1
|
Venzhik Y, Deryabin A, Moshkov I. Adaptive strategy of plant cells during chilling: Aspect of ultrastructural reorganization. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111722. [PMID: 37120035 DOI: 10.1016/j.plantsci.2023.111722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
The review is focused on a comparative analysis of the literature data on the ultrastructural reorganization of leaf cells of higher plants, which differ in their response to low sub-damaging temperatures. The importance of adaptive structural reorganization of cells as a special feature contributing to the surviving strategy of plants existing under changed conditions is emphasized. The adaptive strategy of cold-tolerant plants combines the structural, functional, metabolic, physiological and biochemical reorganization of cells and tissues. These changes constitute a unified program directed to protecting against dehydration and oxidative stress, as well as maintaining basic physiological processes, and above all, photosynthesis. The ultrastructural markers of cold-tolerant plants adaptation to low sub-damaging temperatures include some particular changes in cell morphology. Namely: the following: an increase in the volume of the cytoplasm; the formation of new membrane elements in it; an increase in the size and number of chloroplasts and mitochondria; concentration of mitochondria and peroxisomes near chloroplasts; polymorphism of mitochondria; an increase in the number of cristae in them; the appearance of outgrowths and invaginations in chloroplasts; lumen expansion in the thylakoids; the formation in chloroplasts "sun type" membrane system with reduction in the number and size of grana and domination of non-appressed thylakoids membranes. Due to this adaptive structural reorganization cold-tolerant plants are able to function actively during chilling. On the contrary, structural reorganization of leaf cells of cold-sensitive plants under chilling is aimed at maintaining the basic functions at a minimum level. Cold-sensitive plants "wait out" low temperature stress, and with prolonged exposure to cold, they die from dehydration and intensification of oxidative stress.
Collapse
Affiliation(s)
- Yuliya Venzhik
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia.
| | - Alexander Deryabin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Igor Moshkov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Fernández-Marín B, Gulías J, Figueroa CM, Iñiguez C, Clemente-Moreno MJ, Nunes-Nesi A, Fernie AR, Cavieres LA, Bravo LA, García-Plazaola JI, Gago J. How do vascular plants perform photosynthesis in extreme environments? An integrative ecophysiological and biochemical story. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:979-1000. [PMID: 31953876 DOI: 10.1111/tpj.14694] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/14/2019] [Accepted: 01/07/2020] [Indexed: 05/24/2023]
Abstract
In this work, we review the physiological and molecular mechanisms that allow vascular plants to perform photosynthesis in extreme environments, such as deserts, polar and alpine ecosystems. Specifically, we discuss the morpho/anatomical, photochemical and metabolic adaptive processes that enable a positive carbon balance in photosynthetic tissues under extreme temperatures and/or severe water-limiting conditions in C3 species. Nevertheless, only a few studies have described the in situ functioning of photoprotection in plants from extreme environments, given the intrinsic difficulties of fieldwork in remote places. However, they cover a substantial geographical and functional range, which allowed us to describe some general trends. In general, photoprotection relies on the same mechanisms as those operating in the remaining plant species, ranging from enhanced morphological photoprotection to increased scavenging of oxidative products such as reactive oxygen species. Much less information is available about the main physiological and biochemical drivers of photosynthesis: stomatal conductance (gs ), mesophyll conductance (gm ) and carbon fixation, mostly driven by RuBisCO carboxylation. Extreme environments shape adaptations in structures, such as cell wall and membrane composition, the concentration and activation state of Calvin-Benson cycle enzymes, and RuBisCO evolution, optimizing kinetic traits to ensure functionality. Altogether, these species display a combination of rearrangements, from the whole-plant level to the molecular scale, to sustain a positive carbon balance in some of the most hostile environments on Earth.
Collapse
Affiliation(s)
- Beatriz Fernández-Marín
- Department of Botany, Ecology and Plant Physiology, University of La Laguna, Tenerife, 38200, Spain
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Javier Gulías
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Ctra. Valldemossa km 7.5, 07122, Palma, Spain
| | - Carlos M Figueroa
- UNL, CONICET, FBCB, Instituto de Agrobiotecnología del Litoral, 3000, Santa Fe, Argentina
| | - Concepción Iñiguez
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Ctra. Valldemossa km 7.5, 07122, Palma, Spain
| | - María J Clemente-Moreno
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Ctra. Valldemossa km 7.5, 07122, Palma, Spain
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Alisdair R Fernie
- Central Metabolism Group, Molecular Physiology Department, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Golm, Germany
| | - Lohengrin A Cavieres
- ECOBIOSIS, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - León A Bravo
- Lab. de Fisiología y Biología Molecular Vegetal, Dpt. de Cs. Agronómicas y Recursos Naturales, Facultad de Cs. Agropecuarias y Forestales, Instituto de Agroindustria, Universidad de La Frontera, Temuco, Chile
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - José I García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Jorge Gago
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Ctra. Valldemossa km 7.5, 07122, Palma, Spain
| |
Collapse
|
3
|
Shrestha A, Song X, Barbour MM. The temperature response of mesophyll conductance, and its component conductances, varies between species and genotypes. PHOTOSYNTHESIS RESEARCH 2019; 141:65-82. [PMID: 30771063 DOI: 10.1007/s11120-019-00622-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 01/25/2019] [Indexed: 05/08/2023]
Abstract
The temperature response of mesophyll conductance to CO2 diffusion (gm) has been shown to vary considerably between species but remains poorly understood. Here, we tested the hypothesis that increases in chloroplast surface area with increasing temperature, due to the formation of chloroplast protrusions, caused observed positive responses of gm to temperature. We found no evidence of chloroplast protrusions. Using simultaneous measurements of carbon and oxygen isotope discrimination during photosynthesis to separate total gm (gm13) into cell wall and plasma membrane conductance (gm18) and chloroplast membrane conductance (gcm) components, we explored the temperature response in genotypes of soybean and barley, and sunflower plants grown at differing CO2 concentrations. Differences in the temperature sensitivity of gm18 were found between genotypes and between plants grown at differing CO2 concentration but did not relate to measured anatomical features such as chloroplast surface area or cell wall thickness. The closest fit of modelled gm13 to estimated values was found when cell wall thickness was allowed to decline at higher temperatures and transpiration rates, but it remains to be tested if this decline is realistic. The temperature response of gcm (calculated from the difference between 1/gm13 and 1/gm18) varied between barley genotypes, and was best fitted by an optimal response in sunflower. Taken together, these results indicate that gm is a highly complex trait with unpredictable sensitivity to temperature that varies between species, between genotypes within a single species, with growth environment, between replicate leaves, and even with age for an individual leaf.
Collapse
Affiliation(s)
- Arjina Shrestha
- School of Life and Environmental Sciences, The University of Sydney, 380 Werombi Road, Brownlow Hill, NSW, 2570, Australia
| | - Xin Song
- School of Life and Environmental Sciences, The University of Sydney, 380 Werombi Road, Brownlow Hill, NSW, 2570, Australia
- School of Life Sciences and Oceanography, Shenzhen University, 3688 Nanhai Ave, Shenzhen, Guangdong, 518060, China
| | - Margaret M Barbour
- School of Life and Environmental Sciences, The University of Sydney, 380 Werombi Road, Brownlow Hill, NSW, 2570, Australia.
| |
Collapse
|
4
|
Erickson JL, Schattat MH. Shaping plastid stromules-principles of in vitro membrane tubulation applied in planta. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:48-54. [PMID: 30041102 DOI: 10.1016/j.pbi.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/01/2018] [Accepted: 07/06/2018] [Indexed: 05/10/2023]
Abstract
Plastids undergo drastic shape changes under stress, including the formation of stroma-filled tubules, or `stromules'. Stromules are dynamic, and may extend, branch and retract within minutes. There are two prerequisites for stromule extension: excess plastid membrane and a force(s) that shapes the membrane into a tubule. In vitro studies provide insight into the basic molecular machinery for tubulation, and are often cited when discussing stromule formation. In this review, we evaluate in vitro modes of tubulation in the context of stromule dynamics, and find that most mechanisms fail to explain stromule morphology and behavior observed in planta. Current data support a model of stromule formation relying on pulling motors (myosins and kinesins) and cytoskeleton (actin and microtubules).
Collapse
Affiliation(s)
- Jessica Lee Erickson
- Department of Plant Physiology, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06099 Halle, Germany
| | - Martin Hartmut Schattat
- Department of Plant Physiology, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06099 Halle, Germany.
| |
Collapse
|
5
|
Machado SR, Gregório EA, Rodrigues TM. Structural associations between organelle membranes in nectary parenchyma cells. PLANTA 2018; 247:1067-1076. [PMID: 29344723 DOI: 10.1007/s00425-018-2844-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/07/2018] [Indexed: 06/07/2023]
Abstract
The close association between membranes and organelles, and the intense chloroplast remodeling in parenchyma cells of extrafloral nectaries occurred only at the secretion time and suggest a relationship with the nectar secretion. Associations between membranes and organelles have been well documented in different tissues and cells of plants, but poorly explored in secretory cells. Here, we described the close physical juxtaposition between membranes and organelles, mainly with chloroplasts, in parenchyma cells of Citharexylum myrianthum (Verbenaeceae) extrafloral nectaries under transmission electron microscopy, using conventional and microwave fixation. At the time of nectar secretion, nectary parenchyma cells exhibit a multitude of different organelle and membrane associations as mitochondria-mitochondria, mitochondria-endoplasmic reticulum, mitochondria-chloroplast, chloroplast-nuclear envelope, mitochondria-nuclear envelope, chloroplast-plasmalemma, chloroplast-chloroplast, chloroplast-tonoplast, chloroplast-peroxisome, and mitochondria-peroxisome. These associations were visualized as amorphous electron-dense material, a network of dense fibrillar material and/or dense bridges. Chloroplasts exhibited protrusions variable in shape and extension, which bring them closer to each other and to plasmalemma, tonoplast, and nuclear envelope. Parenchyma cells in the pre- and post-secretory stages did not exhibit any association or juxtaposition of membranes and organelles, and chloroplast protrusions were absent. Chloroplasts had peripheral reticulum that was more developed in the secretory stage. We propose that such subcellular phenomena during the time of nectar secretion optimize the movement of signaling molecules and the exchange of metabolites. Our results open new avenues on the potential mechanisms of organelle contact in parenchyma nectary cells, and reveal new attributes of the secretory cells on the subcellular level.
Collapse
Affiliation(s)
- Silvia Rodrigues Machado
- Department of Botany, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Elisa A Gregório
- Center of Electron Microscopy (CME), Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Tatiane M Rodrigues
- Department of Botany, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
6
|
Erickson JL, Adlung N, Lampe C, Bonas U, Schattat MH. The Xanthomonas effector XopL uncovers the role of microtubules in stromule extension and dynamics in Nicotiana benthamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:856-870. [PMID: 29285819 DOI: 10.1111/tpj.13813] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/04/2017] [Accepted: 12/08/2017] [Indexed: 05/26/2023]
Abstract
Xanthomonas campestris pv. vesicatoria type III-secreted effectors were screened for candidates influencing plant cell processes relevant to the formation and maintenance of stromules in Nicotiana benthamiana lower leaf epidermis. Transient expression of XopL, a unique type of E3 ubiquitin ligase, led to a nearly complete elimination of stromules and the relocation of plastids to the nucleus. Further characterization of XopL revealed that the E3 ligase activity is essential for the two plastid phenotypes. In contrast to the XopL wild type, a mutant XopL lacking E3 ligase activity specifically localized to microtubules. Interestingly, mutant XopL-labeled filaments frequently aligned with stromules, suggesting an important, yet unexplored, microtubule-stromule relationship. High time-resolution movies confirmed that microtubules provide a scaffold for stromule movement and contribute to stromule shape. Taken together, this study has defined two populations of stromules: microtubule-dependent stromules, which were found to move slower and persist longer, and microtubule-independent stromules, which move faster and are transient. Our results provide the basis for a new model of stromule dynamics including interactions with both actin and microtubules.
Collapse
Affiliation(s)
- Jessica L Erickson
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06099, Halle, Germany
- Department of Plant Physiology, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06099, Halle, Germany
| | - Norman Adlung
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06099, Halle, Germany
| | - Christina Lampe
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06099, Halle, Germany
- Department of Plant Physiology, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06099, Halle, Germany
| | - Ulla Bonas
- Department of Genetics, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06099, Halle, Germany
| | - Martin H Schattat
- Department of Plant Physiology, Institute for Biology, Martin Luther University Halle-Wittenberg, D-06099, Halle, Germany
| |
Collapse
|
7
|
Kumar AS, Park E, Nedo A, Alqarni A, Ren L, Hoban K, Modla S, McDonald JH, Kambhamettu C, Dinesh-Kumar SP, Caplan JL. Stromule extension along microtubules coordinated with actin-mediated anchoring guides perinuclear chloroplast movement during innate immunity. eLife 2018; 7:e23625. [PMID: 29338837 PMCID: PMC5815851 DOI: 10.7554/elife.23625] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/16/2018] [Indexed: 12/21/2022] Open
Abstract
Dynamic tubular extensions from chloroplasts called stromules have recently been shown to connect with nuclei and function during innate immunity. We demonstrate that stromules extend along microtubules (MTs) and MT organization directly affects stromule dynamics since stabilization of MTs chemically or genetically increases stromule numbers and length. Although actin filaments (AFs) are not required for stromule extension, they provide anchor points for stromules. Interestingly, there is a strong correlation between the direction of stromules from chloroplasts and the direction of chloroplast movement. Stromule-directed chloroplast movement was observed in steady-state conditions without immune induction, suggesting it is a general function of stromules in epidermal cells. Our results show that MTs and AFs may facilitate perinuclear clustering of chloroplasts during an innate immune response. We propose a model in which stromules extend along MTs and connect to AF anchor points surrounding nuclei, facilitating stromule-directed movement of chloroplasts to nuclei during innate immunity.
Collapse
Affiliation(s)
| | - Eunsook Park
- Department of Plant Biology, College of Biological SciencesUniversity of California, DavisDavisUnited States
- The Genome Center, College of Biological SciencesUniversity of California, DavisDavisUnited States
| | - Alexander Nedo
- Delaware Biotechnology InstituteUniversity of DelawareNewarkUnited States
- Department of Biological Sciences, College of Arts and SciencesUniversity of DelawareNewarkUnited States
| | - Ali Alqarni
- Delaware Biotechnology InstituteUniversity of DelawareNewarkUnited States
- Department of Biological Sciences, College of Arts and SciencesUniversity of DelawareNewarkUnited States
- Department of Plant and Soil Sciences, College of Agriculture and Natural ResourcesUniversity of DelawareNewarkUnited States
| | - Li Ren
- Department of Plant and Soil Sciences, College of Agriculture and Natural ResourcesUniversity of DelawareNewarkUnited States
| | - Kyle Hoban
- Delaware Biotechnology InstituteUniversity of DelawareNewarkUnited States
- Department of Biological Sciences, College of Arts and SciencesUniversity of DelawareNewarkUnited States
| | - Shannon Modla
- Delaware Biotechnology InstituteUniversity of DelawareNewarkUnited States
| | - John H McDonald
- Department of Biological Sciences, College of Arts and SciencesUniversity of DelawareNewarkUnited States
| | - Chandra Kambhamettu
- Department of Plant and Soil Sciences, College of Agriculture and Natural ResourcesUniversity of DelawareNewarkUnited States
- Department of Computer and Information Sciences, College of EngineeringUniversity of DelawareNewarkUnited States
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology, College of Biological SciencesUniversity of California, DavisDavisUnited States
- The Genome Center, College of Biological SciencesUniversity of California, DavisDavisUnited States
| | - Jeffrey Lewis Caplan
- Delaware Biotechnology InstituteUniversity of DelawareNewarkUnited States
- Department of Biological Sciences, College of Arts and SciencesUniversity of DelawareNewarkUnited States
- Department of Plant and Soil Sciences, College of Agriculture and Natural ResourcesUniversity of DelawareNewarkUnited States
| |
Collapse
|
8
|
Araniti F, Graña E, Krasuska U, Bogatek R, Reigosa MJ, Abenavoli MR, Sánchez-Moreiras AM. Loss of Gravitropism in Farnesene-Treated Arabidopsis Is Due to Microtubule Malformations Related to Hormonal and ROS Unbalance. PLoS One 2016; 11:e0160202. [PMID: 27490179 PMCID: PMC4974009 DOI: 10.1371/journal.pone.0160202] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/17/2016] [Indexed: 01/03/2023] Open
Abstract
Mode of action of farnesene, a volatile sesquiterpene commonly found in the essential oils of several plants, was deeply studied on the model species Arabidopsis thaliana. The effects of farnesene on the Arabidopsis root morphology were evaluated by different microscopic techniques. As well, microtubules immunolabeling, phytohormone measurements and ROS staining helped us to elucidate the single or multi-modes of action of this sesquiterpene on plant metabolism. Farnesene-treated roots showed a strong growth inhibition and marked modifications on morphology, important tissue alterations, cellular damages and anisotropic growth. Left-handed growth of farnesene-treated roots, reverted by taxol (a known microtubule stabilizer), was related to microtubule condensation and disorganization. As well, the inhibition of primary root growth, lateral root number, lateral root length, and both root hairs length and density could be explained by the strong increment in ethylene production and auxin content detected in farnesene-treated seedlings. Microtubule alteration and hormonal unbalance appear as important components in the mode of action of farnesene and confirm the strong phytotoxic potential of this sesquiterpene.
Collapse
Affiliation(s)
- Fabrizio Araniti
- Dipartimento di AGRARIA, Università Mediterranea di Reggio Calabria, Facoltà di Agraria – Salita Melissari, Lotto-D, I-89124, Reggio Calabria RC, Italy
- * E-mail: (FA); (AMSM)
| | - Elisa Graña
- Department of Plant Biology and Soil Science, University of Vigo, Campus Lagoas-Marcosende s/n, E-36310, Vigo, Spain
| | - Urszula Krasuska
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Renata Bogatek
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Manuel J. Reigosa
- Department of Plant Biology and Soil Science, University of Vigo, Campus Lagoas-Marcosende s/n, E-36310, Vigo, Spain
| | - Maria Rosa Abenavoli
- Dipartimento di AGRARIA, Università Mediterranea di Reggio Calabria, Facoltà di Agraria – Salita Melissari, Lotto-D, I-89124, Reggio Calabria RC, Italy
| | - Adela M. Sánchez-Moreiras
- Department of Plant Biology and Soil Science, University of Vigo, Campus Lagoas-Marcosende s/n, E-36310, Vigo, Spain
- * E-mail: (FA); (AMSM)
| |
Collapse
|
9
|
Celler K, Fujita M, Kawamura E, Ambrose C, Herburger K, Holzinger A, Wasteneys GO. Microtubules in Plant Cells: Strategies and Methods for Immunofluorescence, Transmission Electron Microscopy, and Live Cell Imaging. Methods Mol Biol 2016; 1365:155-84. [PMID: 26498784 DOI: 10.1007/978-1-4939-3124-8_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microtubules (MTs) are required throughout plant development for a wide variety of processes, and different strategies have evolved to visualize and analyze them. This chapter provides specific methods that can be used to analyze microtubule organization and dynamic properties in plant systems and summarizes the advantages and limitations for each technique. We outline basic methods for preparing samples for immunofluorescence labeling, including an enzyme-based permeabilization method, and a freeze-shattering method, which generates microfractures in the cell wall to provide antibodies access to cells in cuticle-laden aerial organs such as leaves. We discuss current options for live cell imaging of MTs with fluorescently tagged proteins (FPs), and provide chemical fixation, high-pressure freezing/freeze substitution, and post-fixation staining protocols for preserving MTs for transmission electron microscopy and tomography.
Collapse
Affiliation(s)
- Katherine Celler
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Miki Fujita
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Eiko Kawamura
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Chris Ambrose
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Klaus Herburger
- Functional Plant Biology, Institute of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| | - Andreas Holzinger
- Functional Plant Biology, Institute of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria.
| | | |
Collapse
|
10
|
Actin-Dynamics in Plant Cells: The Function of Actin-Perturbing Substances: Jasplakinolide, Chondramides, Phalloidin, Cytochalasins, and Latrunculins. Methods Mol Biol 2016; 1365:243-61. [PMID: 26498789 DOI: 10.1007/978-1-4939-3124-8_13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This chapter gives an overview of the most common F-actin-perturbing substances that are used to study actin dynamics in living plant cells in studies on morphogenesis, motility, organelle movement, or when apoptosis has to be induced. These substances can be divided into two major subclasses: F-actin-stabilizing and -polymerizing substances like jasplakinolide and chondramides and F-actin-severing compounds like chytochalasins and latrunculins. Jasplakinolide was originally isolated form a marine sponge, and can now be synthesized and has become commercially available, which is responsible for its wide distribution as membrane-permeable F-actin-stabilizing and -polymerizing agent, which may even have anticancer activities. Cytochalasins, derived from fungi, show an F-actin-severing function and many derivatives are commercially available (A, B, C, D, E, H, J), also making it a widely used compound for F-actin disruption. The same can be stated for latrunculins (A, B), derived from red sea sponges; however the mode of action is different by binding to G-actin and inhibiting incorporation into the filament. In the case of swinholide a stable complex with actin dimers is formed resulting also in severing of F-actin. For influencing F-actin dynamics in plant cells only membrane permeable drugs are useful in a broad range. We however introduce also the phallotoxins and synthetic derivatives, as they are widely used to visualize F-actin in fixed cells. A particular uptake mechanism has been shown for hepatocytes, but has also been described in siphonal giant algae. In the present chapter the focus is set on F-actin dynamics in plant cells where alterations in cytoplasmic streaming can be particularly well studied; however methods by fluorescence applications including phalloidin and antibody staining as well as immunofluorescence-localization of the inhibitor drugs are given.
Collapse
|
11
|
Buchner O, Moser T, Karadar M, Roach T, Kranner I, Holzinger A. Formation of chloroplast protrusions and catalase activity in alpine Ranunculus glacialis under elevated temperature and different CO2/O2 ratios. PROTOPLASMA 2015; 252:1613-9. [PMID: 25701381 PMCID: PMC4628086 DOI: 10.1007/s00709-015-0778-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/09/2015] [Indexed: 05/23/2023]
Abstract
Chloroplast protrusions (CPs) have frequently been observed in plants, but their significance to plant metabolism remains largely unknown. We investigated in the alpine plant Ranunculus glacialis L. treated under various CO2 concentrations if CP formation is related to photorespiration, specifically focusing on hydrogen peroxide (H2O2) metabolism. Immediately after exposure to different CO2 concentrations, the formation of CPs in leaf mesophyll cells was assessed and correlated to catalase (CAT) and ascorbate peroxidase (APX) activities. Under natural irradiation, the relative proportion of chloroplasts with protrusions (rCP) was highest (58.7 %) after exposure to low CO2 (38 ppm) and was lowest (3.0 %) at high CO2 (10,000 ppm). The same relationship was found for CAT activity, which decreased from 34.7 nkat mg(-1) DW under low CO2 to 18.4 nkat mg(-1) DW under high CO2, while APX activity did not change significantly. When exposed to natural CO2 concentration (380 ppm) in darkness, CP formation was significantly lower (18.2 %) compared to natural solar irradiation (41.3 %). In summary, CP formation and CAT activity are significantly increased under conditions that favour photorespiration, while in darkness or at high CO2 concentration under light, CP formation is significantly lower, providing evidence for an association between CPs and photorespiration.
Collapse
Affiliation(s)
- Othmar Buchner
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria.
| | - Tim Moser
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria
| | - Matthias Karadar
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria
| | - Thomas Roach
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria
| | - Ilse Kranner
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria
| | - Andreas Holzinger
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria
| |
Collapse
|
12
|
Chloroplast protrusions in leaves of Ranunculus glacialis
L. respond significantly to different ambient conditions, but are not related to temperature stress. PLANT, CELL & ENVIRONMENT 2015; 38:1347-56. [PMID: 25393014 PMCID: PMC5098225 DOI: 10.1111/pce.12483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 05/09/2023]
Abstract
The occurrence of chloroplast protrusions (CPs) in leaves of Ranunculus glacialis
L. in response to different environmental conditions was assessed. CPs occur highly dynamically. They do not contain thylakoids and their physiological function is still largely unknown. Controlled in situ sampling showed that CP formation follows a pronounced diurnal rhythm. Between 2 and 27 °C the relative proportion of chloroplasts with CPs (rCP) showed a significant positive correlation to leaf temperature (TL; 0.793, P < 0.01), while irradiation intensity had a minor effect on rCP. In situ shading and controlled laboratory experiments confirmed the significant influence of TL. Under moderate irradiation intensity, an increase of TL up to 25 °C significantly promoted CP formation, while a further increase to 37 °C led to a decrease. Furthermore, rCP values were lower in darkness and under high irradiation intensity. Gas treatment at 2000 ppm CO2/2% O2 led to a significant decrease of rCP, suggesting a possible involvement of photorespiration in CP formation. Our findings demonstrate that in R. glacialis, CPs are neither a rare phenomenon nor a result of heat or light stress; on the contrary, they seem to be most abundant under moderate temperature and non‐stress irradiation conditions. Chloroplast protrusions (CPs) are stroma‐filled areas not containing any thylakoids. They are formed dynamically and the physiological function is still largely unknown. We conducted field and laboratory experiments on the nival plant species Ranunculus glacialisL. and demonstrate that CP formation follows a pronounced diurnal rhythm. CPs are neither a result of heat or light stress but seem to be most abundant under moderate temperature and non‐stress irradiation conditions.
Collapse
|
13
|
Delfosse K, Wozny MR, Jaipargas EA, Barton KA, Anderson C, Mathur J. Fluorescent Protein Aided Insights on Plastids and their Extensions: A Critical Appraisal. FRONTIERS IN PLANT SCIENCE 2015; 6:1253. [PMID: 26834765 PMCID: PMC4719081 DOI: 10.3389/fpls.2015.01253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/21/2015] [Indexed: 05/20/2023]
Abstract
Multi-colored fluorescent proteins targeted to plastids have provided new insights on the dynamic behavior of these organelles and their interactions with other cytoplasmic components and compartments. Sub-plastidic components such as thylakoids, stroma, the inner and outer membranes of the plastid envelope, nucleoids, plastoglobuli, and starch grains have been efficiently highlighted in living plant cells. In addition, stroma filled membrane extensions called stromules have drawn attention to the dynamic nature of the plastid and its interactions with the rest of the cell. Use of dual and triple fluorescent protein combinations has begun to reveal plastid interactions with mitochondria, the nucleus, the endoplasmic reticulum and F-actin and suggests integral roles of plastids in retrograde signaling, cell to cell communication as well as plant-pathogen interactions. While the rapid advances and insights achieved through fluorescent protein based research on plastids are commendable it is necessary to endorse meaningful observations but subject others to closer scrutiny. Here, in order to develop a better and more comprehensive understanding of plastids and their extensions we provide a critical appraisal of recent information that has been acquired using targeted fluorescent protein probes.
Collapse
|
14
|
Bobik K, Burch-Smith TM. Chloroplast signaling within, between and beyond cells. FRONTIERS IN PLANT SCIENCE 2015; 6:781. [PMID: 26500659 PMCID: PMC4593955 DOI: 10.3389/fpls.2015.00781] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/10/2015] [Indexed: 05/18/2023]
Abstract
The most conspicuous function of plastids is the oxygenic photosynthesis of chloroplasts, yet plastids are super-factories that produce a plethora of compounds that are indispensable for proper plant physiology and development. Given their origins as free-living prokaryotes, it is not surprising that plastids possess their own genomes whose expression is essential to plastid function. This semi-autonomous character of plastids requires the existence of sophisticated regulatory mechanisms that provide reliable communication between them and other cellular compartments. Such intracellular signaling is necessary for coordinating whole-cell responses to constantly varying environmental cues and cellular metabolic needs. This is achieved by plastids acting as receivers and transmitters of specific signals that coordinate expression of the nuclear and plastid genomes according to particular needs. In this review we will consider the so-called retrograde signaling occurring between plastids and nuclei, and between plastids and other organelles. Another important role of the plastid we will discuss is the involvement of plastid signaling in biotic and abiotic stress that, in addition to influencing retrograde signaling, has direct effects on several cellular compartments including the cell wall. We will also review recent evidence pointing to an intriguing function of chloroplasts in regulating intercellular symplasmic transport. Finally, we consider an intriguing yet less widely known aspect of plant biology, chloroplast signaling from the perspective of the entire plant. Thus, accumulating evidence highlights that chloroplasts, with their complex signaling pathways, provide a mechanism for exquisite regulation of plant development, metabolism and responses to the environment. As chloroplast processes are targeted for engineering for improved productivity the effect of such modifications on chloroplast signaling will have to be carefully considered in order to avoid unintended consequences on plant growth and development.
Collapse
Affiliation(s)
| | - Tessa M. Burch-Smith
- *Correspondence: Tessa M. Burch-Smith, Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, 1414 Cumberland Avenue, M407 Walters Life Science, Knoxville, TN 37932, USA,
| |
Collapse
|
15
|
Karsten U, Holzinger A. Green algae in alpine biological soil crust communities: acclimation strategies against ultraviolet radiation and dehydration. BIODIVERSITY AND CONSERVATION 2014; 23:1845-1858. [PMID: 24954980 PMCID: PMC4058318 DOI: 10.1007/s10531-014-0653-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/22/2014] [Accepted: 02/14/2014] [Indexed: 05/20/2023]
Abstract
Green algae are major components of biological soil crusts in alpine habitats. Together with cyanobacteria, fungi and lichens, green algae form a pioneer community important for the organisms that will succeed them. In their high altitudinal habitat these algae are exposed to harsh and strongly fluctuating environmental conditions, mainly intense irradiation, including ultraviolet radiation, and lack of water leading to desiccation. Therefore, green algae surviving in these environments must have evolved with either avoidance or protective strategies, as well as repair mechanisms for damage. In this review we have highlighted these mechanisms, which include photoprotection, photochemical quenching, and high osmotic values to avoid water loss, and in some groups flexibility of secondary cell walls to maintain turgor pressure even in water-limited situations. These highly specialized green algae will serve as good model organisms to study desiccation tolerance or photoprotective mechanisms, due to their natural capacity to withstand unfavorable conditions. We point out the urgent need for modern phylogenetic approaches in characterizing these organisms, and molecular methods for analyzing the metabolic changes involved in their adaptive strategies.
Collapse
Affiliation(s)
- Ulf Karsten
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Strasse 3, 18059 Rostock, Germany
| | - Andreas Holzinger
- Functional Plant Biology, Institute of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| |
Collapse
|
16
|
Wang Y, Yu B, Zhao J, Guo J, Li Y, Han S, Huang L, Du Y, Hong Y, Tang D, Liu Y. Autophagy contributes to leaf starch degradation. THE PLANT CELL 2013; 25:1383-99. [PMID: 23564204 PMCID: PMC3663275 DOI: 10.1105/tpc.112.108993] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 03/12/2013] [Accepted: 03/20/2013] [Indexed: 05/18/2023]
Abstract
Transitory starch, a major photosynthetic product in the leaves of land plants, accumulates in chloroplasts during the day and is hydrolyzed to maltose and Glc at night to support respiration and metabolism. Previous studies in Arabidopsis thaliana indicated that the degradation of transitory starch only occurs in the chloroplasts. Here, we report that autophagy, a nonplastidial process, participates in leaf starch degradation. Excessive starch accumulation was observed in Nicotiana benthamiana seedlings treated with an autophagy inhibitor and in autophagy-related (ATG) gene-silenced N. benthamiana and in Arabidopsis atg mutants. Autophagic activity in the leaves responded to the dynamic starch contents during the night. Microscopy showed that a type of small starch granule-like structure (SSGL) was localized outside the chloroplast and was sequestered by autophagic bodies. Moreover, an increased number of SSGLs was observed during starch depletion, and disruption of autophagy reduced the number of vacuole-localized SSGLs. These data suggest that autophagy contributes to transitory starch degradation by sequestering SSGLs to the vacuole for their subsequent breakdown.
Collapse
Affiliation(s)
- Yan Wang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bingjie Yu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jinping Zhao
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiangbo Guo
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Li
- Center of Biomedical Analysis, Tsinghua University, Beijing 100084, China
| | - Shaojie Han
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lei Huang
- Center of Biomedical Analysis, Tsinghua University, Beijing 100084, China
| | - Yumei Du
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Dingzhong Tang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
|
18
|
Yamane K, Mitsuya S, Taniguchi M, Miyake H. Salt-induced chloroplast protrusion is the process of exclusion of ribulose-1,5-bisphosphate carboxylase/oxygenase from chloroplasts into cytoplasm in leaves of rice. PLANT, CELL & ENVIRONMENT 2012; 35:1663-1671. [PMID: 22489666 DOI: 10.1111/j.1365-3040.2012.02516.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chloroplast protrusions (CPs) are often observed under environmental stresses, but their role has not been elucidated. The formation of CPs was observed in the leaf of rice plants treated with 75 mm NaCl for 14 d. Some CPs were almost separated from the main chloroplast body. In some CPs, inner membrane structures and crystalline inclusions were included. Similar structures surrounded by double membranes were observed in the cytoplasm and vacuole. Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) was detected in CPs and the similar structures in the cytoplasm and vacuole. These results suggest that CP is one of the pathways of Rubisco exclusion from chloroplasts into the cytoplasm under salinity, and the exclusions could be transported to vacuole for their degradation.
Collapse
Affiliation(s)
- Koji Yamane
- School of Agriculture, Kinki University, Nara 631-8505 Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
19
|
Velikanov GA, Levanov VY, Belova LP, Ponomareva AA, Il’ina TM. Adjustable channel for diffusion between vacuoles of next cells: Vacuolar symplast. ACTA ACUST UNITED AC 2012. [DOI: 10.1134/s2079086412040093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Gray JC, Hansen MR, Shaw DJ, Graham K, Dale R, Smallman P, Natesan SKA, Newell CA. Plastid stromules are induced by stress treatments acting through abscisic acid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:387-98. [PMID: 21951173 DOI: 10.1111/j.1365-313x.2011.04800.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Stromules are highly dynamic stroma-filled tubules that extend from the surface of all plastid types in all multi-cellular plants examined to date. The stromule frequency (percentage of plastids with stromules) has generally been regarded as characteristic of the cell and tissue type. However, the present study shows that various stress treatments, including drought and salt stress, are able to induce stromule formation in the epidermal cells of tobacco hypocotyls and the root hairs of wheat seedlings. Application of abscisic acid (ABA) to tobacco and wheat seedlings induced stromule formation very effectively, and application of abamine, a specific inhibitor of ABA synthesis, prevented stromule induction by mannitol. Stromule induction by ABA was dependent on cytosolic protein synthesis, but not plastid protein synthesis. Stromules were more abundant in dark-grown seedlings than in light-grown seedlings, and the stromule frequency was increased by transfer of light-grown seedlings to the dark and decreased by illumination of dark-grown seedlings. Stromule formation was sensitive to red and far-red light, but not to blue light. Stromules were induced by treatment with ACC (1-aminocyclopropane-1-carboxylic acid), the first committed ethylene precursor, and by treatment with methyl jasmonate, but disappeared upon treatment of seedlings with salicylate. These observations indicate that abiotic, and most probably biotic, stresses are able to induce the formation of stromules in tobacco and wheat seedlings.
Collapse
Affiliation(s)
- John C Gray
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Breuers FKH, Bräutigam A, Geimer S, Welzel UY, Stefano G, Renna L, Brandizzi F, Weber APM. Dynamic Remodeling of the Plastid Envelope Membranes - A Tool for Chloroplast Envelope in vivo Localizations. FRONTIERS IN PLANT SCIENCE 2012; 3:7. [PMID: 22645566 PMCID: PMC3355811 DOI: 10.3389/fpls.2012.00007] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 01/05/2012] [Indexed: 05/20/2023]
Abstract
Two envelope membranes delimit plastids, the defining organelles of plant cells. The inner and outer envelope membranes are unique in their protein and lipid composition. Several studies have attempted to establish the proteome of these two membranes; however, differentiating between them is difficult due to their close proximity. Here, we describe a novel approach to distinguish the localization of proteins between the two membranes using a straightforward approach based on live cell imaging coupled with transient expression. We base our approach on analyses of the distribution of GFP-fusions, which were aimed to verify outer envelope membrane proteomics data. To distinguish between outer envelope and inner envelope protein localization, we used AtTOC64-GFP and AtTIC40-GFP, as respective controls. During our analyses, we observed membrane proliferations and loss of chloroplast shape in conditions of protein over-expression. The morphology of the proliferations varied in correlation with the suborganellar distribution of the over-expressed proteins. In particular, while layers of membranes built up in the inner envelope membrane, the outer envelope formed long extensions into the cytosol. Using electron microscopy, we showed that these extensions were stromules, a dynamic feature of plastids. Since the behavior of the membranes is different and is related to the protein localization, we propose that in vivo studies based on the analysis of morphological differences of the membranes can be used to distinguish between inner and outer envelope localizations of proteins. To demonstrate the applicability of this approach, we demonstrated the localization of AtLACS9 to the outer envelope membrane. We also discuss protein impact on membrane behavior and regulation of protein insertion into membranes, and provide new hypotheses on the formation of stromules.
Collapse
Affiliation(s)
| | - Andrea Bräutigam
- Institute for Plant Biochemistry, Heinrich Heine University DüsseldorfDüsseldorf, Germany
| | - Stefan Geimer
- Electron Microscopy Laboratory, Institute for Cell Biology, University of BayreuthBayreuth, Germany
| | - Ulla Y. Welzel
- Electron Microscopy Laboratory, Institute for Cell Biology, University of BayreuthBayreuth, Germany
| | - Giovanni Stefano
- Plant Research Laboratory, Department of Energy, Michigan State UniversityEast Lansing, MI, USA
| | - Luciana Renna
- Plant Research Laboratory, Department of Energy, Michigan State UniversityEast Lansing, MI, USA
| | - Federica Brandizzi
- Plant Research Laboratory, Department of Energy, Michigan State UniversityEast Lansing, MI, USA
| | - Andreas P. M. Weber
- Institute for Plant Biochemistry, Heinrich Heine University DüsseldorfDüsseldorf, Germany
- *Correspondence: Andreas P. M. Weber, Institute for Plant Biochemistry, Heinrich Heine University, Geb. 26.03.01, Universitätsstrasse 1, D-40225 Düsseldorf, Germany. e-mail:
| |
Collapse
|
22
|
Schattat MH, Klösgen RB. Induction of stromule formation by extracellular sucrose and glucose in epidermal leaf tissue of Arabidopsis thaliana. BMC PLANT BIOLOGY 2011; 11:115. [PMID: 21846357 PMCID: PMC3167769 DOI: 10.1186/1471-2229-11-115] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 08/16/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Stromules are dynamic tubular structures emerging from the surface of plastids that are filled with stroma. Despite considerable progress in understanding the importance of certain cytoskeleton elements and motor proteins for stromule maintenance, their function within the plant cell is still unknown. It has been suggested that stromules facilitate the exchange of metabolites and/or signals between plastids and other cell compartments by increasing the cytosolically exposed plastid surface area but experimental evidence for the involvement of stromules in metabolic processes is not available. The frequent occurrence of stromules in both sink tissues and heterotrophic cell cultures suggests that the presence of carbohydrates in the extracellular space is a possible trigger of stromule formation. We have examined this hypothesis with induction experiments using the upper epidermis from rosette leaves of Arabidopsis thaliana as a model system. RESULTS We found that the stromule frequency rises significantly if either sucrose or glucose is applied to the apoplast by vacuum infiltration. In contrast, neither fructose nor sorbitol or mannitol are capable of inducing stromule formation which rules out the hypothesis that stromule induction is merely the result of changes in the osmotic conditions. Stromule formation depends on translational activity in the cytosol, whereas protein synthesis within the plastids is not required. Lastly, stromule induction is not restricted to the plastids of the upper epidermis but is similarly observed also with chloroplasts of the palisade parenchyma. CONCLUSIONS The establishment of an experimental system allowing the reproducible induction of stromules by vacuum infiltration of leaf tissue provides a suitable tool for the systematic analysis of conditions and requirements leading to the formation of these dynamic organelle structures. The applicability of the approach is demonstrated here by analyzing the influence of apoplastic sugar solutions on stromule formation. We found that only a subset of sugars generated in the primary metabolism of plants induce stromule formation, which is furthermore dependent on cytosolic translational activity. This suggests regulation of stromule formation by sugar sensing mechanisms and a possible role of stromules in carbohydrate metabolism and metabolite exchange.
Collapse
Affiliation(s)
- Martin Hartmut Schattat
- Laboratory of Plant Development and Interactions; Department of Molecular and Cellular Biology; University of Guelph; Guelph, ON Canada
| | - Ralf Bernd Klösgen
- Institute of Biology - Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120 Halle (Saale), Germany
| |
Collapse
|
23
|
Holzinger A, Lütz C, Karsten U. DESICCATION STRESS CAUSES STRUCTURAL AND ULTRASTRUCTURAL ALTERATIONS IN THE AEROTERRESTRIAL GREEN ALGA KLEBSORMIDIUM CRENULATUM (KLEBSORMIDIOPHYCEAE, STREPTOPHYTA) ISOLATED FROM AN ALPINE SOIL CRUST 1. JOURNAL OF PHYCOLOGY 2011; 47:591-602. [PMID: 27021989 DOI: 10.1111/j.1529-8817.2010.00921.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Klebsormidium crenulatum (Kütz.) Lokhorst (Klebsormidiophyceae, Streptophyta) isolated from an alpine soil in Tyrol, Austria, was experimentally exposed to desiccation under various relative air humidities (RH 5, 75, and >95%, ambient air 55%-60%). The effects on the structure and ultrastructure of K. crenulatum after 1, 4, or 7 d of desiccation at 5, 75, and >95% RH were investigated. The cross walls were deformed to an undulated shape, and the cell diameter was reduced to ∼60% of the control. Regardless of the RH applied, in all cases the cytoplasm appeared denser compared to that of liquid-culture-grown cells. Electron-dense particles with diameters of 0.4 μm-0.8 μm were observed in the cytoplasm, likely representing lipid droplets. The chloroplasts of desiccated samples contained a large number of plastoglobules. The number and appearance of mitochondria were not visibly altered, as also verified by 3,3' dihexyloxacarbocyanine iodine (DIOC6 ) staining. The amphiphilic styryl dye FM 1-43 resulted in staining of the plasma membrane in cells from liquid culture. In 7 d desiccated samples, a marked fluorescence is seen in ∼40%-50% of the cells, which were dead. Actin microfilaments (MFs) were drastically disrupted after desiccation; only dotlike actin batches remained. These results demonstrate that flexibility of the cell walls and maintenance of the key organelles play a key role in the tolerance of desiccation stress in K. crenulatum.
Collapse
Affiliation(s)
- Andreas Holzinger
- University of Innsbruck, Institute of Botany, Department of Physiology and Cell Physiology of Alpine Plants, Sternwartestrasse 15, A-6020 Innsbruck, AustriaUniversity of Rostock, Institute of Biological Sciences, Applied Ecology, Albert-Einstein-Strasse 3, D-18057 Rostock, Germany
| | - Cornelius Lütz
- University of Innsbruck, Institute of Botany, Department of Physiology and Cell Physiology of Alpine Plants, Sternwartestrasse 15, A-6020 Innsbruck, AustriaUniversity of Rostock, Institute of Biological Sciences, Applied Ecology, Albert-Einstein-Strasse 3, D-18057 Rostock, Germany
| | - Ulf Karsten
- University of Innsbruck, Institute of Botany, Department of Physiology and Cell Physiology of Alpine Plants, Sternwartestrasse 15, A-6020 Innsbruck, AustriaUniversity of Rostock, Institute of Biological Sciences, Applied Ecology, Albert-Einstein-Strasse 3, D-18057 Rostock, Germany
| |
Collapse
|
24
|
Schattat M, Barton K, Baudisch B, Klösgen RB, Mathur J. Plastid stromule branching coincides with contiguous endoplasmic reticulum dynamics. PLANT PHYSIOLOGY 2011; 155:1667-77. [PMID: 21273446 PMCID: PMC3091094 DOI: 10.1104/pp.110.170480] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 01/24/2011] [Indexed: 05/18/2023]
Abstract
Stromules are stroma-filled tubules extending from plastids whose rapid extension toward or retraction from other plastids has suggested a role in interplastidic communication and exchange of metabolites. Several studies point to sporadic dilations, kinks, and branches occurring along stromule length but have not elucidated the underlying basis for these occurrences. Similarly, although specific details on interacting partners have been missing, a consensus viewpoint suggests that stromules increase the interactive surface of a plastid with its cytoplasmic surroundings. Here, using live imaging, we show that the behavior of dynamic, pleomorphic stromules strongly coincides with that of cortical endoplasmic reticulum (ER) tubules. Covisualization of fluorescent protein-highlighted stromules and the ER in diverse cell types clearly suggests correlative dynamics of the two membrane-bound compartments. The extension and retraction, as well as directional changes in stromule branches occur in tandem with the behavior of neighboring ER tubules. Three-dimensional and four-dimensional volume rendering reveals that stromules that extend into cortical regions occupy channels between ER tubules possibly through multiple membrane contact sites. Our observations clearly depict coincidental stromule-ER behavior and suggest that either the neighboring ER tubules shape stromules directly or the behavior of both ER and stromules is simultaneously dictated by a shared cytoskeleton-based mechanism. These new observations strongly implicate the ER membrane in interactions with stromules and suggest that their interacting surfaces might serve as major conduits for bidirectional exchange of ions, lipids, and metabolites between the two organelles.
Collapse
Affiliation(s)
| | | | | | | | - Jaideep Mathur
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G2W1 (M.S., K.B., J.M.); Institut für Biologie-Pflanzenphysiologie, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle/Saale, Germany (B.B., R.B.K.)
| |
Collapse
|
25
|
Hanson MR, Sattarzadeh A. Stromules: recent insights into a long neglected feature of plastid morphology and function. PLANT PHYSIOLOGY 2011; 155:1486-92. [PMID: 21330493 PMCID: PMC3091082 DOI: 10.1104/pp.110.170852] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 02/16/2011] [Indexed: 05/20/2023]
Affiliation(s)
- Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|
26
|
Lütz C. Cell physiology of plants growing in cold environments. PROTOPLASMA 2010; 244:53-73. [PMID: 20521070 DOI: 10.1007/s00709-010-0161-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 04/30/2010] [Indexed: 05/09/2023]
Abstract
The life of plants growing in cold extreme environments has been well investigated in terms of morphological, anatomical, and ecophysiological adaptations. In contrast, long-term cellular or metabolic studies have been performed by only a few groups. Moreover, a number of single reports exist, which often represent just a glimpse of plant behavior. The review draws together the literature which has focused on tissue and cellular adaptations mainly to low temperatures and high light. Most studies have been done with European alpine plants; comparably well studied are only two phanerogams found in the coastal Antarctic. Plant adaptation in northern polar regions has always been of interest in terms of ecophysiology and plant propagation, but nowadays, this interest extends to the effects of global warming. More recently, metabolic and cellular investigations have included cold and UV resistance mechanisms. Low-temperature stress resistance in plants from cold environments reflects the climate conditions at the growth sites. It is now a matter of molecular analyses to find the induced genes and their products such as chaperones or dehydrins responsible for this resistance. Development of plants under snow or pollen tube growth at 0 degrees C shows that cell biology is needed to explain the stability and function of the cytoskeleton. Many results in this field are based on laboratory studies, but several publications show that it is not difficult to study cellular mechanisms with the plants adapted to a natural stress. Studies on high light and UV loads may be split in two parts. Many reports describe natural UV as harmful for the plants, but these studies were mainly conducted by shielding off natural UV (as controls). Other experiments apply additional UV in the field and have had practically no negative impact on metabolism. The latter group is supported by the observations that green overwintering plants increase their flavonoids under snow even in the absence of UV. Thus, their defense and antioxidant role dominates. Ultrastructural comparisons were unable to find special light adaptations in plants taken from polar regions vs. high alpine species. The only adaptation found at the subcellular level for most alpine and polar plants are protrusions of the chloroplast envelopes. They are seen as a demand for fast membrane transport requiring additional membrane surface area, whereby the increase in stroma volume may help to support carbohydrate formation. Plants forming such protrusions have to cope with a short vegetation time. These observations are connected to the question as to how photosynthesis works quite well even at or under zero temperatures. The interplay between plastids, mitochondria, and peroxisomes, known as photorespiration, seems to be more intense than in lowland plants. This organelle cooperation serves as a valve for a surplus in solar energy input under cold conditions. Additional metabolic acclimations are under investigation, such as the role of an alternative plastid terminal oxidase. Plants from cold environments may also be seen as ideal objects for studying the combined effects of high light plus cold resistance-from the molecular level to the whole plant adaptation. Modern instrumentation makes it possible to perform vital metabolic measurements under outdoor conditions, and research stations in remote polar and alpine areas provide support for scientists in the preparation of samples for later cellular studies in the home laboratory.
Collapse
Affiliation(s)
- Cornelius Lütz
- Institute of Botany, University of Innsbruck, Sternwartestr. 15, 6020, Innsbruck, Austria.
| |
Collapse
|
27
|
Zellnig G, Perktold A, Zechmann B. Fine structural quantification of drought-stressed Picea abies (L.) organelles based on 3D reconstructions. PROTOPLASMA 2010; 243:129-36. [PMID: 19544038 DOI: 10.1007/s00709-009-0058-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 06/05/2009] [Indexed: 05/08/2023]
Abstract
Ultrastructural investigations of cells and organelles by transmission electron microscopy (TEM) usually lead to two-dimensional information of cell structures without supplying exact quantitative data due to the limited number of investigated ultrathin sections. This can lead to misinterpretation of observed structures especially in context of their three-dimensional (3D) assembly. 3D investigations and quantitative morphometric analysis are therefore essential to get detailed information about the arrangement and the amount of subcellular structures inside a cell or organelle, respectively, especially when the plant sample was exposed to environmental stress. In the present research, serial sectioned chloroplasts, mitochondria, and peroxisomes from first year spruce needles (Picea abies (L.) Karst.) were 3D reconstructed and digitally measured using a computer-supported image analysis system in order to obtain a detailed quantitative characterization of complete cell organelles including precise morphological data of drought-induced fine structural changes. In control plants, chloroplast volume was composed of 56% stroma, 15% starch, 27% thylakoids, and 2% plastoglobules. In drought-stressed chloroplasts, the relative volume of both the thylakoids and the plastoglobules significantly increased to 37% and 12%, respectively. Chloroplasts of stressed plants differed from control plants not only in the mean thylakoid and plastoglobules content but also in the complete lack of starch grains. Mitochondria occurred in variable forms in both control and stressed samples. In stressed plants, mitochondria showed a significant smaller mean volume which was only 81% when compared with the control organelles. Peroxisomes were inconspicuous in both samples and their volume did not differ between control and drought-stressed samples. The present study shows that specific subcellular structures are subject to significant quantitative changes during drought stress of spruce needles giving a detailed insight in adaptation processes of the investigated cell organelles.
Collapse
Affiliation(s)
- Günther Zellnig
- Institute of Plant Sciences, University of Graz, Schubertstrasse 51, 8010 Graz, Austria.
| | | | | |
Collapse
|
28
|
Abstract
Microtubules are required throughout plant development for a wide variety of processes, and different strategies have been evolved to visualize them. This chapter summarizes the most effective of these methods and points out potential problems and pitfalls. We outline the freeze-shattering method for immunolabeling microtubules in aerial organs such as leaves that require mechanical permeabilization, discuss current options for live cell imaging of MTs with fluorescently tagged proteins (FPs), and provide different fixation protocols for preserving MTs for transmission electron microscopy including chemical fixation, high pressure freezing/freeze substitution, and post-fixation staining procedures for transmission electron microscopy.
Collapse
Affiliation(s)
- Andreas Holzinger
- Institute of Botany, Department of Physiology and Cell Physiology, University of Innsbruck, Innsbruck, Austria
| | | | | |
Collapse
|
29
|
Natesan SKA, Sullivan JA, Gray JC. Myosin XI is required for actin-associated movement of plastid stromules. MOLECULAR PLANT 2009; 2:1262-72. [PMID: 19995729 DOI: 10.1093/mp/ssp078] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Stromules are highly dynamic stroma-filled tubules extending from the surface of plastids and occasionally interconnecting individual plastids, allowing the movement of complex biological molecules between the interconnected plastids. Experiments with inhibitors of cytoskeleton assembly have indicated the involvement of an actin-based system in stromule movement. However, the motor protein associated with the system had not been identified. Here, we present direct evidence that myosin XI is involved in the formation and movement of stromules in tobacco leaves. Application of 2,3-butanedione 2-monoxime, an inhibitor of myosin ATPase activity, resulted in the loss of stromules from tobacco leaf epidermal cells. Transient RNA interference of myosin XI in leaves of Nicotiana benthamiana also resulted in the loss of stromules from epidermal cells, without any effect on transcripts for actin or myosin VIII. Transient expression of a GFP-tagged myosin XI tail domain in tobacco leaf epidermal cells showed that the fusion protein localized to the chloroplast envelope, as well as to mitochondria and other organelles. Our findings identify myosin XI as a key protein involved in the formation and movement of stromules.
Collapse
Affiliation(s)
- Senthil Kumar A Natesan
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | | | | |
Collapse
|
30
|
Jouhet J, Gray JC. Interaction of actin and the chloroplast protein import apparatus. J Biol Chem 2009; 284:19132-41. [PMID: 19435889 PMCID: PMC2707226 DOI: 10.1074/jbc.m109.012831] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 05/08/2009] [Indexed: 11/06/2022] Open
Abstract
Actin filaments are major components of the cytoskeleton and play numerous essential roles, including chloroplast positioning and plastid stromule movement, in plant cells. Actin is present in pea chloroplast envelope membrane preparations and is localized at the surface of the chloroplasts, as shown by agglutination of intact isolated chloroplasts by antibodies to actin. To identify chloroplast envelope proteins involved in actin binding, we have carried out actin co-immunoprecipitation and co-sedimentation experiments on detergent-solubilized pea chloroplast envelope membranes. Proteins co-immunoprecipitated with actin were identified by mass spectrometry and by Western blotting and included the Toc159, Toc75, Toc34, and Tic110 components of the TOC-TIC protein import apparatus. A direct interaction of actin with Escherichia coli-expressed Toc159, but not Toc33, was shown by co-sedimentation experiments, suggesting that Toc159 is the component of the TOC complex that interacts with actin on the cytosolic side of the outer envelope membrane. The physiological significance of this interaction is unknown, but it may play a role in the import of nuclear-encoded photosynthesis proteins.
Collapse
Affiliation(s)
- Juliette Jouhet
- From the Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | - John C. Gray
- From the Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
31
|
Hanson MR, Sattarzadeh A. Dynamic morphology of plastids and stromules in angiosperm plants. PLANT, CELL & ENVIRONMENT 2008; 31:646-57. [PMID: 18088332 DOI: 10.1111/j.1365-3040.2007.01768.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Labelling of plastids with fluorescent proteins has revealed the diversity of their sizes and shapes in different tissues of vascular plants. Stromules, stroma-filled tubules comprising thin extensions of the stroma surrounded by the double envelope membrane, have been observed to emanate from all major types of plastid, though less common on chloroplasts. In some tissue types, stromules are highly dynamic, forming, shrinking, attaching, releasing and fragmenting. Stromule formation is negatively affected by treatment of tissue with cytoskeletal inhibitors. Plastids can be connected by stromules, through which green fluorescent protein (GFP) and fluorescently tagged chloroplast protein complexes have been observed to flow. Within the highly viscous stroma, proteins traffic by diffusion as well as by an active process of directional travel, whose mechanism is unknown. In addition to exchanging materials between plastids, stromules may also serve to increase the surface area of the envelope for import and export, reduce diffusion distance between plastids and other organelles for exchange of materials, and anchor the plastid onto attachment points for proper positioning with the plant cell. Future studies should reveal how these functions may affect plants in adapting to the challenges of a changing environment.
Collapse
Affiliation(s)
- Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY 14853, USA.
| | | |
Collapse
|
32
|
Buchner O, Holzinger A, Lütz C. Effects of temperature and light on the formation of chloroplast protrusions in leaf mesophyll cells of high alpine plants. PLANT, CELL & ENVIRONMENT 2007; 30:1347-56. [PMID: 17897406 DOI: 10.1111/j.1365-3040.2007.01707.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Chloroplasts of many alpine plants have the ability to form marked, stroma-filled protrusions that do not contain thylakoids. Effects of temperature and light intensity on the frequency of chloroplasts with such protrusions in leaf mesophyll cells of nine different alpine plant species (Carex curvula All., Leontodon helveticus Merat., Oxyria digyna (L.) Hill., Poa alpina L. ssp. vivipara, Polygonum viviparum L., Ranunculus glacialis L., Ranunculus alpestris L., Silene acaulis L. and Soldanella pusilla Baumg.) covering seven different families were studied. Leaves were exposed to either darkness and a stepwise increase in temperature (10-38 degrees C) or to different light intensities (500 and 2000 micromol photons m(-2) s(-1)) and a constant temperature of 10 or 30 degrees C in a special temperature-regulated chamber. A chloroplast protrusions index characterising the relative proportion of chloroplasts with protrusions was defined. Seven of the nine species showed a significant increase in chloroplast protrusions when temperature was elevated to over 20 degrees C. In contrast, the light level did not generally affect the abundance of chloroplasts with protrusions. Chloroplast protrusions lead to a dynamic enlargement of the chloroplast surface area. They do not appear to be directly connected to a distinct photosystem II (PSII) (F(v)/F(m)) status and thus seem to be involved in secondary, not primary, photosynthetic processes.
Collapse
Affiliation(s)
- Othmar Buchner
- University of Innsbruck, Institute of Botany, Sternwartestrasse 15, A-6020 Innsbruck, Austria.
| | | | | |
Collapse
|
33
|
Lütz C, Engel L. Changes in chloroplast ultrastructure in some high-alpine plants: adaptation to metabolic demands and climate? PROTOPLASMA 2007; 231:183-92. [PMID: 17603748 DOI: 10.1007/s00709-007-0249-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 10/16/2006] [Indexed: 05/16/2023]
Abstract
The cytology of leaf cells from five different high-alpine plants was studied and compared with structures in chloroplasts from the typical high-alpine plant Ranunculus glacialis previously described as having frequent envelope plus stroma protrusions. The plants under investigation ranged from subalpine/alpine Geum montanum through alpine Geum reptans, Poa alpina var. vivipara, and Oxyria digyna to nival Cerastium uniflorum and R. glacialis. The general leaf structure (by light microscopy) and leaf mesophyll cell ultrastructure (by transmission electron microscopy [TEM]) did not show any specialized structures unique to these mountain species. However, chloroplast protrusion formation could be found in G. reptans and, to a greater extent, in O. digyna. The other species exhibited only a low percentage of such chloroplast structural changes. Occurrence of protrusions in samples of G. montanum and O. digyna growing in a mild climate at about 50 m above sea level was drastically reduced. Serial TEM sections of O. digyna cells showed that the protrusions can appear as rather broad and long appendices of plastids, often forming pocketlike structures where mitochondria and microbodies are in close vicinity to the plastid and to each other. It is suggested that some high-alpine plants may form such protrusions to facilitate fast exchange of molecules between cytoplasm and plastid as an adaptation to the short, often unfavorable vegetation period in the Alps, while other species may have developed different types of adaptation that are not expressed in ultrastructural changes of the plastids.
Collapse
Affiliation(s)
- C Lütz
- Institute of Botany, University of Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|