1
|
Ghanim HY, Porteus MH. Gene regulation in inborn errors of immunity: Implications for gene therapy design and efficacy. Immunol Rev 2024; 322:157-177. [PMID: 38233996 DOI: 10.1111/imr.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Inborn errors of immunity (IEI) present a unique paradigm in the realm of gene therapy, emphasizing the need for precision in therapeutic design. As gene therapy transitions from broad-spectrum gene addition to careful modification of specific genes, the enduring safety and effectiveness of these therapies in clinical settings have become crucial. This review discusses the significance of IEIs as foundational models for pioneering and refining precision medicine. We explore the capabilities of gene addition and gene correction platforms in modifying the DNA sequence of primary cells tailored for IEIs. The review uses four specific IEIs to highlight key issues in gene therapy strategies: X-linked agammaglobulinemia (XLA), X-linked chronic granulomatous disease (X-CGD), X-linked hyper IgM syndrome (XHIGM), and immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX). We detail the regulatory intricacies and therapeutic innovations for each disorder, incorporating insights from relevant clinical trials. For most IEIs, regulated expression is a vital aspect of the underlying biology, and we discuss the importance of endogenous regulation in developing gene therapy strategies.
Collapse
Affiliation(s)
- Hana Y Ghanim
- Division of Pediatrics, Division of Oncology, Hematology, Stem Cell Transplantation, Stanford University, Stanford, California, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Matthew H Porteus
- Division of Pediatrics, Division of Oncology, Hematology, Stem Cell Transplantation, Stanford University, Stanford, California, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
2
|
Swierczek S, Prchal JT. Clonal hematopoiesis in hematological disorders: Three different scenarios. Exp Hematol 2020; 83:57-65. [PMID: 32007480 DOI: 10.1016/j.exphem.2020.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 01/31/2023]
Abstract
Clonality studies can establish the single-cell origin of tumors and thus differentiate clonal malignant and premalignant processes from reactive polyclonal processes. Detection of clonal cells may be based on direct tracking of cell lineage-specific sequences or disease-specific somatic mutations identifying the clonal population. Historically, clonal hematopoiesis was defined using the principle of X-chromosome inactivation based on observation that in circulating clonal cells, only one of the active chromosomes was expressed. In myeloproliferative neoplasms (MPNs) virtually all circulating erythrocytes, platelets, and granulocytes are products of single mutated stem cells that preferentially differentiate into the myeloid rather than lymphoid lineage. Thus, clonal differentiated myeloid cells co-exist in circulation with polyclonal long-lived T lymphocytes that originated before the MPN-initiating somatic clonal event. Chronic lymphocytic leukemia (CLL) starts in a differentiating B cell, but other lymphoid lineages and myeloid cells remain polyclonal. Normal T and B cells co-exist with the CLL clone, but are diluted by the massively expanded CLL population, which outnumbers the residual normal cells. Clonal hematopoiesis of undetermined potential (CHIP) has been identified by whole-genome sequencing of healthy individuals. These clones contain a specific somatic mutation previously considered to be disease defining but are detected in only a small proportion of circulating leukocytes, and there is no obvious suppression of normal hematopoietic stem cells. However, more studies are needed to properly define these clones, their persistence or disappearance, and their relative propensity for transforming into leukemias, myeloproliferative neoplasms, or other clonal hematological malignancies.
Collapse
Affiliation(s)
- Sabina Swierczek
- Hematology and Hematological Malignancies, University of Utah and Veterans Administration Hospital, Salt Lake City, UT; Huntsman Cancer Institute, Salt Lake City, UT; Nuvance Health Rudy L. Ruggles Biomedical Research Institute, Danbury, CT; Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, VT
| | - Josef T Prchal
- Hematology and Hematological Malignancies, University of Utah and Veterans Administration Hospital, Salt Lake City, UT; Huntsman Cancer Institute, Salt Lake City, UT.
| |
Collapse
|
3
|
Busque L, Buscarlet M, Mollica L, Levine RL. Concise Review: Age-Related Clonal Hematopoiesis: Stem Cells Tempting the Devil. Stem Cells 2018; 36:1287-1294. [PMID: 29883022 DOI: 10.1002/stem.2845] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/25/2018] [Accepted: 04/19/2018] [Indexed: 12/16/2022]
Abstract
The recent characterization of clonal hematopoiesis in a large segment of the aging population has raised tremendous interest and concern alike. Mutations have been documented in genes associated with hematological cancers and in non-driver candidates. These mutations are present at low frequency in the majority of individuals after middle-age, and principally affect the epigenetic modifiers DNMT3A and TET2. In 10%-40% of cases, the clone will progress to meet the diagnostic criteria for Clonal Hematopoiesis of Indeterminate Potential, which is associated with an increased risk of hematological cancer and cardiovascular mortality. Blood cell parameters appear unmodified in these individuals, but a minority of them will develop a hematologic malignancy. At this time, the factors put forward as potentially influencing the risk of cancer development are clone size, specific gene, specific mutation, and the number of mutations. Specific stress on hematopoiesis also gives rise to clonal expansion. Genotoxic exposure (such as chemotherapy), or immune attack (as in aplastic anemia) selects/provides a fitness advantage to clones with a context-specific signature. Clonal hematopoiesis offers a new opportunity to understand the biology and adaptation mechanisms of aging hematopoiesis and provides insight into the mechanisms underlying malignant transformation. Furthermore, it might shed light on common denominators of age-associated medical conditions and help devise global strategies that will impact the prevention of hematologic cancers and promote healthy aging. Stem Cells 2018;36:1287-1294.
Collapse
Affiliation(s)
- Lambert Busque
- Research Center, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Hematology Division, Hôpital Maisonneuve-Rosemont Montréal, Québec, Canada.,Université de Montréal, Montréal, Québec, Canada
| | - Manuel Buscarlet
- Research Center, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - Luigina Mollica
- Research Center, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Hematology Division, Hôpital Maisonneuve-Rosemont Montréal, Québec, Canada.,Université de Montréal, Montréal, Québec, Canada
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
4
|
Pal Singh S, Dammeijer F, Hendriks RW. Role of Bruton's tyrosine kinase in B cells and malignancies. Mol Cancer 2018; 17:57. [PMID: 29455639 PMCID: PMC5817726 DOI: 10.1186/s12943-018-0779-z] [Citation(s) in RCA: 442] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Bruton’s tyrosine kinase (BTK) is a non-receptor kinase that plays a crucial role in oncogenic signaling that is critical for proliferation and survival of leukemic cells in many B cell malignancies. BTK was initially shown to be defective in the primary immunodeficiency X-linked agammaglobulinemia (XLA) and is essential both for B cell development and function of mature B cells. Shortly after its discovery, BTK was placed in the signal transduction pathway downstream of the B cell antigen receptor (BCR). More recently, small-molecule inhibitors of this kinase have shown excellent anti-tumor activity, first in animal models and subsequently in clinical studies. In particular, the orally administered irreversible BTK inhibitor ibrutinib is associated with high response rates in patients with relapsed/refractory chronic lymphocytic leukemia (CLL) and mantle-cell lymphoma (MCL), including patients with high-risk genetic lesions. Because ibrutinib is generally well tolerated and shows durable single-agent efficacy, it was rapidly approved for first-line treatment of patients with CLL in 2016. To date, evidence is accumulating for efficacy of ibrutinib in various other B cell malignancies. BTK inhibition has molecular effects beyond its classic role in BCR signaling. These involve B cell-intrinsic signaling pathways central to cellular survival, proliferation or retention in supportive lymphoid niches. Moreover, BTK functions in several myeloid cell populations representing important components of the tumor microenvironment. As a result, there is currently a considerable interest in BTK inhibition as an anti-cancer therapy, not only in B cell malignancies but also in solid tumors. Efficacy of BTK inhibition as a single agent therapy is strong, but resistance may develop, fueling the development of combination therapies that improve clinical responses. In this review, we discuss the role of BTK in B cell differentiation and B cell malignancies and highlight the importance of BTK inhibition in cancer therapy.
Collapse
Affiliation(s)
- Simar Pal Singh
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands.,Department of Immunology, Rotterdam, The Netherlands.,Post graduate school Molecular Medicine, Rotterdam, The Netherlands
| | - Floris Dammeijer
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands.,Post graduate school Molecular Medicine, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Yang T, Yildirim E. Epigenetic and LncRNA-Mediated Regulation of X Chromosome Inactivation and Its Impact on Pathogenesis. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Corneth OBJ, Klein Wolterink RGJ, Hendriks RW. BTK Signaling in B Cell Differentiation and Autoimmunity. Curr Top Microbiol Immunol 2015; 393:67-105. [PMID: 26341110 DOI: 10.1007/82_2015_478] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the original identification of Bruton's tyrosine kinase (BTK) as the gene defective in the primary immunodeficiency X-linked agammaglobulinemia (XLA) in 1993, our knowledge on the physiological function of BTK has expanded impressively. In this review, we focus on the role of BTK during B cell differentiation in vivo, both in the regulation of expansion and in the developmental progression of pre-B cells in the bone marrow and as a crucial signal transducer of signals downstream of the IgM or IgG B cell antigen receptor (BCR) in mature B cells governing proliferation, survival, and differentiation. In particular, we highlight BTK function in B cells in the context of host defense and autoimmunity. Small-molecule inhibitors of BTK have very recently shown impressive anti-tumor activity in clinical studies in patients with various B cell malignancies. Since promising effects of BTK inhibition were also seen in experimental animal models for lupus and rheumatoid arthritis, BTK may be a good target for controlling autoreactive B cells in patients with systemic autoimmune disease.
Collapse
Affiliation(s)
- Odilia B J Corneth
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Room Ee2251a, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands
| | - Roel G J Klein Wolterink
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Room Ee2251a, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Room Ee2251a, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
BTK inhibitors in chronic lymphocytic leukemia: a glimpse to the future. Oncogene 2014; 34:2426-36. [PMID: 24954503 DOI: 10.1038/onc.2014.181] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 05/16/2014] [Accepted: 05/16/2014] [Indexed: 12/14/2022]
Abstract
The treatment of chronic lymphocytic leukemia (CLL) with inhibitors targeting B cell receptor signaling and other survival mechanisms holds great promise. Especially the early clinical success of Ibrutinib, an irreversible inhibitor of Bruton's tyrosine kinase (BTK), has received widespread attention. In this review we will focus on the fundamental and clinical aspects of BTK inhibitors in CLL, with emphasis on Ibrutinib as the best studied of this class of drugs. Furthermore, we summarize recent laboratory as well as clinical findings relating to the first cases of Ibrutinib resistance. Finally, we address combination strategies with Ibrutinib, and attempt to extrapolate its current status to the near future in the clinic.
Collapse
|
8
|
Sex-biased chromatin and regulatory cross-talk between sex chromosomes, autosomes, and mitochondria. Biol Sex Differ 2014; 5:2. [PMID: 24422881 PMCID: PMC3907150 DOI: 10.1186/2042-6410-5-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/29/2013] [Indexed: 02/07/2023] Open
Abstract
Several autoimmune and neurological diseases exhibit a sex bias, but discerning the causes and mechanisms of these biases has been challenging. Sex differences begin to manifest themselves in early embryonic development, and gonadal differentiation further bifurcates the male and female phenotypes. Even at this early stage, however, there is evidence that males and females respond to environmental stimuli differently, and the divergent phenotypic responses may have consequences later in life. The effect of prenatal nutrient restriction illustrates this point, as adult women exposed to prenatal restrictions exhibited increased risk factors of cardiovascular disease, while men exposed to the same condition did not. Recent research has examined the roles of sex-specific genes, hormones, chromosomes, and the interactions among them in mediating sex-biased phenotypes. Such research has identified testosterone, for example, as a possible protective agent against autoimmune disorders and an XX chromosome complement as a susceptibility factor in murine models of lupus and multiple sclerosis. Sex-biased chromatin is an additional and likely important component. Research suggesting a role for X and Y chromosome heterochromatin in regulating epigenetic states of autosomes has highlighted unorthodox mechanisms of gene regulation. The crosstalk between the Y chromosomes and autosomes may be further mediated by the mitochondria. The organelles have solely maternal transmission and exert differential effects on males and females. Altogether, research supports the notion that the interaction between sex-biased elements might exert novel regulatory functions in the genome and contribute to sex-specific susceptibilities to autoimmune and neurological diseases.
Collapse
|
9
|
Palendira U, Low C, Chan A, Hislop AD, Ho E, Phan TG, Deenick E, Cook MC, Riminton DS, Choo S, Loh R, Alvaro F, Booth C, Gaspar HB, Moretta A, Khanna R, Rickinson AB, Tangye SG. Molecular pathogenesis of EBV susceptibility in XLP as revealed by analysis of female carriers with heterozygous expression of SAP. PLoS Biol 2011; 9:e1001187. [PMID: 22069374 PMCID: PMC3206011 DOI: 10.1371/journal.pbio.1001187] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 09/16/2011] [Indexed: 11/18/2022] Open
Abstract
X-linked lymphoproliferative disease (XLP) is a primary immunodeficiency caused by mutations in SH2D1A which encodes SAP. SAP functions in signalling pathways elicited by the SLAM family of leukocyte receptors. A defining feature of XLP is exquisite sensitivity to infection with EBV, a B-lymphotropic virus, but not other viruses. Although previous studies have identified defects in lymphocytes from XLP patients, the unique role of SAP in controlling EBV infection remains unresolved. We describe a novel approach to this question using female XLP carriers who, due to random X-inactivation, contain both SAP(+) and SAP(-) cells. This represents the human equivalent of a mixed bone marrow chimera in mice. While memory CD8(+) T cells specific for CMV and influenza were distributed across SAP(+) and SAP(-) populations, EBV-specific cells were exclusively SAP(+). The preferential recruitment of SAP(+) cells by EBV reflected the tropism of EBV for B cells, and the requirement for SAP expression in CD8(+) T cells for them to respond to Ag-presentation by B cells, but not other cell types. The inability of SAP(-) clones to respond to Ag-presenting B cells was overcome by blocking the SLAM receptors NTB-A and 2B4, while ectopic expression of NTB-A on fibroblasts inhibited cytotoxicity of SAP(-) CD8(+) T cells, thereby demonstrating that SLAM receptors acquire inhibitory function in the absence of SAP. The innovative XLP carrier model allowed us to unravel the mechanisms underlying the unique susceptibility of XLP patients to EBV infection in the absence of a relevant animal model. We found that this reflected the nature of the Ag-presenting cell, rather than EBV itself. Our data also identified a pathological signalling pathway that could be targeted to treat patients with severe EBV infection. This system may allow the study of other human diseases where heterozygous gene expression from random X-chromosome inactivation can be exploited.
Collapse
MESH Headings
- Antigens, CD/immunology
- B-Lymphocytes/pathology
- B-Lymphocytes/virology
- CD48 Antigen
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/virology
- Dendritic Cells/immunology
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/immunology
- Epstein-Barr Virus Infections/virology
- Female
- Genotype
- Herpesvirus 4, Human/immunology
- Herpesvirus 4, Human/pathogenicity
- Humans
- Immunoglobulin Class Switching
- Influenza, Human/immunology
- Influenza, Human/virology
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/immunology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/pathology
- Leukocytes, Mononuclear/virology
- Lymphoproliferative Disorders/genetics
- Lymphoproliferative Disorders/immunology
- Lymphoproliferative Disorders/pathology
- Lymphoproliferative Disorders/virology
- Orthomyxoviridae/immunology
- Orthomyxoviridae/pathogenicity
- Receptors, Cell Surface/immunology
- Receptors, Immunologic/immunology
- Signal Transduction
- Signaling Lymphocytic Activation Molecule Associated Protein
- Signaling Lymphocytic Activation Molecule Family
- Signaling Lymphocytic Activation Molecule Family Member 1
- X Chromosome Inactivation
Collapse
Affiliation(s)
- Umaimainthan Palendira
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Carol Low
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Anna Chan
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Andrew D. Hislop
- School of Cancer Sciences and MRC Centre for Immune Regulation, University of Birmingham, Edgbaston, United Kingdom
| | - Edwin Ho
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Elissa Deenick
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Matthew C. Cook
- Australian National University Medical School, Canberra, Australian Capital Territory, Australia
- John Curtin School of Medical Research, Canberra, Australian Capital Territory, Australia
- Department of Immunology, Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - D. Sean Riminton
- Department of Immunology, Concord Hospital, Sydney, New South Wales, Australia
| | - Sharon Choo
- Department of Allergy and Immunology, Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Richard Loh
- Department of Clinical Immunology, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - Frank Alvaro
- Pediatric Hematology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Claire Booth
- Centre for Immunodeficiency, Molecular Immunology Unit, UCL Institute of Child Health, London, United Kingdom
| | - H. Bobby Gaspar
- Centre for Immunodeficiency, Molecular Immunology Unit, UCL Institute of Child Health, London, United Kingdom
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | - Rajiv Khanna
- Tumour Immunology Laboratory, Division of Immunology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Alan B. Rickinson
- School of Cancer Sciences and MRC Centre for Immune Regulation, University of Birmingham, Edgbaston, United Kingdom
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
- * E-mail:
| |
Collapse
|
10
|
Paller AS, van Steensel MAM, Rodriguez-Martín M, Sorrell J, Heath C, Crumrine D, van Geel M, Cabrera AN, Elias PM. Pathogenesis-based therapy reverses cutaneous abnormalities in an inherited disorder of distal cholesterol metabolism. J Invest Dermatol 2011; 131:2242-8. [PMID: 21753784 PMCID: PMC3193573 DOI: 10.1038/jid.2011.189] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Identification of the underlying genetic, cellular, and biochemical basis of lipid metabolic disorders provides an opportunity to deploy corrective, mechanism-targeted, topical therapy. We assessed this therapeutic approach in two patients with Congenital Hemidysplasia with Ichthyosiform Erythroderma and Limb Defects (CHILD) syndrome, an X-linked dominant disorder of distal cholesterol metabolism. Based upon the putative pathogenic role of both pathway-product deficiency of cholesterol and accumulation of toxic metabolic intermediates, we assessed the efficacy of combined therapy with lovastatin and cholesterol. We also evaluated the basis for the poorly understood, unique lateralization of the cutaneous and bone malformations of CHILD syndrome by analyzing gene activation in abnormal and unaffected skin. Ultrastructural analysis of affected skin showed evidence of both cholesterol depletion and toxic metabolic accumulation. Topical treatment with lovastatin/cholesterol (but not cholesterol alone) virtually cleared skin lesions by 3 months, accompanied by histologic and ultrastructural normalization of epidermal structure and lipid secretion. The unusual lateralization of abnormalities in CHILD syndrome reflects selective clearance of keratinocytes and fibroblasts that express the mutant allele from the unaffected side. These findings validate pathogenesis-based therapy that provides the deficient end-product and prevents accumulation of toxic metabolites, an approach of potential utility for other syndromic lipid metabolic disorders.
Collapse
Affiliation(s)
- Amy S Paller
- Department of Dermatology and Pediatrics, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The molecular basis of polycythemia vera is discussed in the context of the JAK2 V617F mutation, in our view the most important advance in understanding the pathogenesis of polycythemia vera. This chapter discusses the nature of the JAK2 V617F mutation including the studies demonstrating its role in erythropoietin independence and hypersensitivity and endogenous erythroid colony formation. The evolving evidence that JAK2 V617F is not specific for polycythemia vera pathogenesis and the development of disease phenotype is presented as well as alternative candidates for pathogenic mutations such as the protein tyrosine phosphatases and SOCS-3. Finally, the clinical correlations and implications of the JAK2 V617F mutation are discussed.
Collapse
Affiliation(s)
- George Chen
- University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | | |
Collapse
|
12
|
Khare A, Shaulsky G. First among equals: competition between genetically identical cells. Nat Rev Genet 2006; 7:577-83. [PMID: 16702983 DOI: 10.1038/nrg1875] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Competition between genetically identical organisms is considered insignificant in evolutionary theory because it is presumed to have little selective consequence. We argue that competition between genetically identical cells could improve the fitness of a multicellular organism by directing fitter cells to the germ line or by eliminating unfit cells, and that cell-competition mechanisms have been conserved in multicellular organisms. We propose that competition between genetically identical or highly similar units could have similar selective advantages at higher organizational levels, such as societies.
Collapse
Affiliation(s)
- Anupama Khare
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | |
Collapse
|
13
|
Abstract
By definition, myeloproliferative disorders (MPDs) are caused by an acquired somatic mutation of a hematopoietic progenitor/stem cell and have sporadic occurrence. However, well-documented families exist with first-degree relatives acquiring one or several MPDs. It is reasonable to assume that the germ-line mutation(s) or genetic background must facilitate or predispose for one or several somatic mutation(s) that lead to the MPD that is indistinguishable from the sporadic form. This is best documented in familial polycythemia vera (PV), which appears to be inherited as an autosomal dominant disorder with incomplete penetrance. However, there are also families wherein members develop any combination of MPDs, including PV, essential thrombocythemia (ET), chronic myelocytic leukemia (CML), and idiopathic myelofibrosis (IMF). A separate group of familial diseases is the familial thrombocythemias, wherein germ-line mutations in the genes for thrombopoietin or its receptor, MPL, cause polyclonal hereditary thrombocythemia, which may be clinically indistinguishable from ET. Patients with the congenital polycythemic condition "primary familial and congenital polycythemia" (PFCP) have characteristically decreased erythropoietin (Epo) levels similar to PV, hypersensitive erythroid progenitors, and low Epo levels; as such, this condition is often confused with PV. Therefore, PFCP will also be discussed here, while other congenital polycythemic states such as the Chuvash polycythemia that have elevated or inappropriately normal Epo levels will be omitted from this review in view of their distinct phenotype and unique laboratory features.
Collapse
Affiliation(s)
- Radek Skoda
- Department of Research, Experimental Hematology, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland.
| | | |
Collapse
|
14
|
Abstract
The proliferation and differentiation of lymphocytes are regulated by receptors localized on the cell surface. Engagement of these receptors induces the activation of intracellular signaling proteins that transmit the receptor signals to distinct targets and control the cellular responses. The first signaling proteins to be discovered in higher organisms were the products of oncogenes. For example, the kinases Src and Abelson (Abl) were originally identified as oncogenes and were later characterized as important proteins for signal transduction in various cell types, including lymphocytes. Now, as many cellular signaling molecules have been discovered and ordered into certain pathways, we can better understand why particular signaling proteins are associated with tumorigenesis. In this review, we discuss recent progress in unraveling the molecular mechanisms of signaling pathways that control the proliferation and differentiation of early B cells. We point out the concepts of auto-inhibition and subcellular localization as crucial aspects in the regulation of B cell signaling.
Collapse
Affiliation(s)
- Hassan Jumaa
- Institute for Biology III, Albert-Ludwigs University of Freiburg and Max Planck Institute for Immunobiology, 79108 Freiburg, Germany.
| | | | | |
Collapse
|
15
|
Conley ME, Broides A, Hernandez-Trujillo V, Howard V, Kanegane H, Miyawaki T, Shurtleff SA. Genetic analysis of patients with defects in early B-cell development. Immunol Rev 2005; 203:216-34. [PMID: 15661032 DOI: 10.1111/j.0105-2896.2005.00233.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Approximately 85% of patients with defects in early B-cell development have X-linked agammaglobulinemia (XLA), a disorder caused by mutations in the cytoplasmic Bruton's tyrosine kinase (Btk). Although Btk is activated by cross-linking of a variety of cell-surface receptors, the most critical signal transduction pathway is the one initiated by the pre-B cell and B-cell antigen receptor complex. Mutations in Btk are highly diverse, and no single mutation accounts for more than 3% of patients. Although there is no strong genotype/phenotype correlation in XLA, the specific mutation in Btk is one of the factors that influences the severity of disease. Mutations in the components of the pre-B cell and B-cell antigen receptor complex account for an additional 5-7% of patients with defects in early B-cell development. Patients with defects in these proteins are clinically indistinguishable from those with XLA. However, they tend to be younger at the time of diagnosis, and whereas most patients with XLA have a small number of B cells in the peripheral circulation, these cells are not found in patients with defects in micro heavy chain or Igalpha. Polymorphic variants in the components of the pre-B cell and B-cell receptor complex, particularly micro heavy chain and lambda5, may contribute to the severity of XLA.
Collapse
Affiliation(s)
- Mary Ellen Conley
- Department of Pediatrics, University of Tennessee College of Medicine, Memphis, TN 38105, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Aviv A, Shay J, Christensen K, Wright W. The longevity gender gap: are telomeres the explanation? SCIENCE OF AGING KNOWLEDGE ENVIRONMENT : SAGE KE 2005; 2005:pe16. [PMID: 15944464 DOI: 10.1126/sageke.2005.23.pe16] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In this Perspective, we focus on the greater longevity of women as compared with men. We propose that, like aging itself, the longevity gender gap is exceedingly complex and argue that it may arise from sex-related hormonal differences and from somatic cell selection that favors cells more resistant to the ravages of time. We discuss the interplay of these factors with telomere biology and oxidative stress and suggest that an explanation for the longevity gender gap may arise from a better understanding of the differences in telomere dynamics between men and women.
Collapse
Affiliation(s)
- Abraham Aviv
- Hypertension Research Center, the Cardiovascular Research Institute, University of Medicine & Dentistry of New Jersey, NJ Medical School, Newark, NJ 07103, USA.
| | | | | | | |
Collapse
|
17
|
Pop R, Zaragoza MV, Gaudette M, Dohrmann U, Scherer G. A homozygous nonsense mutation in SOX9 in the dominant disorder campomelic dysplasia: a case of mitotic gene conversion. Hum Genet 2005; 117:43-53. [PMID: 15806394 DOI: 10.1007/s00439-005-1295-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 02/06/2005] [Indexed: 10/25/2022]
Abstract
Campomelic dysplasia (CD; MIM 114290), an autosomal dominant skeletal malformation syndrome with XY sex reversal, is caused by heterozygous de novo mutations in and around the SOX9 gene on 17q. We report a patient with typical signs of CD, including sex reversal, who was, surprisingly, homozygous for the nonsense mutation Y440X. Since neither parent carried the Y440X mutation, possible mechanisms explaining the homozygous situation were a de novo mutation followed by uniparental isodisomy, somatic crossing over, or gene conversion. As the patient was heterozygous for six microsatellite markers flanking SOX9, uniparental isodisomy and somatic crossing over were excluded. Analysis of intragenic single-nucleotide polymorphisms suggested that the homozygous mutation arose by a mitotic gene conversion event involving exchange of at least 440 nucleotides and at most 2,208 nucleotides between a de novo mutant maternal allele and a wild-type paternal allele. Analysis of cloned alleles showed that homozygous mutant cells constituted about 80% of the leukocyte cell population of the patient, whereas about 20% were heterozygous mutant cells. Heterozygous Y440X mutations, previously described in three CD cases, have been identified in seven additional cases, thus constituting the most frequent recurrent mutations in SOX9. These patients frequently have a milder phenotype with longer survival, possibly because of the retention of some transactivation activity of the mutant protein on SOX9 target genes, as shown by cell transfection experiments. The fact that the patient survived for 3 months may thus be explained by homozygosity for a hypomorphic rather than a complete loss-of-function allele, in combination with somatic mosaicism. This is, to our knowledge, the first report of mitotic gene conversion of a wild-type allele by a de novo mutant allele in humans.
Collapse
Affiliation(s)
- Ramona Pop
- Institute of Human Genetics and Anthropology, University of Freiburg, Germany
| | | | | | | | | |
Collapse
|
18
|
Jo EK, Wang Y, Kanegane H, Futatani T, Song CH, Park JK, Kim JS, Kim DS, Ahn KM, Lee SI, Park HJ, Hahn YS, Lee JH, Miyawaki T. Identification of mutations in the Bruton's tyrosine kinase gene, including a novel genomic rearrangements resulting in large deletion, in Korean X-linked agammaglobulinemia patients. J Hum Genet 2004; 48:322-326. [PMID: 12768435 DOI: 10.1007/s10038-003-0032-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Accepted: 04/08/2003] [Indexed: 10/25/2022]
Abstract
Mutations in the Bruton's tyrosine kinase ( BTK) gene are responsible for X-linked agammaglobulinemia (XLA). We identified BTK mutations in six patients with presumed XLA from unrelated Korean families. Four out of six mutations were novel: two missense mutations (P565T, C154Y), a point mutation in a splicing donor site (IVS11+1G>A), and a large deletion (a 6.1-kb deletion including BTK exons 11-18). The large deletion, identified by long-distance PCR, revealed Alu-Alu mediated recombination extended from an Alu sequence in intron 10 to another Alu sequence in intron 18, spanning a distance of 6.1 kb. The two known mutations consisted of one missense (G462D) mutation, and a point mutation in a splicing acceptor site (IVS7-9A>G). This study suggests that large genomic rearrangements involving Alu repeats are few but an important component of the spectrum of BTK mutations.
Collapse
Affiliation(s)
- Eun-Kyeong Jo
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Yue Wang
- Department of Pediatrics, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan
| | - Hirokazu Kanegane
- Department of Pediatrics, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Takeshi Futatani
- Department of Pediatrics, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan
| | - Chang-Hwa Song
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jeong-Kyu Park
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jung Soo Kim
- Department of Pediatrics, Chonbuk National University Medical School, Jeonbuk, Korea
| | - Dong Soo Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Kang-Mo Ahn
- Department of Pediatrics, Samsung Medical Center, Seoul, Korea
| | - Sang-Il Lee
- Department of Pediatrics, Samsung Medical Center, Seoul, Korea
| | - Hyeon Jin Park
- Department of Pediatrics, College of Medicine, Chungbuk National University, Chungbuk, Korea
| | - Youn Soo Hahn
- Department of Pediatrics, College of Medicine, Chungbuk National University, Chungbuk, Korea
| | - Jae-Ho Lee
- Department of Pediatrics, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Toshio Miyawaki
- Department of Pediatrics, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
19
|
Porpiglia AS, Rohrer J, Conley ME. Reconstitution of B cell function in murine models of immunodeficiency. Clin Immunol 2003; 107:90-7. [PMID: 12763477 DOI: 10.1016/s1521-6616(03)00044-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Murine models of immunodeficiency were used to evaluate strategies that might allow B cell engraftment in patients with X-linked agammaglobulinemia. Mice with defects in Btk or mu heavy chain were given 2.5 x 10(6) bone marrow cells from wild-type congenic donors. In the absence of any preparative regimen or immunosuppression, Btk-deficient mice on the CBA background developed normal concentrations of serum IgM and IgG3 by 12 weeks posttransplant. By contrast, mu heavy chain-deficient mice on the C57BL/6 background required some immunosuppression to achieve engraftment. Treatment of these mice with anti-T-cell antibodies 2 and 4 days prior to transplant resulted in normal concentrations of serum immunoglobulins by 6 weeks posttransplant. These pretreated mice had only 10% of the normal number of splenic B cells and they had no evidence of donor T cell engraftment. These results suggest that myelotoxic drugs may not be needed to achieve B cell engraftment in B-cell-deficient subjects.
Collapse
Affiliation(s)
- Andrea S Porpiglia
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
20
|
Liu E, Jelinek J, Pastore YD, Guan Y, Prchal JF, Prchal JT. Discrimination of polycythemias and thrombocytoses by novel, simple, accurate clonality assays and comparison with PRV-1 expression and BFU-E response to erythropoietin. Blood 2003; 101:3294-301. [PMID: 12515724 DOI: 10.1182/blood-2002-07-2287] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Essential thrombocythemia (ET) and polycythemia vera (PV) are clonal myeloproliferative disorders that are often difficult to distinguish from other causes of elevated blood cell counts. Assays that could reliably detect clonal hematopoiesis would therefore be extremely valuable for diagnosis. We previously reported 3 X-chromosome transcription-based clonality assays (TCAs) involving the G6PD, IDS, and MPP1 genes, which together were informative in about 65% of female subjects. To increase our ability to detect clonality, we developed simple TCA for detecting the transcripts of 2 additional X-chromosome genes: Bruton tyrosine kinase (BTK) and 4-and-a-half LIM domain 1 (FHL1). The combination of TCA established the presence or absence of clonal hematopoiesis in about 90% of female subjects. We show that both genes are subject to X-chromosome inactivation and are polymorphic in all major US ethnic groups. The 5 TCAs were used to examine clonality in 46 female patients along with assays for erythropoietin-independent erythroid colonies (EECs) and granulocyte PRV-1 mRNA levels to discriminate polycythemias and thrombocytoses. Of these, all 19 patients with familial polycythemia or thrombocytosis had polyclonal hematopoiesis, whereas 22 of 26 patients with clinical evidence of myeloproliferative disorder and 1 patient with clinically obscure polycythemia were clonal. Interestingly, interferon alpha therapy in 2 patients with PV was associated with reversion of clonal to polyclonal hematopoiesis. EECs were observed in 14 of 14 patients with PV and 4 of 12 with ET, and increased granulocyte PRV-1 mRNA levels were found in 9 of 13 patients with PV and 2 of 12 with ET. Thus, these novel clonality assays are useful in the diagnosis and follow-up of polycythemic conditions and disorders with increased platelet levels.
Collapse
MESH Headings
- Adolescent
- Adult
- Agammaglobulinaemia Tyrosine Kinase
- Aged
- Child
- Chromosomes, Human, X/genetics
- Clone Cells/pathology
- Colony-Forming Units Assay
- Diagnosis, Differential
- Dosage Compensation, Genetic
- Erythroid Precursor Cells/chemistry
- Erythroid Precursor Cells/drug effects
- Erythropoietin/pharmacology
- Exons/genetics
- Female
- GPI-Linked Proteins
- Genetic Markers
- Granulocytes/metabolism
- Hematopoiesis/genetics
- Homeodomain Proteins/blood
- Homeodomain Proteins/genetics
- Humans
- Interferon-alpha/pharmacology
- Isoantigens
- Membrane Glycoproteins
- Middle Aged
- Polycythemia/diagnosis
- Polycythemia/genetics
- Polycythemia/pathology
- Polycythemia Vera/diagnosis
- Polycythemia Vera/drug therapy
- Polycythemia Vera/genetics
- Polycythemia Vera/pathology
- Polymorphism, Genetic
- Polymorphism, Single-Stranded Conformational
- Protein-Tyrosine Kinases/blood
- Protein-Tyrosine Kinases/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/blood
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Thrombocytosis/diagnosis
- Thrombocytosis/genetics
- Thrombocytosis/pathology
Collapse
Affiliation(s)
- Enli Liu
- Department of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
As a group, antibody deficiencies represent the most common types of primary immune deficiencies in human subjects. Often symptoms do not appear until the latter part of the first year of life, as passively acquired IgG from the mother decreases to below protective levels. As with the T-cell immune deficiencies, the spectrum of antibody deficiencies is broad, ranging from the most severe type of antibody deficiency with totally absent B cells and serum Igs to patients who have a selective antibody deficiency with normal serum Ig. In addition to the increased susceptibility to infections, a number of other disease processes (eg, autoimmunity and malignancies) can be involved in the clinical presentation. Fortunately, the availability of intravenous immune serum globulin has made the management of these patients more complete. Recently, molecular immunology has led to identification of the gene or genes involved in many of these antibody deficiencies. As discussed in this review, this has led to a better elucidation of the B-cell development and differentiation pathways and a more complete understanding of the pathogenesis of many of these antibody deficiencies.
Collapse
Affiliation(s)
- Mark Ballow
- Division of Allergy/Clinical Immunology and Pediatric Rheumatology, Department of Pediatrics, Children's Hospital of Buffalo, SUNY Buffalo School of Medicine and Biomedical Sciences, Buffalo 14222, USA
| |
Collapse
|
22
|
Abstract
X-chromosome inactivation (XCI) is random in the majority of patients with classical Rett syndrome (RTT). Preferential inactivation of the X chromosome with the mutated MECP2 gene is found in mildly symptomatic or asymptomatic carrier females. These findings lead to a hypothesis that random XCI is causally involved in the pathogenesis of RTT in heterozygous females. It is the cluster of functionally defective nerve cells lacking fully functional MeCP2 generated by inactivation of normal MECP2 allele that causes the wide spectrum of RTT symptoms. Thus, RTT is a rare human disease manifestation which is triggered most probably by random XCI.
Collapse
Affiliation(s)
- N Takagi
- Division of Bioscience, Graduate School of Environmental Earth Science, Hokkaido University, North 10, West 5, Kita-ku, 060-0810, Sapporo, Japan.
| |
Collapse
|
23
|
Speletas M, Kanariou M, Kanakoudi-Tsakalidou F, Papadopoulou-Alataki E, Arvanitidis K, Pardali E, Constantopoulos A, Kartalis G, Vihinen M, Sideras P, Ritis K. Analysis of Btk mutations in patients with X-linked agammaglobulinaemia (XLA) and determination of carrier status in normal female relatives: a nationwide study of Btk deficiency in Greece. Scand J Immunol 2001; 54:321-7. [PMID: 11555397 DOI: 10.1046/j.1365-3083.2001.00967.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bruton's tyrosine kinase (Btk) is a nonreceptor tyrosine kinase, critical for B-cell development and function. Mutations that inactivate this kinase were found in families with X-linked agammaglobulinaemia (XLA). In this study the Btk gene was analyzed in 13 registered Greek patients with XLA phenotype originated from 12 unrelated families, in order to provide a definite diagnosis of the XLA. The structure of Btk was analyzed at the cDNA level using the recently developed method, NIRCA (Non-Isotopic-Rnase-Cleavage-Assay). Alterations were detected in all patients and sequencing analysis confirmed the results and defined six novel XLA-associated Btk mutations (three missense mutations: C337G, L346R, L452P; one nonsense mutation: Y392X, and two frameshift alterations: c1211-1212delA, c1306-1307insA). Having defined the genetic alteration in the affected males of these families, the information was used to design polymerase chain reaction (PCR) primers and the Btk segments containing the mutated sequences were amplified from peripheral blood derived genomic DNA of potential female carriers. The PCR products were directly sequenced and carrier status was determined in 12 out of 16 phenotypically normal females analyzed. This protocol can be used once the nature of the Btk mutation has been defined in one of the affected males and provides a convenient, simple and reliable way to determine the carrier status of other female family members. Molecular genetic analysis constitutes a determinative tool for the definitive diagnosis of XLA and may allow accurate carrier and prenatal diagnosis for genetic counselling.
Collapse
Affiliation(s)
- M Speletas
- First Division of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Futatani T, Watanabe C, Baba Y, Tsukada S, Ochs HD. Bruton's tyrosine kinase is present in normal platelets and its absence identifies patients with X-linked agammaglobulinaemia and carrier females. Br J Haematol 2001; 114:141-9. [PMID: 11472359 DOI: 10.1046/j.1365-2141.2001.02905.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
X-linked agammaglobulinaemia (XLA) is a primary immunodeficiency caused by mutations in the gene coding for Bruton's tyrosine kinase (Btk) and is characterized by an arrest of B-cell development. We analysed Btk protein expression in platelets using flow cytometry and found that normal platelets express large amounts of Btk. Assessment of affected males from 45 unrelated XLA families revealed that platelets of the majority of the patients (37 out of 45 families) had decreased or absent Btk expression, and that platelets from carrier females of these families had both normal and mutated Btk expression, indicating that megakaryocytes in XLA carriers undergo random X-chromosome inactivation. These observations demonstrate that Btk is not crucial for maturation of megakaryocytes and the production of platelets. No correlation between Btk expression in platelets and clinical phenotype was observed in this study. Flow cytometric evaluation using platelets is a simple and rapid method to test Btk expression. It may be used as a screening test for XLA and for carrier detection, followed, if necessary, by more expensive mutation analyses.
Collapse
Affiliation(s)
- T Futatani
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
25
|
|
26
|
Affiliation(s)
- H B Gaspar
- Molecular Immunology Unit, Institute of Child Health, University College London, London, UK.
| | | |
Collapse
|
27
|
X-Chromosome Inactivation and Mutation Pattern in the Bruton’s Tyrosine Kinase Gene in Patients with X-linked Agammaglobulinemia. Mol Med 2000. [DOI: 10.1007/bf03401778] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
28
|
Correction of X-Linked Immunodeficient Mice by Competitive Reconstitution With Limiting Numbers of Normal Bone Marrow Cells. Blood 1999. [DOI: 10.1182/blood.v94.10.3358.422k04_3358_3365] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Gene therapy for inherited disorders is more likely to succeed if gene-corrected cells have a proliferative or survival advantage compared with mutant cells. We used a competitive reconstitution model to evaluate the strength of the selective advantage that Btk normal cells have in Btk-deficient xid mice. Whereas 2,500 normal bone marrow cells when mixed with 497,500 xid cells restored serum IgM and IgG3 levels to near normal concentrations in 3 of 5 lethally irradiated mice, 25,000 normal cells mixed with 475,000 xidcells reliably restored serum IgM and IgG3 concentrations and the thymus-independent antibody response in all transplanted mice. Reconstitution was not dependent on lethal irradiation, because sublethally irradiated mice all had elevated serum IgM and IgG3 by 30 weeks postreconstitution when receiving 25,000 normal cells. Furthermore, the xid defect was corrected with as few as 10% of the splenic B cells expressing a normal Btk. When normal donor cells were sorted into B220+/CD19+ committed B cells and B220−/CD19− cell populations, only the B220−/CD19− cells provided long-term B-cell reconstitution in sublethally irradiated mice. These findings suggest that even inefficient gene therapy may provide clinical benefit for patients with XLA.
Collapse
|
29
|
Quartier P, Debré M, De Blic J, de Sauverzac R, Sayegh N, Jabado N, Haddad E, Blanche S, Casanova JL, Smith CI, Le Deist F, de Saint Basile G, Fischer A. Early and prolonged intravenous immunoglobulin replacement therapy in childhood agammaglobulinemia: a retrospective survey of 31 patients. J Pediatr 1999; 134:589-96. [PMID: 10228295 DOI: 10.1016/s0022-3476(99)70246-5] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To evaluate the outcome of children who received prolonged intravenous immunoglobulin (IVIg) replacement therapy early in life for X-linked agammaglobulinemia (XLA). STUDY DESIGN We performed a retrospective study of the clinical features and outcome of patients with genetic and/or immunologic results consistent with XLA. Patients receiving IVIg replacement therapy within 3 months of the diagnosis and for at least 4 years between 1982 and 1997 were included. RESULTS Thirty-one patients began receiving IVIg replacement therapy at a median age of 24 months and were followed up for a median time of 123 months. IVIg was given at doses >0.25 g/kg every 3 weeks, and mean individual residual IgG levels ranged from 500 to 1140 mg/dL (median, 700 mg/dL). During IVIg replacement, the incidence of bacterial infections requiring hospitalization fell from 0.40 to 0.06 per patient per year (P <. 001). However, viral or unidentified infections still developed, including enteroviral meningoencephalitis (n = 3) causing death in one patient, exudative enteropathy (n = 3), and aseptic arthritis (n = 1). At last follow-up, 30 patients were alive at a median age of 144 months (range, 58 to 253 months). Among 23 patients who were evaluated by respiratory function tests and computed tomography, 3 had an obstructive syndrome, 6 had bronchiectasis, and 20 had chronic sinusitis. CONCLUSION Early IVIg replacement therapy achieving residual IgG levels >500 mg/dL is effective in preventing severe acute bacterial infections and pulmonary insufficiency. More intensive therapy may be required to fully prevent the onset of bronchiectasis, chronic sinusitis, and nonbacterial infections, particularly enteroviral infections, in all cases.
Collapse
Affiliation(s)
- P Quartier
- Pediatric Immunology and Hematology Unit and Institut National de la Santé et de la Recherche Médicale U429, Pediatric Pneumology Unit, Hôpital Necker-Enfants Malades, 149, rue de Sévres, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
de Saint Basile G, Tabone MD, Durandy A, Phan F, Fischer A, Le Deist F. CD40 ligand expression deficiency in a female carrier of the X-linked hyper-IgM syndrome as a result of X chromosome lyonization. Eur J Immunol 1999; 29:367-73. [PMID: 9933119 DOI: 10.1002/(sici)1521-4141(199901)29:01<367::aid-immu367>3.0.co;2-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report on the case of a girl with an immune deficiency characterized by recurrent infections of the upper and lower respiratory tract, low IgG and IgA serum levels as well as deficiency of the in vivo antibody response. Since this patient is the sister of a boy affected with a hyper-IgM syndrome due to a defect in CD40 ligand (CD40L) expression, the involvement of CD40L in this phenotypic expression was investigated. A very low fraction of activated T cells (5%) in this female patient expressed CD40L. This resulted from the presence of a heterozygous CD40L nonsense mutation associated with a skewed pattern of X chromosome inactivation as determined by methylation pattern analysis. Although carriers of X-linked hyper-IgM are considered to be asymptomatic, this study indicates that extreme lyonization of the normal X can lead to a mild expression of the hyper-IgM syndrome which is similar to common variable immune deficiency (CVID). Therefore, it is possible that some cases of CVID in females represent partial deficiency of CD40L expression in carriers of the CD40L mutation.
Collapse
Affiliation(s)
- G de Saint Basile
- Unité de Recherches sur le dévelopement normal et pathologique du système immunitaire INSERM U 429, Hôpital Necker-Enfants Malades, Paris, France.
| | | | | | | | | | | |
Collapse
|
31
|
Smith CI, Bäckesjö CM, Berglöf A, Brandén LJ, Islam T, Mattsson PT, Mohamed AJ, Müller S, Nore B, Vihinen M. X-linked agammaglobulinemia: lack of mature B lineage cells caused by mutations in the Btk kinase. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 1998; 19:369-81. [PMID: 9618763 DOI: 10.1007/bf00792597] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C I Smith
- Department of Biosciences at Novum, Karolinska Institute, Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Conley ME, Mathias D, Treadaway J, Minegishi Y, Rohrer J. Mutations in btk in patients with presumed X-linked agammaglobulinemia. Am J Hum Genet 1998; 62:1034-43. [PMID: 9545398 PMCID: PMC1377085 DOI: 10.1086/301828] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In 1993, two groups showed that X-linked agammaglobulinemia (XLA) was due to mutations in a tyrosine kinase now called Btk. Most laboratories have been able to detect mutations in Btk in 80%-90% of males with presumed XLA. The remaining patients may have mutations in Btk that are difficult to identify, or they may have defects that are phenotypically similar to XLA but genotypically different. We analyzed 101 families in which affected males were diagnosed as having XLA. Mutations in Btk were identified in 38 of 40 families with more than one affected family member and in 56 of 61 families with sporadic disease. Excluding the patients in whom the marked decrease in B cell numbers characteristic of XLA could not be confirmed by immunofluorescence studies, mutations in Btk were identified in 43 of 46 patients with presumed sporadic XLA. Two of the three remaining patients had defects in other genes required for normal B cell development, and the third patient was unlikely to have XLA, on the basis of results of extensive Btk analysis. Our techniques were unable to identify a mutation in Btk in one male with both a family history and laboratory findings suggestive of XLA. DNA samples from 41 of 49 of the mothers of males with sporadic disease and proven mutations in Btk were positive for the mutation found in their son. In the other 8 families, the mutation appeared to arise in the maternal germ line. In 20 families, haplotype analysis showed that the new mutation originated in the maternal grandfather or great-grandfather. These studies indicate that 90%-95% of males with presumed XLA have mutations in Btk. The other patients are likely to have defects in other genes.
Collapse
Affiliation(s)
- M E Conley
- Department of Pediatrics, University of Tennessee College of Medicine, Memphis, TN, USA.
| | | | | | | | | |
Collapse
|
33
|
Abkowitz JL, Taboada M, Shelton GH, Catlin SN, Guttorp P, Kiklevich JV. An X chromosome gene regulates hematopoietic stem cell kinetics. Proc Natl Acad Sci U S A 1998; 95:3862-6. [PMID: 9520458 PMCID: PMC19928 DOI: 10.1073/pnas.95.7.3862] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/1997] [Accepted: 02/02/1998] [Indexed: 02/06/2023] Open
Abstract
Females are natural mosaics for X chromosome-linked genes. As X chromosome inactivation occurs randomly, the ratio of parental phenotypes among blood cells is approximately 1:1. Recently, however, ratios of greater than 3:1 have been observed in 38-56% of women over age 60. This could result from a depletion of hematopoietic stem cells (HSCs) with aging (and the maintenance of hematopoiesis by a few residual clones) or from myelodysplasia (the dominance of a neoplastic clone). Each possibility has major implications for chemotherapy and for transplantation in elderly patients. We report similar findings in longitudinal studies of female Safari cats and demonstrate that the excessive skewing that develops with aging results from a third mechanism that has no pathologic consequence, hemizygous selection. We show that there is a competitive advantage for all HSCs with a specific X chromosome phenotype and, thus, demonstrate that an X chromosome gene (or genes) regulates HSC replication, differentiation, and/or survival.
Collapse
Affiliation(s)
- J L Abkowitz
- Division of Hematology, University of Washington, 1959 Northeast Pacific Street, Box 357710, Seattle, WA 98195-7710, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- C I Smith
- Department of Clinical Immunology, Karolinska Institute, Huddinge, Sweden
| | | |
Collapse
|
35
|
Wengler GS, Parolini O, Fiorini M, Mella P, Smith H, Ugazio AG, Notarangelo LD. A PCR-based non-radioactive X-chromosome inactivation assay for genetic counseling in X-linked primary immunodeficiencies. Life Sci 1997; 61:1405-11. [PMID: 9335230 DOI: 10.1016/s0024-3205(97)00686-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Wiskott-Aldrich syndrome (WAS), X-linked severe combined immunodeficiency (SCIDX1), and X-linked agammaglobulinemia (XLA) are severe congenital immunodeficiencies with X-linked inheritance. Although rare, they are all associated with severe infections from early in life, and high morbidity and mortality. Female carriers of these diseases can be identified by a non-random pattern of X-chromosomal inactivation in cell lineages targeted by each gene defect. For patients with WAS, SCIDX1 or XLA, the demonstration of non random X-Chromosome inactivation in their mothers can be used to confirm clinical diagnosis. Furthermore, analysis of X-Chromosome inactivation in at risk females allows preconceptional carrier detection, thus representing an important aid in genetic counseling. For each disease we established a PCR-based, non radioactive assay at the human androgen receptor (HUMARA) locus, that allows analysis of X-Chromosome inactivation in the affected cell types and in tissue specific controls to exclude the issue of skewed X-chromosomal inactivation. In our study, 50 females with a known family history of XLA [19], WAS [18], and SCIDX1 [13],were examined. A carrier status was established in 19 females (7 XLA, 6 WAS, 6 SCIDX1) and excluded in 29 ( 11 XLA, 11 WAS, 7 SCIDX1). Only in 2 cases (4%) the assay was not informative.
Collapse
Affiliation(s)
- G S Wengler
- Department of Pediatrics, University of Brescia, Italy.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
A gene causing Dyskeratosis Congenita (DC), a rare genetic disorder associated with bone marrow failure, has been mapped to chromosome Xq28, but autosomal inheritance of the disease has also been reported. We have investigated the pattern of X-inactivation in the peripheral blood of carriers of DC using the methylation-sensitive Hpa II site in the androgen receptor gene (HUMARA). In 5 different families in which the inheritance of DC appears to be X-linked, all 16 carriers showed skewed X-inactivation patterns. These cases indicate that, in the hematopoiesis of heterozygous females, cells expressing the normal DC allele have a growth advantage over cells that express the mutant allele. In 7 other families with sporadic cases of DC or with an uncertain pattern of inheritance, both skewed and normal patterns of X-inactivation were observed. In these families or where crucial family members are unavailable, the study of X-inactivation patterns will add to linkage analysis in providing information about carrier status.
Collapse
|
37
|
Abstract
Abstract
A gene causing Dyskeratosis Congenita (DC), a rare genetic disorder associated with bone marrow failure, has been mapped to chromosome Xq28, but autosomal inheritance of the disease has also been reported. We have investigated the pattern of X-inactivation in the peripheral blood of carriers of DC using the methylation-sensitive Hpa II site in the androgen receptor gene (HUMARA). In 5 different families in which the inheritance of DC appears to be X-linked, all 16 carriers showed skewed X-inactivation patterns. These cases indicate that, in the hematopoiesis of heterozygous females, cells expressing the normal DC allele have a growth advantage over cells that express the mutant allele. In 7 other families with sporadic cases of DC or with an uncertain pattern of inheritance, both skewed and normal patterns of X-inactivation were observed. In these families or where crucial family members are unavailable, the study of X-inactivation patterns will add to linkage analysis in providing information about carrier status.
Collapse
|
38
|
|
39
|
Abstract
X-linked agammaglobulinemia (XLA), characterized by a profound deficiency of B lymphocytes due to an arrest in B lymphocyte development, is caused by mutations in the gene encoding Btk (Bruton tyrosine kinase). The BTK gene has been cloned and the genomic organization determined. BTK codes for 19 exons and is expressed in all hematopoietic cell lineages but is selectively down-regulated in T lymphocytes and plasma cells. The different Btk domains include PH, TH, SH3, SH2, and the kinase (SH1) domains. Btk, a cytoplasmic protein tyrosine kinase, is involved in cell signaling, although the precise pathway remains elusive. Mutation analysis has been performed in 236 families representing 282 patients. Mutations are scattered throughout the gene and consist of missense, nonsense, and splice site mutations as well as deletions and insertions. The major consequence of nonfunctional Btk appears to be a delay or block of the development of pro-B cells to pre-B cells and then to mature lymphocytes. Because IgG is actively transported across the placenta, affected newborns have normal levels of serum IgG at birth followed by gradually decreasing IgG levels and development of hypogammaglobulinemia and increased susceptibility to infections. Bacterial infections are the most common clinical manifestation. Resistance to viral infection is intact, except for an unusual susceptibility to infections with enteroviruses that may result in vaccine-related paralytic poliomyelitis or a dermatomyositis-meningoencephalitis syndrome. The diagnosis of XLA is based on the presence of lymphoid hypoplasia, markedly reduced serum levels of all 3 major classes of immunoglobulins, failure to make antibody to antigenic stimulation, and almost complete absence of B lymphocytes in the peripheral blood. Carrier detection and prenatal diagnosis are possible. The prophylactic infusion of high-dose intravenous immunoglobulin (IVIG) and the use of antibiotics have markedly improved the long-term prognosis of patients with XLA.
Collapse
Affiliation(s)
- H D Ochs
- Department of Pediatrics, University of Washington, Seattle 98195-6320, USA
| | | |
Collapse
|
40
|
Orstavik KH, Orstavik RE, Eiklid K, Tranebjaerg L. Inheritance of skewed X chromosome inactivation in a large family with an X-linked recessive deafness syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS 1996; 64:31-4. [PMID: 8826445 DOI: 10.1002/(sici)1096-8628(19960712)64:1<31::aid-ajmg4>3.0.co;2-u] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A new X-linked recessive deafness syndrome was recently reported and mapped to Xq22 (Mohr-Tranebjaerg syndrome). In addition to deafness, the patients had visual impairment, dystonia, fractures, and mental deterioration. The female carriers did not have any significant manifestations of the syndrome. We examined X chromosome inactivation in 8 obligate and 12 possible carriers by using a polymerase chain reaction analysis of the methylation-dependent amplification of the polymorphic triplet repeat at the androgen receptor locus. Seven of 8 obligate carriers and 1 of 5 carriers by linkage analysis had an extremely skewed pattern in blood DNA not found in 30 normal females. The X inactivation pattern in fibroblast DNA from 2 of the carriers with the extremely skewed pattern was also skewed but to a lesser degree than in blood DNA. One obligate carrier had a random X inactivation pattern in both blood and fibroblast DNA. A selection mechanism for the skewed pattern is therefore not likely. The extremely skewed X inactivation in 8 females of 3 generations in this family may be caused by a single gene that influences skewing of X chromosome inactivation.
Collapse
Affiliation(s)
- K H Orstavik
- Department of Medical Genetics, Ullevål University Hospital, Oslo, Norway
| | | | | | | |
Collapse
|
41
|
Schuster V, Seidenspinner S, Kreth HW. Detection of a novel mutation in the SRC homology domain 2 (SH2) of Bruton's tyrosine kinase and direct female carrier evaluation in a family with X-linked agammaglobulinemia. AMERICAN JOURNAL OF MEDICAL GENETICS 1996; 63:318-22. [PMID: 8723128 DOI: 10.1002/(sici)1096-8628(19960503)63:1<318::aid-ajmg53>3.0.co;2-n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
X-linked agammaglobulinemia (XLA) is an inherited immunodeficiency disease with a block in differentiation from pre-B to B cells resulting in a selective defect in the humoral immune response. Affected males have very low concentrations of serum immunoglobulins leading predominantly to recurrent bacterial infections beginning at age 6 to 18 months. The gene responsible for XLA was identified recently to encode a cytoplasmatic tyrosine kinase (Bruton's tyrosine kinase, BTK). We have analyzed the BTK gene in a large family in which two brothers presented with the severe phenotype of XLA. Genomic DNA of affected boys and from healthy relatives was amplified by PCR with primers specific for the putative promoter region and for all 19 exons, including flanking intron boundaries, and subsequently screened for mutations using single strand conformation polymorphism (SSCP) analysis. Altered single strand band patterns were found using primers specific for exon 10, 15, and 18. Direct cycle-sequencing of these BTK segments detected two known polymorphisms in intron 14 and in exon 18. Sequencing of exon 10 from two boys with XLA demonstrated a novel point mutation in the SH2 domain of BTK. Direct identification of healthy female carriers in three generations was performed by amplification mutagenesis using PCR with a modified first primer. This method can easily be applied also to prenatal diagnosis.
Collapse
Affiliation(s)
- V Schuster
- Children's Hospital, University of Würzburg, Germany
| | | | | |
Collapse
|
42
|
Azofeifa J, Waldherr R, Cremer M. X-chromosome methylation ratios as indicators of chromosomal activity: evidence of intraindividual divergencies among tissues of different embryonal origin. Hum Genet 1996; 97:330-3. [PMID: 8786075 DOI: 10.1007/bf02185765] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To test whether the differentiation events that lead to the embryonal layers and their derived organs produce divergent X-chromosome activation ratios among the different tissues, the X-chromosome activation ratios in leucocytes and muscle (mesodermal origin), thyroid gland (endodermal origin) and medulla of the suprarenal glands (ectodermal origin) from ten deceased females were surveyed. Analysis of the degree of the methylation of the polymorphic alleles recognized by the probes M27beta and pSPT-PGK showed that the ratios for the medulla of the suprarenals correlated well with those of all other tissues except for leucocytes; the thyroid gland showed limited correlation with muscle, whereas leucocytes showed correlation only with muscle. The results of this preliminary study suggest that differentiation events result in considerable variation in the activation ratios in different tissues. As a consequence caution should be taken in extrapolating from the activation ratios observed in leucocytes or fibroblasts to tissues of endodermal or ectodermal origin.
Collapse
Affiliation(s)
- J Azofeifa
- Institut für Humangenetik and Anthropologie der Universität Heidelberg, Germany
| | | | | |
Collapse
|
43
|
Shanmugam V, Chapman VM, Sell KW, Saha BK. A novelTth111I restriction fragment length polymorphism (RFLP) allows tracing of X-chromosome inactivation in the (Xid) heterozygote. Biochem Genet 1996. [DOI: 10.1007/pl00020593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Shanmugam V, Chapman VM, Sell KW, Saha BK. A novel Tth111I restriction fragment length polymorphism (RFLP) allows tracing of X-chromosome inactivation in the (Xid) heterozygote. Biochem Genet 1996; 34:17-29. [PMID: 8935990 DOI: 10.1007/bf02396237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The X-linked immunodeficiency (Xid) in CBA/N mice serves as a model for the X-linked agammaglobulinemia (XLA) syndrome in man. X-chromosome inactivation in F1 heterozygotes derived from CBA/N (Xxid/Xxid) and B6.Pgk-1a (X+/Y) was investigated by monitoring the methylation status of the individual Pgk-1 alleles, Pgk-1b and Pgk-1a, respectively, using a novel Tth111I RFLP. Results indicate that in circulating B lymphocytes of female heterozygotes, only the X chromosomes carrying the normal alleles (X+) are active (nonrandom inactivation of the X chromosome), whereas in non-B cells both the X chromosomes (X+ and Xxid) are active (random inactivation of the X chromosome). These results were further confirmed by direct evaluation of transcription of the Btk gene, the gene mutated both in Xid and in XLA.
Collapse
Affiliation(s)
- V Shanmugam
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia 30329, USA
| | | | | | | |
Collapse
|
45
|
Hagemann TL, Assa'ad AH, Kwan SP. Mutation analysis of the gene encoding Bruton's tyrosine kinase in a family with a sporadic case of X-linked agammaglobulinemia reveals three female carriers. AMERICAN JOURNAL OF MEDICAL GENETICS 1995; 59:188-92. [PMID: 8588584 DOI: 10.1002/ajmg.1320590214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bruton's tyrosine kinase (Btk) has been identified as the protein responsible for the primary immunodeficiency X-linked agammaglobulinemia (XLA). We and others have cloned the gene for Btk and recently reported the genomic organization. Nineteen exons were positioned within the 37 kb gene. With the sequence data derived from our genomic map, we have designed a PCR based assay to directly identify mutations of the Btk gene in germline DNA of patients with XLA. In this report, the assay was used to analyze a family with a sporadic case of XLA to determine if other female relatives carry the disease. A four base-pair deletion was found in the DNA of the affected boy and was further traced through three generations. With the direct identification of the mutations responsible for XLA, we can now diagnose conclusively the disease and identify the immunologically normal female carriers. This same technique can easily be applied to prenatal diagnosis in families where the mutation can be identified.
Collapse
Affiliation(s)
- T L Hagemann
- Department of Immunology/Microbiology, Rush Medical School, Chicago, IL 60612, USA
| | | | | |
Collapse
|
46
|
Conley ME, Rohrer J. The spectrum of mutations in Btk that cause X-linked agammaglobulinemia. CLINICAL IMMUNOLOGY AND IMMUNOPATHOLOGY 1995; 76:S192-7. [PMID: 7554467 DOI: 10.1016/s0090-1229(95)90198-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- M E Conley
- Department of Pediatrics, University of Tennessee College of Medicine, Memphis, USA
| | | |
Collapse
|
47
|
Maniar HS, Vihinen M, Webster AD, Nilsson L, Smith CI. Structural basis for X-linked agammaglobulinemia (XLA): mutations at interacting Btk residues R562, W563, and A582. CLINICAL IMMUNOLOGY AND IMMUNOPATHOLOGY 1995; 76:S198-202. [PMID: 7554468 DOI: 10.1016/s0090-1229(95)90216-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
It has been suggested that tryptophan 563 is sandwiched between residues R562 and A582 in Bruton's agammaglobulinemia tyrosine kinase (Btk). Mutations of the surrounding residues have been shown to cause X-linked agammaglobulinemia. Substitutions R562P and A582V were noticed to have impaired kinase activity. However, based on Western blot analysis, the mutant proteins were expressed at normal levels. Molecular modeling of the kinase domain has previously indicated that these residues presumably govern the position of the W563 side chain, which is thought to interact with the catalytic loop. W563 is inside the molecule and too far away from the catalytic center to interact directly with the substrate or cofactors. To prove these model-based conclusions, a conservative substitution with phenylalanine for W563 was made, and the resultant mutant lacked kinase activity. These results confirm our previous assumption that the side chain of W563, invariant in protein tyrosine kinases, is crucial for Btk kinase activity. Mutations in the surrounding residues seem to inactivate Btk by affecting the location of W563.
Collapse
Affiliation(s)
- H S Maniar
- Karolinska Institute, NOVUM, Center for BioTechnology, Huddinge, Sweden
| | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- F S Rosen
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
49
|
Azofeifa J, Voit T, Hübner C, Cremer M. X-chromosome methylation in manifesting and healthy carriers of dystrophinopathies: concordance of activation ratios among first degree female relatives and skewed inactivation as cause of the affected phenotypes. Hum Genet 1995; 96:167-76. [PMID: 7635465 DOI: 10.1007/bf00207374] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The X-chromosome activity states of 11 manifesting carriers of dystrophinopathies, all with normal karyotypes, were estimated by restriction fragment length polymorphism (RFLP)-methylation analysis with the probes M27 beta (DXS255), p2-19(DXS605) and pSPT/PGK (PGK1) to test the role of skewed X-inactivation ratios as the cause of their affected phenotypes. In eight cases preferential inactivation of the putative X chromosome carrying the normal dystrophin allele in > or = 90% of their peripheral lymphocytes was observed, two cases showed non-apparent deviant ratios (60:40 and 70:30) from the theoretically expected values around the mean of 50% and in one case the three markers employed yielded no information. The analysis of the X-inactivation ratio in six mother-daughter pairs, all non-manifesting Duchenne muscular dystrophy (DMD) carriers, and in the close female relatives of the patients showed: (a) neither of the two X chromosomes was preferentially inactivated with respect to their parental origin; (b) a high concordance among the activation ratios of mothers and daughters, a result difficult to explain just in terms of random X-chromosome inactivation.
Collapse
Affiliation(s)
- J Azofeifa
- Institut für Humangenetik und Anthropologie, Universität Heidelberg, Germany
| | | | | | | |
Collapse
|
50
|
Hinshelwood S, Lovering RC, Genevier HC, Levinsky RJ, Kinnon C. The protein defective in X-linked agammaglobulinemia, Bruton's tyrosine kinase, shows increased autophosphorylation activity in vitro when isolated from cells in which the B cell receptor has been cross-linked. Eur J Immunol 1995; 25:1113-6. [PMID: 7737282 DOI: 10.1002/eji.1830250439] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
X-linked agammaglobulinemia is a primary inherited immunodeficiency resulting in a lack of or dramatic reduction in the number of mature B lymphocytes and, thus, greatly reduced levels of serum immunoglobulin. The defect results from mutations in the gene for Bruton's tyrosine kinase (Btk). Using rabbit antisera generated against Btk, we have demonstrated an increase in the level of in vitro kinase activity present in anti-Btk immunoprecipitates from B cells following stimulation with anti-immunoglobulin antibody. This increase in immune complex kinase activity is detectable 1 to 2 min following stimulation and remains elevated for over 30 min. A similar increase was not seen with two late pre-B cell lines investigated in the same way. This stimulation of activity may suggest a role for Btk in signalling through the B cell receptor or associated proteins, in mature B cells.
Collapse
Affiliation(s)
- S Hinshelwood
- Molecular Immunology Unit, Institute of Child Health, London, GB
| | | | | | | | | |
Collapse
|