1
|
Dmitrieva NI, Boehm M, Yancey PH, Enhörning S. Long-term health outcomes associated with hydration status. Nat Rev Nephrol 2024; 20:275-294. [PMID: 38409366 DOI: 10.1038/s41581-024-00817-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2024] [Indexed: 02/28/2024]
Abstract
Body water balance is determined by fundamental homeostatic mechanisms that maintain stable volume, osmolality and the composition of extracellular and intracellular fluids. Water balance is maintained by multiple mechanisms that continuously match water losses through urine, the skin, the gastrointestinal tract and respiration with water gains achieved through drinking, eating and metabolic water production. Hydration status is determined by the state of the water balance. Underhydration occurs when a decrease in body water availability, due to high losses or low gains, stimulates adaptive responses within the water balance network that are aimed at decreasing losses and increasing gains. This stimulation is also accompanied by cardiovascular adjustments. Epidemiological and experimental studies have linked markers of low fluid intake and underhydration - such as increased plasma concentration of vasopressin and sodium, as well as elevated urine osmolality - with an increased risk of new-onset chronic diseases, accelerated aging and premature mortality, suggesting that persistent activation of adaptive responses may be detrimental to long-term health outcomes. The causative nature of these associations is currently being tested in interventional trials. Understanding of the physiological responses to underhydration may help to identify possible mechanisms that underlie potential adverse, long-term effects of underhydration and inform future research to develop preventative and treatment approaches to the optimization of hydration status.
Collapse
Affiliation(s)
- Natalia I Dmitrieva
- Laboratory of Cardiovascular Regenerative Medicine, National Heart Lung and Blood Institute, NIH, Bethesda, Maryland, USA.
| | - Manfred Boehm
- Laboratory of Cardiovascular Regenerative Medicine, National Heart Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Paul H Yancey
- Biology Department, Whitman College, Walla Walla, Washington, USA
| | - Sofia Enhörning
- Perinatal and Cardiovascular Epidemiology, Lund University Diabetes Centre, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
2
|
Ishikawa SE, Funayama H. Hyponatremia Associated with Congestive Heart Failure: Involvement of Vasopressin and Efficacy of Vasopressin Receptor Antagonists. J Clin Med 2023; 12:jcm12041482. [PMID: 36836016 PMCID: PMC9967582 DOI: 10.3390/jcm12041482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Hyponatremia is frequently found in patients with congestive heart failure. A reduction in effective circulatory blood volume in a volume-expanded patient with decreased cardiac output is linked to a baroreceptor-mediated non-osmotic release of arginine vasopressin (AVP). The increased production of AVP and salt and water retention in the proximal and distal tubules of the kidney by humoral, hemodynamic, and neural mechanisms increase circulatory blood volume and contribute to hyponatremia. Recent studies have indicated that hyponatremia predicts the short-term and long-term prognosis of heart failure by increasing cardiac death and rehospitalization. In addition, the early development of hyponatremia in acute myocardial infarction also predicts the long-term prognosis of worsening heart failure. AVP V2 receptor antagonism may relieve water retention, but it is unknown whether the V2 receptor inhibitor, tolvaptan, improves the long-term prognosis of congestive heart failure. The newly identified natriuretic factor in renal salt wasting has the potential of improving clinical outcomes when combined with a distal diuretic.
Collapse
Affiliation(s)
- San-e Ishikawa
- Department of Medicine, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan
- Correspondence:
| | - Hiroshi Funayama
- Department of Cardiology, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan
| |
Collapse
|
3
|
Lu HAJ, He J. Aquaporins in Diabetes Insipidus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:267-279. [PMID: 36717500 DOI: 10.1007/978-981-19-7415-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Disruption of water and electrolyte balance is frequently encountered in clinical medicine. Regulating water metabolism is critically important. Diabetes insipidus (DI) presented with excessive water loss from the kidney is a major disorder of water metabolism. To understanding the molecular and cellular mechanisms and pathophysiology of DI and rationales of clinical management of DI is important for both research and clinical practice. This chapter will first review various forms of DI focusing on central diabetes insipidus (CDI) and nephrogenic diabetes insipidus (NDI). This is followed by a discussion of regulatory mechanisms underlying CDI and NDI, with a focus on the regulatory axis of vasopressin, vasopressin receptor 2 (V2R) and the water channel molecule, aquaporin 2 (AQP2). The clinical manifestation, diagnosis, and management of various forms of DI will also be discussed with highlights of some of the latest therapeutic strategies that are developed from in vitro experiments and animal studies.
Collapse
Affiliation(s)
- H A Jenny Lu
- Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Jinzhao He
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Reddy YNV. Portopulmonary Hypertension-Rethinking Our Current Approach. Mayo Clin Proc 2022; 97:2189-2191. [PMID: 36464461 DOI: 10.1016/j.mayocp.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022]
Affiliation(s)
- Yogesh N V Reddy
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
5
|
De Santo NG, Bisaccia C, De Santo LS. The Dropsy of Popes (1555-1978): A Bad Prognostic Sign Foreboding of Death. JOURNAL OF RELIGION AND HEALTH 2022; 61:4978-4995. [PMID: 35596044 PMCID: PMC9569309 DOI: 10.1007/s10943-022-01578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
The purpose of this study is to explore the historical background of edema as a prognostic sign in popes, a special category of medical subjects whose health status was closely monitored and chronicled because of their unique important status in the events of their times. Nine out of 51 popes, who reigned in the years 1555-1978, died edematous at a mean age of 75.5 years of age. The cause of edema was: heart failure for John Paul I, liver disease, obstructive nephropathy associated with anemia for Paul IV, who also suffered from deep vein thrombosis, and malnutrition for Innocent XIII. Chronic kidney disease due to renal stones of gouty origin caused edema in Clement VIII, Clement X, Clement XI, and Benedict XIV. Obstructive nephropathy due to renal stones of non-gouty origin caused edema in Clement XIII, whereas toxic nephropathy due to the use of mercurials caused edema in Clement XIV. Innocent XI, Benedict XIV, and Clement XIV were bled before death because of impending pulmonary edema. It is not surprising that chronic kidney disease was a significant cause of edema in popes with chronic kidney disease which is associated with impaired sodium excretion. The edema was likely aggravated by the excessive dietary salt intake of the period when the importance of sodium chloride restriction was still not discovered and effective diuretic agents were not available.
Collapse
|
6
|
Cintron SA, Shen Q, Mahoney D, Sardiu ME, Hiebert JB, Pierce J. Obesity-Related High-Output Heart Failure: An Integrative Review. J Cardiovasc Nurs 2022; 38:00005082-990000000-00041. [PMID: 36178329 DOI: 10.1097/jcn.0000000000000939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND High-output heart failure (HF) is a type of HF characterized by signs and symptoms of HF and a cardiac output of 8 L/min or greater or a cardiac index greater than 3.9 L/min/m 2 . High-output HF occurs secondary to an underlying condition that requires high cardiac output due to an increase in oxygen consumption or decreased systemic vascular resistance. Obesity is a major cause of high-output HF, yet there is limited research on obesity-related high-output HF. Thus, the pathophysiologic mechanisms of this syndrome are not fully understood. OBJECTIVE The objectives of this integrative review were to describe the current state of the research regarding obesity-related high-output HF and to recommend direction for future research. METHODS We conducted an integrative review focusing on the peer-reviewed literature on patients with obesity-related high-output HF using Whittemore and Knafl's methodology. MEDLINE, CINAHL, and EMBASE electronic databases were searched for all publications indexed in the databases as of March 9, 2022. A narrative synthesis of definitions and symptoms, obesity as an underlying condition, pathophysiology, and treatments of obesity-related high-output HF was completed. RESULTS A total of 6 articles were included in the integrative review, with 1 nonexperimental, retrospective study and 5 literature reviews. Understanding of obesity-related high-output HF is very limited because of scant empirical evidence in the existing literature. Possible pathophysiologic mechanisms include increased pressure in the upper airways, adipokine dysregulation, increased metabolic activity, and insulin resistance. CONCLUSION Additional research is needed on the pathophysiologic mechanisms of obesity-related high-output HF to begin investigations on therapeutic interventions to improve health outcomes.
Collapse
|
7
|
Abassi Z, Khoury EE, Karram T, Aronson D. Edema formation in congestive heart failure and the underlying mechanisms. Front Cardiovasc Med 2022; 9:933215. [PMID: 36237903 PMCID: PMC9553007 DOI: 10.3389/fcvm.2022.933215] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Congestive heart failure (HF) is a complex disease state characterized by impaired ventricular function and insufficient peripheral blood supply. The resultant reduced blood flow characterizing HF promotes activation of neurohormonal systems which leads to fluid retention, often exhibited as pulmonary congestion, peripheral edema, dyspnea, and fatigue. Despite intensive research, the exact mechanisms underlying edema formation in HF are poorly characterized. However, the unique relationship between the heart and the kidneys plays a central role in this phenomenon. Specifically, the interplay between the heart and the kidneys in HF involves multiple interdependent mechanisms, including hemodynamic alterations resulting in insufficient peripheral and renal perfusion which can lead to renal tubule hypoxia. Furthermore, HF is characterized by activation of neurohormonal factors including renin-angiotensin-aldosterone system (RAAS), sympathetic nervous system (SNS), endothelin-1 (ET-1), and anti-diuretic hormone (ADH) due to reduced cardiac output (CO) and renal perfusion. Persistent activation of these systems results in deleterious effects on both the kidneys and the heart, including sodium and water retention, vasoconstriction, increased central venous pressure (CVP), which is associated with renal venous hypertension/congestion along with increased intra-abdominal pressure (IAP). The latter was shown to reduce renal blood flow (RBF), leading to a decline in the glomerular filtration rate (GFR). Besides the activation of the above-mentioned vasoconstrictor/anti-natriuretic neurohormonal systems, HF is associated with exceptionally elevated levels of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). However, the supremacy of the deleterious neurohormonal systems over the beneficial natriuretic peptides (NP) in HF is evident by persistent sodium and water retention and cardiac remodeling. Many mechanisms have been suggested to explain this phenomenon which seems to be multifactorial and play a major role in the development of renal hyporesponsiveness to NPs and cardiac remodeling. This review focuses on the mechanisms underlying the development of edema in HF with reduced ejection fraction and refers to the therapeutic maneuvers applied today to overcome abnormal salt/water balance characterizing HF.
Collapse
Affiliation(s)
- Zaid Abassi
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
- Department of Laboratory Medicine, Rambam Health Care Campus, Haifa, Israel
- *Correspondence: Zaid Abassi,
| | - Emad E. Khoury
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
| | - Tony Karram
- Department of Vascular Surgery and Kidney Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Doron Aronson
- Department of Cardiology, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
8
|
Caiati C, Argentiero A, Forleo C, Favale S, Lepera ME. Predictors of Exercise Capacity in Dilated Cardiomyopathy with Focus on Pulmonary Venous Flow Recorded with Transesophageal Eco-Doppler. J Clin Med 2021; 10:5954. [PMID: 34945249 PMCID: PMC8706207 DOI: 10.3390/jcm10245954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 12/14/2021] [Indexed: 12/29/2022] Open
Abstract
The aim of this study was to clarify the relative contribution of elevated left ventricle (LV) filling pressure (FP) estimated by pulmonary venous (PV) and mitral flow, transesophageal Doppler recording (TEE), and other extracardiac factors like obesity and renal insufficiency (KI) to exercise capacity (ExC) evaluated by cardiopulmonary exercise testing (CPX) in patients with dilated cardiomyopathy (DCM). During the CPX test, 119 patients (pts) with DCM underwent both peak VO2 consumption and then TEE with color-guided pulsed-wave Doppler recording of PVF and transmitral flow. In 78 patients (65%), peak VO2 was normal or mildly reduced (>14 mL/kg/min) (group 1) while it was markedly reduced (≤14 mL/kg/min) in 41 (group 2). In univariate analysis, systolic fraction (S Fract), a predictor of elevated pre-a LV diastolic FP, appeared to be the best diastolic parameter predicting a significantly reduced peak VO2. Logistic regression analysis identified five parameters yielding a unique, statistically significant contribution in predicting reduced ExC: creatinine clearance < 52 mL/min (odds ratio (OR) = 7.4, p = 0.007); female gender (OR = 7.1, p = 0.004); BMI > 28 (OR = 5.8, p = 0.029), age > 62 years (OR = 5.5, p = 0.03), S Fract < 59% (OR = 4.9, p = 0.02). Conclusion: KI was the strongest predictor of reduced ExC. The other modifiable factors were obesity and severe LV diastolic dysfunction expressed by blunted systolic venous flow. Contrarily, LV ejection fraction was not predictive, confirming other previous studies. This has important clinical implications.
Collapse
Affiliation(s)
- Carlo Caiati
- Unit of Cardiovascular Diseases, Department of Emergency and Organ Transplantation, University of Bari, 70121 Bari, Italy; (A.A.); (C.F.); (S.F.); (M.E.L.)
| | | | | | | | | |
Collapse
|
9
|
Opichka MA, Rappelt MW, Gutterman DD, Grobe JL, McIntosh JJ. Vascular Dysfunction in Preeclampsia. Cells 2021; 10:3055. [PMID: 34831277 PMCID: PMC8616535 DOI: 10.3390/cells10113055] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 01/22/2023] Open
Abstract
Preeclampsia is a life-threatening pregnancy-associated cardiovascular disorder characterized by hypertension and proteinuria at 20 weeks of gestation. Though its exact underlying cause is not precisely defined and likely heterogenous, a plethora of research indicates that in some women with preeclampsia, both maternal and placental vascular dysfunction plays a role in the pathogenesis and can persist into the postpartum period. Potential abnormalities include impaired placentation, incomplete spiral artery remodeling, and endothelial damage, which are further propagated by immune factors, mitochondrial stress, and an imbalance of pro- and antiangiogenic substances. While the field has progressed, current gaps in knowledge include detailed initial molecular mechanisms and effective treatment options. Newfound evidence indicates that vasopressin is an early mediator and biomarker of the disorder, and promising future therapeutic avenues include mitigating mitochondrial dysfunction, excess oxidative stress, and the resulting inflammatory state. In this review, we provide a detailed overview of vascular defects present during preeclampsia and connect well-established notions to newer discoveries at the molecular, cellular, and whole-organism levels.
Collapse
Affiliation(s)
- Megan A. Opichka
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.A.O.); (D.D.G.); (J.L.G.)
| | - Matthew W. Rappelt
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - David D. Gutterman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.A.O.); (D.D.G.); (J.L.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.A.O.); (D.D.G.); (J.L.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jennifer J. McIntosh
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.A.O.); (D.D.G.); (J.L.G.)
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
10
|
Gattarello S, Pasticci I, Busana M, Lazzari S, Palermo P, Palumbo MM, Romitti F, Steinberg I, Collino F, Vassalli F, Langer T, Moerer O, Saager L, Herrmann P, Cadringher P, Meissner K, Quintel M, Gattinoni L. Role of Fluid and Sodium Retention in Experimental Ventilator-Induced Lung Injury. Front Physiol 2021; 12:743153. [PMID: 34588999 PMCID: PMC8473803 DOI: 10.3389/fphys.2021.743153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Ventilator-induced lung injury (VILI) via respiratory mechanics is deeply interwoven with hemodynamic, kidney and fluid/electrolyte changes. We aimed to assess the role of positive fluid balance in the framework of ventilation-induced lung injury. Methods:Post-hoc analysis of seventy-eight pigs invasively ventilated for 48 h with mechanical power ranging from 18 to 137 J/min and divided into two groups: high vs. low pleural pressure (10.0 ± 2.8 vs. 4.4 ± 1.5 cmH2O; p < 0.01). Respiratory mechanics, hemodynamics, fluid, sodium and osmotic balances, were assessed at 0, 6, 12, 24, 48 h. Sodium distribution between intracellular, extracellular and non-osmotic sodium storage compartments was estimated assuming osmotic equilibrium. Lung weight, wet-to-dry ratios of lung, kidney, liver, bowel and muscle were measured at the end of the experiment. Results: High pleural pressure group had significant higher cardiac output (2.96 ± 0.92 vs. 3.41 ± 1.68 L/min; p < 0.01), use of norepinephrine/epinephrine (1.76 ± 3.31 vs. 5.79 ± 9.69 mcg/kg; p < 0.01) and total fluid infusions (3.06 ± 2.32 vs. 4.04 ± 3.04 L; p < 0.01). This hemodynamic status was associated with significantly increased sodium and fluid retention (at 48 h, respectively, 601.3 ± 334.7 vs. 1073.2 ± 525.9 mmol, p < 0.01; and 2.99 ± 2.54 vs. 6.66 ± 3.87 L, p < 0.01). Ten percent of the infused sodium was stored in an osmotically inactive compartment. Increasing fluid and sodium retention was positively associated with lung-weight (R2 = 0.43, p < 0.01; R2 = 0.48, p < 0.01) and with wet-to-dry ratio of the lungs (R2 = 0.14, p < 0.01; R2 = 0.18, p < 0.01) and kidneys (R2 = 0.11, p = 0.02; R2 = 0.12, p = 0.01). Conclusion: Increased mechanical power and pleural pressures dictated an increase in hemodynamic support resulting in proportionally increased sodium and fluid retention and pulmonary edema.
Collapse
Affiliation(s)
- Simone Gattarello
- Department of Anesthesiology, University Medical Centre Göttingen, Göttingen, Germany
| | - Iacopo Pasticci
- Department of Anesthesiology, University Medical Centre Göttingen, Göttingen, Germany
| | - Mattia Busana
- Department of Anesthesiology, University Medical Centre Göttingen, Göttingen, Germany
| | - Stefano Lazzari
- Department of Anesthesiology, University Medical Centre Göttingen, Göttingen, Germany
| | - Paola Palermo
- Department of Anesthesiology, University Medical Centre Göttingen, Göttingen, Germany
| | - Maria Michela Palumbo
- Department of Anesthesiology, University Medical Centre Göttingen, Göttingen, Germany
| | - Federica Romitti
- Department of Anesthesiology, University Medical Centre Göttingen, Göttingen, Germany
| | - Irene Steinberg
- Department of Anesthesiology, University Medical Centre Göttingen, Göttingen, Germany
| | - Francesca Collino
- Department of Anesthesia, Intensive Care and Emergency, "Città della Salute e della Scienza" Hospital, Turin, Italy
| | - Francesco Vassalli
- Department of Anesthesiology, University Medical Centre Göttingen, Göttingen, Germany
| | - Thomas Langer
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Department of Anesthesia and Intensive Care Medicine, Niguarda Ca' Granda, Milan, Italy
| | - Onnen Moerer
- Department of Anesthesiology, University Medical Centre Göttingen, Göttingen, Germany
| | - Leif Saager
- Department of Anesthesiology, University Medical Centre Göttingen, Göttingen, Germany
| | - Peter Herrmann
- Department of Anesthesiology, University Medical Centre Göttingen, Göttingen, Germany
| | - Paolo Cadringher
- Department of Anesthesiology, University Medical Centre Göttingen, Göttingen, Germany
| | - Konrad Meissner
- Department of Anesthesiology, University Medical Centre Göttingen, Göttingen, Germany
| | - Michael Quintel
- Department of Anesthesiology, University Medical Centre Göttingen, Göttingen, Germany.,Department of Anesthesiology, Intensive Care and Emergency Medicine Donau-Isar-Klinikum Deggendorf, Deggendorf, Germany
| | - Luciano Gattinoni
- Department of Anesthesiology, University Medical Centre Göttingen, Göttingen, Germany
| |
Collapse
|
11
|
Ginès P. Robert W Schrier, an influential observer from outside Hepatology (1936-2021). J Hepatol 2021; 74:S0168-8278(21)00180-X. [PMID: 33892988 DOI: 10.1016/j.jhep.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/04/2022]
Affiliation(s)
- Pere Ginès
- Liver Unit, Hospital Clínic of Barcelona, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
12
|
Deferrari G, Cipriani A, La Porta E. Renal dysfunction in cardiovascular diseases and its consequences. J Nephrol 2021; 34:137-153. [PMID: 32870495 PMCID: PMC7881972 DOI: 10.1007/s40620-020-00842-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
It is well known that the heart and kidney and their synergy is essential for hemodynamic homeostasis. Since the early XIX century it has been recognized that cardiovascular and renal diseases frequently coexist. In the nephrological field, while it is well accepted that renal diseases favor the occurrence of cardiovascular diseases, it is not always realized that cardiovascular diseases induce or aggravate renal dysfunctions, in this way further deteriorating cardiac function and creating a vicious circle. In the same clinical field, the role of venous congestion in the pathogenesis of renal dysfunction is at times overlooked. This review carefully quantifies the prevalence of chronic and acute kidney abnormalities in cardiovascular diseases, mainly heart failure, regardless of ejection fraction, and the consequences of renal abnormalities on both organs, making cardiovascular diseases a major risk factor for kidney diseases. In addition, with regard to pathophysiological aspects, we attempt to substantiate the major role of fluid overload and venous congestion, including renal venous hypertension, in the pathogenesis of acute and chronic renal dysfunction occurring in heart failure. Furthermore, we describe therapeutic principles to counteract the major pathophysiological abnormalities in heart failure complicated by renal dysfunction. Finally, we underline that the mild transient worsening of renal function after decongestive therapy is not usually associated with adverse prognosis. Accordingly, the coexistence of cardiovascular and renal diseases inevitably means mediating between preserving renal function and improving cardiac activity to reach a better outcome.
Collapse
Affiliation(s)
- Giacomo Deferrari
- Department of Cardionephrology, Istituto Clinico Ligure Di Alta Specialità (ICLAS), GVM Care and Research, Via Mario Puchoz 25, 16035, Rapallo, GE, Italy.
- Department of Internal Medicine (DiMi), University of Genoa, Genoa, Italy.
| | - Adriano Cipriani
- Grown-Up Congentital Heart Disease Center (GUCH Center), Istituto Clinico Ligure Di Alta Specialità (ICLAS), GVM Care and Research, Rapallo, GE, Italy
| | - Edoardo La Porta
- Department of Cardionephrology, Istituto Clinico Ligure Di Alta Specialità (ICLAS), GVM Care and Research, Via Mario Puchoz 25, 16035, Rapallo, GE, Italy
- Department of Internal Medicine (DiMi), University of Genoa, Genoa, Italy
| |
Collapse
|
13
|
Burton AG, Hopper K. Hyponatremia in dogs and cats. J Vet Emerg Crit Care (San Antonio) 2019; 29:461-471. [DOI: 10.1111/vec.12881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/04/2017] [Accepted: 09/06/2017] [Indexed: 01/10/2023]
Affiliation(s)
| | - Kate Hopper
- Department of Veterinary Surgical and Radiological SciencesUniversity of California Davis CA
| |
Collapse
|
14
|
Goltsman I, Khoury EE, Aronson D, Nativ O, Feuerstein GZ, Winaver J, Abassi Z. Rosiglitazone treatment restores renal responsiveness to atrial natriuretic peptide in rats with congestive heart failure. J Cell Mol Med 2019; 23:4779-4794. [PMID: 31087547 PMCID: PMC6584517 DOI: 10.1111/jcmm.14366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/24/2019] [Accepted: 04/01/2019] [Indexed: 12/28/2022] Open
Abstract
The thiazolidinedione (TZD) class of Peroxisome proliferator‐activated receptor gamma agonists has restricted clinical use for diabetes mellitus due to fluid retention and potential cardiovascular risks. These side effects are attributed in part to direct salt‐retaining effect of TZDs at the renal collecting duct. A recent study from our group revealed that prolonged rosiglitazone (RGZ) treatment caused no Na+/H2O retention or up‐regulation of Na+ transport‐linked channels/transporters in experimental congestive heart failure (CHF) induced by surgical aorto‐caval fistula (ACF). The present study examines the effects of RGZ on renal and cardiac responses to atrial natriuretic peptide (ANP), Acetylcholine (Ach) and S‐Nitroso‐N‐acetylpenicillamine (SNAP‐NO donor). Furthermore, we assessed the impact of RGZ on gene expression related to the ANP signalling pathway in animals with ACF. Rats subjected to ACF (or sham) were treated with either RGZ (30 mg/kg/day) or vehicle for 4 weeks. Cardiac chambers pressures and volumes were assessed invasively via Miller catheter. Kidney excretory and renal hemodynamic in response to ANP, Ach and SNAP were examined. Renal clearance along with cyclic guanosine monophosphate (cGMP), gene expression of renal CHF‐related genes and ANP signalling in the kidney were determined. RGZ‐treated CHF rats exhibited significant improvement in the natriuretic responses to ANP infusion. This ‘sensitization’ to ANP was not associated with increases in neither urinary cGMP nor in vitro cGMP production. However, RGZ caused down‐regulation of several genes in the renal cortex (Ace, Nos3 and Npr1) and up‐regulation of ACE2, Agtrla, Mme and Cftr along down‐regulation of Avpr2, Npr1,2, Nos3 and Pde3 in the medulla. In conclusion, CHF+RGZ rats exhibited significant enhancement in the natriuretic responses to ANP infusion, which are known to be blunted in CHF. This ‘sensitization’ to ANP is independent of cGMP signalling, yet may involve post‐cGMP signalling target genes such as ACE2, CFTR and V2 receptor. The possibility that TZD treatment in uncomplicated CHF may be less detrimental than thought before deserves additional investigations.
Collapse
Affiliation(s)
- Ilia Goltsman
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion-IIT, Haifa, Israel
| | - Emad E Khoury
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion-IIT, Haifa, Israel
| | - Doron Aronson
- Department of Cardiology, Rambam Health Care Campus, Haifa, Israel
| | - Omri Nativ
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion-IIT, Haifa, Israel
| | - Giora Z Feuerstein
- Department of Cardiology, Rambam Health Care Campus, Haifa, Israel.,FARMACON LLC, Translational Medicine Company, Bryn Mawr, Pennsylvania
| | - Joseph Winaver
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion-IIT, Haifa, Israel
| | - Zaid Abassi
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion-IIT, Haifa, Israel.,Department of Laboratory Medicine, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
15
|
Sharief SN, Hefni NA, Alzahrani WA, Nazer II, Bayazeed MA, Alhasan KA, Safdar OY, El-Desoky SM, Kari JA. Genetics of congenital and infantile nephrotic syndrome. World J Pediatr 2019; 15:198-203. [PMID: 30721404 DOI: 10.1007/s12519-018-00224-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/26/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Congenital and infantile nephrotic syndrome (CNS and INS) are rare inherited defects in glomerular filtration involving a variety of gene mutations. This study aimed to analyze all genetic mutations associated with congenital and infantile nephrotic syndrome treated at our institution. We also discussed our different approach secondary to culture and resources. METHODS A retrospective single-center study of all children diagnosed as NS before the age of 1 year over a duration of over one decade. RESULTS Twenty-nine children (12 boys) were included in the study. Their median age (range) was 2.4 (0.1-12) months (20 CNS and 9 INS). Consanguinity was present in 90% of children. The genetic analysis' results were only available for 20 children. An underlying causative homozygous mutation was detected in 18 children (90%): NPHS1 (9), NPHS2(2), LAMB2(3), PLCE1(1), WT1(1), and ITSN1 novel mutation (2). One child had heterozygous mutation of NPHS2 and another child had heterozygous mutation of NPHS1 which could not explain the disease. All CNS cases were all managed with intermittent intravenous albumin infusion, ACEi, diuretics, and indomethacin. None of the children were managed by nephrectomy followed by peritoneal dialysis (PD) because of limited resources. Only one child achieved partial remission, while 15 children died at a median (range) age of 5.8 (1.25-29) months. The remaining 14 children were followed up for an average of 36 (3.9-120) months. Three children progressed to end-stage kidney disease and PD was performed in only two children. CONCLUSIONS NPHS1 is the main underlying cause of CNS and INS in our study population. CNS and INS were associated with high morbidity and mortality.
Collapse
Affiliation(s)
| | | | | | | | | | - Khalid A Alhasan
- College of Medicine, Pediatric Department, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Osama Y Safdar
- King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.,Department of Pediatrics, Faculty of Medicine, Pediatric Nephrology Center of Excellence, King Abdulaziz University, PO Box 80215, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Sherif M El-Desoky
- King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.,Department of Pediatrics, Faculty of Medicine, Pediatric Nephrology Center of Excellence, King Abdulaziz University, PO Box 80215, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Jameela Abdulaziz Kari
- King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia. .,Department of Pediatrics, Faculty of Medicine, Pediatric Nephrology Center of Excellence, King Abdulaziz University, PO Box 80215, Jeddah, 21589, Kingdom of Saudi Arabia.
| |
Collapse
|
16
|
Targeting volume overload and overnight rostral fluid shift: A new perspective to treat sleep apnea. Sleep Med Rev 2018; 42:160-170. [DOI: 10.1016/j.smrv.2018.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 01/15/2023]
|
17
|
Anand IS. High-Output Heart Failure Revisited. J Am Coll Cardiol 2018; 68:483-486. [PMID: 27470456 DOI: 10.1016/j.jacc.2016.05.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 05/11/2016] [Accepted: 05/18/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Inder S Anand
- Division of Cardiovascular Medicine, University of Minnesota, Minneapolis, Minnesota; Department of Cardiology, VA Medical Center, Minneapolis, Minnesota; and the Department of Cardiology, VA Medical Center, San Diego, California.
| |
Collapse
|
18
|
Roumelioti ME, Glew RH, Khitan ZJ, Rondon-Berrios H, Argyropoulos CP, Malhotra D, Raj DS, Agaba EI, Rohrscheib M, Murata GH, Shapiro JI, Tzamaloukas AH. Fluid balance concepts in medicine: Principles and practice. World J Nephrol 2018; 7:1-28. [PMID: 29359117 PMCID: PMC5760509 DOI: 10.5527/wjn.v7.i1.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/16/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
The regulation of body fluid balance is a key concern in health and disease and comprises three concepts. The first concept pertains to the relationship between total body water (TBW) and total effective solute and is expressed in terms of the tonicity of the body fluids. Disturbances in tonicity are the main factor responsible for changes in cell volume, which can critically affect brain cell function and survival. Solutes distributed almost exclusively in the extracellular compartment (mainly sodium salts) and in the intracellular compartment (mainly potassium salts) contribute to tonicity, while solutes distributed in TBW have no effect on tonicity. The second body fluid balance concept relates to the regulation and measurement of abnormalities of sodium salt balance and extracellular volume. Estimation of extracellular volume is more complex and error prone than measurement of TBW. A key function of extracellular volume, which is defined as the effective arterial blood volume (EABV), is to ensure adequate perfusion of cells and organs. Other factors, including cardiac output, total and regional capacity of both arteries and veins, Starling forces in the capillaries, and gravity also affect the EABV. Collectively, these factors interact closely with extracellular volume and some of them undergo substantial changes in certain acute and chronic severe illnesses. Their changes result not only in extracellular volume expansion, but in the need for a larger extracellular volume compared with that of healthy individuals. Assessing extracellular volume in severe illness is challenging because the estimates of this volume by commonly used methods are prone to large errors in many illnesses. In addition, the optimal extracellular volume may vary from illness to illness, is only partially based on volume measurements by traditional methods, and has not been determined for each illness. Further research is needed to determine optimal extracellular volume levels in several illnesses. For these reasons, extracellular volume in severe illness merits a separate third concept of body fluid balance.
Collapse
Affiliation(s)
- Maria-Eleni Roumelioti
- Division of Nephrology, Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Robert H Glew
- Department of Surgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Zeid J Khitan
- Division of Nephrology, Department of Medicine, Joan Edwards School of Medicine, Marshall University, Huntington, WV 25701, United States
| | - Helbert Rondon-Berrios
- Division of Renal and Electrolyte, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States
| | - Christos P Argyropoulos
- Division of Nephrology, Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Deepak Malhotra
- Division of Nephrology, Department of Medicine, University of Toledo School of Medicine, Toledo, OH 43614-5809, United States
| | - Dominic S Raj
- Division of Renal Disease and Hypertension, Department of Medicine, George Washington University, Washington, DC 20037, United States
| | - Emmanuel I Agaba
- Division of Nephology, Department of Medicine, Jos University Medical Center, Jos, Plateau State 930001, Nigeria
| | - Mark Rohrscheib
- Division of Nephrology, Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Glen H Murata
- Research Service, Raymond G Murphy VA Medical Center and University of New Mexico School of Medicine, Albuquerque, NM 87108, United States
| | | | - Antonios H Tzamaloukas
- Research Service, Raymond G Murphy VA Medical Center and University of New Mexico School of Medicine, Albuquerque, NM 87108, United States
| |
Collapse
|
19
|
Milazzo V, Cosentino N, Marenzi G. Extracorporeal ultrafiltration for acute heart failure: patient selection and perspectives. Vasc Health Risk Manag 2017; 13:449-456. [PMID: 29270016 PMCID: PMC5730184 DOI: 10.2147/vhrm.s128608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Most patients presenting with acute heart failure (AHF) show signs and symptoms of fluid overload, which are closely associated with short-term and long-term outcomes. Ultrafiltration is an extremely appealing strategy for patients with AHF and concomitant overt fluid overload not fully responsive to diuretic therapy. However, although there are several theoretical beneficial effects associated with ultrafiltration, published reports have shown controversial findings. Differences in selection of the study population and in ultrafiltration indications and protocols, and high variability in the pharmacologic therapy used for the control group could explain some of these conflicting results. Here, we aimed to provide an overview on the current medical evidence supporting the use of ultrafiltration in AHF, with a special focus on the identification of potential candidates who may benefit the most from this therapeutic option.
Collapse
Affiliation(s)
- Valentina Milazzo
- Intensive Cardiac Care Unit, Centro Cardiologico Monzino, I.R.C.C.S., Milan, Italy
| | - Nicola Cosentino
- Intensive Cardiac Care Unit, Centro Cardiologico Monzino, I.R.C.C.S., Milan, Italy
| | - Giancarlo Marenzi
- Intensive Cardiac Care Unit, Centro Cardiologico Monzino, I.R.C.C.S., Milan, Italy
| |
Collapse
|
20
|
|
21
|
Ishikawa SE. Is Exaggerated Release of Arginine Vasopressin an Endocrine Disorder? Pathophysiology and Treatment. J Clin Med 2017; 6:jcm6110102. [PMID: 29088071 PMCID: PMC5704119 DOI: 10.3390/jcm6110102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 12/05/2022] Open
Abstract
Exaggerated release of arginine vasopressin (AVP) is profoundly involved in impaired water excretion and related hyponatremia. Such disorders underlie syndromes of inappropriate secretion of antidiuretic hormone (SIADH) and edematous diseases, such as congestive heart failure and decompensated liver cirrhosis. All the causes are fundamentally from non-endocrine diseases. AVP-induced water retention could produce hyponatremia, and further accelerate poor long-term outcome of edematous diseases. Administration of AVP V2 receptor antagonists verifies how much AVP is involved in the pathogenesis of the impaired water excretion. The present paper demonstrated that exaggerated release of AVP plays a crucial role as an accessory endocrine disorder in pathological states of water retention and dilutional hyponatremia in non-endocrine disorders.
Collapse
Affiliation(s)
- San-E Ishikawa
- Department of Endocrinology and Metabolism, International University of Health and Welfare Hospital, Nasushiobara 329-2763, Tochigi, Japan.
| |
Collapse
|
22
|
Ravnan SL, Ravnan MC. Management of Adult Heart Failure: Bolus versus Continuous Infusion Loop Diuretics, A Review of the Literature. Hosp Pharm 2017. [DOI: 10.1177/001857870003500815] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In an aging population, decompensated heart failure accounts for a significant number of hospital admissions. The standard management for edema and congestion associated with heart failure is loop diuretic therapy. Traditionally, bolus-dosed furosemide has been used to manage the edema and congestion associated with heart failure. However, diuretic resistance can occur with bolus dosing, resulting in inadequate diuresis and further hemodynamic instability. Based on current literature, furosemide given by continuous infusion may now be the preferred agent and route for diuretic refractory heart failure. This article reviews the literature that compares bolus versus continuous infusion loop diuretics in adult heart failure.
Collapse
Affiliation(s)
- Susan L. Ravnan
- University of the Pacific School of Pharmacy and Health Sciences, 2271 East Richmond Avenue, Fresno, California 93720
| | - Marcus C. Ravnan
- Veterans Administration Central California Health Care System, 2615 East Clinton Avenue #119, Fresno, Califor-
| |
Collapse
|
23
|
Miwa K. Down-regulation of renin–aldosterone and antidiuretic hormone systems in patients with myalgic encephalomyelitis/chronic fatigue syndrome. J Cardiol 2017; 69:684-688. [DOI: 10.1016/j.jjcc.2016.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 12/21/2022]
|
24
|
|
25
|
Abstract
The brain operates in an extraordinarily intricate environment which demands precise regulation of electrolytes. Tight control over their concentrations and gradients across cellular compartments is essential and when these relationships are disturbed neurologic manifestations may develop. Perturbations of sodium are the electrolyte disturbances that most often lead to neurologic manifestations. Alterations in extracellular fluid sodium concentrations produce water shifts that lead to brain swelling or shrinkage. If marked or rapid they can result in profound changes in brain function which are proportional to the degree of cerebral edema or contraction. Adaptive mechanisms quickly respond to changes in cell size by either increasing or decreasing intracellular osmoles in order to restore size to normal. Unless cerebral edema has been severe or prolonged, correction of sodium disturbances usually restores function to normal. If the rate of correction is too rapid or overcorrection occurs, however, new neurologic manifestations may appear as a result of osmotic demyelination syndrome. Disturbances of magnesium, phosphate and calcium all may contribute to alterations in sensorium. Hypomagnesemia and hypocalcemia can lead to weakness, muscle spasms, and tetany; the weakness from hypophosphatemia and hypomagnesemia can impair respiratory function. Seizures can be seen in cases with very low concentrations of sodium, magnesium, calcium, and phosphate.
Collapse
Affiliation(s)
- M Diringer
- Department of Neurology, Washington University, St. Louis, MO, USA.
| |
Collapse
|
26
|
Abstract
Disruption of water and electrolyte balance is frequently encountered in clinical medicine. Regulating water metabolism is critically important. Diabetes insipidus (DI) presented with excessive water loss from the kidney is a major disorder of water metabolism. To understand the molecular and cellular mechanisms and pathophysiology of DI and rationales of clinical management of DI is important for both research and clinical practice. This chapter will first review various forms of DI focusing on central diabetes insipidus (CDI) and nephrogenic diabetes insipidus (NDI ) . This is followed by a discussion of regulatory mechanisms underlying CDI and NDI , with a focus on the regulatory axis of vasopressin, vasopressin receptor 2 (V2R ) and the water channel molecule, aquaporin 2 (AQP2 ). The clinical manifestation, diagnosis and management of various forms of DI will also be discussed with highlights of some of the latest therapeutic strategies that are developed from in vitro experiments and animal studies.
Collapse
Affiliation(s)
- H A Jenny Lu
- Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA, 02114, USA.
| |
Collapse
|
27
|
West CA, Sasser JM, Baylis C. The enigma of continual plasma volume expansion in pregnancy: critical role of the renin-angiotensin-aldosterone system. Am J Physiol Renal Physiol 2016; 311:F1125-F1134. [PMID: 27707703 PMCID: PMC6189751 DOI: 10.1152/ajprenal.00129.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/29/2016] [Indexed: 12/27/2022] Open
Abstract
Pregnancy is characterized by avid renal sodium retention and plasma volume expansion in the presence of decreased blood pressure. Decreased maternal blood pressure is a consequence of reduced systemic vascular tone, which results from an increased production of vasodilators [nitric oxide (NO), prostaglandins, and relaxin] and decreased vascular responsiveness to the potent vasoconstrictor (angiotensin II). The kidneys participate in this vasodilatory response, resulting in marked increases in renal plasma flow and glomerular filtration rate (GFR) during pregnancy. In women, sodium retention drives plasma volume expansion (∼40%) and is necessary for perfusion of the growing uterus and fetus. For there to be avid sodium retention in the presence of the potent natriuretic influences of increased NO and elevated GFR, there must be modifications of the tubules to prevent salt wasting. The purpose of this review is to summarize these adaptations.
Collapse
Affiliation(s)
- Crystal A West
- Department of Medicine, Georgetown University, Washington, District of Columbia;
| | - Jennifer M Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Chris Baylis
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| |
Collapse
|
28
|
Goltsman I, Khoury EE, Winaver J, Abassi Z. Does Thiazolidinedione therapy exacerbate fluid retention in congestive heart failure? Pharmacol Ther 2016; 168:75-97. [PMID: 27598860 DOI: 10.1016/j.pharmthera.2016.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ever-growing global burden of congestive heart failure (CHF) and type 2 diabetes mellitus (T2DM) as well as their co-existence necessitate that anti-diabetic pharmacotherapy will modulate the cardiovascular risk inherent to T2DM while complying with the accompanying restrictions imposed by CHF. The thiazolidinedione (TZD) family of peroxisome proliferator-activated receptor γ (PPARγ) agonists initially provided a promising therapeutic option in T2DM owing to anti-diabetic efficacy combined with pleiotropic beneficial cardiovascular effects. However, the utility of TZDs in T2DM has declined in the past decade, largely due to concomitant adverse effects of fluid retention and edema formation attributed to salt-retaining effects of PPARγ activation on the nephron. Presumably, the latter effects are potentially deleterious in the context of pre-existing fluid retention in CHF. However, despite a considerable body of evidence on mechanisms responsible for TZD-induced fluid retention suggesting that this class of drugs is rightfully prohibited from use in CHF patients, there is a paucity of experimental and clinical studies that investigate the effects of TZDs on salt and water homeostasis in the CHF setting. In an attempt to elucidate whether TZDs actually exacerbate the pre-existing fluid retention in CHF, our review summarizes the pathophysiology of fluid retention in CHF. Moreover, we thoroughly review the available data on TZD-induced fluid retention and proposed mechanisms in animals and patients. Finally, we will present recent studies challenging the common notion that TZDs worsen renal salt and water retention in CHF.
Collapse
Affiliation(s)
- Ilia Goltsman
- Department of Physiology, Biophysics and Systems Biology, The Bruce Rappaport, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Emad E Khoury
- Department of Physiology, Biophysics and Systems Biology, The Bruce Rappaport, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Joseph Winaver
- Department of Physiology, Biophysics and Systems Biology, The Bruce Rappaport, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Zaid Abassi
- Department of Physiology, Biophysics and Systems Biology, The Bruce Rappaport, Rappaport Faculty of Medicine, Technion, Haifa, Israel; Department of Laboratory Medicine, Rambam Human Health Care Campus, Haifa, Israel.
| |
Collapse
|
29
|
Abstract
Appropriate treatment of hyponatremic disorders is de pendent on an understanding of the mechanisms that cause these abnormalities. This article offers a patho physiological approach to hypoosmolar syndromes. Common causes of hyponatremia are reviewed with particular emphasis on congestive heart failure, ad vanced liver disease, diuretic use, and the syndrome of inappropriate antidiuretic hormone secretion. New con cepts in treatment are discussed with the aid of clinical examples that emphasize critical information. A number of recent studies have questioned the safety of rapidly correcting hyponatremia; recommendations based on our current understanding of these risks are proposed. Pitfalls in the diagnosis and management of patients with hyponatremic disorders are also discussed.
Collapse
Affiliation(s)
- Robert M. Black
- From the Division of Nephrology, Saint Vincent Hospital, and the University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
30
|
Zhang X, Zhao M, Du W, Zu D, Sun Y, Xiang R, Yang J. Efficacy and Safety of Vasopressin Receptor Antagonists for Euvolemic or Hypervolemic Hyponatremia: A Meta-Analysis. Medicine (Baltimore) 2016; 95:e3310. [PMID: 27082573 PMCID: PMC4839817 DOI: 10.1097/md.0000000000003310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hyponatremia, defined as a nonartifactual serum sodium level <135 mmol/L, is the most common fluid and electrolyte abnormality in clinical practice. Traditional managements (fluid restriction, hypertonic saline and loop diuretics, etc.) are difficult to maintain or ineffective. Recently, vasopressin receptor antagonists (VRAs) have shown promise for the treatment of hyponatremia. We aimed to conduct a meta-analysis to evaluate the efficacy and safety of VRAs in patients with euvolemic or hypervolemic hyponatremia. We searched Pubmed, Cochrane Library, Web of Science and Springer, etc. (latest search on June 4, 2015) for English publications with randomized controlled trials. Two authors independently screened the citations and extracted data. We calculated pooled relative risk (RR), risk difference (RD), weighted mean difference (WMD) or standard mean difference (SMD), and 95% confidence intervals (CIs) by using random and fixed effect models. We collected data from 18 trials involving 1806 patients. Both random and fixed effect meta-analyses showed that VRAs significantly increased the net change of serum sodium concentration (WMD(random) = 4.89 mEq/L, 95%CIs = 4.35-5.43 and WMD(fixed) = 4.70 mEq/L, 95%CIs = 4.45-4.95), response rate (RR(random )= 2.77, 95%CIs = 2.29-3.36 and RR(fixed) = 2.95, 95%CIs = 2.56-3.41), and 24-hour urine output (SMD(random) = 0.82, 95%CIs = 0.65-1.00 and SMD(fixed) = 0.79, 95%CIs = 0.66-0.93) compared to placebo. Furthermore, VRAs significantly decreased body weight (WMD(random) = -0.87 kg, 95%CIs = -1.24 to -0.49 and WMD(fixed) = -0.91 kg, 95%CIs = -1.22 to -0.59). In terms of safety, rates of drug-related adverse events (AEs), rapid sodium level correction, constipation, dry mouth, thirst, and phlebitis in the VRA-treated group were greater than those in control group. However, there was no difference in the total number of AEs, discontinuations due to AEs, serious AEs, death, headache, hypotension, nausea, anemia, hypernatremia, urinary tract infection, renal failure, pyrexia, upper gastrointestinal bleeding, diarrhea, vomiting, peripheral edema, and dizziness between the 2 groups. Random effect meta-analyses showed that post treatment urine osmolality, supine systolic blood pressure, and diastolic blood pressure were lowered (WMD(random) = -233.07 mOsmol/kg, 95%CIs = -298.20-147.94; WMD(random) = -6.11 mmHg, 95%CIs = -9.810 to -2.41; WMD(random )= -2.59 mmHg, 95%CIs = -4.06 to -1.11, respectively), but serum osmolality was increased (WMD(random) = 9.29 mOsmol/kg, 95%CIs = 5.56-13.03). There was no significant change from baseline in serum potassium concentration between the 2 groups (WMD(fixed) = 0.00 mmHg, 95%CIs = -0.07-0.06). VRAs are relatively effective and safe for the treatment of hypervolemic and euvolemic hyponatremia.
Collapse
Affiliation(s)
- Xiangyun Zhang
- From the Department of Clinical Pharmacy (XZ, MZ, WD, DZ, RX, JY), Shenyang Pharmaceutical University; and Department of Gastroenterology (YS), Hospital 463 of Peoples Liberation Army, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Natalia C Berry
- From Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA.
| | | | - Joshua A Beckman
- From Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
32
|
Teoh CW, Robinson LA, Noone D. Perspectives on edema in childhood nephrotic syndrome. Am J Physiol Renal Physiol 2015; 309:F575-82. [PMID: 26290369 DOI: 10.1152/ajprenal.00229.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/11/2015] [Indexed: 12/21/2022] Open
Abstract
There have been two major theories surrounding the development of edema in nephrotic syndrome (NS), namely, the under- and overfill hypotheses. Edema is one of the cardinal features of NS and remains one of the principal reasons for admission of children to the hospital. Recently, the discovery that proteases in the glomerular filtrate of patients with NS are activating the epithelial sodium channel (ENaC), resulting in intrarenal salt retention and thereby contributing to edema, might suggest that targeting ENaC with amiloride might be a suitable strategy to manage the edema of NS. Other potential agents, particularly urearetics and aquaretics, might also prove useful in NS. Recent evidence also suggests that there may be other areas involved in salt storage, especially the skin, and it will be intriguing to study the implications of this in NS.
Collapse
Affiliation(s)
- Chia Wei Teoh
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lisa A Robinson
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Damien Noone
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Lin QQ, Lin R, Ji QL, Zhang JY, Wang WR, Yang LN, Zhang KF. Effect of exercise training on renal function and renal aquaporin-2 expression in rats with chronic heart failure. Clin Exp Pharmacol Physiol 2015; 38:179-85. [PMID: 21251048 DOI: 10.1111/j.1440-1681.2011.05481.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
1. Chronic heart failure (CHF) is often accompanied by renal dysfunction. Exercise training may relieve the symptomatic burden and improve the overall prognosis of CHF. In the present study, the effects of exercise training on renal function and renal aquaporin (AQP)-2 expression in CHF rats were examined to determine whether exercise training could relieve renal dysfunction in CHF rats. 2. Male Sprague-Dawley rats were divided into three groups: sham, sedentary CHF (Sed-CHF) and exercise training CHF (Ex-CHF) groups. Cardiorenal function was assessed in each group by haemodynamic measurement and ultraviolet spectrophotometry. Pathological changes in cardiac and renal tissues were evaluated histologically and the collagen volume fraction (CVF) was calculated. The expressions of AQP-2 and β-tubulin were determined by western blotting and immunohistochemistry. 3. The Sed-CHF rats were found to have increased left ventricular end-diastolic pressure (LVEDP) and CVF in the heart compared with sham rats. Exercise training decreased LVEDP and CVF values in Ex-CHF rats. The Sed-CHF rats were found to have increased serum levels of creatinine (sCr), blood urea nitrogen (BUN) and arginine vasopressin (AVP), as well as increased CVF in the kidney, compared with sham rats. Exercise training decreased levels of sCr, BUN, AVP and CVF in Ex-CHF rats. Moreover, exercise training decreased AQP-2 and β-tubulin protein expression in the kidney of CHF rats. 4. The results suggest that exercise training can significantly improve the renal dysfunction in CHF rats and that the underlying mechanism may be related to water reabsorption and preventing changes to the cytoskeleton.
Collapse
Affiliation(s)
- Qin-Qin Lin
- Department of Pharmacology, Medical School of Xi'an Jiaotong University and Key Laboratory of Environment and Genes Related Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi Province, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Zardi EM, Zardi DM, Chin D, Sonnino C, Dobrina A, Abbate A. Cirrhotic cardiomyopathy in the pre- and post-liver transplantation phase. J Cardiol 2015; 67:125-30. [PMID: 26074443 DOI: 10.1016/j.jjcc.2015.04.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/24/2015] [Accepted: 04/16/2015] [Indexed: 12/23/2022]
Abstract
Patients with advanced liver cirrhosis may develop a clinical syndrome characterized by a blunted contractile responsiveness to stress and/or altered diastolic relaxation, called "cirrhotic cardiomyopathy." This syndrome, which is initially asymptomatic, is often misdiagnosed due to the presence of symptoms that characterize other disorders present in patients with advanced liver cirrhosis, such as exercise intolerance, fatigue, and dyspnea. Stress and other conditions such as liver transplantation and transjugular intrahepatic portosystemic shunt (TIPS) may unmask this syndrome. Liver transplantation in this group of patients results in a clinical improvement and can be a cure for the cardiomyopathy. However, post-transplant prognosis depends on the identification of cirrhotics with cardiomyopathy in the pre-transplant phase; an early diagnosis of cirrhotic cardiomyopathy in the pre-transplant phase may avoid an acute onset or worsening of cardiac failure after liver transplantation. Since a preserved left ventricular ejection fraction may mask the presence of cirrhotic cardiomyopathy, the use of newer noninvasive diagnostic techniques (i.e. tissue Doppler, myocardial strain) is necessary to identify cirrhotics with this syndrome, in the pre-transplant phase. A pre-transplant treatment of heart failure in cirrhotics with cardiomyopathy improves the quality of life in this phase and reduces the complications during and immediately after liver transplantation. Since specific therapies for cirrhotic cardiomyopathy are lacking, due to the absence of a clear understanding of the pathophysiology of the cardiomyopathy, further research in this field is required.
Collapse
Affiliation(s)
- Enrico Maria Zardi
- Department of Clinical Medicine, University Campus Bio-Medico, Rome, Italy.
| | - Domenico Maria Zardi
- Department of Cardiology, II School of Medicine, University La Sapienza, Ospedale Sant'Andrea, Rome, Italy
| | - Diana Chin
- Department of Cardiology, II School of Medicine, University La Sapienza, Ospedale Sant'Andrea, Rome, Italy
| | - Chiara Sonnino
- Virginia Commonwealth University-VCU Pauley Heart Center, Richmond, VA, USA
| | - Aldo Dobrina
- Department of Physiology and Pathology, University of Trieste, Trieste, Italy
| | - Antonio Abbate
- Virginia Commonwealth University-VCU Pauley Heart Center, Richmond, VA, USA
| |
Collapse
|
35
|
Hyponatremia Associated with Heart Failure: Pathological Role of Vasopressin-Dependent Impaired Water Excretion. J Clin Med 2015; 4:933-47. [PMID: 26239456 PMCID: PMC4470207 DOI: 10.3390/jcm4050933] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 02/19/2015] [Accepted: 04/07/2015] [Indexed: 11/18/2022] Open
Abstract
An exaggerated increase in circulatory blood volume is linked to congestive heart failure. Despite this increase, reduction of the “effective circulatory blood volume” in congestive heart failure is associated with decreased cardiac output, and can weaken the sensitivity of baroreceptors. Thereafter, tonic inhibition of the baroreceptor-mediated afferent pathway of vagal nerves is removed, providing an increase in non-osmotic release of arginine vasopressin (AVP). In the renal collecting duct, the aquaporin-2 (AQP2) water channel is regulated by sustained elevation of AVP release, and this leads to augmented hydroosmotic action of AVP, that results in exaggerated water retention and dilutional hyponatremia. Hyponatremia is also a predictor for worsening heart failure in patients with known/new onset heart failure. Therefore, such a dilutional hyponatremia associated with organ damage is predictive of the short- and long-term outcome of heart failure.
Collapse
|
36
|
Kumar D, Bagarhatta R. Fractional excretion of sodium and its association with prognosis of decompensated heart failure patients. J Clin Diagn Res 2015; 9:OC01-3. [PMID: 26023577 DOI: 10.7860/jcdr/2015/11532.5736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/05/2015] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Diuretic resistance is a common problem in congestive heart failure patients. It has been defined clinically but can be defined objectively in terms of fractional excretion of sodium (FENa). AIM Aim of the study was to find out the association of FENa with prognosis of decompensated heart failure patients. MATERIALS AND METHODS One hundred and seventy eligible patients with a primary diagnosis of decompensated heart failure were enrolled and patients were categorized into two groups on the basis of baseline FENa- Group A (65 patients) with diuretic resistance with FENa <0.2% and Group B (105 patients) sensitive to diuretics with FENa ≥0.2%. The patients were followed-up during the hospital stay for the time taken for improvement from NYHA functional class IV to class II. They were followed telephonically at 30 days post admission for all cause mortality. RESULT The mean time taken to improve from NYHA functional class IV to class II were 146 hours for FENa<.2% and 60 h for FENa≥0.2% (p<0.0001). There was a fair negative correlation between FENa and time taken for improvement from NYHA functional class IV to class II with correlation coefficient being -0.4842. Multiple linear regression analysis showed FENa (standardized "B" is -0.480, p<0.001) and LVEF (standardized "B" is -0.182, p=0.007) as significant predictors of time taken for improvement from NYHA functional class IV to class II. The 30 days all cause mortality was significantly associated with level of Fena (p <0.001) and was inversely proportional. CONCLUSION CHF patients with FENa <0.2% takes longer time to recover from NYHA functional class IV to class II. 30 days all cause mortality was also significantly higher among CHF patients with FENa <0.2%.Measuring baseline FENa and regulating diuretic dose accordingly at admission to hospital may probably improve the prognosis of CHF patients.
Collapse
Affiliation(s)
- Dinanath Kumar
- Senior Resident, Dpartment of Cardiology, Sawai Man Singh Medical College , Jaipur, India
| | - Rajeev Bagarhatta
- Professor, Dpartment of Cardiology, Sawai Man Singh Medical College , Jaipur, India
| |
Collapse
|
37
|
Affiliation(s)
- Selina J Chavda
- ST3 National Institute of Health Research Academic Clinical Fellow Haemato-oncology in the Department of Haematology, Royal Marsden Hospitals NHS Foundation Trust, Sutton, Surrey SM2 5PT
| | | |
Collapse
|
38
|
Management of severe hyponatremia: infusion of hypertonic saline and desmopressin or infusion of vasopressin inhibitors? Am J Med Sci 2015; 348:432-9. [PMID: 25247759 PMCID: PMC4206391 DOI: 10.1097/maj.0000000000000331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rapid correction of severe hyponatremia carries the risk of osmotic demyelination. Two recently introduced methods of correction of hyponatremia have diametrically opposite effects on aquaresis. Inhibitors of vasopressin V2 receptor (vaptans) lead to the production of dilute urine, whereas infusion of desmopressin causes urinary concentration. Identification of the category of hyponatremia that will benefit from one or the other treatment is critical. In general, vaptans are effective in hyponatremias presenting with concentrated urine and, with the exception of hypovolemic hyponatremia, can be used as their primary treatment. Desmopressin is effective in hyponatremias presenting with dilute urine or developing urinary dilution after saline infusion. In this setting, desmopressin infusion helps prevent overcorrection of the hyponatremia. Monitoring of the changes in serum sodium concentration as a guide to treatment changes is imperative regardless of the initial treatment of severe hyponatremia.
Collapse
|
39
|
Affiliation(s)
- San-e Ishikawa
- Department of Medicine, Jichi Medical University Saitama Medical Center
| |
Collapse
|
40
|
The nephrotic syndrome: pathogenesis and treatment of edema formation and secondary complications. Pediatr Nephrol 2014; 29:1159-67. [PMID: 23989393 DOI: 10.1007/s00467-013-2567-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/17/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
Nephrotic syndrome is an important clinical condition affecting both children and adults. Studies suggest that the pathogenesis of edema in individual patients may occur via widely variable mechanisms, i.e., intravascular volume underfilling versus overfilling. Managing edema should therefore be directed to the underlying pathophysiology. Nephrotic syndrome is also associated with clinically important complications related to urinary loss of proteins other than albumin. This educational review focuses on the pathophysiology and management of edema and secondary complications in patients with nephrotic syndrome.
Collapse
|
41
|
Evbuomwan I. The role of osmoregulation in the pathophysiology and management of severe ovarian hyperstimulation syndrome. HUM FERTIL 2014; 16:162-7. [PMID: 24047195 DOI: 10.3109/14647273.2013.831996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Severe ovarian hyperstimulation syndrome (OHSS), with an incidence of 1-2% of superovulation cycles, remains one of the most important complications of gonadotrophin use in assisted reproductive technologies because of its associated morbidity and rarely, mortality. Despite the wealth of scientific and clinical interest that this iatrogenic complication has generated, its pathophysiology is still not adequately elucidated and its management has thus remained empirical. Disorders of salt and water balance are two very important features that have been reported during severe OHSS. Some of the clinical and biochemical changes resulting from this disorder of salt and water balance are similar to those previously reported in pregnancy and liver cirrhosis. The pathophysiology of these clinical changes has been explained in part in pregnancy and liver cirrhosis by changes in osmoregulation function. It is this similarity in the clinical and biochemical changes in OHSS, pregnancy and liver cirrhosis that has prompted the investigation of the role of osmoregulation function in the pathophysiology of OHSS. The current article has been written to provide further details in support of recent excellent articles and guidelines, highlighting the physiological basis and rationale governing some aspects of, and the role of osmoregulation in the management of the OHSS syndrome.
Collapse
Affiliation(s)
- Isaac Evbuomwan
- Gateshead Fertility Unit, Queen Elizabeth Hospital, Gateshead Hospitals NHS Foundation Trust , Gateshead , UK
| |
Collapse
|
42
|
Gabbay U, Bobrovsky BZ. A novel hypothesis comprehensively explains shock, heart failure and aerobic exhaustion through an assumed central physiological control of the momentary cardiovascular performance reserve. Med Hypotheses 2014; 82:694-9. [PMID: 24679381 DOI: 10.1016/j.mehy.2014.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 03/05/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Heart failure (HF) and shock are incomprehensively understood, inconclusively defined and lack a single conclusive test. The proceedings that preceded and triggered clinical manifestations are occult. The relationships in between different shock and HF types and between each HF type and its matched shock are poorly understood. THE ASSUMED HYPOTHESIS We suggest that HF and shock are attributed to a momentary cardiovascular performance reserve - "the reserve". The reserve is controlled through an assumed central physiological mechanism that continuously detects and responds accordingly--"the reserve control". The assumed reserve is maximal at rest, and decreases with aerobic activity. When it decreases to a given threshold the reserve control alerts by induces manifestations of dyspnea and fatigue enforcing activity decrease, follow which the manifestations dissolve. HF is a condition of low reserve at baseline; hence, fatigue and dyspnea are frequently experienced following mild activity. Shock is assumed to occur when the cardiovascular reserve deteriorates below a sustainable limit where the reserve control induces a salvage-sacrifice response, preserving vital organ perfusion while impairing microcirculation effective perfusion in non-vital organ in which it causes cellular hypoxia followed by the familiar devastating cascade of events seen in shock. DISCUSSION AND CONCLUSIONS The hereby hypothesis may comprehensively explain the heart failure - shock puzzle as no alternative theory had ever succeeded. It provides the missing link between the different types of HF as of shock and in between. The hypothesis poses a great prove challenge but opens new research and clinical possibilities.
Collapse
Affiliation(s)
- Uri Gabbay
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel.
| | - Ben Zion Bobrovsky
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
43
|
Zardi EM, Di Matteo FM, Pacella CM, Sanyal AJ. Invasive and non-invasive techniques for detecting portal hypertension and predicting variceal bleeding in cirrhosis: a review. Ann Med 2014; 46:8-17. [PMID: 24328372 PMCID: PMC4904298 DOI: 10.3109/07853890.2013.857831] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Portal hypertension is a severe syndrome that may derive from pre-sinusoidal, sinusoidal, and post-sinusoidal causes. As a consequence, several complications (i.e. ascites, oesophageal varices) may develop. In sinusoidal portal hypertension, hepatic venous pressure gradient (HVPG) is a reliable method for defining the grade of portal pressure, establishing the effectiveness of the treatment, and predicting the occurrence of complications; however, some questions exist regarding its ability to discriminate bleeding from non-bleeding varices in cirrhotic patients. Other imaging techniques (transient elastography, endoscopy, endosonography, and duplex Doppler sonography) for assessing causes and complications of portal hypertensive syndrome are available and may be valuable for the management of these patients. In this review, we evaluate invasive and non-invasive techniques currently employed to obtain a clinical prediction of deadly complications, such as variceal bleeding in patients affected by sinusoidal portal hypertension, in order to create a diagnostic algorithm to manage them. Again, HVPG appears to be the reference standard to evaluate portal hypertension and monitor the response to treatment, but its ability to predict several complications and support management decisions might be further improved through the diagnostic combination with other imaging techniques.
Collapse
Affiliation(s)
- Enrico Maria Zardi
- Department of Clinical Medicine, 'Campus Bio-Medico' University , Rome , Italy
| | | | | | | |
Collapse
|
44
|
Cotter G, Metra M, Milo-Cotter O, Dittrich HC, Gheorghiade M. Fluid overload in acute heart failure - Re-distribution and other mechanisms beyond fluid accumulation. Eur J Heart Fail 2014; 10:165-9. [DOI: 10.1016/j.ejheart.2008.01.007] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 01/09/2008] [Accepted: 01/15/2008] [Indexed: 10/22/2022] Open
|
45
|
Verbalis JG, Goldsmith SR, Greenberg A, Korzelius C, Schrier RW, Sterns RH, Thompson CJ. Diagnosis, evaluation, and treatment of hyponatremia: expert panel recommendations. Am J Med 2013; 126:S1-42. [PMID: 24074529 DOI: 10.1016/j.amjmed.2013.07.006] [Citation(s) in RCA: 603] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hyponatremia is a serious, but often overlooked, electrolyte imbalance that has been independently associated with a wide range of deleterious changes involving many different body systems. Untreated acute hyponatremia can cause substantial morbidity and mortality as a result of osmotically induced cerebral edema, and excessively rapid correction of chronic hyponatremia can cause severe neurologic impairment and death as a result of osmotic demyelination. The diverse etiologies and comorbidities associated with hyponatremia pose substantial challenges in managing this disorder. In 2007, a panel of experts in hyponatremia convened to develop the Hyponatremia Treatment Guidelines 2007: Expert Panel Recommendations that defined strategies for clinicians caring for patients with hyponatremia. In the 6 years since the publication of that document, the field has seen several notable developments, including new evidence on morbidities and complications associated with hyponatremia, the importance of treating mild to moderate hyponatremia, and the efficacy and safety of vasopressin receptor antagonist therapy for hyponatremic patients. Therefore, additional guidance was deemed necessary and a panel of hyponatremia experts (which included all of the original panel members) was convened to update the previous recommendations for optimal current management of this disorder. The updated expert panel recommendations in this document represent recommended approaches for multiple etiologies of hyponatremia that are based on both consensus opinions of experts in hyponatremia and the most recent published data in this field.
Collapse
|
46
|
Hori M. Tolvaptan for the treatment of hyponatremia and hypervolemia in patients with congestive heart failure. Future Cardiol 2013; 9:163-76. [PMID: 23463968 DOI: 10.2217/fca.13.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Patients with heart failure often show increased arginine vasopressin secretion and enhanced sympathetic and renin-angiotensin-aldosterone activation, which accelerate renal water reabsorption, causing water retention and volume overload. Tolvaptan is an orally active antagonist of arginine vasopressin type 2 receptors in the collecting duct of the kidney that inhibits water reabsorption without substantially affecting the electrolyte balance. Tolvaptan in combination with conventional diuretics improves fluid retention and congestive symptoms in patients with heart failure and volume overload, with minimal effects on hemodynamics and serum potassium. Tolvaptan slightly increases serum sodium concentrations, generally within the normal range. Although it does not seem to affect long-term mortality, tolvaptan does improve short-term water retention and congestive symptoms in heart failure patients with volume overload despite the use of conventional diuretics, and is approved for this indication in Japan.
Collapse
Affiliation(s)
- Masatsugu Hori
- Osaka Medical Center for Cancer & Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan.
| |
Collapse
|
47
|
Anand IS. Cardiorenal syndrome: a cardiologist's perspective of pathophysiology. Clin J Am Soc Nephrol 2013; 8:1800-7. [PMID: 23886565 DOI: 10.2215/cjn.04090413] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The cardiorenal syndrome has recently been defined as "disorders of the heart and kidney whereby acute or chronic dysfunction in one organ may induce acute or chronic dysfunction of the other." The syndrome is extremely common and independently associated with poor clinical outcomes. However, no pharmacological therapy has been shown to improve its outcomes. Unfortunately, the mechanisms that initiate the development of renal dysfunction in heart failure are still debated. This review tries to clarify some of the misunderstanding regarding the principle hemodynamic factors that drive the kidneys to retain salt and water.
Collapse
Affiliation(s)
- Inder S Anand
- Department of Medicine, Veterans Affairs Medical Center, Minneapolis, and Division of Cardiovascular Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
48
|
Shchekochikhin D, Al Ammary F, Lindenfeld JA, Schrier R. Role of diuretics and ultrafiltration in congestive heart failure. Pharmaceuticals (Basel) 2013; 6:851-66. [PMID: 24276318 PMCID: PMC3816706 DOI: 10.3390/ph6070851] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/21/2013] [Accepted: 06/14/2013] [Indexed: 01/08/2023] Open
Abstract
Volume overload in heart failure (HF) results from neurohumoral activation causing renal sodium and water retention secondary to arterial underfilling. Volume overload not only causes signs and symptoms of congestion, but can impact myocardial remodeling and HF progression. Thus, treating congestion is a cornerstone of HF management. Loop diuretics are the most commonly used drugs in this setting. However, up to 30% of the patients with decompensated HF present with loop-diuretic resistance. A universally accepted definition of loop diuretic resistance, however, is lacking. Several approaches to treat diuretic-resistant HF are available, including addition of distal acting thiazide diuretics, natriuretic doses of mineralocorticoid receptor antagonists (MRAs), or vasoactive drugs. Slow continuous veno-venous ultrafiltration is another option. Ultrafiltration, if it is started early in the course of HF decompensation, may result in prominent decongestion and a reduction in re-hospitalization. On the other hand, ultrafiltration in HF patients with worsening renal function and volume overload after aggressive treatment with loop diuretics, failed to show benefit compared to a stepwise pharmacological approach, including diuretics and vasoactive drugs. Early detection of congested HF patients for ultrafiltration treatment might improve decongestion and reduce readmission. However, the best patient characteristics and best timing of ultrafiltration requires further evaluation in randomized controlled studies.
Collapse
Affiliation(s)
- Dmitry Shchekochikhin
- University of Colorado Division of Renal Diseases and Hypertension, 12700 East 19th Avenue, C281, Aurora, CO 80045, USA.
| | | | | | | |
Collapse
|
49
|
Thabt SS, Enany BE, Soliman KR. Fractional sodium excretion and its relation to in-hospital morbidity and mortality in patients admitted with decompensated heart failure. Egypt Heart J 2013. [DOI: 10.1016/j.ehj.2013.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
50
|
Lehrich RW, Ortiz-Melo DI, Patel MB, Greenberg A. Role of vaptans in the management of hyponatremia. Am J Kidney Dis 2013; 62:364-76. [PMID: 23725974 DOI: 10.1053/j.ajkd.2013.01.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/31/2013] [Indexed: 02/06/2023]
Abstract
Hyponatremia, the most commonly encountered electrolyte abnormality, affects as many as 30% of hospitalized patients. It is a powerful predictor of poor outcomes, especially in patients with congestive heart failure or cirrhosis. The failure to excrete electrolyte-free water that results from persistent secretion of antidiuretic hormone despite low serum osmolality usually underlies the development of hyponatremia. Treatment depends on several factors, including the cause, overall volume status of the patient, severity of hyponatremic symptoms, and duration of hyponatremia at presentation. This review focuses on the role of the vasopressin receptor antagonists, or vaptans, in the treatment of hyponatremia. These recently introduced agents have the unique ability to induce an aquaresis, the excretion of electrolyte-free water without accompanying solutes. After a brief historical perspective and discussion of pharmacologic characteristics of vaptans, we review the accumulated experience with vaptans for the treatment of hyponatremia. Vaptans have been shown to increase serum sodium concentrations in patients with euvolemic or hypervolemic hyponatremia in a reproducible manner, but their safe use requires full understanding of their indications and contraindications.
Collapse
Affiliation(s)
- Ruediger W Lehrich
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, NC 27705, USA
| | | | | | | |
Collapse
|