.1016/j.bbabio.2009.11.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/16/2009] [Accepted: 11/25/2009] [Indexed: 10/20/2022]
Abstract
The mechanism of the severe quenching of chlorophyll (Chl) fluorescence under drought stress was studied in a lichen Physciella melanchla, which contains a photobiont green alga, Trebouxia sp., using a streak camera and a reflection-mode fluorescence up-conversion system. We detected a large 0.31 ps rise of fluorescence at 715 and 740 nm in the dry lichen suggesting the rapid energy influx to the 715-740 nm bands from the shorter-wavelength Chls with a small contribution from the internal conversion from Soret bands. The fluorescence, then, decayed with time constants of 23 and 112 ps, suggesting the rapid dissipation into heat through the quencher. The result confirms the accelerated 40 ps decay of fluorescence reported in another lichen (Veerman et al., 2007 [36]) and gives a direct evidence for the rapid energy transfer from bulk Chls to the longer-wavelength quencher. We simulated the entire PS II fluorescence kinetics by a global analysis and estimated the 20.2 ns(-1) or 55.0 ns(-1) energy transfer rate to the quencher that is connected either to the LHC II or to the PS II core antenna. The strong quenching with the 3-12 times higher rate compared to the reported NPQ rate, suggests the operation of a new type of quenching, such as the extreme case of Chl-aggregation in LHCII or a new type of quenching in PS II core antenna in dry lichens.
Collapse
Affiliation(s)
- Masayuki Komura
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
17
|
Gasulla F, de Nova PG, Esteban-Carrasco A, Zapata JM, Barreno E, Guéra A. Dehydration rate and time of desiccation affect recovery of the lichen alga [corrected] Trebouxia erici: alternative and classical protective mechanisms. PLANTA 2009; 231:195-208. [PMID: 19774392 DOI: 10.1007/s00425-009-1019-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 08/19/2009] [Indexed: 05/27/2023]
Abstract
The mechanisms involved in desiccation tolerance of lichens and their photobionts are still poorly understood. To better understand these mechanisms we have studied dehydration rate and desiccation time in Trebouxia, the most abundant chlorophytic photobiont in lichen. Our findings indicate that the drying rate has a profound effect on the recovery of photosynthetic activity of algae after rehydration, greater than the effects of desiccation duration. The basal fluorescence (F'(o)) values in desiccated algae were significantly higher after rapid dehydration, than after slow dehydration, suggesting higher levels of light energy dissipation in slow-dried algae. Higher values of PSII electron transport were recovered after rehydration of slow-dried Trebouxia erici compared to rapid-dried algae. The main component of non-photochemical quenching after slow dehydration was energy dependent (q (E)), whereas after fast dehydration it was photoinhibition (q (I)). Although q (E) seems to play a role during desiccation recovery, no significant variations were detected in the xanthophyll cycle components. Desiccation did not affect PSI functionality. Classical antioxidant activities like superoxide dismutase or peroxidase decreased during desiccation and early recovery. Dehydrins were detected in the lichen-forming algae T. erici and were constitutively expressed. There is probably a minimal period required to develop strategies which will facilitate transition to the desiccated state in this algae. In this process, the xanthophyll cycle and classical antioxidant mechanisms play a very limited role, if any. However, our results indicate that there is an alternative mechanism of light energy dissipation during desiccation, where activation is dependent on a sufficiently slow dehydration rate.
Collapse
Affiliation(s)
- Francisco Gasulla
- Dpto. de Botánica, Fac. de Biología, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, 46100, Burjassot, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Kranner I, Beckett R, Hochman A, Nash TH. Desiccation-Tolerance in Lichens: A Review. THE BRYOLOGIST 2008; 111:576-593. [PMID: 0 DOI: 10.1639/0007-2745-111.4.576] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
19
|
Ivanov AG, Sane PV, Hurry V, Oquist G, Huner NPA. Photosystem II reaction centre quenching: mechanisms and physiological role. PHOTOSYNTHESIS RESEARCH 2008; 98:565-74. [PMID: 18821028 DOI: 10.1007/s11120-008-9365-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Accepted: 09/01/2008] [Indexed: 05/03/2023]
Abstract
Dissipation of excess absorbed light energy in eukaryotic photoautotrophs through zeaxanthin- and DeltapH-dependent photosystem II antenna quenching is considered the major mechanism for non-photochemical quenching and photoprotection. However, there is mounting evidence of a zeaxanthin-independent pathway for dissipation of excess light energy based within the PSII reaction centre that may also play a significant role in photoprotection. We summarize recent reports which indicate that this enigma can be explained, in part, by the fact that PSII reaction centres can be reversibly interconverted from photochemical energy transducers that convert light into ATP and NADPH to efficient, non-photochemical energy quenchers that protect the photosynthetic apparatus from photodamage. In our opinion, reaction centre quenching complements photoprotection through antenna quenching, and dynamic regulation of photosystem II reaction centre represents a general response to any environmental condition that predisposes the accumulation of reduced Q(A) in the photosystem II reaction centres of prokaryotic and eukaryotic photoautotrophs. Since the evolution of reaction centres preceded the evolution of light harvesting systems, reaction centre quenching may represent the oldest photoprotective mechanism.
Collapse
Affiliation(s)
- Alexander G Ivanov
- Department of Biology and The Biotron, University of Western Ontario, London, ON, Canada
| | | | | | | | | |
Collapse
|
20
|
Cardon ZG, Gray DW, Lewis LA. The Green Algal Underground: Evolutionary Secrets of Desert Cells. Bioscience 2008. [DOI: 10.1641/b580206] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
21
|
Heber U, Azarkovich M, Shuvalov V. Activation of mechanisms of photoprotection by desiccation and by light: poikilohydric photoautotrophs. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:2745-59. [PMID: 17609533 DOI: 10.1093/jxb/erm139] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Mechanisms of protection against photo-oxidation in selected desiccation-tolerant lichens and mosses have been investigated by measuring loss of light absorption during desiccation and chlorophyll fluorescence as indicators of photoprotection. Apparent absorption (1-T) spectra measured in the reflectance mode revealed stronger absorption of photosynthetic pigments in hydrated than in desiccated organisms, but differences were pronounced only in a cyanolichen, less so in some chlorolichens, and even less in mosses. Since the amplitude of chlorophyll fluorescence is a product of (1-T) light absorption by chlorophyll and quantum yield of fluorescence, and since fluorescence is inversely related to thermal energy dissipation, when chemical fluorescence quenching is negligible, fluorescence measurements were used to measure changes in energy dissipation. Preincubation of the hydrated organisms and desiccation in darkness excluded the contribution of mechanisms of energy dissipation to photoprotection which are dependent on the presence of zeaxanthin or on the light-dependent formation of a quencher of fluorescence within the reaction centre of photosystem II. Fast drying in darkness or in very low light was less effective in decreasing chlorophyll fluorescence than slow drying. Heating the desiccated organisms increased fluorescence by inactivating the mechanism responsible for fluorescence quenching. Glutaraldehyde inhibited fluorescence quenching during desiccation. Prolonged exposure of a desiccated moss or a desiccated lichen to very strong light caused more photo-induced damage after fast drying than after slow drying. The photo-oxidative nature of damage was emphasized by the observation that irreversible loss of fluorescence was larger in air than in a nitrogen atmosphere. It is concluded from these observations that desiccation-induced conformational changes of a chlorophyll protein complex result in the fast radiationless dissipation of absorbed light energy. This mechanism of photoprotection is more effective in preventing photo-oxidative damage than other mechanisms of energy dissipation which require light for activation such as zeaxanthin-dependent energy dissipation or quencher formation within the reaction centre of photosystem II.
Collapse
Affiliation(s)
- Ulrich Heber
- Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany.
| | | | | |
Collapse
|
22
|
Wilson KE, Ivanov AG, Öquist G, Grodzinski B, Sarhan F, Huner NP. Energy balance, organellar redox status, and acclimation to environmental stress. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b06-098] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In plants and algal cells, changes in light intensity can induce intrachloroplastic and retrograde regulation of gene expression in response to changes in the plastoquinone redox status. We review the evidence in support of the thesis that the chloroplast acts as a general sensor of cellular energy imbalance sensed through the plastoquinone pool. Alteration in cellular energy balance caused by chloroplast or mitochondrial metabolism can induce intracellular signalling to affect chloroplastic and nuclear gene expression in response, not only to light intensity, but to a myriad of abiotic stresses. In addition, this chloroplastic redox sensing also appears to have a broader impact, affecting long-distance systemic signalling related to plant growth and development. The organization of the respiratory electron transport chains of mitochondria and heterotrophic prokaryotes is comparable to that of chloroplast thylakoid membranes, and the redox state of the respiratory ubiquinone pool is a well-documented cellular energy sensor. Thus, modulation of electron transport component redox status by abiotic stress regulates organellar as well as nuclear gene expression. From the evidence presented, we suggest that the photosynthetic and respiratory machinery in prokaryotic and eukaryotic organisms have a dual function: primary cellular energy transformation, and global environmental sensing.
Collapse
Affiliation(s)
- Kenneth E. Wilson
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Department of Biology and The Biotron, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-901 87, Sweden
- Departments of Plant Agriculture and Environmental Biology, Bovey Complex, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888 Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Alexander G. Ivanov
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Department of Biology and The Biotron, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-901 87, Sweden
- Departments of Plant Agriculture and Environmental Biology, Bovey Complex, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888 Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Gunnar Öquist
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Department of Biology and The Biotron, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-901 87, Sweden
- Departments of Plant Agriculture and Environmental Biology, Bovey Complex, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888 Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Bernard Grodzinski
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Department of Biology and The Biotron, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-901 87, Sweden
- Departments of Plant Agriculture and Environmental Biology, Bovey Complex, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888 Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Fathey Sarhan
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Department of Biology and The Biotron, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-901 87, Sweden
- Departments of Plant Agriculture and Environmental Biology, Bovey Complex, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888 Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Norman P.A. Huner
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Department of Biology and The Biotron, University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-901 87, Sweden
- Departments of Plant Agriculture and Environmental Biology, Bovey Complex, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888 Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
23
|
Ivanov AG, Sane PV, Krol M, Gray GR, Balseris A, Savitch LV, Oquist G, Hüner NPA. Acclimation to temperature and irradiance modulates PSII charge recombination. FEBS Lett 2006; 580:2797-802. [PMID: 16674953 DOI: 10.1016/j.febslet.2006.04.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 04/07/2006] [Accepted: 04/10/2006] [Indexed: 11/16/2022]
Abstract
Acclimation of wild type and the chlorina F2 mutant of barley to either high light or low temperature results in a 2- to 3-fold increase in non-photochemical quenching which occurred independently of either energy-dependent quenching (qE), xanthophyll cycle-mediated antenna quenching or state transitions. Results of in vivo thermoluminescence measurements used to address this conundrum indicated that excitation pressure regulates the temperature gap for S(2)Q(B)(-) and S(2)Q(A)(-) charge recombinations within photosystem II reaction centers. This is discussed in terms of photoprotection through non-radiative charge recombination.
Collapse
Affiliation(s)
- A G Ivanov
- Department of Biology and The Biotron, University of Western Ontario, London, Canada N6A 5B7
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Heber U, Lange OL, Shuvalov VA. Conservation and dissipation of light energy as complementary processes: homoiohydric and poikilohydric autotrophs. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:1211-23. [PMID: 16551690 DOI: 10.1093/jxb/erj104] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The relationship between photosynthetic energy conservation and thermal dissipation of light energy is considered, with emphasis on organisms which tolerate full desiccation without suffering photo-oxidative damage in strong light. As soon as water becomes available to dry poikilohydric organisms, they resume photosynthetic water oxidation. Only excess light is then thermally dissipated in mosses and chlorolichens by a mechanism depending on the protonation of a thylakoid protein and availability of zeaxanthin. Upon desiccation, another mechanism is activated which requires neither protonation nor zeaxanthin although the zeaxanthin-dependent mechanism of energy dissipation remains active, provided desiccation occurs in the light. Increased thermal energy dissipation under desiccation finds expression in the loss of variable, and in the quenching of, basal chlorophyll fluorescence. Spectroscopical analysis revealed the activity of photosystem II reaction centres in the absence of water. Oxidized beta-carotene (Car+) and reduced chlorophyll (Chl-), perhaps ChlD1 next to P680 within the D1 subunit, accumulates reversibly under very strong illumination. Although recombination between Car+ and Chl- is too slow to contribute significantly to thermal energy dissipation, a much faster reaction such as the recombination between P680+ and the neighbouring Chl- is suggested to form the molecular basis of desiccation-induced energy dissipation in photosystem II reaction centres. Thermal dissipation of absorbed light energy within a picosecond time domain deactivates excited singlet chlorophyll, thereby preventing triplet accumulation and the consequent photo-oxidative damage by singlet oxygen.
Collapse
Affiliation(s)
- Ulrich Heber
- Julius von Sachs Institute of Biosciences, University of Würzburg, D-97082 Würzburg, Germany.
| | | | | |
Collapse
|