1
|
Langel SN, Otero CE, Steppe JT, Williams CA, Travieso T, Chang J, Webster H, Williamson LE, Crowe JE, Greenberg HB, Wu H, Hornik CP, Mansouri K, Edwards RJ, Stalls V, Acharya P, Blasi M, Permar SR. Breast milk delivery of an engineered dimeric IgA protects neonates against rotavirus. Mucosal Immunol 2025:S1933-0219(25)00002-9. [PMID: 39842610 DOI: 10.1016/j.mucimm.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/24/2025]
Abstract
Dimeric IgA (dIgA) is the dominant antibody in many mucosal tissues. It is actively transported onto mucosal surfaces as secretory IgA (sIgA) which plays an integral role in protection against enteric pathogens, particularly in young children. Therapeutic strategies that deliver engineered, potently neutralizing antibodies directly into the infant intestine through breast milk could provide enhanced antimicrobial protection for neonates. Here, we developed a murine model of maternal protective transfer against human rotavirus (RV) using systemic administration of a dimeric IgA monoclonal antibody (mAb). First, we showed that systemically administered dIgA passively transferred into breast milk and the stomach of suckling pups in a dose-dependent manner. Next, we optimized the recombinant production of a potently RV-neutralizing, VP4-specific dIgA (mAb41) antibody. We then demonstrated that systemic administration of dIgA and IgG mAb41 in lactating dams conferred protection from RV-induced diarrhea in suckling pups, with dIgA resulting in lower diarrhea incidence from IgG. Systemic delivery of engineered antimicrobial dIgA mAbs should be considered as an effective strategy for sIgA delivery to the infant gastrointestinal tract via breast milk to increase protection against enteric pathogens.
Collapse
Affiliation(s)
- Stephanie N Langel
- Department of Pathology, Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Claire E Otero
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Justin T Steppe
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Caitlin A Williams
- Weill Cornell Medicine Department of Pediatrics, Division of Infectious Disease, New York, NY, USA
| | - Tatiana Travieso
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jerry Chang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Helen Webster
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Lauren E Williamson
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pediatrics, Vanderbilt University Medical Center, Vanderbilt, TN, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pediatrics, Vanderbilt University Medical Center, Vanderbilt, TN, USA
| | - Harry B Greenberg
- Departments of Medicine and Microbiology and Immunology, Stanford University School of Medicine, Stanford CA, USA; The VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA
| | - Huali Wu
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Christoph P Hornik
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA; Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA; Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Victoria Stalls
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA; Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Maria Blasi
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA; Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
| | - Sallie R Permar
- Weill Cornell Medicine Department of Pediatrics, Division of Infectious Disease, New York, NY, USA.
| |
Collapse
|
2
|
Hua K, Liu D, Xu Q, Peng Y, Sun Y, He R, Luo R, Jin H. The role of hormones in the regulation of lactogenic immunity in porcine and bovine species. Domest Anim Endocrinol 2024; 88:106851. [PMID: 38733944 DOI: 10.1016/j.domaniend.2024.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Colostrum and milk offer a complete diet and vital immune protection for newborn mammals with developing immune systems. High immunoglobulin levels in colostrum serve as the primary antibody source for newborn piglets and calves. Subsequent milk feeding support continued local antibody protection against enteric pathogens, as well as maturation of the developing immune system and provide nutrients for newborn growth. Mammals have evolved hormonal strategies that modulate the levels of immunoglobulins in colostrum and milk to facilitate effective lactational immunity. In addition, hormones regulate the gut-mammary gland-secretory immunoglobulin A (sIgA) axis in pregnant mammals, controlling the levels of sIgA in milk, which serves as the primary source of IgA for piglets and helps them resist pathogens such as PEDV and TGEV. In the present study, we review the existing studies on the interactions between hormones and the gut-mammary-sIgA axis/lactogenic immunity in mammals and explore the potential mechanisms of hormonal regulation that have not been studied in detail, to draw attention to the role of hormones in influencing the immune response of pregnant and lactating mammals and their offspring, and highlight the effect of hormones in regulating sIgA-mediated anti-infection processes in colostrum and milk. Discussion of the relationship between hormones and lactogenic immunity may lead to a better way of improving lactogenic immunity by determining a better injection time and developing new vaccines.
Collapse
Affiliation(s)
- Kexin Hua
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Dan Liu
- China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Qianshuai Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Yuna Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Yu Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Rongrong He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China.
| |
Collapse
|
3
|
Ahmed AAQ, McKay TJM. Environmental and ecological importance of bacterial extracellular vesicles (BEVs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168098. [PMID: 37884154 DOI: 10.1016/j.scitotenv.2023.168098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/24/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Extracellular vesicles are unique structures released by the cells of all life forms. Bacterial extracellular vesicles (BEVs) were found in various ecosystems and natural habitats. They are associated with bacterial-bacterial interactions as well as host-bacterial interactions in the environment. Moreover, BEVs facilitate bacterial adaptation to a variety of environmental conditions. BEVs were found to be abundant in the environment, and therefore they can regulate a broad range of environmental processes. In the environment, BEVs can serve as tools for cell-to-cell interaction, secreting mechanism of unwanted materials, transportation, genetic materials exchange and storage, defense and protection, growth support, electron transfer, and cell-surface interplay regulation. Thus, BEVs have a great potential to be used in a variety of environmental applications such as serving as bioremediating reagents for environmental disaster mitigation as well as removing problematic biofilms and waste treatment. This research area needs to be investigated further to disclose the full environmental and ecological importance of BEVs as well as to investigate how to harness BEVs as effective tools in a variety of environmental applications.
Collapse
Affiliation(s)
- Abeer Ahmed Qaed Ahmed
- Department of Environmental Sciences, School of Ecological and Human Sustainability, College of Agriculture and Environmental Sciences, University of South Africa, P.O. Box 392, Florida, Johannesburg 1710, South Africa.
| | - Tracey Jill Morton McKay
- Department of Environmental Sciences, School of Ecological and Human Sustainability, College of Agriculture and Environmental Sciences, University of South Africa, P.O. Box 392, Florida, Johannesburg 1710, South Africa
| |
Collapse
|
4
|
Chowdhury F, Ross AG, Islam MT, McMillan NAJ, Qadri F. Diagnosis, Management, and Future Control of Cholera. Clin Microbiol Rev 2022; 35:e0021121. [PMID: 35726607 PMCID: PMC9491185 DOI: 10.1128/cmr.00211-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholera, caused by Vibrio cholerae, persists in developing countries due to inadequate access to safe water, sanitation, and hygiene. There are approximately 4 million cases and 143,000 deaths each year due to cholera. The disease is transmitted fecally-orally via contaminated food or water. Severe dehydrating cholera can progress to hypovolemic shock due to the rapid loss of fluids and electrolytes, which requires a rapid infusion of intravenous (i.v.) fluids. The case fatality rate exceeds 50% without proper clinical management but can be less than 1% with prompt rehydration and antibiotics. Oral cholera vaccines (OCVs) serve as a major component of an integrated control package during outbreaks or within zones of endemicity. Water, sanitation, and hygiene (WaSH); health education; and prophylactic antibiotic treatment are additional components of the prevention and control of cholera. The World Health Organization (WHO) and the Global Task Force for Cholera Control (GTFCC) have set an ambitious goal of eliminating cholera by 2030 in high-risk areas.
Collapse
Affiliation(s)
- Fahima Chowdhury
- International Center for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Allen G. Ross
- Rural Health Research Institute, Charles Sturt University, Orange, New South Wales, Australia
| | - Md Taufiqul Islam
- International Center for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Nigel A. J. McMillan
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Firdausi Qadri
- International Center for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
5
|
Hunagund S, Golan Y, Asiodu IV, Prahl M, Gaw SL. Effects of Vaccination Against Influenza, Pertussis, and COVID-19 on Human Milk Antibodies: Current Evidence and Implications for Health Equity. Front Immunol 2022; 13:910383. [PMID: 35903100 PMCID: PMC9314549 DOI: 10.3389/fimmu.2022.910383] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
Abstract
Human milk contains three antibody classes that confer mucosal immunity to the breastfed infant: secretory IgA (SIgA), secretory IgM (SIgM), and IgG. Influenza and pertussis vaccines administered during pregnancy induce pathogen specific SIgA and IgG responses in human milk that have been shown to protect the breastfed infant from these respiratory illnesses. In addition, mRNA vaccines against the SARS-CoV-2 virus administered during pregnancy and lactation induce anti-SARS-CoV-2 IgG and IgA responses in human milk. This review summarizes the immunologic benefits of influenza, pertussis, and COVID-19 vaccines conferred by human milk. Additionally, future research direction in human milk immunity and public health needs to improve lactational support are discussed.
Collapse
Affiliation(s)
- Soumya Hunagund
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Yarden Golan
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
| | - Ifeyinwa V. Asiodu
- Department of Family Health Care Nursing, University of California, San Francisco, San Francisco, CA, United States
| | - Mary Prahl
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
- Division of Pediatric Infectious Diseases and Global Health, University of California, San Francisco, San Francisco, CA, United States
| | - Stephanie L. Gaw
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, United States
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
6
|
Cholera Outbreaks in India, 2011–2020: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095738. [PMID: 35565133 PMCID: PMC9099871 DOI: 10.3390/ijerph19095738] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023]
Abstract
Fecal contamination of water sources and open defecation have been linked to cholera outbreaks in India. However, a systematic review on the drivers responsible for these outbreaks has yet to be published. Here, we systematically review the published literature on cholera outbreaks in India between 2011 and 2020. We searched studies in English in three databases (MEDLINE, EMBASE, and Web of Science) and the Integrated Disease Surveillance Program that tracks cholera outbreaks throughout India. Two authors independently extracted data and assessed the quality of the included studies. Quantitative data on the modes of transmission reviewed in this study were assessed for any change over time between 2011–2015 and 2016–2020. Our search retrieved 10823 records initially, out of which 81 full-text studies were assessed for eligibility. Among these 81 studies, 20 were eligible for inclusion in this review. There were 565 reported outbreaks between 2011 and 2020 that led to 45,759 cases and 263 deaths. Outbreaks occurred throughout the year; however, they exploded with monsoons (June through September). In Tamil Nadu, a typical peak of cholera outbreaks was observed from December to January. Seventy-two percent (33,089/45,759) of outbreak-related cases were reported in five states, namely Maharashtra, West Bengal, Punjab, Karnataka, and Madhya Pradesh. Analysis of these outbreaks highlighted the main drivers of cholera including contaminated drinking water and food, inadequate sanitation and hygiene (including open defecation), and direct contact between households. The comparison between 2011–2015 and 2016–2020 showed a decreasing trend in the outbreaks that arose due to damaged water pipelines. Many Indians still struggle with open defecation, sanitation, and clean water access. These issues should be addressed critically. In addition, it is essential to interrupt cholera short-cycle transmission (mediated by households, stored drinking water and foodstuffs) during an outbreak. As cholera is associated with deprivation, socio-economic development is the only long-term solution.
Collapse
|
7
|
McCormick BJJ, Richard SA, Murray-Kolb LE, Kang G, Lima AAM, Mduma E, Kosek MN, Rogawski McQuade ET, Houpt ER, Bessong P, Shrestha S, Bhutta Z, Ahmed T, Caulfield LE. Full breastfeeding protection against common enteric bacteria and viruses: results from the MAL-ED cohort study. Am J Clin Nutr 2022; 115:759-769. [PMID: 34849524 PMCID: PMC8895209 DOI: 10.1093/ajcn/nqab391] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/19/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Breastfeeding is known to reduce the risk of enteropathogen infections, but protection from specific enteropathogens is not well characterized. OBJECTIVE The aim was to estimate the association between full breastfeeding (days fed breast milk exclusively or with nonnutritive liquids) and enteropathogen detection. METHODS A total of 2145 newborns were enrolled at 8 sites, of whom 1712 had breastfeeding and key enteropathogen data through 6 mo. We focused on 11 enteropathogens: adenovirus 40/41, norovirus, sapovirus, astrovirus, and rotavirus, enterotoxigenic Escherichia coli (ETEC), Campylobacter spp., and typical enteropathogenic E. coli as well as entero-aggregative E. coli, Shigella and Cryptosporidium. Logistic regression was used to estimate the risk of enteropathogen detection in stools and survival analysis was used to estimate the timing of first detection of an enteropathogen. RESULTS Infants with 10% more days of full breastfeeding within the preceding 30 d of a stool sample were less likely to have the 3 E. coli and Campylobacter spp. detected in their stool (mean odds: 0.92-0.99) but equally likely (0.99-1.02) to have the viral pathogens detected in their stool. A 10% longer period of full breastfeeding from birth was associated with later first detection of the 3 E. coli, Campylobacter, adenovirus, astrovirus, and rotavirus (mean HRs of 0.52-0.75). The hazards declined and point estimates were not statistically significant at 3 mo. CONCLUSIONS In this large multicenter cohort study, full breastfeeding was associated with lower likelihood of detecting 4 important enteric pathogens in the first 6 mo of life. These results also show that full breastfeeding is related to delays in the first detection of some bacterial and viral pathogens in the stool. As several of these pathogens are risk factors for poor growth during childhood, this work underscores the importance of exclusive or full breastfeeding during the first 6 mo of life to optimize early health.
Collapse
Affiliation(s)
| | - Stephanie A Richard
- Fogarty International Center/National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | - Eric R Houpt
- University of Virginia, Charlottesville, VA, USA
| | | | | | | | | | - Laura E Caulfield
- The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | |
Collapse
|
8
|
Single-chain variable fragments of broadly neutralizing antibodies prevent HIV cell-cell transmission. J Virol 2021; 96:e0193421. [PMID: 34935437 DOI: 10.1128/jvi.01934-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) are able to prevent HIV infection following passive administration. Single-chain variable fragments (scFv) may have advantages over IgG as their smaller size permits improved diffusion into mucosal tissues. We have previously shown that scFv of bNAbs retain significant breadth and potency against cell-free viral transmission in a TZM-bl assay. However, scFv have not been tested for their ability to block cell-cell transmission, a model in which full-sized bNAbs lose potency. We tested 4 scFv (CAP256.25, PGT121, 3BNC117 and 10E8v4) compared to IgG, in free-virus and cell-cell neutralization assays in A3.01 cells, against a panel of seven heterologous viruses. We show that free-virus neutralization titers in the TZM-bl and A3.01 assays were not significantly different, and confirm that scFv show a 1 to 32-fold reduction in activity in the cell-free model, compared to IgG. However, whereas IgG show 3.4 to 19-fold geometric mean potency loss in cell-cell neutralization compared to free-virus transmission, scFv had more comparable activity in the two assays, with only a 1.3 to 2.3-fold reduction. Geometric mean IC50 of scFv for cell-cell transmission ranged from 0.65 μg/ml (10E8v4) to 2.3 μg/ml (3BNC117) with IgG and scFv neutralization showing similar potency against cell-associated transmission. Therefore, despite the reduced activity of scFv in cell-free assays, their retention of activity in the cell-cell format may make scFv useful for the prevention of both modes of transmission in HIV prevention studies. Importance Broadly neutralizing antibodies (bNAbs) are a major focus for passive immunization against HIV, with the recently concluded HVTN AMP (Antibody Mediated Protection) trial providing proof of concept. Most studies focus on cell-free HIV, however cell-associated virus may play a significant role in HIV infection, pathogenesis and latency. Single-chain variable fragments (scFv) of antibodies may have increased tissue penetration, and reduced immunogenicity. We previously demonstrated that scFv of four HIV-directed bNAbs (CAP256-VRC26.25, PGT121, 3BNC117 and 10E8v4) retain significant potency and breadth against cell-free HIV. As some bNAbs have been shown to lose potency against cell-associated virus, we investigated the ability of bNAb scFv to neutralize this mode of transmission. We demonstrate that unlike IgG, scFv of bNAbs are able to neutralize cell-free and cell-associated virus with similar potency. These scFv, which show functional activity in the therapeutic range, may therefore be suitable for further development as passive immunity for HIV prevention.
Collapse
|
9
|
Romero Ramírez DS, Lara Pérez MM, Carretero Pérez M, Suárez Hernández MI, Martín Pulido S, Pera Villacampa L, Fernández Vilar AM, Rivero Falero M, González Carretero P, Reyes Millán B, Roper S, García Bello MÁ. SARS-CoV-2 Antibodies in Breast Milk After Vaccination. Pediatrics 2021; 148:e2021052286. [PMID: 34408089 DOI: 10.1542/peds.2021-052286] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Passive and active immunity transfer through human milk (HM) constitutes a key element in the infant's developing immunity. Certain infectious diseases and vaccines have been described to induce changes in the immune components of HM. METHODS We conducted a prospective cohort single-institution study from February 2 to April 4, 2021. Women who reported to be breastfeeding at the time of their coronavirus disease 2019 (COVID-19) vaccination were invited to participate. Blood and milk samples were collected on day 14 after their second dose of the vaccine. Immunoglobulin G (IgG) antibodies against nucleocapsid protein as well as IgG, immunoglobulin M and immunoglobulin A (IgA) antibodies against the spike 1 protein receptor-binding domain against severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2 RBD-S1) were analyzed in both serum and HM samples. RESULTS Most of the participants (ie, 94%) received the BNT162b2 messenger RNA COVID-19 vaccine. The mean serum concentration of anti-SARS-CoV-2 RBD-S-IgG antibodies in vaccinated individuals was 3379.6 ± 1639.5 binding antibody units per mL. All vaccinated study participants had anti-SARS-CoV-2 RBD-S1-IgG, and 89% of them had anti-SARS-CoV-2 RBD-S-IgA in their milk. The antibody concentrations in the milk of mothers who were breastfeeding 24 months were significantly higher than in mothers with breastfeeding periods <24 months (P < .001). CONCLUSIONS We found a clear association between COVID-19 vaccination and specific immunoglobulin concentrations in HM. This effect was more pronounced when lactation periods exceeded 23 months. The influence of the lactation period on immunoglobulins was specific and independent of other variables.
Collapse
Affiliation(s)
- Dolores Sabina Romero Ramírez
- Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Contributed equally as co-first authors
| | - María Magdalena Lara Pérez
- Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Contributed equally as co-first authors
| | | | | | - Saúl Martín Pulido
- Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | | | | | - Mónica Rivero Falero
- Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | | | - Beatriz Reyes Millán
- Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Sabine Roper
- Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | | |
Collapse
|
10
|
Atyeo C, Alter G. The multifaceted roles of breast milk antibodies. Cell 2021; 184:1486-1499. [PMID: 33740451 DOI: 10.1016/j.cell.2021.02.031] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/07/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
Neonates are born with an immature immune system and rely on the transfer of immunity from their mothers. Maternal antibodies are transferred via the placenta and breast milk. Although the role of placentally transferred immunoglobulin G (IgG) is established, less is known about the selection of antibodies transferred via breast milk and the mechanisms by which they provide protection against neonatal disease. Evidence suggests that breast milk antibodies play multifaceted roles, preventing infection and supporting the selection of commensals and tolerizing immunity during infancy. Here, we discuss emerging data related to the importance of breast milk antibodies in neonatal immunity and development.
Collapse
Affiliation(s)
- Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
11
|
Nadimpalli ML, Bourke CD, Robertson RC, Delarocque-Astagneau E, Manges AR, Pickering AJ. Can breastfeeding protect against antimicrobial resistance? BMC Med 2020; 18:392. [PMID: 33317529 PMCID: PMC7737306 DOI: 10.1186/s12916-020-01862-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/19/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The proportion of infections among young children that are antimicrobial-resistant is increasing across the globe. Newborns may be colonized with enteric antimicrobial-resistant pathogens early in life, which is a risk factor for infection-related morbidity and mortality. Breastfeeding is actively promoted worldwide for its beneficial impacts on newborn health and gut health. However, the role of breastfeeding and human milk components in mitigating young children's carriage of antimicrobial-resistant pathogens and antibiotic resistance genes has not been comprehensively explored. MAIN BODY Here, we review how the act of breastfeeding, early breastfeeding, and/or human milk components, such as the milk microbiota, secretory IgA, human milk oligosaccharides, antimicrobial peptides, and microRNA -bearing extracellular vesicles, could play a role in preventing the establishment of antimicrobial-resistant pathogens in young children's developing gut microbiomes. We describe findings from recent human studies that support this concept. CONCLUSION Given the projected rise in global morbidity and mortality that will stem from antimicrobial-resistant infections, identifying behavioral or nutritional interventions that could decrease children's susceptibility to colonization with antimicrobial-resistant pathogens may be one strategy for protecting their health. We suggest that breastfeeding and human milk supplements deserve greater attention as potential preventive measures in the global effort to combat antimicrobial resistance, particularly in low- and middle-income settings.
Collapse
Affiliation(s)
- Maya L Nadimpalli
- Department of Civil and Environmental Engineering, Tufts University, Science & Engineering Complex, Anderson Hall, Room 204, 200 College Avenue, Medford, MA, USA. .,Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (Levy CIMAR), Tufts University, Boston, MA, USA.
| | - Claire D Bourke
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK.,Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Ruairi C Robertson
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Elisabeth Delarocque-Astagneau
- Université Paris-Saclay, UVSQ, Inserm, CESP, Team Anti-infective Evasion and Pharmacoepidemiology, 78180 Montigny, France.,AP-HP, GHU Paris Saclay University, Raymond Poincaré Hospital, Epidemiology and Public Health Department, 92380 Garches, France
| | - Amee R Manges
- School of Population and Public Health, The University of British Columbia, Vancouver, BC, Canada.,British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Amy J Pickering
- Department of Civil and Environmental Engineering, Tufts University, Science & Engineering Complex, Anderson Hall, Room 204, 200 College Avenue, Medford, MA, USA.,Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (Levy CIMAR), Tufts University, Boston, MA, USA
| |
Collapse
|
12
|
Gao X, Wang S, Zeng W, Chen S, Wu J, Lin X, Liu Y, Sun Z, Feng L. Clinical and immunologic features among COVID-19-affected mother-infant pairs: antibodies to SARS-CoV-2 detected in breast milk. New Microbes New Infect 2020; 37:100752. [PMID: 32904990 PMCID: PMC7462625 DOI: 10.1016/j.nmni.2020.100752] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 01/22/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic remains threatening to women and children, but clinical evidence regarding women during pregnancy, puerperium and lactation is limited. We assessed clinical and immunologic features of and breastfeeding advice provided to mother–infant pairs. This observational analysis was conducted in a tertiary-care centre in Wuhan, China. Pregnant patients with laboratory-confirmed COVID-19 who delivered during hospitalization were enrolled. Clinical characteristics and serial specimens of the mother–infant pairs were examined, supplemented with follow-ups regarding recovery and breastfeeding. Fourteen pregnant patients had live births and recovered well; four patients continued breastfeeding while taking precautions. No neonatal infections were observed. No infants developed COVID-19 during breastfeeding. Common maternal symptoms were fever (11/14, 78.1%) and cough (6/14, 42.9%). A pregnancy-specific symptom was abnormal foetal movement, which was noticed by three patients (21.4%). The mean virus shedding time was 9 days (standard deviation, 6 days; range, 1–22 days). The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome was not detected in breast milk or maternal vaginal secretions. Immunologic assay revealed seroconversion of IgM on day 8 after onset and IgG on day 28. Both IgM and IgG antibodies to SARS-CoV-2 were detected in breast milk, cord blood and neonatal serum. The study results suggest that passive acquisition of antibodies against SARS-CoV-2 is available by ingesting breast milk. Breastfeeding has a low risk of transmitting SARS-CoV-2 or escalating maternal disease, so continuing breastfeeding with prudent precautions is encouraged.
Collapse
Affiliation(s)
- X Gao
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - S Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - W Zeng
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - S Chen
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - J Wu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - X Lin
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Y Liu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Z Sun
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - L Feng
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
13
|
Baranova DE, Chen L, Destrempes M, Meade H, Mantis NJ. Passive Immunity to Vibrio cholerae O1 Afforded by a Human Monoclonal IgA1 Antibody Expressed in Milk. Pathog Immun 2020; 5:89-116. [PMID: 34136728 PMCID: PMC8204294 DOI: 10.20411/pai.v5i1.370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background: In cholera epidemics, the spread of disease can easily outpace vaccine
control measures. The advent of technologies enabling the expression of
recombinant proteins, including antibodies, in the milk of transgenic
animals raises the prospect of developing a self-administered and
cost-effective monoclonal antibody (MAb)-based prophylactic to reduce the
incidence of Vibrio cholerae infection. Methods: We generated a transgenic mouse line in which the heavy and light chain
variable regions (Fv) specific for a conserved epitope in the core/lipid A
of V. cholerae O1 lipopolysaccharide were expressed as a
full-length human dimeric IgA1 (ZAC-3) and secreted into the milk of
lactating dams. Milk containing ZAC-3 IgA1 was assessed for the ability to
passively protect against experimental cholera infection in a newborn mouse
model and to impact bacterial swimming behavior. Results: Newborn mice that were passively administered ZAC-3 IgA1 containing milk, or
that suckled on dams expressing ZAC-3 IgA1, were immune to experimental
cholera infection, as measured by a reduction of V.
cholerae O1 colony forming units recovered from intestinal
lysates 12 hours after oral challenge. In vitro analysis
revealed that ZAC-3 hIgA1-containing milk arrested V.
cholerae motility in soft agar and liquid media and was
effective at promoting bacterial agglutination, possibly accounting for the
observed reduction in bacterial colonization in vivo. Conclusions: These results demonstrate that consumption of milk-derived antibodies may
serve as a strategy to passively protect against cholera and possibly other
enteric pathogens.
Collapse
Affiliation(s)
- Danielle E Baranova
- Department of Biomedical Sciences; University at Albany; Albany, New York.,Division of Infectious Diseases; Wadsworth Center; New York State Department of Health; Albany, New York
| | | | | | | | - Nicholas J Mantis
- Department of Biomedical Sciences; University at Albany; Albany, New York.,Division of Infectious Diseases; Wadsworth Center; New York State Department of Health; Albany, New York
| |
Collapse
|
14
|
Mazur NI, Horsley NM, Englund JA, Nederend M, Magaret A, Kumar A, Jacobino SR, de Haan CAM, Khatry SK, LeClerq SC, Steinhoff MC, Tielsch JM, Katz J, Graham BS, Bont LJ, Leusen JHW, Chu HY. Breast Milk Prefusion F Immunoglobulin G as a Correlate of Protection Against Respiratory Syncytial Virus Acute Respiratory Illness. J Infect Dis 2019; 219:59-67. [PMID: 30107412 PMCID: PMC6284547 DOI: 10.1093/infdis/jiy477] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/01/2018] [Indexed: 01/03/2023] Open
Abstract
Background Transplacental respiratory syncytial virus (RSV) antibody transfer has been characterized, but little is known about the protective effect of breast milk RSV-specific antibodies. Serum antibodies against the prefusion RSV fusion protein (pre-F) exhibit high neutralizing activity. We investigate protection of breast milk pre-F antibodies against RSV acute respiratory infection (ARI). Methods Breast milk at 1, 3, and 6 months postpartum and midnasal swabs during infant illness episodes were collected in mother-infant pairs in Nepal. One hundred seventy-four infants with and without RSV ARI were matched 1:1 by risk factors for RSV ARI. Pre-F immunoglobulin A (IgA) and immunoglobulin G (IgG) antibody levels were measured in breast milk. Results The median breast milk pre-F IgG antibody concentration before illness was lower in mothers of infants with RSV ARI (1.4 [interquartile range {IQR}, 1.1-1.6] log10 ng/mL) than without RSV ARI (1.5 [IQR, 1.3-1.8] log10 ng/mL) (P = .001). There was no difference in median maternal pre-F IgA antibody concentrations in cases vs controls (1.7 [IQR, 0.0-2.2] log10 ng/mL vs 1.7 [IQR, 1.2-2.2] log10 ng/mL, respectively; P = .58). Conclusions Low breast milk pre-F IgG antibodies before RSV ARI support a potential role for pre-F IgG as a correlate of protection against RSV ARI. Induction of breast milk pre-F IgG may be a mechanism of protection for maternal RSV vaccines.
Collapse
Affiliation(s)
- Natalie I Mazur
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands.,Department of Medicine, University of Washington, Seattle.,Immunotherapy Laboratory, Laboratory for Translational Immunology, University Medical Center Utrecht, The Netherlands
| | | | - Janet A Englund
- Department of Pediatrics, University of Washington, Seattle Children's Research Institute
| | - Maaike Nederend
- Immunotherapy Laboratory, Laboratory for Translational Immunology, University Medical Center Utrecht, The Netherlands
| | - Amalia Magaret
- Department of Laboratory Medicine, University of Washington, Seattle.,Department of Biostatistics, University of Washington, Seattle
| | - Azad Kumar
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Shamir R Jacobino
- Immunotherapy Laboratory, Laboratory for Translational Immunology, University Medical Center Utrecht, The Netherlands
| | - Cornelis A M de Haan
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Steven C LeClerq
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - James M Tielsch
- Department of Global Health, George Washington University, Washington, District of Columbia
| | - Joanne Katz
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Louis J Bont
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, The Netherlands
| | - Jeanette H W Leusen
- Immunotherapy Laboratory, Laboratory for Translational Immunology, University Medical Center Utrecht, The Netherlands
| | - Helen Y Chu
- Department of Medicine, University of Washington, Seattle
| |
Collapse
|
15
|
Tokuhara D. Challenges in developing mucosal vaccines and antibodies against infectious diarrhea in children. Pediatr Int 2018; 60:214-223. [PMID: 29290097 DOI: 10.1111/ped.13497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/14/2017] [Accepted: 12/26/2017] [Indexed: 12/24/2022]
Abstract
Infectious diarrhea in children can be life-threatening and imposes a large economic burden on healthcare systems, therefore more effective prophylactic and therapeutic drugs are needed urgently. Because most of the pathogens responsible for childhood diarrhea infect the gastrointestinal mucosa, providing protective immunity at the mucosal surface is an ideal way to control pathogen invasion and toxic activity. Mucosal (e.g. oral, nasal) vaccines are superior to systemic (subcutaneous or intramuscular) vaccination for conferring both mucosal and systemic pathogen-specific immune responses. Therefore, great efforts has been focused on the development of cost-effective mucosal vaccines for the past 50 years. Recent progress in plant genetic engineering has revolutionized the production of inexpensive and safe recombinant vaccine antigens. For example, rice plant biotechnology has facilitated the development of a cold-chain-free rice-based oral subunit vaccine against Vibrio cholerae. Furthermore, this technology has led to the creation of a rice-based oral antibody for prophylaxis and treatment of rotavirus gastroenteritis. This review summarizes current perspectives regarding the mucosal immune system and the development of mucosal vaccines and therapeutic antibodies, particularly rice-based products, and discusses future prospects regarding mucosal vaccines for children.
Collapse
Affiliation(s)
- Daisuke Tokuhara
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Abenoku, Osaka, Japan
| |
Collapse
|
16
|
Debes AK, Ali M, Azman AS, Yunus M, Sack DA. Cholera cases cluster in time and space in Matlab, Bangladesh: implications for targeted preventive interventions. Int J Epidemiol 2018; 45:2134-2139. [PMID: 27789673 DOI: 10.1093/ije/dyw267] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2016] [Indexed: 11/12/2022] Open
Abstract
Background : Cholera remains a serious public health threat in Asia, Africa and in parts of the Americas. Three World health Organization (WHO) pre-qualified oral cholera vaccines are now available but their supply is limited, so current supplies must be administered strategically. This requires an improved understanding of disease transmission and control strategies. Methods : We used demographics and disease surveillance data collected from 1991 to 2000 in Matlab, Bangladesh, to estimate the spatial and temporal extent of the zone of increased risk around cholera cases. Specifically, we compare the cholera incidence among individuals living close to cholera cases with that among individuals living close to those without medically-attended cholera in this rural endemic setting. Results : Those living within 50 m of a confirmed cholera case had 36 times (95% confidence interval: 23-56) the risk of becoming a cholera case in the first 3 days (after case presentation) compared with risk elsewhere in the community. The relative risk gradually declined in space and time, but remained significantly high up to 450 me away within 3 days of case presentation, and up to 150 m away within 23 days from the date of presentation of the case. Conclusion : These findings suggest that, if conducted rapidly, vaccinating individuals living close to a case (ring vaccination) could be an efficient and effective strategy to target vaccine to a high-risk population in an endemic setting.
Collapse
Affiliation(s)
- Amanda K Debes
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mohammad Ali
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew S Azman
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mohammad Yunus
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - David A Sack
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
17
|
Parker EPK, Ramani S, Lopman BA, Church JA, Iturriza-Gómara M, Prendergast AJ, Grassly NC. Causes of impaired oral vaccine efficacy in developing countries. Future Microbiol 2018; 13:97-118. [PMID: 29218997 PMCID: PMC7026772 DOI: 10.2217/fmb-2017-0128] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/13/2017] [Indexed: 12/12/2022] Open
Abstract
Oral vaccines are less immunogenic when given to infants in low-income compared with high-income countries, limiting their potential public health impact. Here, we review factors that might contribute to this phenomenon, including transplacental antibodies, breastfeeding, histo blood group antigens, enteric pathogens, malnutrition, microbiota dysbiosis and environmental enteropathy. We highlight several clear risk factors for vaccine failure, such as the inhibitory effect of enteroviruses on oral poliovirus vaccine. We also highlight the ambiguous and at times contradictory nature of the available evidence, which undoubtedly reflects the complex and interconnected nature of the factors involved. Mechanisms responsible for diminished immunogenicity may be specific to each oral vaccine. Interventions aiming to improve vaccine performance may need to reflect the diversity of these mechanisms.
Collapse
Affiliation(s)
- Edward PK Parker
- Department of Infectious Disease Epidemiology, St Mary's Campus, Imperial College London, London, W2 1PG, UK
| | | | - Benjamin A Lopman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - James A Church
- Centre for Paediatrics, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Miren Iturriza-Gómara
- Centre for Global Vaccine Research, Institute of Infection & Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Andrew J Prendergast
- Centre for Paediatrics, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Nicholas C Grassly
- Department of Infectious Disease Epidemiology, St Mary's Campus, Imperial College London, London, W2 1PG, UK
| |
Collapse
|
18
|
Clemens JD, Nair GB, Ahmed T, Qadri F, Holmgren J. Cholera. Lancet 2017; 390:1539-1549. [PMID: 28302312 DOI: 10.1016/s0140-6736(17)30559-7] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/01/2016] [Accepted: 12/15/2016] [Indexed: 12/30/2022]
Abstract
Cholera is an acute, watery diarrhoeal disease caused by Vibrio cholerae of the O1 or O139 serogroups. In the past two centuries, cholera has emerged and spread from the Ganges Delta six times and from Indonesia once to cause global pandemics. Rational approaches to the case management of cholera with oral and intravenous rehydration therapy have reduced the case fatality of cholera from more than 50% to much less than 1%. Despite improvements in water quality, sanitation, and hygiene, as well as in the clinical treatment of cholera, the disease is still estimated to cause about 100 000 deaths every year. Most deaths occur in cholera-endemic settings, and virtually all deaths occur in developing countries. Contemporary understanding of immune protection against cholera, which results from local intestinal immunity, has yielded safe and protective orally administered cholera vaccines that are now globally stockpiled for use in the control of both epidemic and endemic cholera.
Collapse
Affiliation(s)
- John D Clemens
- International Centre for Diarrhoeal Disease Research, Bangladesh, Centre for Health and Population Research, Dhaka, Bangladesh; UCLA Fielding School of Public Health, Los Angeles, CA, USA; Korea University School of Medicine, Seoul, Korea.
| | | | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh, Centre for Health and Population Research, Dhaka, Bangladesh
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh, Centre for Health and Population Research, Dhaka, Bangladesh
| | | |
Collapse
|
19
|
Holmgren J, Parashar UD, Plotkin S, Louis J, Ng SP, Desauziers E, Picot V, Saadatian-Elahi M. Correlates of protection for enteric vaccines. Vaccine 2017; 35:3355-3363. [PMID: 28504192 PMCID: PMC11342448 DOI: 10.1016/j.vaccine.2017.05.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/04/2017] [Accepted: 05/03/2017] [Indexed: 12/26/2022]
Abstract
An immunological Correlate of Protection (CoP) is an immune response that is statistically interrelated with protection. Identification of CoPs for enteric vaccines would help design studies to improve vaccine performance of licensed vaccines in low income settings, and would facilitate the testing of future vaccines in development that might be more affordable. CoPs are lacking today for most existing and investigational enteric vaccines. In order to share the latest information on CoPs for enteric vaccines and to discuss novel approaches to correlate mucosal immune responses in humans with protection, the Foundation Mérieux organized an international conference of experts where potential CoPs for vaccines were examined using case-studies for both bacterial and viral enteric pathogens. Experts on the panel concluded that to date, all established enteric vaccine CoPs, such as those for hepatitis A, Vi typhoid and poliovirus vaccines, are based on serological immune responses even though these may poorly reflect the relevant gut immune responses or predict protective efficacy. Known CoPs for cholera, norovirus and rotavirus could be considered as acceptable for comparisons of similarly composed vaccines while more work is still needed to establish CoPs for the remaining enteric pathogens and their candidate vaccines. Novel approaches to correlate human mucosal immune responses with protection include the investigation of gut-originating antibody-secreting cells (ASCs), B memory cells and follicular helper T cells from samples of peripheral blood during their recirculation.
Collapse
Affiliation(s)
- Jan Holmgren
- University of Gothenburg Vaccine Research Institute, Box 435, S-40530 Gothenburg, Sweden.
| | - Umesh D Parashar
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta GA, United States.
| | - Stanley Plotkin
- University of Pennsylvania and Vaxconsult, LLC, United States.
| | - Jacques Louis
- Fondation Mérieux, 17 rue Bourgelat, 69002 Lyon, France.
| | - Su-Peing Ng
- Sanofi Pasteur, Global Medical Affairs, 2 Avenue du Pont Pasteur, 69367 Lyon cedex 07, France.
| | - Eric Desauziers
- Sanofi Pasteur, Global Medical Affairs, 2 Avenue du Pont Pasteur, 69367 Lyon cedex 07, France.
| | | | - Mitra Saadatian-Elahi
- Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, 5 Place d'Arsonval, 69437 Lyon cedex 03, France.
| |
Collapse
|
20
|
Kinetics of antibody-secreting cell and fecal IgA responses after oral cholera vaccination in different age groups in a cholera endemic country. Vaccine 2017; 35:321-328. [DOI: 10.1016/j.vaccine.2016.11.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/10/2016] [Accepted: 11/13/2016] [Indexed: 11/20/2022]
|
21
|
Hibel LC, Schiltz H. Maternal and Infant Secretory Immunoglobulin A across the Peripartum Period. J Hum Lact 2016; 32:NP44-51. [PMID: 26467670 DOI: 10.1177/0890334415610578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 09/16/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Salivary secretory immunoglobulin A (sIgA) concentrations change over early infancy. The primary immunoglobulin in breast milk is sIgA, however, no study has examined the role of maternal sIgA in relation to infant salivary sIgA. OBJECTIVES This study aimed to examine within-source associations and mean level changes of maternal and infant sIgA across the first 6 months of life, to examine the interrelations between maternal and infant sIgA across the first 6 months of life, and to determine the association between breastfeeding and infant sIgA. METHODS Participants were a convenience sample of 51 mother-infant dyads. Salivary sIgA was collected from the mother in the third trimester. Infant and maternal salivary and maternal breast milk sIgA was collected at approximately 1, 3, and 6 months postpartum. RESULTS Maternal salivary sIgA showed no mean level change across the visits, and levels were moderately associated over time. Breast milk sIgA was moderately associated over time; infant salivary sIgA was weakly associated over time. Both breast milk and infant sIgA levels decreased from 1 to 3 months postpartum. Maternal salivary sIgA was not related to infant or breast milk sIgA. Breastfed infants had lower levels of salivary sIgA. Likewise, higher concentrations of breast milk sIgA were related to lower concentrations of infant sIgA. CONCLUSION Maternal salivary sIgA is highly stable over the peripartum period, whereas breast milk and infant salivary sIgA was variable. Infant secretory IgA development does not depend positively on maternal salivary or breast milk sIgA.
Collapse
Affiliation(s)
- Leah C Hibel
- Department of Human Ecology, University of California, Davis, CA, USA
| | - Hillary Schiltz
- Department of Human Ecology, University of California, Davis, CA, USA
| |
Collapse
|
22
|
Lee PX, Ong LC, Libau EA, Alonso S. Relative Contribution of Dengue IgG Antibodies Acquired during Gestation or Breastfeeding in Mediating Dengue Disease Enhancement and Protection in Type I Interferon Receptor-Deficient Mice. PLoS Negl Trop Dis 2016; 10:e0004805. [PMID: 27341339 PMCID: PMC4920417 DOI: 10.1371/journal.pntd.0004805] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/04/2016] [Indexed: 01/22/2023] Open
Abstract
Dengue virus (DENV) causes a spectrum of diseases ranging from self-limiting dengue fever to severe conditions such as haemorrhagic fever and dengue shock syndrome. Antibody-dependent enhancement (ADE) is thought to explain the occurrence of severe dengue whereby pre-existing binding but non-neutralising antibodies enhance DENV infection. The ADE phenomenon is supported by epidemiological findings that infants that born to dengue immune mothers are at greater risk to develop severe dengue upon primary infection. The role of maternally acquired dengue-specific antibodies in disease enhancement was recently recapitulated in a mouse model where mice born to DENV1-immune mothers experienced enhanced disease severity upon DENV2 infection. Here, this study investigates the relative contribution of maternal dengue-specific antibodies acquired during gestation and breastfeeding in dengue disease. Using a surrogate breastfeeding mother experimental approach, we showed that majority of the maternal dengue-specific antibodies were acquired during breastfeeding and conferred an extended enhancement window. On the other hand, in the context of homologous infection, breastfeeding conferred protection. Furthermore, measurement of dengue-specific antibody titres over time in mice born to dengue immune mothers revealed a biphasic pattern of antibody decay as reported in humans. Our work provides evidence of the potential contribution of breast milk-acquired dengue-specific IgG antibodies in enhancement and protection against dengue. Should such contribution be established in humans as well, it may have important implications for the development of guidelines to dengue-immune breastfeeding mothers. Epidemiological observations showed that 5–9 month old infants born to dengue immune mothers have increased risk of developing severe disease upon primary dengue infection. This disease enhancement has been associated with the presence of binding but non-neutralizing maternal dengue antibodies. The recent development of experimental dengue mouse models involving maternal antibodies supports their role in both disease enhancement and protection. Here, we examined the contribution of maternal antibodies acquired during gestation and breastfeeding in disease enhancement and protection. Our findings support that majority of maternal IgG antibodies circulating in mice born to dengue immune mothers are acquired from breast milk. As such, we showed that breastfeeding conferred extended window of enhancement or protection. These findings provide the first experimental evidence for a role of breast milk dengue antibodies in mediating dengue infection outcome. This may help develop guidelines to dengue immune breastfeeding mothers.
Collapse
Affiliation(s)
- Pei Xuan Lee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Li Ching Ong
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Eshele Anak Libau
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Sylvie Alonso
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
23
|
Cabinian A, Sinsimer D, Tang M, Zumba O, Mehta H, Toma A, Sant’Angelo D, Laouar Y, Laouar A. Transfer of Maternal Immune Cells by Breastfeeding: Maternal Cytotoxic T Lymphocytes Present in Breast Milk Localize in the Peyer's Patches of the Nursed Infant. PLoS One 2016; 11:e0156762. [PMID: 27285085 PMCID: PMC4902239 DOI: 10.1371/journal.pone.0156762] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/19/2016] [Indexed: 12/22/2022] Open
Abstract
Despite our knowledge of the protective role of antibodies passed to infants through breast milk, our understanding of immunity transfer via maternal leukocytes is still limited. To emulate the immunological interface between the mother and her infant while breast-feeding, we used murine pups fostered after birth onto MHC-matched and MHC-mismatched dams. Overall, data revealed that: 1) Survival of breast milk leukocytes in suckling infants is possible, but not significant after the foster-nursing ceases; 2) Most breast milk lymphocytes establish themselves in specific areas of the intestine termed Peyer’s patches (PPs); 3) While most leukocytes in the milk bolus were myeloid cells, the majority of breast milk leukocytes localized to PPs were T lymphocytes, and cytotoxic T cells (CTLs) in particular; 4) These CTLs exhibit high levels of the gut-homing molecules α4β7 and CCR9, but a reduced expression of the systemic homing marker CD62L; 5) Under the same activation conditions, transferred CD8 T cells through breast milk have a superior capacity to produce potent cytolytic and inflammatory mediators when compared to those generated by the breastfed infant. It is therefore possible that maternal CTLs found in breast milk are directed to the PPs to compensate for the immature adaptive immune system of the infant in order to protect it against constant oral infectious risks during the postnatal phase.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Animals, Suckling
- Cells, Cultured
- Chemotaxis, Leukocyte/physiology
- Female
- Immunity, Maternally-Acquired/immunology
- Immunization, Passive/methods
- Lactation/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Milk/cytology
- Milk/immunology
- Mothers
- Peyer's Patches/cytology
- Peyer's Patches/immunology
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/physiology
Collapse
Affiliation(s)
- Allison Cabinian
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Daniel Sinsimer
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, United States of America
| | - May Tang
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Osvaldo Zumba
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Hetali Mehta
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Annmarie Toma
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Derek Sant’Angelo
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Yasmina Laouar
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
- * E-mail: (AL); (YL)
| | - Amale Laouar
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, United States of America
- * E-mail: (AL); (YL)
| |
Collapse
|
24
|
Cakebread JA, Humphrey R, Hodgkinson AJ. Immunoglobulin A in Bovine Milk: A Potential Functional Food? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7311-7316. [PMID: 26165692 DOI: 10.1021/acs.jafc.5b01836] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Immunoglobulin A (IgA) is an anti-inflammatory antibody that plays a critical role in mucosal immunity. It is found in large quantities in human milk, but there are lower amounts in bovine milk. In humans, IgA plays a significant role in providing protection from environmental pathogens at mucosal surfaces and is a key component for the establishment and maintenance of intestinal homeostasis via innate and adaptive immune mechanisms. To date, many of the dairy-based functional foods are derived from bovine colostrum, targeting the benefits of IgG. IgA has a higher pathogenic binding capacity and greater stability against proteolytic degradation when ingested compared with IgG. This provides IgA-based products greater potential in the functional food market that has yet to be realized.
Collapse
Affiliation(s)
| | - Rex Humphrey
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| | | |
Collapse
|
25
|
|
26
|
Desai SN, Cravioto A, Sur D, Kanungo S. Maximizing protection from use of oral cholera vaccines in developing country settings: an immunological review of oral cholera vaccines. Hum Vaccin Immunother 2014; 10:1457-65. [PMID: 24861554 PMCID: PMC5396246 DOI: 10.4161/hv.29199] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 04/30/2014] [Accepted: 05/10/2014] [Indexed: 11/19/2022] Open
Abstract
When oral vaccines are administered to children in lower- and middle-income countries, they do not induce the same immune responses as they do in developed countries. Although not completely understood, reasons for this finding include maternal antibody interference, mucosal pathology secondary to infection, malnutrition, enteropathy, and previous exposure to the organism (or related organisms). Young children experience a high burden of cholera infection, which can lead to severe acute dehydrating diarrhea and substantial mortality and morbidity. Oral cholera vaccines show variations in their duration of protection and efficacy between children and adults. Evaluating innate and memory immune response is necessary to understand V. cholerae immunity and to improve current cholera vaccine candidates, especially in young children. Further research on the benefits of supplementary interventions and delivery schedules may also improve immunization strategies.
Collapse
Affiliation(s)
| | | | - Dipika Sur
- National Institute of Cholera and Enteric Diseases; Kolkata, India
| | - Suman Kanungo
- National Institute of Cholera and Enteric Diseases; Kolkata, India
| |
Collapse
|
27
|
Charles M, Delva GG, Boutin J, Severe K, Peck M, Mabou MM, Wright PF, Pape JW. Importance of cholera and other etiologies of acute diarrhea in post-earthquake Port-au-Prince, Haiti. Am J Trop Med Hyg 2014; 90:511-7. [PMID: 24445205 DOI: 10.4269/ajtmh.13-0514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We estimated the proportion of diarrhea attributable to cholera and other pathogens during the rainy and dry seasons in patients seen in two urban health settings: a cholera treatment center (CTC) and oral rehydration points (ORPs). During April 1, 2011-November 30, 2012, stool samples were collected from 1,206 of 10,845 patients who came to the GHESKIO CTC or to the community ORPs with acute diarrhea, cultured for Vibrio cholerae, and tested by multiplex polymerase reaction. Vibrio cholerae was isolated from 409 (41.8%, 95% confidence interval [CI] = 38.7-44.9%) of the 979 specimens from the CTC and in 45 (19.8%, 95% CI = 14.8-25.6%) of the 227 specimens from the ORPs. Frequencies varied from 21.4% (95% CI = 16.6-26.7%) during the dry season to 46.8% (95% CI = 42.9-50.7%) in the rainy season. Shigella, enterotoxigenic Escherichia coli, rotavirus, and Cryptosporidium were frequent causes of diarrhea in children less than five years of age.
Collapse
Affiliation(s)
- Macarthur Charles
- Les Centres GHESKIO, Port-au-Prince, Haiti; Division of Infectious Disease and International Health, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire; Division of Infectious Diseases, Center for Global Health, Weill Cornell Medical College, New York, New York
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Provenzano D, Kovác P, Wade WF. The ABCs (Antibody, B Cells, and Carbohydrate Epitopes) of Cholera Immunity: Considerations for an Improved Vaccine. Microbiol Immunol 2013; 50:899-927. [PMID: 17179659 DOI: 10.1111/j.1348-0421.2006.tb03866.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cholera, a diarrheal disease, is known for explosive epidemics that can quickly kill thousands. Endemic cholera is a seasonal torment that also has a significant mortality. Not all nations with extensive rural communities can achieve the required infrastructure or behavioral changes to prevent epidemic or endemic cholera. For some communities, a single-dose cholera vaccine that protects those at risk is the most efficacious means to reduce morbidity and mortality. It is clear that our understanding of what a protective cholera immune response is has not progressed at the rate our understanding of the pathogenesis and molecular biology of cholera infection has. This review addresses V. cholerae lipopolysaccharide (LPS)-based immunogens because LPS is the only immunogen proven to induce protective antibody in humans. We discuss the role of anti-LPS antibodies in protection from cholera, the importance and the potential role of B cell subsets in protection that is based on their anatomical location and the intrinsic antigen-receptor specificity of various subsets is introduced.
Collapse
Affiliation(s)
- Daniele Provenzano
- Department of Biological Sciences, University of Texas-Brownsville, Brownsville, TX 78520, USA
| | | | | |
Collapse
|
29
|
Jhaveri R. Protection against hepatitis C and other enveloped viruses? Another reason why "breast is best". J Infect Dis 2013; 208:1932-3. [PMID: 24068701 DOI: 10.1093/infdis/jit521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ravi Jhaveri
- Division of Pediatric Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill
| |
Collapse
|
30
|
Kottler R, Mank M, Hennig R, Müller-Werner B, Stahl B, Reichl U, Rapp E. Development of a high-throughput glycoanalysis method for the characterization of oligosaccharides in human milk utilizing multiplexed capillary gel electrophoresis with laser-induced fluorescence detection. Electrophoresis 2013; 34:2323-36. [PMID: 23716415 DOI: 10.1002/elps.201300016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/17/2013] [Accepted: 04/19/2013] [Indexed: 12/29/2022]
Abstract
During the last decade, enormous progress regarding knowledge about composition and properties of human milk (HM) has been made. Besides nutrition, the three macro-nutrients: proteins, lipids, and carbohydrates combine a large variety of properties and functions. Especially, complex oligosaccharides emerge as important dietary factors during early life with multiple functions. The characterization of these HM oligosaccharides (HMOS) within the total carbohydrate fraction is prerequisite to understand the relationship between milk composition and biological effects. Therefore, extended studies of large donor cohorts and thus, new high-throughput glycoanalytical methods are needed. The developed method comprises sample preparation, as well as analysis of HMOS by multiplexed CGE with LIF detection (xCGE-LIF). Via a respective database the generated "fingerprints" (normalized electropherograms) could be used for structural elucidation of HMOS. The method was tested on HM samples from five different donors, partly sampled as a series of lactation time points. HMOS could be easily identified and quantified. Consequently, secretor and Lewis status of the donors could be determined, milk typing could be performed and quantitative changes could be monitored along lactation time course. The developed xCGE-LIF based "real" high-throughput HMOS analysis method enables qualitative and quantitative high-performance profiling of the total carbohydrate fraction composition of large sets of samples.
Collapse
Affiliation(s)
- Robert Kottler
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Khan AM, Faruque ASG, Hossain MS. Isolation ofVibrio choleraefrom neonates admitted to an urban diarrhoeal diseases hospital in Bangladesh. ACTA ACUST UNITED AC 2013; 25:179-82. [PMID: 16156982 DOI: 10.1179/146532805x58102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND Very little is known about Vibrio cholerae infection in neonates with diarrhoea. AIM The aim was to examine the frequency of enteropathogenic bacteria, especially Vibrio cholerae, in stool specimens from neonates with diarrhoea. METHODS We reviewed the hospital records of 240 neonates admitted with diarrhoea to the Dhaka Hospital of ICDDR,B: Centre for Health and Population Research, Dhaka, Bangladesh during January-December 2001. On admission, rectal swabs or stool specimens were plated directly onto taurocholate-tellurite-gelatin agar, Salmonella-Shigella agar and MacConkey's agar for culture of Vibrio cholerae, Shigella and Salmonella spp. RESULTS A single bacterial enteric pathogen was detected in 71 neonates, multiple pathogens in 12, and stool samples of 157 neonates revealed no pathogen. The identified enteropathogens were as follows: V. cholerae in 42 neonates, Shigella spp in 22, Salmonella spp in 8, Aeromonas spp in 9 and Hafnia alvei in 2. CONCLUSION V. cholerae is not uncommon in neonates presenting with diarrhoea in cholera-endemic countries.
Collapse
Affiliation(s)
- A M Khan
- Clinical Sciences Division, ICDDR,B (International Centre for Diarrhoeal Diseases Research, Bangladesh): Centre for Health and Population Research, Dhaka, Bangladesh.
| | | | | |
Collapse
|
32
|
Levine MM, Robins-Browne RM. Factors that explain excretion of enteric pathogens by persons without diarrhea. Clin Infect Dis 2013; 55 Suppl 4:S303-11. [PMID: 23169942 PMCID: PMC3502317 DOI: 10.1093/cid/cis789] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Excretion of enteropathogens by subjects without diarrhea influences our appreciation of the role of these pathogens as etiologic agents. Characteristics of the pathogens and host and environmental factors help explain asymptomatic excretion of diarrheal pathogens by persons without diarrhea. After causing acute diarrhea followed by clinical recovery, some enteropathogens are excreted asymptomatically for many weeks. Thus, in a prevalence survey of persons without diarrhea, some may be excreting pathogens from diarrheal episodes experienced many weeks earlier. Volunteer challenges with Vibrio cholerae O1, enterotoxigenic Escherichia coli (ETEC), enteropathogenic E. coli, Campylobacter jejuni, and Giardia lamblia document heterogeneity among enteropathogen strains, with some inexplicably not eliciting diarrhea. The immune host may not manifest diarrhea following ingestion of a pathogen but may nevertheless asymptomatically excrete. Some human genotypes render them less susceptible to symptomatic or severe diarrheal infection with certain pathogens such as Vibrio cholerae O1 and norovirus. Pathogens in stools of individuals without diarrhea may reflect recent ingestion of inocula too small to cause disease in otherwise susceptible hosts or of animal pathogens (eg, bovine or porcine ETEC) that do not cause human illness.
Collapse
Affiliation(s)
- Myron M Levine
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | |
Collapse
|
33
|
Dey SK, Chisti MJ, Das SK, Shaha CK, Ferdous F, Farzana FD, Ahmed S, Malek MA, Faruque ASG, Ahmed T, Salam MA. Characteristics of diarrheal illnesses in non-breast fed infants attending a large urban diarrheal disease hospital in Bangladesh. PLoS One 2013; 8:e58228. [PMID: 23520496 PMCID: PMC3592889 DOI: 10.1371/journal.pone.0058228] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/01/2013] [Indexed: 01/15/2023] Open
Abstract
Background Lack of breast feeding is associated with higher morbidity and case-fatality from both bacterial and viral etiologic diarrheas. However, there is very limited data on the characteristics of non–breastfed infants attending hospital with diarrheal illnesses caused by common bacterial and viral pathogens. Our objective was to assess the impact of lack of breast feeding on diarrheal illnesses in infants living in urban Bangladesh. Methods We extracted data of infants (0–11 months) for analyses from the data archive of Diarrheal Disease Surveillance System (DDSS) of the Dhaka Hospital of icddr,b for the period 2008–2011. Results The prevalence of breastfeeding in infants attending the hospital with diarrhea reduced from 31% in 2008 to 17% in 2011, with corresponding increase in the prevalence of non-breastfed (chi square for trend <0.001). Among breastfed infants, the incidence of rotavirus infections was higher (43%) among the 0–5 months age group than infants aged 9–11 months (18%). On the other hand, among non-breastfed infants, the incidence of rotavirus infections was much higher (82%) among 9–11 months old infants compared to those in 0–5 months age group (57%) (chi square for trend <0.001). Very similar trends were also observed in the incidence of cholera and ETEC diarrheas among different age groups of breastfed and non-breastfed infants (chi square for trend 0.020 and 0.001 respectively). However, for shigellosis, the statistical difference remained unchanged among both the groups (chi square for trend 0.240). Conclusion and Significance We observed protective role of breastfeeding in infantile diarrhea caused by the major viral and common bacterial agents. These findings underscore the importance of promotion and expansion of breastfeeding campaigns in Bangladesh and elsewhere.
Collapse
MESH Headings
- Bangladesh/epidemiology
- Bottle Feeding/adverse effects
- Breast Feeding
- Cholera/epidemiology
- Cholera/etiology
- Cholera/therapy
- Diarrhea, Infantile/epidemiology
- Diarrhea, Infantile/etiology
- Escherichia coli Infections/epidemiology
- Escherichia coli Infections/etiology
- Escherichia coli Infections/therapy
- Female
- Hospitals, Urban
- Humans
- Infant
- Infant, Newborn
- Infant, Newborn, Diseases/epidemiology
- Infant, Newborn, Diseases/etiology
- Infant, Newborn, Diseases/therapy
- Male
Collapse
Affiliation(s)
- Sanjoy Kumer Dey
- Department of Neonatology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Mohammod Jobayer Chisti
- Centre for Nutrition and Food Security (CNFS), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Sumon Kumar Das
- Centre for Nutrition and Food Security (CNFS), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Chandan Kumar Shaha
- Department of Neonatology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Farzana Ferdous
- Centre for Nutrition and Food Security (CNFS), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Fahmida Dil Farzana
- Centre for Nutrition and Food Security (CNFS), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Shahnawaz Ahmed
- Centre for Nutrition and Food Security (CNFS), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Abdul Malek
- Centre for Nutrition and Food Security (CNFS), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Abu Syed Golam Faruque
- Centre for Nutrition and Food Security (CNFS), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
- * E-mail:
| | - Tahmeed Ahmed
- Centre for Nutrition and Food Security (CNFS), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | |
Collapse
|
34
|
Price GA, McFann K, Holmes RK. Immunization with cholera toxin B subunit induces high-level protection in the suckling mouse model of cholera. PLoS One 2013; 8:e57269. [PMID: 23468950 PMCID: PMC3585264 DOI: 10.1371/journal.pone.0057269] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 01/22/2013] [Indexed: 01/10/2023] Open
Abstract
Cholera toxin (CT) is the primary virulence factor responsible for severe cholera. Vibrio cholerae strains unable to produce CT show severe attenuation of virulence in animals and humans. The pentameric B subunit of CT (CTB) contains the immunodominant epitopes recognized by antibodies that neutralize CT. Although CTB is a potent immunogen and a promising protective vaccine antigen in animal models, immunization of humans with detoxified CT failed to protect against cholera. We recently demonstrated however that pups reared from mice immunized intraperitoneally (IP) with 3 doses of recombinant CTB were well protected against a highly lethal challenge dose of V. cholerae N16961. The present study investigated how the route and number of immunizations with CTB could influence protective efficacy in the suckling mouse model of cholera. To this end female mice were immunized with CTB intranasally (IN), IP, and subcutaneously (SC). Serum and fecal extracts were analyzed for anti-CTB antibodies by quantitative ELISA, and pups born to immunized mothers were challenged orogastrically with a lethal dose of V. cholerae. Pups from all immunized groups were highly protected from death by 48 hours (64–100% survival). Cox regression showed that percent body weight loss at 24 hours predicted death by 48 hours, but we were unable to validate a specific amount of weight loss as a surrogate marker for protection. Although CTB was highly protective in all regimens, three parenteral immunizations showed trends toward higher survival and less weight loss at 24 hours post infection. These results demonstrate that immunization with CTB by any of several routes and dosing regimens can provide protection against live V. cholerae challenge in the suckling mouse model of cholera. Our data extend the results of previous studies and provide additional support for the inclusion of CTB in the development of a subunit vaccine against V. cholerae.
Collapse
Affiliation(s)
- Gregory A. Price
- Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Kim McFann
- Colorado Biostatistics Consortium, Colorado School of Public Health, Aurora, Colorado, United States of America
| | - Randall K. Holmes
- Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
35
|
Colombara DV, Cowgill KD, Faruque ASG. Risk factors for severe cholera among children under five in rural and urban Bangladesh, 2000-2008: a hospital-based surveillance study. PLoS One 2013; 8:e54395. [PMID: 23349875 PMCID: PMC3548801 DOI: 10.1371/journal.pone.0054395] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/11/2012] [Indexed: 11/19/2022] Open
Abstract
Background Children under five bear the largest cholera burden. We therefore sought to identify modifiable risk factors among Bangladeshi children. Methodology/Principal Findings We used multivariate Poisson regression to assess risk factors for severe cholera among diarrheal patients presenting at hospitals in Matlab (rural) and Dhaka (urban), Bangladesh. Risk increased with age. Compared to those under one, rural and urban four-year-olds had adjusted risk ratios (aRR) of 4.17 (95% confidence interval (CI) 2.43–7.15) and 6.32 (95% CI: 4.63–8.63), respectively. Breastfeeding halved the risk in both rural (aRR = 0.49, 95% CI: 0.35–0.67) and urban (aRR = 0.51, 95% CI: 0.41–0.62) settings. Rural children’s risk decreased with maternal education (P-trend: <0.001) and increased among those with a family member with diarrhea in the past week (aRR = 1.61, 95% CI: 1.22–2.14) and those with prior vitamin A supplementation (aRR = 1.65, 95% CI: 1.12–2.43). Urban children whose mothers daily (aRR = 0.41, 95% CI: 0.21–0.79) or occasionally (aRR = 0.55, 95% CI: 0.36–0.84) read a newspaper experienced reduced risk. Urban children from households with incomes between 34–84 USD/month had a 30% increased risk compared to those from households with incomes >84 USD/month. Conclusion/Significance Increasing age, lower socioeconomic status, and lack of breastfeeding are key correlates of increased risk for cholera hospitalization among those under five in rural and urban Bangladesh. In addition, having a family member with diarrhea in the past week was associated with increased risk among rural children. Continued attention should be directed to the promotion of breastfeeding. Further research is needed to elucidate the relationship between maternal education and cholera risk. Renewed research regarding the use of chemoprophylaxis among family members of cholera cases may be warranted in rural endemic settings.
Collapse
Affiliation(s)
- Danny V Colombara
- Department of Epidemiology, University of Washington, Seattle, Washington, USA.
| | | | | |
Collapse
|
36
|
|
37
|
Qadri F, Bhuiyan TR, Sack DA, Svennerholm AM. Immune responses and protection in children in developing countries induced by oral vaccines. Vaccine 2012; 31:452-60. [PMID: 23153448 DOI: 10.1016/j.vaccine.2012.11.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/30/2012] [Accepted: 11/02/2012] [Indexed: 12/22/2022]
Abstract
Oral mucosal vaccines have great promise for generating protective immunity against intestinal infections for the benefit of large numbers of people especially young children. There however appears to be a caveat since these vaccines have to overcome the inbuilt resistance of mucosal surfaces and secretions to inhibit antigen stimulation and responses. Unfortunately, these vaccines are not equally immunogenic nor protective in different populations. When compared to industrialized countries, children living in developing countries appear to have lower responses, but the reasons for these lowered responses are not clearly defined. The most likely explanations relate to undernutrition, micronutrient deficiencies, microbial overload on mucosal surfaces, alteration of microbiome and microbolom and irreversible changes on the mucosa as well as maternal antibodies in serum or breast milk may alter the mucosal pathology and lower immune responses to interventions using oral vaccines. The detrimental effect of adverse environment and malnutrition may bring about irreversible changes in the mucosa of children especially in the first 1000 days of life from conception to after birth and up to two years of age. This review aims to summarize the information available on lowered immune responses to mucosal vaccines and on interventions that may help address the constraints of these vaccines when they are used for children living under the greatest stress and under harmful adverse circumstances.
Collapse
Affiliation(s)
- Firdausi Qadri
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh.
| | | | | | | |
Collapse
|
38
|
Abstract
Cholera is a major global health problem, causing approximately 100,000 deaths annually, about half of which occur in sub-Saharan Africa. Although early-generation parenteral cholera vaccines were abandoned as public health tools owing to their limited efficacy, newer-generation oral cholera vaccines have attractive safety and protection profiles. Both killed and live oral vaccines have been licensed, although only killed oral vaccines are currently manufactured and available. These killed oral vaccines not only provide direct protection to vaccinated individuals, but also confer herd immunity. The combination of direct vaccine protection and vaccine herd immunity effects makes these vaccines highly cost-effective and, therefore, attractive for use in developing countries. Administration of these oral vaccines does not require qualified medical personnel, which makes their use practical--even in developing countries. Although new-generation oral cholera vaccines should not be considered in isolation from other preventive approaches, especially improved water quality and sanitation, they represent important tools in the public health armamentarium to control both endemic and epidemic cholera.
Collapse
Affiliation(s)
- John Clemens
- International Vaccine Institute, Seoul National University Research Park, San 4-8, Nakseongdae-dong, Kwanak-gu, Seoul 151-919, Korea.
| | | | | | | | | |
Collapse
|
39
|
Hurley WL, Theil PK. Perspectives on immunoglobulins in colostrum and milk. Nutrients 2011; 3:442-74. [PMID: 22254105 PMCID: PMC3257684 DOI: 10.3390/nu3040442] [Citation(s) in RCA: 431] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 03/21/2011] [Accepted: 04/12/2011] [Indexed: 12/11/2022] Open
Abstract
Immunoglobulins form an important component of the immunological activity found in milk and colostrum. They are central to the immunological link that occurs when the mother transfers passive immunity to the offspring. The mechanism of transfer varies among mammalian species. Cattle provide a readily available immune rich colostrum and milk in large quantities, making those secretions important potential sources of immune products that may benefit humans. Immune milk is a term used to describe a range of products of the bovine mammary gland that have been tested against several human diseases. The use of colostrum or milk as a source of immunoglobulins, whether intended for the neonate of the species producing the secretion or for a different species, can be viewed in the context of the types of immunoglobulins in the secretion, the mechanisms by which the immunoglobulins are secreted, and the mechanisms by which the neonate or adult consuming the milk then gains immunological benefit. The stability of immunoglobulins as they undergo processing in the milk, or undergo digestion in the intestine, is an additional consideration for evaluating the value of milk immunoglobulins. This review summarizes the fundamental knowledge of immunoglobulins found in colostrum, milk, and immune milk.
Collapse
Affiliation(s)
- Walter L. Hurley
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Peter K. Theil
- Department of Animal Health and Bioscience, Aarhus University, DK-8830 Tjele, Denmark;
| |
Collapse
|
40
|
Relationship of exclusive breast-feeding to infections and growth of Tanzanian children born to HIV-infected women. Public Health Nutr 2011; 14:1251-8. [PMID: 21324223 DOI: 10.1017/s136898001000306x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE We examined the relationships between exclusive breast-feeding and the risks of respiratory, diarrhoea and nutritional morbidities during the first 2 years of life among children born to women infected with HIV-1. DESIGN We prospectively determined the incidence of respiratory illnesses, diarrhoea, fever, hospitalizations, outpatient visits and nutritional morbidities. Generalized estimating equations were used to estimate the relative risks for morbidity episodes and Cox proportional hazards models to estimate the incidence rate ratios of nutritional morbidities. SETTING Dar es Salaam, Tanzania. SUBJECTS The sample consisted of 666 children born to HIV-infected women. RESULTS The 666 children were followed for 2 years. Exclusive breast-feeding was associated with lower risk for cough (rate ratio (RR) = 0·49, 95 % CI 0·41, 0·60, P < 0·0001), cough and fever (RR = 0·44, 95 % CI 0·32, 0·60, P < 0·0001) and cough and difficulty breathing or refusal to feed (RR = 0·31, 95 % CI 0·18, 0·55, P < 0·0001). Exclusive breast-feeding was also associated with lower risk of acute diarrhoea, watery diarrhoea, dysentery, fever and outpatient visits during the first 6 months of life, but showed no effect at 6-24 months of life. Exclusive breast-feeding did not significantly reduce the risks of nutritional morbidities during the first 2 years of life. CONCLUSIONS Exclusive breast-feeding is strongly associated with reductions in the risk of respiratory and diarrhoea morbidities during the first 6 months of life among children born to HIV-infected women.
Collapse
|
41
|
Uchiyama SI, Sekiguchi K, Akaishi M, Anan A, Maeda T, Izumi T. Characterization and chronological changes of preterm human milk gangliosides. Nutrition 2011; 27:998-1001. [PMID: 21288691 DOI: 10.1016/j.nut.2010.10.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 10/13/2010] [Accepted: 10/13/2010] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Gangliosides are present in high concentrations in the nervous tissue, and some are observed in small amounts in many extraneural tissues and body fluids. Human milk may play important roles in energy supplementation, prophylaxis of infection, and brain development. For preterm infants, human milk gangliosides are also very important substances during the early lactation stage. However, there are no data on human milk gangliosides from mothers at preterm delivery. We investigated the characterization of gangliosides and chronologic changes in human preterm milk earlier than 30 wk of gestation from 1 to 60 d after birth. METHODS Forty-one samples were analyzed by high-performance thin-layer chromatography and a microtechnique using 1 mL of milk from each lactation and compared with 61 full-term human milk samples. RESULTS Total lipid-bound sialic acid of human milk gangliosides after preterm delivery showed a peak concentration at 2 to 3 d postpartum and then remained at a high concentration until approximately 10 d. GD3 was the major ganglioside in the colostrum until approximately 7 to 10 d postpartum. GM3 was scarcely detected until 7 d postpartum and then increased gradually. There was no difference in the GD3 concentration per 1 mL of human milk between preterm and full-term human milk until approximately 5 to 8 d postpartum. After that time, the GD3 concentration decreased sharply. In contrast, the total concentrations of GM3 per 1 mL of human milk from mothers after preterm delivery were lower than those from mothers after full-term delivery throughout the entire period examined. CONCLUSION This finding is essential to elucidate the composition of human milk gangliosides after preterm delivery, which may contribute to the analysis of the physiologic composition and formulation appropriate preterm infant nutrition.
Collapse
Affiliation(s)
- Shin-ichi Uchiyama
- Department of Pediatrics and Child Neurology, Oita University Faculty of Medicine, Oita, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Immunology of Human Milk and Host Immunity. FETAL AND NEONATAL PHYSIOLOGY 2011. [PMCID: PMC7310932 DOI: 10.1016/b978-1-4160-3479-7.10158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
|
44
|
Abstract
Prevention of infections by vaccination remains a compelling goal to improve public health. Most infections involve the mucosae, but the development of vaccines against many of these pathogens has yet to be successful. Mucosal vaccines would make immunization procedures easier, be better suited for mass administration, and most efficiently induce immune exclusion - a term coined for non-inflammatory antibody shielding of internal body surfaces - mediated principally by secretory immunoglobulin A (SIgA). The exported antibodies are polymeric, mainly IgA dimers (pIgA) - produced by local plasma cells stimulated by antigens that target the mucosae. SIgA was early shown to be complexed with an epithelial glycoprotein - the secretory component (SC). In 1974, a common SC-dependent transport of pIgA and pentameric IgM was proposed. From the basolateral surface, pIg-SC complexes are taken up by endocytosis and finally extruded into the lumen. Membrane SC is now referred to as polymeric Ig receptor (pIgR). In 1980, it was shown to be synthesized as a larger transmembrane protein - first cloned from rabbit and then from human. Mice deficient for pIgR showed that this is the only receptor responsible for epithelial transport of IgA and IgM. In the gut, induction of B cells occurs in gut-associated lymphoid tissue, particularly the Peyer's patches, but also in mesenteric lymph nodes. Plasma cell differentiation is accomplished in the lamina propria to which the memory/effector cells home. The airways also receive such cells from nasopharynx-associated lymphoid tissue - but by different homing receptors. Such compartmentalization is a challenge for development of mucosal vaccines.
Collapse
Affiliation(s)
- P Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Centre for Immune Regulation, University of Oslo, Division and Institute of Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| |
Collapse
|
45
|
Hentges DJ, Marsh WW, Petschow BW, Rahman ME, Dougherty SH. Influence of a Human Milk Diet on Colonisation Resistance Mechanisms AgainstSalmonella typhimuriumin Human Faecal Bacteria-Associated Mice. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.3109/08910609509140092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- D. J. Hentges
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - W. W. Marsh
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - B. W. Petschow
- Bristol-Myers Squibb Company, Mead Johnson-Research Center, Evansville, Indiana, USA
| | - M. E. Rahman
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - S. H. Dougherty
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
46
|
Khan AM, Hossain MS, Khan AI, Chisti MJ, Chowdhury F, Faruque ASG, Salam MA. Bacterial enteropathogens of neonates admitted to an urban diarrhoeal hospital in Bangladesh. J Trop Pediatr 2009; 55:122-4. [PMID: 18840632 DOI: 10.1093/tropej/fmn090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Data on the aetiology of diarrhoea in neonates are scarce, especially from developing countries including Bangladesh. A retrospective review of the electronic database of the Microbiology Laboratory of the International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), was carried out to examine enteropathogens associated with diarrhoea in neonates. Stool specimens of the neonates on admission to the Dhaka Hospital of ICDDR,B were collected and sent to the laboratory for direct plating onto taurocholate tellurite gelatin agar, Salmonella-Shigella agar and MacConkey's agar. Stool specimens of 2511 neonates of either sex were examined. Bacterial pathogens were recovered from the stools of 699 (27.8%) of these neonates--a single bacterial pathogen from 670 neonates and more than one pathogen from 29 neonates. Vibrio cholerae, Shigella, Salmonella, Aeromonas spp. and Plesiomonas shigelloides were isolated from 294, 108, 52, 222 and 19, respectively, of the neonates. The year-wise isolation of these pathogens varied between 4.9-23.4%, 2.7-5.4%, 0-4.7%, 0-19.4% and 0-1.6%, respectively, of the neonates. The results of the study indicate that infection by V. cholerae, Shigella spp., Salmonella spp., Aeromonas and P. shigelloides is common in neonatal diarrhoea in Bangladesh.
Collapse
Affiliation(s)
- A M Khan
- International Centre for Diarrhoeal Disease Research, GPO Box 128, Dhaka 1000, Bangladesh.
| | | | | | | | | | | | | |
Collapse
|
47
|
Ahmed T, Svennerholm AM, Al Tarique A, Sultana GNN, Qadri F. Enhanced immunogenicity of an oral inactivated cholera vaccine in infants in Bangladesh obtained by zinc supplementation and by temporary withholding breast-feeding. Vaccine 2009; 27:1433-9. [PMID: 19146904 DOI: 10.1016/j.vaccine.2008.12.036] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 12/01/2008] [Accepted: 12/20/2008] [Indexed: 12/23/2022]
Abstract
The killed oral cholera vaccine Dukoral is recommended for adults and only children over 2 years of age, although cholera is seen frequently in younger children and there is an urgent need for a vaccine for them. Since decreased immunogenicity of oral vaccines in children in developing countries is a critical problem, we tested interventions to enhance responses to Dukoral. We evaluated the effect on the immune responses by temporarily withholding breast-feeding or by giving zinc supplementation. Two doses of Dukoral consisting of killed cholera vibrios and cholera B subunit were given to 6-18 months old Bangladeshi children (n=340) and safety and immunogenicity studied. Our results showed that two doses of the vaccine were safe and induced antibacterial (vibriocidal) antibody responses in 57% and antitoxin responses in 85% of the children. Immune responses were comparable after intake of one and two doses. Temporary withholding breast-feeding for 3 h before immunization or supplementation with 20 mg of zinc per day for 42 days resulted in increased magnitude of vibriocidal antibodies (77% and 79% responders, respectively). Administration of vaccines without buffer or in water did not result in reduction of vibriocidal responses. This study demonstrates that the vaccine is safe and immunogenic in children under 2 years of age and that simple interventions can enhance immune responses in young children.
Collapse
Affiliation(s)
- Tanvir Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh, GPO Box 128, Dhaka 1000, Bangladesh
| | | | | | | | | |
Collapse
|
48
|
Characterization of Vibrio cholerae outer membrane vesicles as a candidate vaccine for cholera. Infect Immun 2008; 77:472-84. [PMID: 19001078 DOI: 10.1128/iai.01139-08] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Outer membrane vesicles (OMVs) offer a new approach for an effective cholera vaccine. We recently demonstrated that immunization of female mice with OMVs induces a long-lasting immune response and results in protection of their neonatal offspring from Vibrio cholerae intestinal colonization. This study investigates the induced protective immunity observed after immunization with OMVs in more detail. Analysis of the stomach contents and sera of the neonates revealed significant amounts of anti-OMV immunoglobulins (Igs). Swapping of litters born to immunized and nonvaccinated control mice allowed us to distinguish between prenatal and neonatal uptakes of Igs. Transfer of Igs to neonates via milk was sufficient for complete protection of the neonates from colonization with V. cholerae, while prenatal transfer alone reduced colonization only. Detection of IgA and IgG1 in the fecal pellets of intranasally immunized adult mice indicates an induced immune response at the mucosal surface in the gastrointestinal tract, which is the site of colonization by V. cholerae. When a protocol with three intranasal immunizations 14 days apart was used, the OMVs proved to be efficacious at doses as low as 0.025 microg per immunization. This is almost equivalent to OMV concentrations found naturally in the supernatants of LB-grown cultures of V. cholerae. Heterologous expression of the periplasmic alkaline phosphatase (PhoA) of Escherichia coli resulted in the incorporation of PhoA into OMVs derived from V. cholerae. Intranasal immunization with OMVs loaded with PhoA induced a specific immune response against this heterologous antigen in mice. The detection of an immune response against this heterologously expressed protein is a promising step toward the potential use of OMVs as antigen delivery vehicles in vaccine design.
Collapse
|
49
|
Schild S, Nelson EJ, Camilli A. Immunization with Vibrio cholerae outer membrane vesicles induces protective immunity in mice. Infect Immun 2008; 76:4554-63. [PMID: 18678672 PMCID: PMC2546833 DOI: 10.1128/iai.00532-08] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/16/2008] [Accepted: 07/21/2008] [Indexed: 02/01/2023] Open
Abstract
The gram-negative bacterium Vibrio cholerae releases outer membrane vesicles (OMVs) during growth. In this study, we immunized female mice by the intranasal, intragastric, or intraperitoneal route with purified OMVs derived from V. cholerae. Independent of the route of immunization, mice induced specific, high-titer immune responses of similar levels against a variety of antigens present in the OMVs. After the last immunization, the half-maximum total immunoglobulin titer was stable over a 3-month period, indicating that the immune response was long lasting. The induction of specific isotypes, however, was dependent on the immunization route. Immunoglobulin A, for example, was induced to a significant level only by mucosal immunization, with the intranasal route generating the highest titers. We challenged the offspring of immunized female mice with V. cholerae via the oral route in two consecutive periods, approximately 30 and 95 days after the last immunization. Regardless of the route of immunization, the offspring was protected against colonization with V. cholerae in both challenge periods. Our results show that mucosal immunizations via both routes with OMVs derived from V. cholerae induce long-term protective immune responses against this gastrointestinal pathogen. These findings may contribute to the development of "nonliving," OMV-based vaccines against V. cholerae and other enteric pathogens, using the oral or intranasal route of immunization.
Collapse
Affiliation(s)
- Stefan Schild
- Department of Molecular Biology and Microbiology, Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
50
|
Holmgren J, Svennerholm AM. Vaccine development for the control of cholera and related toxin-induced diarrhoeal diseases. CIBA FOUNDATION SYMPOSIUM 2008; 112:242-70. [PMID: 3891255 DOI: 10.1002/9780470720936.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The toxin-induced diarrhoeal diseases in greatest need of effective vaccines for use in control programmes are cholera and diarrhoea due to enterotoxigenic Escherichia coli. Such vaccines, whether consisting of inactivated immunogens or live attenuated organisms, should be administered by the oral route to stimulate the gut mucosal immune system to a maximal extent. For optimal efficacy they should probably contain or produce immunogens evoking both antibacterial and antitoxic immunity that can interfere in a synergistically cooperative manner with colonization as well as toxin action (binding) events in the pathogenesis. The actual or predicted advantages and limitations of oral vaccines based on protective antigen cocktails and different approaches to live, attenuated organisms are discussed. A conclusion is that effective vaccines could play an important role in the control of diarrhoeal disease by reducing mortality and morbidity, and ideally also the transmission of disease.
Collapse
|