1
|
Fatima Balderrama I, Schafer S, El Shatanofy M, Bergamo ETP, Mirsky NA, Nayak VV, Marcantonio Junior E, Alifarag AM, Coelho PG, Witek L. Biomimetic Tissue Engineering Strategies for Craniofacial Applications. Biomimetics (Basel) 2024; 9:636. [PMID: 39451842 PMCID: PMC11506466 DOI: 10.3390/biomimetics9100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/21/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Biomimetics is the science of imitating nature's designs and processes to create innovative solutions for various fields, including dentistry and craniofacial reconstruction. In these areas, biomimetics involves drawing inspiration from living organisms/systems to develop new materials, techniques, and devices that closely resemble natural tissue structures and enhance functionality. This field has successfully demonstrated its potential to revolutionize craniofacial procedures, significantly improving patient outcomes. In dentistry, biomimetics offers exciting possibilities for the advancement of new dental materials, restorative techniques, and regenerative potential. By analyzing the structure/composition of natural teeth and the surrounding tissues, researchers have developed restorative materials that mimic the properties of teeth, as well as regenerative techniques that might assist in repairing enamel, dentin, pulp, cementum, periodontal ligament, and bone. In craniofacial reconstruction, biomimetics plays a vital role in developing innovative solutions for facial trauma, congenital defects, and various conditions affecting the maxillofacial region. By studying the intricate composition and mechanical properties of the skull and facial bones, clinicians and engineers have been able to replicate natural structures leveraging computer-aided design and manufacturing (CAD/CAM) and 3D printing. This has allowed for the creation of patient-specific scaffolds, implants, and prostheses that accurately fit a patient's anatomy. This review highlights the current evidence on the application of biomimetics in the fields of dentistry and craniofacial reconstruction.
Collapse
Affiliation(s)
- Isis Fatima Balderrama
- Department of Diagnosis and Surgery, School of Dentistry of Araraquara, Sao Paulo State University, Sao Paulo 14801-385, Brazil
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
| | - Sogand Schafer
- Division of Plastic, Reconstructive and Oral Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Muhammad El Shatanofy
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Edmara T. P. Bergamo
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Prosthodontics, NYU Dentistry, New York, NY 10010, USA
| | | | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Elcio Marcantonio Junior
- Department of Diagnosis and Surgery, School of Dentistry of Araraquara, Sao Paulo State University, Sao Paulo 14801-385, Brazil
| | - Adham M. Alifarag
- Department of General Surgery, Temple University Hospital System, Philadelphia, PA 19140, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Division of Plastic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
2
|
Shen X, Li Z, Liu Y, Song B, Zeng X. PEB-DDI: A Task-Specific Dual-View Substructural Learning Framework for Drug-Drug Interaction Prediction. IEEE J Biomed Health Inform 2024; 28:569-579. [PMID: 37991904 DOI: 10.1109/jbhi.2023.3335402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Adverse drug-drug interactions (DDIs) pose potential risks in polypharmacy due to unknown physicochemical incompatibilities between co-administered drugs. Recent studies have utilized multi-layer graph neural network architectures to model hierarchical molecular substructures of drugs, achieving excellent DDI prediction performance. While extant substructural frameworks effectively encode interactions from atom-level features, they overlook valuable chemical bond representations within molecular graphs. More critically, given the multifaceted nature of DDI prediction tasks involving both known and novel drug combinations, previous methods lack tailored strategies to address these distinct scenarios. The resulting lack of adaptability impedes further improvements to model performance. To tackle these challenges, we propose PEB-DDI, a DDI prediction learning framework with enhanced substructure extraction. First, the information of chemical bonds is integrated and synchronously updated with the atomic nodes. Then, different dual-view strategies are selected based on whether novel drugs are present in the prediction task. Particularly, we constructed Molecular fingerprint-Molecular graph view for transductive task, and Bipartite graph-Molecular graph view for inductive task. Rigorous evaluations on benchmark datasets underscore PEB-DDI's superior performance. Notably, on DrugBank, it achieves an outstanding accuracy rate of 98.18% when predicting previously unknown interactions among approved drugs. Even when faced with novel drugs, PEB-DDI consistently exhibits outstanding generalization capabilities with an accuracy rate of 88.06%, attributing to the proper migrating of molecular basic structure learning.
Collapse
|
3
|
Luganini A, Sibille G, Pavan M, Mello Grand M, Sainas S, Boschi D, Lolli ML, Chiorino G, Gribaudo G. Mechanisms of antiviral activity of the new hDHODH inhibitor MEDS433 against respiratory syncytial virus replication. Antiviral Res 2023; 219:105734. [PMID: 37852322 DOI: 10.1016/j.antiviral.2023.105734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Human respiratory syncytial virus (RSV) is an important cause of acute lower respiratory infections, for which no effective drugs are currently available. The development of new effective anti-RSV agents is therefore an urgent priority, and Host-Targeting Antivirals (HTAs) can be considered to target RSV infections. As a contribution to this antiviral avenue, we have characterized the molecular mechanisms of the anti-RSV activity of MEDS433, a new inhibitor of human dihydroorotate dehydrogenase (hDHODH), a key cellular enzyme of de novo pyrimidine biosynthesis. MEDS433 was found to exert a potent antiviral activity against RSV-A and RSV-B in the one-digit nanomolar range. Analysis of the RSV replication cycle in MEDS433-treated cells, revealed that the hDHODH inhibitor suppressed the synthesis of viral genome, consistently with its ability to specifically target hDHODH enzymatic activity. Then, the capability of MEDS433 to induce the expression of antiviral proteins encoded by Interferon-Stimulated Genes (ISGs) was identified as a second mechanism of its antiviral activity against RSV. Indeed, MEDS433 stimulated secretion of IFN-β and IFN-λ1 that, in turn, induced the expression of some ISG antiviral proteins, such as IFI6, IFITM1 and IRF7. Singly expression of these ISG proteins reduced RSV-A replication, thus likely contributing to the overall anti-RSV activity of MEDS433. Lastly, MEDS433 proved to be effective against RSV-A replication even in a primary human small airway epithelial cell model. Taken as a whole, these observations provide new insights for further development of MEDS433, as a promising candidate to develop new strategies for treatment of RSV infections.
Collapse
Affiliation(s)
- Anna Luganini
- Department of Life Sciences and Systems Biology, University of Torino, 10123, Torino, Italy
| | - Giulia Sibille
- Department of Life Sciences and Systems Biology, University of Torino, 10123, Torino, Italy
| | - Marta Pavan
- Department of Life Sciences and Systems Biology, University of Torino, 10123, Torino, Italy
| | | | - Stefano Sainas
- Department of Drug Sciences and Technology, University of Torino, 10125, Torino, Italy
| | - Donatella Boschi
- Department of Drug Sciences and Technology, University of Torino, 10125, Torino, Italy
| | - Marco L Lolli
- Department of Drug Sciences and Technology, University of Torino, 10125, Torino, Italy
| | | | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Torino, 10123, Torino, Italy.
| |
Collapse
|
4
|
Nayak VV, Slavin B, Bergamo ETP, Boczar D, Slavin BR, Runyan C, Tovar N, Witek L, Coelho PG. Bone Tissue Engineering (BTE) of the Craniofacial Skeleton, Part I: Evolution and Optimization of 3D-Printed Scaffolds for Repair of Defects. J Craniofac Surg 2023; 34:2016-2025. [PMID: 37639650 PMCID: PMC10592373 DOI: 10.1097/scs.0000000000009593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/25/2023] [Indexed: 08/31/2023] Open
Abstract
Bone tissue regeneration is a complex process that proceeds along the well-established wound healing pathway of hemostasis, inflammation, proliferation, and remodeling. Recently, tissue engineering efforts have focused on the application of biological and technological principles for the development of soft and hard tissue substitutes. Aim is directed towards boosting pathways of the healing process to restore form and function of tissue deficits. Continued development of synthetic scaffolds, cell therapies, and signaling biomolecules seeks to minimize the need for autografting. Despite being the current gold standard treatment, it is limited by donor sites' size and shape, as well as donor site morbidity. Since the advent of computer-aided design/computer-aided manufacturing (CAD/CAM) and additive manufacturing (AM) techniques (3D printing), bioengineering has expanded markedly while continuing to present innovative approaches to oral and craniofacial skeletal reconstruction. Prime examples include customizable, high-strength, load bearing, bioactive ceramic scaffolds. Porous macro- and micro-architecture along with the surface topography of 3D printed scaffolds favors osteoconduction and vascular in-growth, as well as the incorporation of stem and/or other osteoprogenitor cells and growth factors. This includes platelet concentrates (PCs), bone morphogenetic proteins (BMPs), and some pharmacological agents, such as dipyridamole (DIPY), an adenosine A 2A receptor indirect agonist that enhances osteogenic and osteoinductive capacity, thus improving bone formation. This two-part review commences by presenting current biological and engineering principles of bone regeneration utilized to produce 3D-printed ceramic scaffolds with the goal to create a viable alternative to autografts for craniofacial skeleton reconstruction. Part II comprehensively examines recent preclinical data to elucidate the potential clinical translation of such 3D-printed ceramic scaffolds.
Collapse
Affiliation(s)
- Vasudev V Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Blaire Slavin
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Edmara TP Bergamo
- Department of Prosthodontics and Periodontology, University of São Paulo - Bauru School of Dentistry, Bauru, SP, Brazil
- Biomaterials Division - NYU College of Dentistry, New York, NY, USA
| | - Daniel Boczar
- Department of Surgery, University of Washington, Seattle, WA USA
| | - Benjamin R. Slavin
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christopher Runyan
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine; Winston-Salem, NC, USA
| | - Nick Tovar
- Biomaterials Division - NYU College of Dentistry, New York, NY, USA
- Department of Oral and Maxillofacial Surgery, New York University, Langone Medical Center and Bellevue Hospital Center, New York, NY, USA
| | - Lukasz Witek
- Biomaterials Division - NYU College of Dentistry, New York, NY, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
5
|
Qureshi K, Farooq MU, Gorelick PB. Genotype-guided dual antiplatelet therapy in cerebrovascular disease: assessing the risk and benefits for ethnic populations. Expert Rev Cardiovasc Ther 2023; 21:621-630. [PMID: 37551687 DOI: 10.1080/14779072.2023.2245754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION Cerebrovascular disease is a leading cause of morbidity and mortality in the world and antiplatelet therapy is a main pharmacologic means of secondary prevention. Clinical information has accumulated about benefit of dual antiplatelet therapy in certain clinical scenarios, genetic causes of antiplatelet resistance and its effect on clinical outcomes, and ethnic and geographic distributions of genetic polymorphisms. AREAS COVERED This review covers literature related to the pharmacogenomics of antiplatelet agents with a focus on ethnic variability, antiplatelet resistance, and dual antiplatelet therapy in cerebrovascular disease. EXPERT OPINION Selecting patients for dual antiplatelet therapy and specific agents require consideration of multiple factors. Ethnic factors should be considered in certain circumstances, but additional research is needed to determine the generalizability of the findings.
Collapse
Affiliation(s)
- Kasim Qureshi
- Department of Neurology, Trinity Health, Saint Mary's, Grand Rapids, MI, United States
- Department of Neurology, Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| | - Muhammad U Farooq
- Department of Neurology, Trinity Health, Saint Mary's, Grand Rapids, MI, United States
- Department of Neurology, Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| | - Philip B Gorelick
- Department of Neurology, Trinity Health, Saint Mary's, Grand Rapids, MI, United States
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
6
|
Nayak VV, Slavin BV, Bergamo ET, Torroni A, Runyan CM, Flores RL, Kasper FK, Young S, Coelho PG, Witek L. Three-Dimensional Printing Bioceramic Scaffolds Using Direct-Ink-Writing for Craniomaxillofacial Bone Regeneration. Tissue Eng Part C Methods 2023; 29:332-345. [PMID: 37463403 PMCID: PMC10495199 DOI: 10.1089/ten.tec.2023.0082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Defects characterized as large osseous voids in bone, in certain circumstances, are difficult to treat, requiring extensive treatments which lead to an increased financial burden, pain, and prolonged hospital stays. Grafts exist to aid in bone tissue regeneration (BTR), among which ceramic-based grafts have become increasingly popular due to their biocompatibility and resorbability. BTR using bioceramic materials such as β-tricalcium phosphate has seen tremendous progress and has been extensively used in the fabrication of biomimetic scaffolds through the three-dimensional printing (3DP) workflow. 3DP has hence revolutionized BTR by offering unparalleled potential for the creation of complex, patient, and anatomic location-specific structures. More importantly, it has enabled the production of biomimetic scaffolds with porous structures that mimic the natural extracellular matrix while allowing for cell growth-a critical factor in determining the overall success of the BTR modality. While the concept of 3DP bioceramic bone tissue scaffolds for human applications is nascent, numerous studies have highlighted its potential in restoring both form and function of critically sized defects in a wide variety of translational models. In this review, we summarize these recent advancements and present a review of the engineering principles and methodologies that are vital for using 3DP technology for craniomaxillofacial reconstructive applications. Moreover, we highlight future advances in the field of dynamic 3D printed constructs via shape-memory effect, and comment on pharmacological manipulation and bioactive molecules required to treat a wider range of boney defects.
Collapse
Affiliation(s)
- Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Blaire V. Slavin
- University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Edmara T.P. Bergamo
- Biomaterials Division, New York University College of Dentistry, New York, New York, USA
- Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Andrea Torroni
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York University, New York, New York, USA
| | - Christopher M. Runyan
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Roberto L. Flores
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York University, New York, New York, USA
| | - F. Kurtis Kasper
- Department of Orthodontics, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Simon Young
- Bernard and Gloria Pepper Katz Department of Oral and Maxillofacial Surgery, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Lukasz Witek
- Biomaterials Division, New York University College of Dentistry, New York, New York, USA
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York University, New York, New York, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, USA
| |
Collapse
|
7
|
Sibille G, Luganini A, Sainas S, Boschi D, Lolli ML, Gribaudo G. The Novel hDHODH Inhibitor MEDS433 Prevents Influenza Virus Replication by Blocking Pyrimidine Biosynthesis. Viruses 2022; 14:v14102281. [PMID: 36298835 PMCID: PMC9611833 DOI: 10.3390/v14102281] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
The pharmacological management of influenza virus (IV) infections still poses a series of challenges due to the limited anti-IV drug arsenal. Therefore, the development of new anti-influenza agents effective against antigenically different IVs is therefore an urgent priority. To meet this need, host-targeting antivirals (HTAs) can be evaluated as an alternative or complementary approach to current direct-acting agents (DAAs) for the therapy of IV infections. As a contribution to this antiviral strategy, in this study, we characterized the anti-IV activity of MEDS433, a novel small molecule inhibitor of the human dihydroorotate dehydrogenase (hDHODH), a key cellular enzyme of the de novo pyrimidine biosynthesis pathway. MEDS433 exhibited a potent antiviral activity against IAV and IBV replication, which was reversed by the addition of exogenous uridine and cytidine or the hDHODH product orotate, thus indicating that MEDS433 targets notably hDHODH activity in IV-infected cells. When MEDS433 was used in combination either with dipyridamole (DPY), an inhibitor of the pyrimidine salvage pathway, or with an anti-IV DAA, such as N4-hydroxycytidine (NHC), synergistic anti-IV activities were observed. As a whole, these results indicate MEDS433 as a potential HTA candidate to develop novel anti-IV intervention approaches, either as a single agent or in combination regimens with DAAs.
Collapse
Affiliation(s)
- Giulia Sibille
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
| | - Stefano Sainas
- Department of Sciences and Drug Technology, University of Torino, 10125 Torino, Italy
| | - Donatella Boschi
- Department of Sciences and Drug Technology, University of Torino, 10125 Torino, Italy
| | - Marco Lucio Lolli
- Department of Sciences and Drug Technology, University of Torino, 10125 Torino, Italy
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
- Correspondence: ; Tel.: +39-011-6704648
| |
Collapse
|
8
|
Huang HY, Lu TW, Liang HL, Hsu WH, Sung YW, Lee MY. Antiplatelet agents aspirin and dipyridamole, and the risk of different carcinoma in patients with type 2 diabetes mellitus: A Taiwan retrospective cohort study. Medicine (Baltimore) 2022; 101:e30468. [PMID: 36123870 PMCID: PMC9478216 DOI: 10.1097/md.0000000000030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Studies have shown aspirin decreases the risk of some cancers. However, the evidence reported the association between aspirin and cancer risk in the diabetic population. In this study, we investigate whether aspirin and dipyridamole decrease the risk of cancer in patients with type 2 diabetes. A total of 5308 patients with type 2 diabetes were identified by the National Health Insurance from 1998 to 2000 and followed up until 2013. The demographic characteristics among nondipyridamole nor aspirin, aspirin, and dipyridamole users were analyzed by using the χ(2) test. Cox proportional hazard regression models were used to determine the independent effects of no aspirin nor dipyridamole, aspirin, and dipyridamole users on the risk of different cancer. After adjustment with multiple covariates, both low and high doses of aspirin and dipyridamole decrease liver cancer with risk ratios of 0.56 (95% CI, 0.37-0.83), 0.14 (95% CI, 0.05-0.39), 0.61 (95% CI, 0.38-0.99), and 0.28 (95% CI, 0.12-0.66), respectively. Both low and high doses of aspirin decrease any types of cancer with risk ratios of 0.79 (95% CI, 0.64-0.98) and 0.49 (95% CI, 0.34-0.70), respectively. Therefore, we conclude aspirin may decrease any types of cancer and liver cancer, and dipyridamole may decrease the risk of liver cancer in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Hsing-Yi Huang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tz-Wen Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiu-Ling Liang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wei-Hao Hsu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Wen Sung
- Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Mei-Yueh Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Mei-Yueh Lee, Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan (e-mail: )
| |
Collapse
|
9
|
Abstract
INTRODUCTION Platelets play a key role in arterial thrombosis and antiplatelet therapy is pivotal in the treatment of cardiovascular disease. Current antiplatelet drugs target different pathways of platelet activation and show specific pharmacodynamic and pharmacokinetic characteristics, implicating clinically relevant drug-drug interactions. AREAS COVERED This article reviews the role of platelets in hemostasis and cardiovascular thrombosis, and discusses the key pharmacodynamics, drug-drug interactions and reversal strategies of clinically used antiplatelet drugs. EXPERT OPINION Antiplatelet therapies target distinct pathways of platelet activation: thromboxane A2 synthesis, adenosine diphosphate-mediated signaling, integrin αIIbβ3 (GPIIb/IIIa), thrombin-mediated platelet activation via the PAR1 receptor and phosphodiesterases. Key clinical drug-drug interactions of antiplatelet agents involve acetylsalicylic acid - ibuprofen, clopidogrel - omeprazole, and morphine - oral P2Y12 inhibitors, all of which lead to an attenuated antiplatelet effect. Platelet function and genetic testing and the use of scores (ARC-HBR, PRECISE-DAPT, ESC ischemic risk definition) may contribute to a more tailored antiplatelet therapy. High on-treatment platelet reactivity presents a key problem in the acute management of ST-elevation myocardial infarction (STEMI). A treatment strategy involving early initiation of an intravenous antiplatelet agent may be able to bridge the gap of insufficient platelet inhibition in high ischemic risk patients with STEMI.
Collapse
Affiliation(s)
- Georg Gelbenegger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Walter M, Herr P. Re-Discovery of Pyrimidine Salvage as Target in Cancer Therapy. Cells 2022; 11:cells11040739. [PMID: 35203388 PMCID: PMC8870348 DOI: 10.3390/cells11040739] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Nucleotides are synthesized through two distinct pathways: de novo synthesis and nucleoside salvage. Whereas the de novo pathway synthesizes nucleotides from amino acids and glucose, the salvage pathway recovers nucleosides or bases formed during DNA or RNA degradation. In contrast to high proliferating non-malignant cells, which are highly dependent on the de novo synthesis, cancer cells can switch to the nucleoside salvage pathways to maintain efficient DNA replication. Pyrimidine de novo synthesis remains the target of interest in cancer therapy and several inhibitors showed promising results in cancer cells and in vivo models. In the 1980s and 1990s, poor responses were however observed in clinical trials with several of the currently existing pyrimidine synthesis inhibitors. To overcome the observed limitations in clinical trials, targeting pyrimidine salvage alone or in combination with pyrimidine de novo inhibitors was suggested. Even though this approach showed initially promising results, it received fresh attention only recently. Here we discuss the re-discovery of targeting pyrimidine salvage pathways for DNA replication alone or in combination with inhibitors of pyrimidine de novo synthesis to overcome limitations of commonly used antimetabolites in various preclinical cancer models and clinical trials. We also highlight newly emerged targets in pyrimidine synthesis as well as pyrimidine salvage as a promising target in immunotherapy.
Collapse
|
11
|
A Comparative Study of an Anti-Thrombotic Small-Diameter Vascular Graft with Commercially Available e-PTFE Graft in a Porcine Carotid Model. Tissue Eng Regen Med 2022; 19:537-551. [PMID: 35167044 PMCID: PMC9130378 DOI: 10.1007/s13770-021-00422-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
Background: We have designed a reinforced drug-loaded vascular graft composed of polycaprolactone (PCL) and polydioxanone (PDO) via a combination of electrospinning/3D printing approaches. To evaluate its potential for clinical application, we compared the in vivo blood compatibility and performance of PCL/PDO + 10%DY grafts doped with an antithrombotic drug (dipyridamole) with a commercial expanded polytetrafluoroethylene (e-PTFE) graft in a porcine model. Methods: A total of 10 pigs (weight: 25–35 kg) were used in this study. We made a new 5-mm graft with PCL/PDO composite nanofiber via the electrospinning technique. We simultaneously implanted a commercially available e-PTFE graft (n = 5) and our PCL/PDO + 10%DY graft (n = 5) into the carotid arteries of the pigs. No anticoagulant/antiplatelet agent was administered during the follow-up period, and ultrasonography was performed weekly to confirm the patency of the two grafts in vivo. Four weeks later, we explanted and compared the performance of the two grafts by histological analysis and scanning electron microscopy (SEM). Results: No complications, such as sweating on the graft or significant bleeding from the needle hole site, were seen in the PCL/PDO + 10%DY graft immediately after implantation. Serial ultrasonographic examination and immunohistochemical analysis demonstrated that PCL/PDO + 10%DY grafts showed normal physiological blood flow and minimal lumen reduction, and pulsed synchronously with the native artery at 4 weeks after implantation. However, all e-PTFE grafts occluded within the study period. The luminal surface of the PCL/PDO + 10%DY graft in the transitional zone was fully covered with endothelial cells as observed by SEM. Conclusion: The PCL/PDO + 10%DY graft was well tolerated, and no adverse tissue reaction was observed in porcine carotid models during the short-term follow-up. Colonization of the graft by host endothelial and smooth muscle cells coupled with substantial extracellular matrix production marked the regenerative capability. Thus, this material may be an ideal substitute for vascular reconstruction and bypass surgeries. Long-term observations will be necessary to determine the anti-thrombotic and remodeling potential of this device. Supplementary Information The online version contains supplementary material available at 10.1007/s13770-021-00422-4.
Collapse
|
12
|
Mukherjee AK, Chattopadhyay DJ. Potential clinical applications of phytopharmaceuticals for the in-patient management of coagulopathies in COVID-19. Phytother Res 2022; 36:1884-1913. [PMID: 35147268 PMCID: PMC9111032 DOI: 10.1002/ptr.7408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 12/21/2022]
Abstract
Thrombotic complications occur in many cardiovascular pathologies and have been demonstrated in COVID‐19. The currently used antithrombotic drugs are not free of adverse reactions, and COVID‐19 patients in particular, when treated with a therapeutic dose of an anticoagulant do not receive mortality benefits. The clinical management of COVID‐19 is one of the most difficult tasks for clinicians, and the search for safe, potent, and effective antithrombotic drugs may benefit from exploring naturally bioactive molecules from plant sources. This review describes recent advances in understanding the antithrombotic potential of herbal drug prototypes and points to their future clinical use as potent antithrombotic drugs. Although natural products are perceived to be safe, their clinical and therapeutic applications are not always apparent or accepted. More in‐depth studies are necessary to demonstrate the clinical usefulness of plant‐derived, bioactive compounds. In addition, holistic approaches in systematic investigations and the identification of antithrombotic mechanisms of the herbal bioactive molecule(s) need to be conducted in pre‐clinical studies. Moreover, rigorous studies are needed to compare the potency of herbal drugs to that of competitor chemical antithrombotic drugs, and to examine their interactions with Western antithrombotic medicines. We have also proposed a road map to improve the commercialization of phytopharmaceuticals.
Collapse
Affiliation(s)
- Ashis K Mukherjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Guwahati, India.,Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, India
| | | |
Collapse
|
13
|
Rubidium-82 PET/CT myocardial perfusion imaging. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Abstract
Anticoagulant and antiplatelet drugs target a specific portion of the coagulation cascade or the platelet activation and aggregation pathway. The primary toxicity associated with these agents is hemorrhage. Understanding the pharmacology of these drugs allows the treating clinician to choose the correct antidotal therapy. Reversal agents exist for some of these drugs; however, not all have proven patient-centered outcomes. The anticoagulants covered in this review are vitamin K antagonists, heparins, fondaparinux, hirudin derivatives, argatroban, oral factor Xa antagonists, and dabigatran. The antiplatelet agents reviewed are aspirin, adenosine diphosphate antagonists, dipyridamole, and glycoprotein IIb/IIIa antagonists. Additional notable toxicities are also reviewed.
Collapse
Affiliation(s)
- David B Liss
- Department of Emergency Medicine, Division of Medical Toxicology, Washington University in St. Louis, 660 South Euclid Avenue, CB 8072, St Louis, MO 63110, USA.
| | - Michael E Mullins
- Department of Emergency Medicine, Division of Medical Toxicology, Washington University in St. Louis, 660 South Euclid Avenue, CB 8072, St Louis, MO 63110, USA
| |
Collapse
|
15
|
Calistri A, Luganini A, Mognetti B, Elder E, Sibille G, Conciatori V, Del Vecchio C, Sainas S, Boschi D, Montserrat N, Mirazimi A, Lolli ML, Gribaudo G, Parolin C. The New Generation hDHODH Inhibitor MEDS433 Hinders the In Vitro Replication of SARS-CoV-2 and Other Human Coronaviruses. Microorganisms 2021; 9:microorganisms9081731. [PMID: 34442810 PMCID: PMC8398173 DOI: 10.3390/microorganisms9081731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/22/2022] Open
Abstract
Although coronaviruses (CoVs) have long been predicted to cause zoonotic diseases and pandemics with high probability, the lack of effective anti-pan-CoVs drugs rapidly usable against the emerging SARS-CoV-2 actually prevented a promptly therapeutic intervention for COVID-19. Development of host-targeting antivirals could be an alternative strategy for the control of emerging CoVs infections, as they could be quickly repositioned from one pandemic event to another. To contribute to these pandemic preparedness efforts, here we report on the broad-spectrum CoVs antiviral activity of MEDS433, a new inhibitor of the human dihydroorotate dehydrogenase (hDHODH), a key cellular enzyme of the de novo pyrimidine biosynthesis pathway. MEDS433 inhibited the in vitro replication of hCoV-OC43 and hCoV-229E, as well as of SARS-CoV-2, at low nanomolar range. Notably, the anti-SARS-CoV-2 activity of MEDS433 against SARS-CoV-2 was also observed in kidney organoids generated from human embryonic stem cells. Then, the antiviral activity of MEDS433 was reversed by the addition of exogenous uridine or the product of hDHODH, the orotate, thus confirming hDHODH as the specific target of MEDS433 in hCoVs-infected cells. Taken together, these findings suggest MEDS433 as a potential candidate to develop novel drugs for COVID-19, as well as broad-spectrum antiviral agents exploitable for future CoVs threats.
Collapse
Affiliation(s)
- Arianna Calistri
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.C.); (V.C.); (C.D.V.); (C.P.)
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (A.L.); (B.M.); (G.S.)
| | - Barbara Mognetti
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (A.L.); (B.M.); (G.S.)
| | - Elizabeth Elder
- Public Health Agency of Sweden, 17182 Solna, Sweden; (E.E.); (A.M.)
| | - Giulia Sibille
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (A.L.); (B.M.); (G.S.)
| | - Valeria Conciatori
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.C.); (V.C.); (C.D.V.); (C.P.)
| | - Claudia Del Vecchio
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.C.); (V.C.); (C.D.V.); (C.P.)
| | - Stefano Sainas
- Department of Sciences and Drug Technology, University of Turin, 10125 Turin, Italy; (S.S.); (D.B.); (M.L.L.)
| | - Donatella Boschi
- Department of Sciences and Drug Technology, University of Turin, 10125 Turin, Italy; (S.S.); (D.B.); (M.L.L.)
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain;
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain
| | - Ali Mirazimi
- Public Health Agency of Sweden, 17182 Solna, Sweden; (E.E.); (A.M.)
- Karolinska Institute and Karolinska University Hospital, Department of Laboratory Medicine, Unit of Clinical Microbiology, 17177 Stockholm, Sweden
- National Veterinary Institute, 75189 Uppsala, Sweden
| | - Marco Lucio Lolli
- Department of Sciences and Drug Technology, University of Turin, 10125 Turin, Italy; (S.S.); (D.B.); (M.L.L.)
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (A.L.); (B.M.); (G.S.)
- Correspondence: ; Tel.: +39-011-6704648
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.C.); (V.C.); (C.D.V.); (C.P.)
| |
Collapse
|
16
|
Abstract
Nucleosides play central roles in all facets of life, from metabolism to cellular signaling. Because of their physiochemical properties, nucleosides are lipid bilayer impermeable and thus rely on dedicated transport systems to cross biological membranes. In humans, two unrelated protein families mediate nucleoside membrane transport: the concentrative and equilibrative nucleoside transporter families. The objective of this review is to provide a broad outlook on the current status of nucleoside transport research. We will discuss the role played by nucleoside transporters in human health and disease, with emphasis placed on recent structural advancements that have revealed detailed molecular principles of these important cellular transport systems and exploitable pharmacological features.
Collapse
Affiliation(s)
- Nicholas J. Wright
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, North Carolina, 27710, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, North Carolina, 27710, USA
- Correspondence and requests for materials should be addressed to: S.-Y. Lee., , tel: 919-684-1005, fax: 919-684-8885
| |
Collapse
|
17
|
Effective deploying of a novel DHODH inhibitor against herpes simplex type 1 and type 2 replication. Antiviral Res 2021; 189:105057. [PMID: 33716051 DOI: 10.1016/j.antiviral.2021.105057] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/28/2021] [Accepted: 03/03/2021] [Indexed: 12/18/2022]
Abstract
Emergence of drug resistance and adverse effects often affect the efficacy of nucleoside analogues in the therapy of Herpes simplex type 1 (HSV-1) and type 2 (HSV-2) infections. Host-targeting antivirals could therefore be considered as an alternative or complementary strategy in the management of HSV infections. To contribute to this advancement, here we report on the ability of a new generation inhibitor of a key cellular enzyme of de novo pyrimidine biosynthesis, the dihydroorotate dehydrogenase (DHODH), to inhibit HSV-1 and HSV-2 in vitro replication, with a potency comparable to that of the reference drug acyclovir. Analysis of the HSV replication cycle in MEDS433-treated cells revealed that it prevented the accumulation of viral genomes and reduced late gene expression, thus suggesting an impairment at a stage prior to viral DNA replication consistent with the ability of MEDS433 to inhibit DHODH activity. In fact, the anti-HSV activity of MEDS433 was abrogated by the addition of exogenous uridine or of the product of DHODH, the orotate, thus confirming DHODH as the MEDS433 specific target in HSV-infected cells. A combination of MEDS433 with dipyridamole (DPY), an inhibitor of the pyrimidine salvage pathway, was then observed to be effective in inhibiting HSV replication even in the presence of exogenous uridine, thus mimicking in vivo conditions. Finally, when combined with acyclovir and DPY in checkerboard experiments, MEDS433 exhibited highly synergistic antiviral activity. Taken together, these findings suggest that MEDS433 is a promising candidate as either single agent or in combination regimens with existing direct-acting anti-HSV drugs to develop new strategies for treatment of HSV infections.
Collapse
|
18
|
Aliter KF, Al-Horani RA. Potential Therapeutic Benefits of Dipyridamole in COVID-19 Patients. Curr Pharm Des 2021; 27:866-875. [PMID: 33001004 PMCID: PMC7990686 DOI: 10.2174/1381612826666201001125604] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND COVID-19 pandemic is caused by coronavirus also known as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The viral infection continues to impact the globe with no vaccine to prevent the infection or highly effective therapeutics to treat the millions of infected people around the world. The disease starts as a respiratory infection, yet it may also be associated with a hypercoagulable state, severe inflammation owing to excessive cytokines production, and a potentially significant oxidative stress. The disease may progress to multiorgan failure and eventually death. OBJECTIVE In this article, we summarize the potential of dipyridamole as an adjunct therapy for COVID-19. METHODS We reviewed the literature describing the biological activities of dipyridamole in various settings of testing. Data were retrieved from PubMed, SciFinder-CAS, and Web of Science. The review concisely covered relevant studies starting from 1977. RESULTS Dipyridamole is an approved antiplatelet drug, that has been used to prevent stroke, among other indications. Besides its antithrombotic activity, the literature indicates that dipyridamole also promotes a host of other biological activities including antiviral, anti-inflammatory, and antioxidant ones. CONCLUSION Dipyridamole may substantially help improve the clinical outcomes of COVID-19 treatment. The pharmacokinetics profile of the drug is well established which makes it easier to design an appropriate therapeutic course. The drug is also generally safe, affordable, and available worldwide. Initial clinical trials have shown a substantial promise for dipyridamole in treating critically ill COVID-19 patients, yet larger randomized and controlled trials are needed to confirm this promise.
Collapse
Affiliation(s)
- Kholoud F. Aliter
- Department of Chemistry, School of STEM, Dillard University, New Orleans LA70122, USA
| | - Rami A. Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans LA70125, USA
| |
Collapse
|
19
|
Pedrinelli R. Dipyridamole Potentiates the Endothelium-Dependent and -Independent Vasomotion in Isolated Human Small Arteries. J Cardiovasc Pharmacol Ther 2020; 1:203-210. [PMID: 10684418 DOI: 10.1177/107424849600100303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BackgroundTo investigate the effects of dipyridamole, a drug with phosphodiesterase-, adenosine reuptake-inhibiting, and prostacyclin-stimulating activity on the biological actions of nitric oxide, 30 norepinephrine-precontracted subcutaneous arterioles were prepared from specimens removed during surgery.Methods and ResultsSpecimens were mounted on a myograph and relaxed through either acetylcholine, a muscarinic agonist that stimulates endothelial nitric oxide production, or sodium nitroprusside, an endothelium-independent vasodilator. Studies were performed under control conditions and after dipyridamole which potentiated in a concentration-dependent manner the vasorelaxation induced both by acetylcholine and sodium nitroprusside, indicating an endothelium-independent mechanism of action. The contribution of nitric oxide to the relaxation produced by acetylcholine was confirmed by N-monomethyl-L-arginine, a nitric oxide synthase inhibitor. In contrast, indomethacin, a cyclo-oxygenase inhibitor, was ineffective, indicating that prostacyclin stimulation could not explain the effect of dipyridamole. CGS 21680 C, an A2-selective adenosine receptor agonist insensitive to tissue deaminase, did not influence the relaxations induced by acetylcholine, suggesting that interference with adenosine metabolism was not implicated in the potentiating action of dipyridamole.ConclusionDipyridamole potentiated the vasorelaxing effect of acetylcholine and sodium nitroprusside in human subcutaneous arterioles; neither prostacyclin stimulation nor A2adenosine receptor stimulation could explain this effect. The data are consistent with an increase in intracellular cyclic 3’ 5'-guanosine monophosphate levels secondary to the phosphodiesterase-inhibiting properties of the drug.
Collapse
Affiliation(s)
- R Pedrinelli
- I Clinica Medica, University of Pisa, Pisa, Italy
| |
Collapse
|
20
|
Shukla AG, Ramulu PY. Management of Anticoagulation and Antiplatelet Therapy in Glaucoma Surgery. J Glaucoma 2020; 29:732-741. [PMID: 32858723 DOI: 10.1097/ijg.0000000000001594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The use of antithrombotic therapy is rising as the population of older adults grows and novel agents with wider indications emerge. Likewise, surgical treatment of glaucoma may become increasingly common as the prevalence of glaucoma increases and innovative treatment options are developed. These trends highlight the need to understand how best to manage antithrombotic therapy in the context of glaucoma surgery. This review article describes current literature on antithrombotic therapy and perioperative thromboembolic risk evaluation based on individual factors. In addition, guidance is offered on the management of antithrombotic therapy in the setting of each type of glaucoma surgery, with an emphasis on a multidisciplinary approach involving the patients' treating physicians.
Collapse
Affiliation(s)
- Aakriti G Shukla
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA
| | | |
Collapse
|
21
|
Kanthi Y, Knight JS, Zuo Y, Pinsky DJ. New (re)purpose for an old drug: purinergic modulation may extinguish the COVID-19 thromboinflammatory firestorm. JCI Insight 2020; 5:140971. [PMID: 32530438 PMCID: PMC7453890 DOI: 10.1172/jci.insight.140971] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purinergic signaling is discussed as a potential therapeutic target to reduced COVID-19 severity.
Collapse
Affiliation(s)
- Yogendra Kanthi
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Section of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Jason S. Knight
- Division of Rheumatology, Department of Internal Medicine and
| | - Yu Zuo
- Division of Rheumatology, Department of Internal Medicine and
| | - David J. Pinsky
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
22
|
Lapuk S, Mukhametzyanov T, Schick C, Gerasimov A. Kinetic stability of amorphous dipyridamole: A fast scanning calorimetry investigation. Int J Pharm 2020; 574:118890. [DOI: 10.1016/j.ijpharm.2019.118890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 01/10/2023]
|
23
|
Hirsh J, Eikelboom JW, Chan NC. Fifty years of research on antithrombotic therapy: Achievements and disappointments. Eur J Intern Med 2019; 70:1-7. [PMID: 31679885 DOI: 10.1016/j.ejim.2019.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/17/2019] [Indexed: 11/18/2022]
Abstract
The achievements with antithrombotic therapy over the past 50 years have been monumental and the disappointments relatively few. In this review, we will discuss, chronologically, the major developments of the two recognized classes of antithrombotics - anticoagulants and antiplatelet agents.
Collapse
Affiliation(s)
- Jack Hirsh
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - John W Eikelboom
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada; Population Health Research Institute, Hamilton, Ontario, Canada
| | - Noel C Chan
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada; Population Health Research Institute, Hamilton, Ontario, Canada.
| |
Collapse
|
24
|
Regeneration of a Pediatric Alveolar Cleft Model Using Three-Dimensionally Printed Bioceramic Scaffolds and Osteogenic Agents: Comparison of Dipyridamole and rhBMP-2. Plast Reconstr Surg 2019; 144:358-370. [PMID: 31348344 DOI: 10.1097/prs.0000000000005840] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Alveolar clefts are traditionally treated with secondary bone grafting, but this is associated with morbidity and graft resorption. Although recombinant human bone morphogenetic protein-2 (rhBMP-2) is under investigation for alveolar cleft repair, safety concerns remain. Dipyridamole is an adenosine receptor indirect agonist with known osteogenic potential. This study compared dipyridamole to rhBMP-2 at alveolar cleft defects delivered using bioceramic scaffolds. METHODS Skeletally immature New Zealand White rabbits underwent unilateral, 3.5 × 3.5-mm alveolar resection adjacent to the growing suture. Five served as negative controls. The remaining defects were reconstructed with three-dimensionally printed bioceramic scaffolds coated with 1000 μm of dipyridamole (n = 6), 10,000 μm of dipyridamole (n = 7), or 0.2 mg/ml of rhBMP-2 (n = 5). At 8 weeks, new bone was quantified. Nondecalcified histologic evaluation was performed, and new bone was evaluated mechanically. Statistical analysis was performed using a generalized linear mixed model and the Wilcoxon rank sum test. RESULTS Negative controls did not heal, whereas new bone formation bridged all three-dimensionally printed bioceramic treatment groups. The 1000-μm dipyridamole scaffolds regenerated 28.03 ± 7.38 percent, 10,000-μm dipyridamole scaffolds regenerated 36.18 ± 6.83 percent (1000 μm versus 10,000 μm dipyridamole; p = 0.104), and rhBMP-2-coated scaffolds regenerated 37.17 ± 16.69 percent bone (p = 0.124 versus 1000 μm dipyridamole, and p = 0.938 versus 10,000 μm dipyridamole). On histology/electron microscopy, no changes in suture biology were evident for dipyridamole, whereas rhBMP-2 demonstrated early signs of suture fusion. Healing was highly cellular and vascularized across all groups. No statistical differences in mechanical properties were observed between either dipyridamole or rhBMP-2 compared with native bone. CONCLUSION Dipyridamole generates new bone without osteolysis and early suture fusion associated with rhBMP-2 in skeletally immature bone defects.
Collapse
|
25
|
Structures of human ENT1 in complex with adenosine reuptake inhibitors. Nat Struct Mol Biol 2019; 26:599-606. [PMID: 31235912 PMCID: PMC6705415 DOI: 10.1038/s41594-019-0245-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023]
Abstract
The human Equilibrative Nucleoside Transporter 1 (hENT1), a member of the SLC29 family, plays crucial roles in adenosine signaling, cellular uptake of nucleoside for DNA and RNA synthesis, and nucleoside-derived anticancer and antiviral drug transport in human. Because of its central role in adenosine signaling, it is the target of adenosine reuptake inhibitors (AdoRI), several of which are clinically used. Despite its importance in human physiology and pharmacology, the molecular basis of hENT1-mediated adenosine transport and its inhibition by AdoRIs are limited due to the absence of structural information on hENT1. Here we present crystal structures of hENT1 in complex with two chemically distinct AdoRIs: dilazep and S-(4-Nitrobenzyl)-6-thioinosine (NBMPR). Combined with mutagenesis study, our structural analyses elucidate two distinct inhibitory mechanisms exhibited on hENT1, while giving insight into adenosine recognition and transport. Our studies provide the platform for improved pharmacological intervention of adenosine and nucleoside analog drug transport by hENT1.
Collapse
|
26
|
Amelina IP, Solovieva EY. [Oxidative stress and inflammation as links in a chain in patients with chronic cerebrovascular diseases]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:106-114. [PMID: 31156231 DOI: 10.17116/jnevro2019119041106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cerebrovascular diseases (CVD) are the main cause of death and permanent disability. The urgency of the problem of chronic CVD is associated with an increase of the absolute number of elderly and senile age in the population, a trend towards slowly increasing, sluggish pathological processes. It is obvious that any somatic disease in such patients is comorbid to cerebrovascular diseases that suggests a unified mechanism of the pathogenesis for both the main and concomitant diseases. The article notes that microangiopathy is the most common cause of CVD. The main etiopathogenetic factor affecting cerebral vessels of small caliber is endothelial dysfunction, systemic inflammation and oxidative stress. Understanding the molecular components that underlie functional abnormalities and damage of small blood vessels gives the key to the modern strategies in therapy, forming the foundation for an adequate pathogenetically justified therapy. This impact should be gradual, complex and aimed at correcting pathochemical disorders in general and neurotransmitter imbalance in particular. The drug dipyridamole, which has pleiotropic effects, can be considered as one of the pathogenetically justified means in complex drug therapy in patients with CVD.
Collapse
Affiliation(s)
- I P Amelina
- N.I. Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, Russian Federation, Moscow
| | - E Yu Solovieva
- N.I. Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, Russian Federation, Moscow
| |
Collapse
|
27
|
Local delivery of adenosine receptor agonists to promote bone regeneration and defect healing. Adv Drug Deliv Rev 2019; 146:240-247. [PMID: 29913176 DOI: 10.1016/j.addr.2018.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 05/08/2018] [Accepted: 06/12/2018] [Indexed: 01/07/2023]
Abstract
Adenosine receptor activation has been investigated as a potential therapeutic approach to heal bone. Bone has enhanced regenerative potential when influenced by either direct or indirect adenosine receptor agonism. As investigators continue to elucidate how adenosine influences bone cell homeostasis at the cellular and molecular levels, a small but growing body of literature has reported successful in vivo applications of adenosine delivery. This review summarizes the role adenosine receptor ligation plays in osteoblast and osteoclast biology and remodeling/regeneration. It also reports on all the modalities described in the literature at this point for delivery of adenosine through in vivo models for bone healing and regeneration.
Collapse
|
28
|
Lopez CD, Witek L, Torroni A, Flores RL, Demissie DB, Young S, Cronstein BN, Coelho PG. The role of 3D printing in treating craniomaxillofacial congenital anomalies. Birth Defects Res 2018; 110:1055-1064. [PMID: 29781248 DOI: 10.1002/bdr2.1345] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/18/2018] [Indexed: 12/12/2022]
Abstract
Craniomaxillofacial congenital anomalies comprise approximately one third of all congenital birth defects and include deformities such as alveolar clefts, craniosynostosis, and microtia. Current surgical treatments commonly require the use of autogenous graft material which are difficult to shape, limited in supply, associated with donor site morbidity and cannot grow with a maturing skeleton. Our group has demonstrated that 3D printed bio-ceramic scaffolds can generate vascularized bone within large, critical-sized defects (defects too large to heal spontaneously) of the craniomaxillofacial skeleton. Furthermore, these scaffolds are also able to function as a delivery vehicle for a new osteogenic agent with a well-established safety profile. The same 3D printers and imaging software platforms have been leveraged by our team to create sterilizable patient-specific intraoperative models for craniofacial reconstruction. For microtia repair, the current standard of care surgical guide is a two-dimensional drawing taken from the contralateral ear. Our laboratory has used 3D printers and open source software platforms to design personalized microtia surgical models. In this review, we report on the advancements in tissue engineering principles, digital imaging software platforms and 3D printing that have culminated in the application of this technology to repair large bone defects in skeletally immature transitional models and provide in-house manufactured, sterilizable patient-specific models for craniofacial reconstruction.
Collapse
Affiliation(s)
- Christopher D Lopez
- Department of Biomaterials, NYU College of Dentistry, New York, New York.,Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, New York.,Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lukasz Witek
- Department of Biomaterials, NYU College of Dentistry, New York, New York
| | - Andrea Torroni
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, New York
| | - Roberto L Flores
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, New York
| | - David B Demissie
- Department of Biomaterials, NYU College of Dentistry, New York, New York
| | - Simon Young
- Department of Oral & Maxillofacial Surgery, The University of Texas Health Science Center, Houston, Texas
| | | | - Paulo G Coelho
- Department of Biomaterials, NYU College of Dentistry, New York, New York.,Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, New York
| |
Collapse
|
29
|
Bekisz JM, Flores RL, Witek L, Lopez CD, Runyan CM, Torroni A, Cronstein BN, Coelho PG. Dipyridamole enhances osteogenesis of three-dimensionally printed bioactive ceramic scaffolds in calvarial defects. J Craniomaxillofac Surg 2017; 46:237-244. [PMID: 29292126 DOI: 10.1016/j.jcms.2017.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/11/2017] [Accepted: 11/13/2017] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The objective of this study was to test the osteogenic capacity of dipyridamole-loaded, three-dimensionally printed, bioactive ceramic (3DPBC) scaffolds using a translational, skeletally mature, large-animal calvarial defect model. MATERIALS AND METHODS Custom 3DPBC scaffolds designed to present lattice-based porosity only towards the dural surface were either coated with collagen (control) or coated with collagen and immersed in a 100 μM concentration dipyridamole (DIPY) solution. Sheep (n = 5) were subjected to 2 ipsilateral trephine-induced (11-mm diameter) calvarial defects. Either a control or a DIPY scaffold was placed in each defect, and the surgery was repeated on the contralateral side 3 weeks later. Following sacrifice, defects were evaluated through microcomputed tomography and histologic analysis for bone, scaffold, and soft tissue quantification throughout the defect. Parametric and non-parametric methods were used to determine statistical significance based on data distribution. RESULTS No exuberant or ectopic bone formation was observed, and no histologic evidence of inflammation was noted within the defects. Osteogenesis was higher in DIPY-coated scaffolds compared to controls at 3 weeks (p = 0.013) and 6 weeks (p = 0.046) in vivo. When bone formation was evaluated as a function of defect radius, average bone formation was higher for DIPY relative to control scaffolds at both time points (significant at defect central regions at 3 weeks and at margins at 6 weeks, p = 0.046 and p = 0.031, respectively). CONCLUSION Dipyridamole significantly improves the calvarial bone regeneration capacity of 3DPBC scaffolds. The most significant difference in bone regeneration was observed centrally within the interface between the 3DPBC scaffold and the dura mater.
Collapse
Affiliation(s)
- Jonathan M Bekisz
- New York University Langone Medical Center, 550 First Avenue, New York, NY 10016, USA.
| | - Roberto L Flores
- Hansjörg Wyss Department of Plastic Surgery, New York University Langone Medical Center, 307 East 33rd Street, New York, NY 10016, USA.
| | - Lukasz Witek
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, 433 First Avenue, New York, NY 10010, USA.
| | - Christopher D Lopez
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, 433 First Avenue, New York, NY 10010, USA; Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY 10029, USA.
| | - Christopher M Runyan
- Hansjörg Wyss Department of Plastic Surgery, New York University Langone Medical Center, 307 East 33rd Street, New York, NY 10016, USA.
| | - Andrea Torroni
- Department of Oral and Maxillofacial Surgery, New York University Langone Medical Center, 530 First Avneue, New York, NY 10016, USA.
| | - Bruce N Cronstein
- Department of Medicine, New York University Langone Medical Center, 550 First Avenue, New York, NY 10016, USA.
| | - Paulo G Coelho
- Hansjörg Wyss Department of Plastic Surgery, New York University Langone Medical Center, 307 East 33rd Street, New York, NY 10016, USA; Department of Biomaterials and Biomimetics, New York University College of Dentistry, 433 First Avenue, New York, NY 10010, USA.
| |
Collapse
|
30
|
Nagarajan S, Gowd EB. Star-Shaped Poly(l-lactide) with a Dipyridamole Core: Role of Polymer Chain Packing on Induced Circular Dichroism and Photophysical Properties of Dipyridamole. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Selvaraj Nagarajan
- Materials Science and Technology
Division CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
| | - E. Bhoje Gowd
- Materials Science and Technology
Division CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
| |
Collapse
|
31
|
Yamaguchi K, Mathew J, Lhi JM, Park DY. Acute and Rapid Development of Spontaneous Spinal Epidural Hematoma Associated with Combined Aspirin-Dipyridamole Therapy: A Case Report. JBJS Case Connect 2017; 7:e19. [PMID: 29244699 DOI: 10.2106/jbjs.cc.16.00134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
CASE Spontaneous spinal epidural hematoma (SSEH) is a known, although rare, clinical entity that may be challenging to diagnose. This case report describes the rapid development of a large SSEH in an elderly patient on aspirin-dipyridamole combination therapy after she shifted her position in bed. Magnetic resonance imaging obtained 4 hours after the onset of symptoms demonstrated a large spinal epidural hematoma that extended from T4 to L1. CONCLUSION With early diagnosis, the patient was successfully treated with a laminectomy and evacuation of the hematoma, and there was full neurological recovery.
Collapse
Affiliation(s)
- Kent Yamaguchi
- Department of Orthopaedic Surgery, University of California, Los Angeles, Santa Monica, California
| | - Justin Mathew
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - James M Lhi
- University of Southern California School of Pharmacy, Los Angeles, California
| | - Don Young Park
- Department of Orthopaedic Surgery, University of California, Los Angeles, Santa Monica, California
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
32
|
Abstract
Adenosine is an endogenous nucleoside with multiple biological properties which plays a central role in the pathophysiology of tissue ischemia. Adenosine signals an imbalance between oxygen demand and supply, and it initiates responses to redress such a discrepancy. Besides its vasodilating properties, adenosine possesses anti-platelet and anti-neutrophil activities and provides cytoprotection. Adenosine is presumably the main mediator of the preconditioning phenomenon. During ischemia of the lower limbs, adenosine plays a physiological role by inducing vasodilatation and by preventing microcirculatory failure. Exercise training prolongs claudication distance possibly by inducing pulse increases of adenosine and consequently skeletal muscle preconditioning. Moreover, the adenosine increase which follows the administration of some drugs, such as buflomedil and propionylcarnitine, opens new perspectives in the management of leg ischemia. In fact, the concept arises of an ischemic (exercise-dependent) or pharmacologic preconditioning in the treatment of patients with claudication.
Collapse
Affiliation(s)
- F Laghi Pasini
- Institute of Medical Semeiotics, University of Siena, Siena, Italy, Section of Clinical Immunology, University of Siena, Siena, Italy
| | - PL Capecchi
- Institute of Medical Semeiotics, University of Siena, Siena, Italy, Section of Clinical Immunology, University of Siena, Siena, Italy
| | - T Di Perri
- Institute of Medical Semeiotics, University of Siena, Siena, Italy
| |
Collapse
|
33
|
Kaplan S, Kaplan A, Marcoe KF, Hammond WP, Fisher LD, Sauvage LR. Citric Acid Enhances the Antithrombotic Effect of Aspirin in Many Aspirin-Resistant Subjects. Clin Appl Thromb Hemost 2016. [DOI: 10.1177/107602969700300108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study had three objectives: (1) to determine the frequency of high platelet aggregators in a consecutive series of 268 apparently healthy volunteers who presented to our Center; (2) to assess the inhibitory effect of aspirin (ASA) on these high aggregators; (3) to determine, in a double-blind trial, whether or not the addition of citric acid (CTA) to ASA would increase its inhibitory effect in subjects who had a suboptimal response to aspirin alone. A platelet aggregation-scoring methodology developed for turbidimetric platelet aggregometry was used to quantify baseline aggregation and medicinal effects. We define a high aggregator as one whose unmedicated PA score is ≥30. We define the response of a high aggregator to ASA as poor if the medicated PA score stays at ≥30. We found that 58 of 268 apparently healthy unmedicated volunteers (22%) had PA scores ≥30. and that 27 of these (47%) had a poor response to 325 mg ASA, with an average drop in their PA scores from 49.5 ± 13.1 to 41.1 ± 8.6 (16%). Twenty-five of these 27 people were enrolled in the double-Mind study comparing the effect of ASA and ASA + CTA on platelet aggregability. Of these high aggregators who had a poor response to ASA, 12 of 25 (50%) had a good response to 162.5 mg of ASA plus 162.5 mg of CTA, with an average drop of their PA scores from 46.7 ± 13.2 to 22.0 ± 5.2 (53%). CTA alone had no effect on the PA score, which was similar to the control placebo. Our data suggest that a 1:1 combination of ASA and CTA may offer significantly greater protection agairtst arterial thrombotic events than ASA alone in subjects who respond poorly to ASA. Key Words: Platelet aggregation—Antithrombotic medication—Thrombosis.
Collapse
Affiliation(s)
- Svetlana Kaplan
- The Hope Heart Instittite; Providence Medical Center, University of Washington School of Medicine, Seattle, Washington, U.S.A
| | - Alexander Kaplan
- The Hope Heart Instittite; Providence Medical Center, University of Washington School of Medicine, Seattle, Washington, U.S.A
| | - Karen F. Marcoe
- The Hope Heart Instittite; Providence Medical Center, University of Washington School of Medicine, Seattle, Washington, U.S.A
| | - William P. Hammond
- Department of Medicine (Division of Hematology), University of Washington School of Medicine, Seattle, Washington, U.S.A
| | - Lloyd D. Fisher
- Department of Biostatistics, University of Washington School of Medicine, Seattle, Washington, U.S.A
| | - Lester R. Sauvage
- The Hope Heart Instittite; Providence Medical Center, University of Washington School of Medicine, Seattle, Washington, U.S.A., Department of Sitrgery, University of Washington School of Medicine, Seattle, Washington, U.S.A
| |
Collapse
|
34
|
Affiliation(s)
| | - Mark A Creager
- Brigham and Women's Hospital, Harvard Medical School, USA
| |
Collapse
|
35
|
Snoeck R, Andrei G, Balzarini J, Reymen D, De Clercq E. Dipyridamole Potentiates the Activity of Various Acyclic Nucleoside Phosphonates against Varicella-Zoster Virus, Herpes Simplex Virus and Human Cytomegalovirus. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029400500505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dypiridamole (DPM) is widely used in the treatment of cardiovascular diseases as a coronary vasodilator and inhibitor of platelet aggregation. Phosphonylmethoxyethyl (PME) and 3-hydroxy-2-phosphonylmethoxypropyl (HPMP) derivatives of purines and pyrimidines are potent and selective inhibitors of varicella-zoster virus (VZV), herpes simplex virus (HSV) and human cytomegalovirus (HCMV). We have found that DPM markedly potentiates the antiviral effects of the PME derivatives of adenine (PMEA) and 2,6-diaminopurine (PMEDAP), and of the HPMP derivatives of adenine (HPMPA), 3-deazaadenine (HPMPc3A) and cyclic HPMPA (cHPMPA). This was reflected by a significant decrease in the 50% inhibitory concentration of the acyclic nucleoside phosphonates for VZV-, HSV- and HCMV-induced cytopathic effect or plaque formation. DPM did not enhance the activity of vidarabine, acyclovir or ganciclovir. These results were confirmed by virus yield assays (for HSV and HCMV) and flow cytometry (for VZV).
Collapse
Affiliation(s)
- R. Snoeck
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - G. Andrei
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - J. Balzarini
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - D. Reymen
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - E. De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
36
|
Pediatric Cardiac Intensive Care Society 2014 Consensus Statement: Pharmacotherapies in Cardiac Critical Care Anticoagulation and Thrombolysis. Pediatr Crit Care Med 2016; 17:S77-88. [PMID: 26945332 DOI: 10.1097/pcc.0000000000000623] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Thrombotic complications are increasingly being recognized as a significant cause of morbidity and mortality in pediatric and congenital heart disease. The objective of this article is to review the medications currently available to prevent and treat such complications. DATA SOURCES Online searches were conducted using PubMed. STUDY SELECTION Studies were selected for inclusion based on their scientific merit and applicability to the pediatric cardiac population. DATA EXTRACTION Pertinent information from each selected study or scientific review was extracted for inclusion. DATA SYNTHESIS Four classes of medications were identified as potentially beneficial in this patient group: anticoagulants, antiplatelet agents, thrombolytic agents, and novel oral anticoagulants. Data on each class of medication were synthesized into the follow sections: mechanism of action, pharmacokinetics, dosing, monitoring, reversal, considerations for use, and evidence to support. CONCLUSIONS Anticoagulants, antiplatelet agents, and thrombolytic agents are routinely used successfully in the pediatric patient with heart disease for the prevention and treatment of a wide range of thrombotic complications. Although the novel oral anticoagulants have been approved for a limited number of indications in adults, studies on the safety and efficacy of these agents in children are pending.
Collapse
|
37
|
Chukanova EI, Chukanova AS, Nadareyshvili GG, Gulieva MS. [Antithrombotic treatment as primary and secondary prevention of stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2016. [PMID: 28635860 DOI: 10.17116/jnevro201611610185-88] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The use of antithrombotic drugs (ATD) is necessary in the treatment and prevention of thrombosis. The correction of risk factors of ischemic stroke (IS) and transitory ischemic attacks (TIA) is important as well. The drugs inhibiting the activation and aggregation of thrombocytes allow to decrease the number of myocardial infarctions by 35%, stroke by 25% and mortality from cardiovascular causes by 15%. Currently, the clinical efficacy of acetylsalicylic acid (ASA), thienopyridines (ticlopidine, clopidogrel), dipyridamole or the combination of dipyridamole and ASA as well as glycoprotein antagonists IIb-IIIa for intravenous introduction have been confirmed. A review of experimental and clinical studies confirming the efficacy of dipyridamole in the treatment of acute stage of stroke and primary and secondary prevention of II is presented.
Collapse
Affiliation(s)
- E I Chukanova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A S Chukanova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - G G Nadareyshvili
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M Sh Gulieva
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
38
|
The role of purinergic signaling in the etiology of migraine and novel antimigraine treatment. Purinergic Signal 2015; 11:307-16. [PMID: 25957584 PMCID: PMC4529850 DOI: 10.1007/s11302-015-9453-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/28/2015] [Indexed: 12/23/2022] Open
Abstract
Etiopathogenesis of migraine involves different structures of the central nervous system: the trigeminal nerve with nuclei located in the brain stem, vascular system, and the cerebral cortex as well as diverse mechanisms and pathological processes. The multidirectional action of purines in different cell types (blood vessels, neurons, and satellite glial cells) and through different types of purinergic receptors contributes to the etiopathogenesis of migraine pain. Adenosine triphosphate (ATP) and its derivatives are involved in initiation and propagation of migrenogenic signals in several ways: they participate in vasomotor mechanism, cortical spreading depression, and in fast transmission or cross-excitation based on the satellite glial cells in trigeminal ganglion. Contribution of purinergic signaling in the conduction of pain is realized through the activation of P1 and P2 receptors expressed widely in the central nervous system: on the neurons and glial cells as well as on the smooth muscles and endothelium in the vascular system. Therefore, the purinergic receptors can be an excellent target for pharmacologists constructing new antimigraine therapeutics. Moreover, the mechanisms facilitating ATP and adenosine degradation may prevent vasodilatation and thus avoid a secondary central sensitization during a migraine attack. Thus, agonists and antagonists of P receptors as well as ecto-enzymes metabolizing nucleotides/nucleosides could gain the growing attention as therapeutic agents.
Collapse
|
39
|
Marques SM, Castro PR, Campos PP, Viana CTR, Parreiras PM, Ferreira MAN, Andrade SP. Genetic strain differences in the development of peritoneal fibroproliferative processes in mice. Wound Repair Regen 2015; 22:381-9. [PMID: 24844337 DOI: 10.1111/wrr.12177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 02/28/2014] [Indexed: 12/17/2022]
Abstract
Fibroproliferative processes are regulated by a wide variety of tissue components and genetic factors. However, whether there are genetic differences in peritoneal fibroproliferative tissue formation, with consequent differences in response to drug treatment, is unclear. We characterize the influence of the genetic background on peritoneal fibroproliferative tissue induced by sponge implants in DBA/1, Swiss, C57BL/6, and BALB/c mouse strains. In addition, responses to dipyridamole in the implants were evaluated. Angiogenesis, assessed by intra-implant hemoglobin content, was highest in Swiss mice, whereas levels of vascular endothelial growth factor were highest in C57BL/6 mice. The levels of pro-inflammatory cytokines and of inflammatory enzymes (myeloperoxidase- and N-acetyl-β-D-glucosaminidase) were also strain-related. The pro-fibrogenic markers transforming growth factor beta-1 and collagen were lowest in implants placed in DBA/1 mice, whereas those in C57BL/6 mice had the highest levels. Differential sensitivity to dipyridamole was also observed, with this compound being pro-angiogenic in implants placed in DBA/1 mice but antiangiogenic in implants placed in Swiss. An overall anti-inflammatory response was observed in the inbred strains. Antifibrogenic effects were observed only in implants placed in C57BL/6 mice. These important strain-related differences in the development of peritoneal fibrosis and in response to dipyridamole must be considered in the design and analysis of studies on fibrogenesis in mice.
Collapse
Affiliation(s)
- Suzane M Marques
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | |
Collapse
|
40
|
DNA methylation detection by a novel fluorimetric nanobiosensor for early cancer diagnosis. Biosens Bioelectron 2014; 60:35-44. [DOI: 10.1016/j.bios.2014.03.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/12/2014] [Accepted: 03/15/2014] [Indexed: 11/21/2022]
|
41
|
Abstract
Stroke is the third leading cause of death and the leading cause of disability in the developed world. Atherothrombosis is the underlying condition that results in events leading to ischemic stroke and vascular death. Antiplatelet therapy is commonly used for both acute stroke and in secondary prevention. Numerous trials and meta-analyses have left little doubt that antiplatelet therapy effectively reduces stroke risk in patients with prior stroke or transient ischemic attack. Current antiplatelet agents include acetylsalicylic acid, clopidogrel, ticlopidine and extended release dipyridamole with low doses of acetylsalicyclic acid (aspirin). The optimum doses of antiplatelet drugs depend upon several variables, such as genetic and environmental factors, so that clinical and laboratory response for dosage varies for each patient. Recently, the correlation between the laboratory-measurable effect of antiplatelet agents and the clinical effectiveness on the mortality of ischemic stroke and cardiovascular patients has been documented. Due to the side effect of bleeding with different antithrombotic drugs, their future employment will be determined in combination with low dosages of each component. Laboratory-controlled, tailored drug therapy will be needed for long-lasting secondary prevention of ischemic stroke.
Collapse
Affiliation(s)
- Endre Pongrácz
- Department of Neurology, Central Hospital, Ministry of Interior Budapest, H-1071 Budapest, Városligeti fasor 9-13, Hungary.
| | | |
Collapse
|
42
|
Wang C, Lin W, Playa H, Sun S, Cameron K, Buolamwini J. Dipyridamole analogs as pharmacological inhibitors of equilibrative nucleoside transporters. Identification of novel potent and selective inhibitors of the adenosine transporter function of human equilibrative nucleoside transporter 4 (hENT4). Biochem Pharmacol 2013; 86:1531-40. [PMID: 24021350 PMCID: PMC3866046 DOI: 10.1016/j.bcp.2013.08.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 01/04/2023]
Abstract
To identify needed human equilibrative nucleoside transporter 4 (hENT4) inhibitors, we cloned and stably expressed the recombinant protein in PK15NTD (nucleoside transporter deficient) cells, and, investigated its interaction with a series of dipyridamole analogs synthesized in our laboratory. Compounds were tested in this newly established hENT4 expressing system as well in previous stably expressed hENT1 and hENT2 expressing systems. Of the dipyridamole analogs evaluated, about one fourth of the compounds inhibited hENT4 with higher potencies than dipyridamole. The most potent of them, Compound 30 displayed an IC₅₀ of 74.4 nM, making it about 38 times more potent than dipyridamole (IC₅₀=2.8 μM), and selectivities of about 80-fold and 20-fold relative to ENT1 and ENT2, respectively. Structure-activity relationship showed nitrogen-containing monocyclic rings and noncyclic substituents at the 4- and 8-positions of the pyrimido[5,4-d]pyrimidine were important for the inhibitory activity against hENT4. The most potent and selective hENT4 inhibitors tended to have a 2,6-di(N-monohydroxyethyl) substitution on the pyrimidopyrimidine ring system. The inhibitors of hENT4 identified in this study are the most selective and potent inhibitors of hENT4 adenosine transporter function to date, and should serve as useful pharmacological/biochemical tools and/or potential leads for ENT4-based therapeutics. Also, the new hENT4-expressing PK15 cell line established will serve as a useful screening tool for the discovery and design of hENT4 ligands.
Collapse
Affiliation(s)
- Chunmei Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | - Hilaire Playa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Shan Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Kenyuna Cameron
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - John Buolamwini
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| |
Collapse
|
43
|
|
44
|
del Zoppo GJ. Central Nervous System Ischemia. Platelets 2013. [DOI: 10.1016/b978-0-12-387837-3.00033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
|
46
|
Jain N, Hedayati SS, Sarode R, Banerjee S, Reilly RF. Antiplatelet therapy in the management of cardiovascular disease in patients with CKD: what is the evidence? Clin J Am Soc Nephrol 2012; 8:665-74. [PMID: 23024160 DOI: 10.2215/cjn.06790712] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Antiplatelet agents (APAs) are proven to reduce risk of major cardiovascular events in patients with cardiovascular disease and normal kidney function. With recent post hoc analyses of large trials questioning the safety and efficacy of APAs in CKD, major gaps exist in our understanding of platelet aggregability and the effects of APAs on thrombosis and bleeding in CKD. Clinical practice guidelines are ambiguous about use of such agents in CKD patients, because patients with moderate to advanced CKD were systematically excluded from clinical trials of APAs. CKD patients experience excessive rates of cardiovascular thrombotic events, yet paradoxically are at higher risk for major bleeding while receiving APAs. Furthermore, observational studies suggest that CKD patients may exhibit poor response to APAs. High residual platelet aggregability, as determined by inhibition of platelet aggregation, is associated with increased risk for cardiovascular events. In addition, metabolism of certain APAs may be altered in CKD patients. It is, therefore, imperative to explore the mechanisms responsible for poor response to APAs in CKD patients in order to use these drugs more safely and effectively. This review identifies the knowledge gaps and future trials needed to address those issues with the use of APAs in CKD patients.
Collapse
Affiliation(s)
- Nishank Jain
- Divisions of Nephrology and Cardiology, Medical Service, Veterans Affairs North Texas Health Care System, Dallas, TX 75216, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
Atherosclerosis is a chronic inflammatory process in the intima of conduit arteries, which disturbs the endothelium-dependent regulation of the vascular tone by the labile liposoluble radical nitric oxide (NO) formed by the constitutive endothelial nitric oxide synthase (eNOS). This defect predisposes to coronary vasospasm and cardiac ischaemia, with anginal pain as the typical clinical manifestation. It is now appreciated that endothelial dysfunction is an early event in atherogenesis and that it may also involve the microcirculation, in which atherosclerotic lesions do not develop. On the other hand, the inflammatory environment in atherosclerotic plaques may result in the expression of the inducible NO synthase (iNOS) isozyme. Whether the dysfunction in endothelial NO production is causal to, or the result of, atherosclerotic lesion formation is still highly debated. Most evidence supports the hypothesis that constitutive endothelial NO release protects against atherogenesis e.g. by preventing smooth muscle cell proliferation and leukocyte adhesion. Nitric oxide generated by the inducible isozyme may be beneficial by replacing the failing endothelial production but excessive release may damage the vascular wall cells, especially in combination with reactive oxygen intermediates.
Collapse
Affiliation(s)
- K E Matthys
- University of Antwerp (UIA) Division of Pharmacology Wilrijk Antwerp B2610 Belgium
| | | |
Collapse
|
48
|
Sampaio FP, Castro PR, Marques SM, Campos PP, Ferreira MAND, Andrade SP. Genetic background determines inflammatory angiogenesis response to dipyridamole in mice. Exp Biol Med (Maywood) 2012; 237:1084-92. [DOI: 10.1258/ebm.2012.012066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inflammation and angiogenesis, key components of fibrovascular tissue growth, exhibit considerable variability among species and strains. We investigated whether the response of inbred and outbred mice strains to dipyridamole (DP) on these processes would present similar variability. The effects of the drug on blood vessel formation, inflammatory cell recruitment, collagen deposition and cytokine production were determined on the fibroproliferative tissue induced by sponge implants in Swiss and Balb/c mice. Angiogenesis as assessed by hemoglobin (Hb) and vascular endothelial growth factor (VEGF) concentrations differed between the strains. Swiss implants had the highest Hb content but the lowest VEGF concentrations. Systemic DP treatment exerted an antiangiogenic effect on Balb/c implants but an proangiogenic effect on Swiss implants. The inflammatory enzyme activities myeloperoxidase (six-fold higher in Balb/c implants) and N-acetyl- β-d-glucosaminidase were reduced by the treatment in Balb/c implants only. Nitrite concentrations were also higher in Balb/c implants by 40% after DP treatment. Tumor necrosis factor-alpha levels were similar in the implants of both strains and were not reduced by DP. Transforming growth factor β-1 levels and collagen deposition also varied between the strains. The inbred strain had similar levels of the cytokine but implants of Swiss mice presented more collagen. DP treatment reduced collagen deposition in Balb/c implants only. Our data showing the influence of the genetic background on marked heterogeneity of inflammatory angiogenesis components and differential sensitivity to DP may provide some answers to clinical evidence for resistance to angiogenic therapy.
Collapse
Affiliation(s)
| | | | | | - Paula Peixoto Campos
- General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627-Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte/MG, Brazil
| | - Mônica Alves Neves Diniz Ferreira
- General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627-Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte/MG, Brazil
| | | |
Collapse
|
49
|
Kolluru GK, Bir SC, Kevil CG. Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med 2012; 2012:918267. [PMID: 22611498 PMCID: PMC3348526 DOI: 10.1155/2012/918267] [Citation(s) in RCA: 327] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/18/2011] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by inappropriate hyperglycemia due to lack of or resistance to insulin. Patients with DM are frequently afflicted with ischemic vascular disease or wound healing defect. It is well known that type 2 DM causes amplification of the atherosclerotic process, endothelial cell dysfunction, glycosylation of extracellular matrix proteins, and vascular denervation. These complications ultimately lead to impairment of neovascularization and diabetic wound healing. Therapeutic angiogenesis remains an attractive treatment modality for chronic ischemic disorders including PAD and/or diabetic wound healing. Many experimental studies have identified better approaches for diabetic cardiovascular complications, however, successful clinical translation has been limited possibly due to the narrow therapeutic targets of these agents or the lack of rigorous evaluation of pathology and therapeutic mechanisms in experimental models of disease. This paper discusses the current body of evidence identifying endothelial dysfunction and impaired angiogenesis during diabetes.
Collapse
Affiliation(s)
| | | | - Christopher G. Kevil
- Department of Pathology, LSU Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA 71130, USA
| |
Collapse
|
50
|
Hase Y, Okamoto Y, Fujita Y, Kitamura A, Nakabayashi H, Ito H, Maki T, Washida K, Takahashi R, Ihara M. Cilostazol, a phosphodiesterase inhibitor, prevents no-reflow and hemorrhage in mice with focal cerebral ischemia. Exp Neurol 2012; 233:523-33. [DOI: 10.1016/j.expneurol.2011.11.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/05/2011] [Accepted: 11/25/2011] [Indexed: 11/29/2022]
|