1
|
Li C, Zang N, Liu E. Neuropeptides or their receptors in pathogenesis of lung diseases and therapeutic potentials. Neuropeptides 2024; 108:102482. [PMID: 39520945 DOI: 10.1016/j.npep.2024.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
There are complex interactions between the immune system and the nervous system in the lung. The nervous system perceives environmental stimuli and transmits these signals to immune cells via neurotransmitters, which is essential for effective immunity and environmental balance. Neuropeptides are important neurotransmitters in the lung, where they regulate immune responses through direct and indirect mechanisms, affecting the occurrence and development of lung diseases. In this review, we emphasize the role of neuropeptides in the pathogeneis of lung diseases and their potential therapeutic value for lung diseases.
Collapse
Affiliation(s)
- Changgen Li
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Na Zang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Chongqing, China.
| |
Collapse
|
2
|
Zhong HL, Li PZ, Li D, Guan CX, Zhou Y. The role of vasoactive intestinal peptide in pulmonary diseases. Life Sci 2023; 332:122121. [PMID: 37742737 DOI: 10.1016/j.lfs.2023.122121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Vasoactive intestinal peptide (VIP) is an abundant neurotransmitter in the lungs and other organs. Its discovery dates back to 1970. And VIP gains attention again due to the potential application in COVID-19 after a research wave in the 1980s and 1990s. The diverse biological impacts of VIP extend beyond its usage in COVID-19 treatment, encompassing its involvement in various pulmonary and systemic disorders. This review centers on the function of VIP in various lung diseases, such as pulmonary arterial hypertension, chronic obstructive pulmonary disease, asthma, cystic fibrosis, acute lung injury/acute respiratory distress syndrome, pulmonary fibrosis, and lung tumors. This review also outlines two main limitations of VIP as a potential medication and gathers information on extended-release formulations and VIP analogues.
Collapse
Affiliation(s)
- Hong-Lin Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Pei-Ze Li
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Di Li
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
3
|
Brown SM, Barkauskas CE, Grund B, Sharma S, Phillips AN, Leither L, Peltan ID, Lanspa M, Gilstrap DL, Mourad A, Lane K, Beitler JR, Serra AL, Garcia I, Almasri E, Fayed M, Hubel K, Harris ES, Middleton EA, Barrios MAG, Mathews KS, Goel NN, Acquah S, Mosier J, Hypes C, Salvagio Campbell E, Khan A, Hough CL, Wilson JG, Levitt JE, Duggal A, Dugar S, Goodwin AJ, Terry C, Chen P, Torbati S, Iyer N, Sandkovsky US, Johnson NJ, Robinson BRH, Matthay MA, Aggarwal NR, Douglas IS, Casey JD, Hache-Marliere M, Georges Youssef J, Nkemdirim W, Leshnower B, Awan O, Pannu S, O'Mahony DS, Manian P, Awori Hayanga JW, Wortmann GW, Tomazini BM, Miller RF, Jensen JU, Murray DD, Bickell NA, Zatakia J, Burris S, Higgs ES, Natarajan V, Dewar RL, Schechner A, Kang N, Arenas-Pinto A, Hudson F, Ginde AA, Self WH, Rogers AJ, Oldmixon CF, Morin H, Sanchez A, Weintrob AC, Cavalcanti AB, Davis-Karim A, Engen N, Denning E, Taylor Thompson B, Gelijns AC, Kan V, Davey VJ, Lundgren JD, Babiker AG, Neaton JD, Lane HC. Intravenous aviptadil and remdesivir for treatment of COVID-19-associated hypoxaemic respiratory failure in the USA (TESICO): a randomised, placebo-controlled trial. THE LANCET. RESPIRATORY MEDICINE 2023; 11:791-803. [PMID: 37348524 PMCID: PMC10527239 DOI: 10.1016/s2213-2600(23)00147-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND There is a clinical need for therapeutics for COVID-19 patients with acute hypoxemic respiratory failure whose 60-day mortality remains at 30-50%. Aviptadil, a lung-protective neuropeptide, and remdesivir, a nucleotide prodrug of an adenosine analog, were compared with placebo among patients with COVID-19 acute hypoxaemic respiratory failure. METHODS TESICO was a randomised trial of aviptadil and remdesivir versus placebo at 28 sites in the USA. Hospitalised adult patients were eligible for the study if they had acute hypoxaemic respiratory failure due to confirmed SARS-CoV-2 infection and were within 4 days of the onset of respiratory failure. Participants could be randomly assigned to both study treatments in a 2 × 2 factorial design or to just one of the agents. Participants were randomly assigned with a web-based application. For each site, randomisation was stratified by disease severity (high-flow nasal oxygen or non-invasive ventilation vs invasive mechanical ventilation or extracorporeal membrane oxygenation [ECMO]), and four strata were defined by remdesivir and aviptadil eligibility, as follows: (1) eligible for randomisation to aviptadil and remdesivir in the 2 × 2 factorial design; participants were equally randomly assigned (1:1:1:1) to intravenous aviptadil plus remdesivir, aviptadil plus remdesivir matched placebo, aviptadil matched placebo plus remdesvir, or aviptadil placebo plus remdesivir placebo; (2) eligible for randomisation to aviptadil only because remdesivir was started before randomisation; (3) eligible for randomisation to aviptadil only because remdesivir was contraindicated; and (4) eligible for randomisation to remdesivir only because aviptadil was contraindicated. For participants in strata 2-4, randomisation was 1:1 to the active agent or matched placebo. Aviptadil was administered as a daily 12-h infusion for 3 days, targeting 600 pmol/kg on infusion day 1, 1200 pmol/kg on day 2, and 1800 pmol/kg on day 3. Remdesivir was administered as a 200 mg loading dose, followed by 100 mg daily maintenance doses for up to a 10-day total course. For participants assigned to placebo for either agent, matched saline placebo was administered in identical volumes. For both treatment comparisons, the primary outcome, assessed at day 90, was a six-category ordinal outcome: (1) at home (defined as the type of residence before hospitalisation) and off oxygen (recovered) for at least 77 days, (2) at home and off oxygen for 49-76 days, (3) at home and off oxygen for 1-48 days, (4) not hospitalised but either on supplemental oxygen or not at home, (5) hospitalised or in hospice care, or (6) dead. Mortality up to day 90 was a key secondary outcome. The independent data and safety monitoring board recommended stopping the aviptadil trial on May 25, 2022, for futility. On June 9, 2022, the sponsor stopped the trial of remdesivir due to slow enrolment. The trial is registered with ClinicalTrials.gov, NCT04843761. FINDINGS Between April 21, 2021, and May 24, 2022, we enrolled 473 participants in the study. For the aviptadil comparison, 471 participants were randomly assigned to aviptadil or matched placebo. The modified intention-to-treat population comprised 461 participants who received at least a partial infusion of aviptadil (231 participants) or aviptadil matched placebo (230 participants). For the remdesivir comparison, 87 participants were randomly assigned to remdesivir or matched placebo and all received some infusion of remdesivir (44 participants) or remdesivir matched placebo (43 participants). 85 participants were included in the modified intention-to-treat analyses for both agents (ie, those enrolled in the 2 x 2 factorial). For the aviptadil versus placebo comparison, the median age was 57 years (IQR 46-66), 178 (39%) of 461 participants were female, and 246 (53%) were Black, Hispanic, Asian or other (vs 215 [47%] White participants). 431 (94%) of 461 participants were in an intensive care unit at baseline, with 271 (59%) receiving high-flow nasal oxygen or non-invasive ventiliation, 185 (40%) receiving invasive mechanical ventilation, and five (1%) receiving ECMO. The odds ratio (OR) for being in a better category of the primary efficacy endpoint for aviptadil versus placebo at day 90, from a model stratified by baseline disease severity, was 1·11 (95% CI 0·80-1·55; p=0·54). Up to day 90, 86 participants in the aviptadil group and 83 in the placebo group died. The cumulative percentage who died up to day 90 was 38% in the aviptadil group and 36% in the placebo group (hazard ratio 1·04, 95% CI 0·77-1·41; p=0·78). The primary safety outcome of death, serious adverse events, organ failure, serious infection, or grade 3 or 4 adverse events up to day 5 occurred in 146 (63%) of 231 patients in the aviptadil group compared with 129 (56%) of 230 participants in the placebo group (OR 1·40, 95% CI 0·94-2·08; p=0·10). INTERPRETATION Among patients with COVID-19-associated acute hypoxaemic respiratory failure, aviptadil did not significantly improve clinical outcomes up to day 90 when compared with placebo. The smaller than planned sample size for the remdesivir trial did not permit definitive conclusions regarding safety or efficacy. FUNDING National Institutes of Health.
Collapse
Affiliation(s)
- Samuel M Brown
- Department of Pulmonary/Critical Care Medicine, Intermountain Medical Center, Salt Lake City, UT, USA; Department of Medicine, Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, UT, USA.
| | - Christina E Barkauskas
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Birgit Grund
- School of Statistics, University of Minnesota, Minneapolis, MN, USA
| | - Shweta Sharma
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | | | - Lindsay Leither
- Department of Pulmonary/Critical Care Medicine, Intermountain Medical Center, Salt Lake City, UT, USA; Department of Medicine, Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, UT, USA
| | - Ithan D Peltan
- Department of Pulmonary/Critical Care Medicine, Intermountain Medical Center, Salt Lake City, UT, USA; Department of Medicine, Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, UT, USA
| | - Michael Lanspa
- Department of Pulmonary/Critical Care Medicine, Intermountain Medical Center, Salt Lake City, UT, USA; Department of Medicine, Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, UT, USA
| | - Daniel L Gilstrap
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Ahmad Mourad
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Kathleen Lane
- Surgical Office of Clinical Research, Cardiothoracic Surgical Division, Duke University School of Medicine, Durham, NC, USA
| | - Jeremy R Beitler
- Columbia Respiratory Critical Care Trials Group and Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University, New York, NY, USA; Center for Acute Respiratory Failure, New York-Presbyterian Hospital, New York, NY, USA
| | - Alexis L Serra
- Columbia Respiratory Critical Care Trials Group and Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University, New York, NY, USA; Center for Acute Respiratory Failure, New York-Presbyterian Hospital, New York, NY, USA
| | - Ivan Garcia
- Columbia Respiratory Critical Care Trials Group and Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University, New York, NY, USA; Center for Acute Respiratory Failure, New York-Presbyterian Hospital, New York, NY, USA
| | - Eyad Almasri
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, UCSF Fresno, Fresno, CA, USA
| | - Mohamed Fayed
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, UCSF Fresno, Fresno, CA, USA
| | - Kinsley Hubel
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, UCSF Fresno, Fresno, CA, USA
| | - Estelle S Harris
- Department of Medicine, Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, UT, USA
| | - Elizabeth A Middleton
- Department of Medicine, Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, UT, USA
| | - Macy A G Barrios
- Department of Medicine, Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, UT, USA
| | - Kusum S Mathews
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Emergency Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neha N Goel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samuel Acquah
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jarrod Mosier
- Department of Emergency Medicine, University of Arizona College of Medicine, Tucson, AZ; Division of Pulmonary, Allergy, Critical Care and Sleep, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ; Banner University Medical Center- Tucson, Tucson, AZ, USA
| | - Cameron Hypes
- Department of Emergency Medicine, University of Arizona College of Medicine, Tucson, AZ; Division of Pulmonary, Allergy, Critical Care and Sleep, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ
| | | | - Akram Khan
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Catherine L Hough
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jennifer G Wilson
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Joseph E Levitt
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Abhijit Duggal
- Department of Critical Care, Respiratory Institute, Cleveland Clinic, Cleveland OH, USA
| | - Siddharth Dugar
- Department of Critical Care, Respiratory Institute, Cleveland Clinic, Cleveland OH, USA
| | - Andrew J Goodwin
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Charles Terry
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Peter Chen
- Women's Guild Lung Institute, Department of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sam Torbati
- Department of Emergency Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nithya Iyer
- Division of of Pulmonary/Critical Care and Sleep Medicine, Department of Medicine, Baylor University Medical Center, Dallas, TX, USA; Texas A&M School of Medicine, Dallas, TX, USA
| | - Uriel S Sandkovsky
- Division of Infectious Diseases, Department of Medicine, Baylor University Medical Center, Dallas, TX, USA
| | - Nicholas J Johnson
- Department of Emergency Medicine, University of Washington Harborview Medical Center, Seattle, WA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington Harborview Medical Center, Seattle, WA, USA
| | - Bryce R H Robinson
- Department of Surgery, University of Washington Harborview Medical Center, Seattle, WA, USA
| | - Michael A Matthay
- Cardiovascular Research Institute and Departments of Medicine and Anesthesia, University of California-San Francisco, San Francisco, CA, USA
| | - Neil R Aggarwal
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ivor S Douglas
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Medicine, Denver Health Medical Center, Denver, CO, USA
| | - Jonathan D Casey
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manuel Hache-Marliere
- Jacobi Medical Center, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY, USA
| | - J Georges Youssef
- Department of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, NY, USA; JC Walter Jr Transplant Center Advanced Lung Diseases Program, Houston Methodist Hospital, Houston, TX, USA
| | - William Nkemdirim
- Jacobi Medical Center, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY, USA
| | - Brad Leshnower
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Omar Awan
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Disorders Medicine, VA Medical Center and George Washington University, Washington, DC, USA
| | - Sonal Pannu
- Department of Medicine, Division of Pulmonary Critical Care and Sleep, Ohio State University, Columbus, OH, USA
| | | | - Prasad Manian
- Division of Pulmonary and Critical Medicine, Baylor College of Medicine, Texas Heart Institute, Houston, TX, USA
| | - J W Awori Hayanga
- Department of Cardiovascular and Thoracic Surgery. Heart and Vascular Institute, West Virginia University, Morgantown, WV, USA
| | - Glenn W Wortmann
- Infectious Diseases Section, MedStar Washington Hospital Center and Georgetown University, Washington, DC, USA
| | - Bruno M Tomazini
- Brazilian Research in Intensive Care Network (BRICNet), São Paulo, Brazil; HCor Research Institute, São Paulo, Brazil
| | - Robert F Miller
- Institute for Global Health, University College London, London, UK
| | - Jens-Ulrik Jensen
- Section of Respiratory Medicine, Department of Medicine, Herlev-Gentofte Hospital, Hellerup, Denmark; CHIP, Centre of Excellence for Health, Immunity and Infections, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel D Murray
- CHIP, Centre of Excellence for Health, Immunity and Infections, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Nina A Bickell
- Department of Population Health Science and Policy and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jigna Zatakia
- Department of Medicine, Division of Pulmonary Critical Care Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Burris
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elizabeth S Higgs
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Ven Natarajan
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Robin L Dewar
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Adam Schechner
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nayon Kang
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Alejandro Arenas-Pinto
- Institute for Global Health, University College London, London, UK; The Medical Research Council Clinical Trials Unit at UCL, University College London, London, UK
| | - Fleur Hudson
- The Medical Research Council Clinical Trials Unit at UCL, University College London, London, UK
| | - Adit A Ginde
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Wesley H Self
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Angela J Rogers
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Cathryn F Oldmixon
- Department of Biostatistics, Massachusetts General Hospital, Boston, MA, USA
| | - Haley Morin
- Stanford University School of Medicine, Palo Alto, CA, USA
| | - Adriana Sanchez
- Infectious Diseases Section, Veteran Affairs Medical Center, Washington, DC, USA
| | - Amy C Weintrob
- Infectious Diseases Section, Veteran Affairs Medical Center, Washington, DC, USA
| | | | - Anne Davis-Karim
- Cooperative Studies Program, Clinical Research Pharmacy Coordinating Center, Office of Research & Development, Department of Veterans Affairs, Albuquerque, NM, USA
| | - Nicole Engen
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Eileen Denning
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - B Taylor Thompson
- Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital and Harvard Medical School; Boston, MA, USA
| | - Annetine C Gelijns
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Virginia Kan
- Infectious Diseases Section, Veteran Affairs Medical Center, Washington, DC, USA
| | - Victoria J Davey
- United States Department of Veterans Affairs; Washington, DC, USA
| | - Jens D Lundgren
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Abdel G Babiker
- The Medical Research Council Clinical Trials Unit at UCL, University College London, London, UK
| | - James D Neaton
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - H Clifford Lane
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| |
Collapse
|
4
|
Feng W, Zhang Y, Liu W, Wang X, Lei T, Yuan Y, Chen Z, Song W. A Prognostic Model Using Immune-Related Genes for Colorectal Cancer. Front Cell Dev Biol 2022; 10:813043. [PMID: 35252182 PMCID: PMC8893267 DOI: 10.3389/fcell.2022.813043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022] Open
Abstract
There is evidence suggesting that immune genes play pivotal roles in the development and progression of colorectal cancer (CRC). Colorectal carcinoma patient data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) were randomly classified into a training set, a test set, and an external validation set. Differentially expressed gene (DEG) analyses, univariate Cox regression, and the least absolute shrinkage and selection operator (LASSO) were used to identify survival-associated immune genes and develop a prognosis model. Receiver operating characteristic (ROC) analysis and principal component analysis (PCA) were used to evaluate the discrimination of the risk models. The model genes predicted were verified using the Human Protein Atlas (HPA) databases, colorectal cell lines, and fresh CRC and adjacent tissues. To understand the relationship between IRGs and immune invasion and the TME, we analyzed the content of immune cells and scored the TME using CIBERSORT and ESTIMATE algorithms. Finally, we predicted the potential sensitive chemotherapeutic drugs in different risk score groups by the Genomics of Drug Sensitivity in Cancer (GDSC). A total of 491 IRGs were screened, and 14 IRGs were identified to be significantly related to overall survival (OS) and applied to construct an immune-related gene (IRG) prognostic signature (IRGSig) for CRC patients. Calibration plots showed that nomograms have powerful predictive ability. PCA and ROC analysis further verified the predictive value of this fourteen-gene prognostic model in three independent databases. Furthermore, we discovered that the tumor microenvironment changed significantly during the tumor development process, from early to middle to late stage, which may be an essential factor for tumor deterioration. Finally, we selected six commonly used chemotherapeutic drugs that have the potential to be useful in the treatment of CRC. Altogether, immune genes were used to construct a prognosis model for CRC patients, and a variety of methods were used to test the accuracy of this model. In addition, we explored the immune mechanisms of CRC through immune cell infiltration and TME in CRC. Furthermore, we assessed the therapeutic sensitivity of many commonly used chemotherapeutic medicines in individuals with varying risk factors. Finally, the immune risk model and immune mechanism of CRC were thoroughly investigated in this paper.
Collapse
Affiliation(s)
- Wei Feng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongxin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenwei Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiaofeng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianxiang Lei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yujie Yuan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zehong Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wu Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Langer I, Jeandriens J, Couvineau A, Sanmukh S, Latek D. Signal Transduction by VIP and PACAP Receptors. Biomedicines 2022; 10:biomedicines10020406. [PMID: 35203615 PMCID: PMC8962308 DOI: 10.3390/biomedicines10020406] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Homeostasis of the human immune system is regulated by many cellular components, including two neuropeptides, VIP and PACAP, primary stimuli for three class B G protein-coupled receptors, VPAC1, VPAC2, and PAC1. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) regulate intestinal motility and secretion and influence the functioning of the endocrine and immune systems. Inhibition of VIP and PACAP receptors is an emerging concept for new pharmacotherapies for chronic inflammation and cancer, while activation of their receptors provides neuroprotection. A small number of known active compounds for these receptors still impose limitations on their use in therapeutics. Recent cryo-EM structures of VPAC1 and PAC1 receptors in their agonist-bound active state have provided insights regarding their mechanism of activation. Here, we describe major molecular switches of VPAC1, VPAC2, and PAC1 that may act as triggers for receptor activation and compare them with similar non-covalent interactions changing upon activation that were observed for other GPCRs. Interhelical interactions in VIP and PACAP receptors that are important for agonist binding and/or activation provide a molecular basis for the design of novel selective drugs demonstrating anti-inflammatory, anti-cancer, and neuroprotective effects. The impact of genetic variants of VIP, PACAP, and their receptors on signalling mediated by endogenous agonists is also described. This sequence diversity resulting from gene splicing has a significant impact on agonist selectivity and potency as well as on the signalling properties of VIP and PACAP receptors.
Collapse
Affiliation(s)
- Ingrid Langer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles, B-1070 Brussels, Belgium; (I.L.); (J.J.)
| | - Jérôme Jeandriens
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles, B-1070 Brussels, Belgium; (I.L.); (J.J.)
| | - Alain Couvineau
- UMR 1149 Inserm, Centre de Recherche sur l’Inflammation (CRI), Université de Paris, 75018 Paris, France;
| | - Swapnil Sanmukh
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland;
| | - Dorota Latek
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland;
- Correspondence:
| |
Collapse
|
6
|
Tabacchi E, Nanni C, Bossert I, Maffione AM, Fanti S. Diagnostic Applications of Nuclear Medicine: Pancreatic Cancer. NUCLEAR ONCOLOGY 2022:891-917. [DOI: 10.1007/978-3-031-05494-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Kaihani S, Sadeghzadeh N. Study of the 99m Tc-labeling conditions of 6-hydrazinonicotinamide-conjugated peptides from a new perspective: Introduction to the term radio-stoichiometry. J Labelled Comp Radiopharm 2020; 63:582-596. [PMID: 32997359 DOI: 10.1002/jlcr.3883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/27/2020] [Accepted: 09/20/2020] [Indexed: 11/07/2022]
Abstract
Specific tumor uptake of peptide radiopharmaceuticals depends on tumor binding affinity and their radiochemical purity. Several important parameters that influence the 99m Tc-labeling and consequently the radiochemical purity of 6-hydrazinonicotinamide (HYNIC)-conjugated peptide are radionuclide activity, the amount of peptide, the amount of coligands, and the amount of reducing agents (stannous ion). In this review article, we have attempted studying these parameters in the HYNIC-conjugated peptides (somatostatin, cholecystokinin/gastrin, bombesin, and RGD analogs) from a new perspective to obtain most used and optimized radio-stoichiometric relationships. One of the most important results in this review is that for 99m Tc-labeling of HYNIC-conjugated peptides, it is better to consider the most calculated mole ratio between technetium-99m and the peptide (mole ratio of technetium-99m to the peptide 1:200-400). The statistical results also show that among these 99m Tc-labeled peptides, the most used and favorable coligand is tricine/EDDA with two to one (2:1) mole ratio. These optimized radio-stoichiometric relationships, favorable coligand mole ratio, and applicable radiolabeling points can greatly improve the labeling process of the HYNIC-conjugated peptides, by reducing trial and error, increasing specific activity, and saving materials.
Collapse
Affiliation(s)
- Sajad Kaihani
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nourollah Sadeghzadeh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
8
|
Lin K, Huang J, Luo H, Luo C, Zhu X, Bu F, Xiao H, Xiao L, Zhu Z. Development of a prognostic index and screening of potential biomarkers based on immunogenomic landscape analysis of colorectal cancer. Aging (Albany NY) 2020; 12:5832-5857. [PMID: 32235004 PMCID: PMC7185108 DOI: 10.18632/aging.102979] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/03/2020] [Indexed: 12/26/2022]
Abstract
Background: Colorectal cancer (CRC) accounts for the highest fatality rate among all malignant tumors. Immunotherapy has shown great promise in management of many malignant tumors, necessitating the need to explore its role in CRC. Results: Our analysis revealed a total of 71 differentially expressed IRGs, that were associated with prognosis of CRC patients. Ten IRGs (FABP4, IGKV1-33, IGKV2D-40, IGLV6-57, NGF, RETNLB, UCN, VIP, NGFR, and OXTR) showed high prognostic performance in predicting CRC outcomes, and were further associated with tumor burden, metastasis, tumor TNM stage, gender, age, and pathological stage. Interestingly, the IRG-based prognostic index (IRGPI) reflected infiltration of multiple immune cell types. Conclusions: This model provides an effective approach for stratification and characterization of patients using IRG-based immunolabeling tools to monitor prognosis of CRC. Methods: We performed a comprehensive analysis of expression profiles for immune-related genes (IRGs) and overall survival time in 437 CRC patients from the TCGA database. We employed computational algorithms and Cox regression analysis to estimate the relationship between differentially expressed IRGs and survival rates in CRC patients. Furthermore, we investigated the mechanisms of action of the IRGs involved in CRC, and established a novel prognostic index based on multivariate Cox models.
Collapse
Affiliation(s)
- Kang Lin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Jun Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Chen Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Xiaojian Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Fanqin Bu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Han Xiao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Li Xiao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Zhengming Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| |
Collapse
|
9
|
Oliveira MC, Correia JDG. Biomedical applications of radioiodinated peptides. Eur J Med Chem 2019; 179:56-77. [PMID: 31238251 DOI: 10.1016/j.ejmech.2019.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 02/08/2023]
Abstract
The overexpression of peptide receptors in certain tumors as compared to endogeneous expression levels represents the molecular basis for the design of peptide-based tools for targeted nuclear imaging and therapy. Receptor targeting with radiolabelled peptides became a very important imaging and/or therapeutic approach in nuclear medicine and oncology. A great variety of peptides has been radiolabelled with clinical relevant radionuclides, such as radiometals and radiohalogens. However, to the best of our knowledge concise and updated reviews providing information about the biomedical application of radioiodinated peptides are still missing. This review outlines the synthetic efforts in the preparation of radioiodinated peptides highlighting the importance of radioiodine in nuclear medicine, giving an overview of the most relevant radioiodination strategies that have been employed and describes relevant examples of their use in the biomedical field.
Collapse
Affiliation(s)
- Maria Cristina Oliveira
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal.
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal.
| |
Collapse
|
10
|
Moody TW. Peptide receptors as cancer drug targets. Ann N Y Acad Sci 2019; 1455:141-148. [PMID: 31074514 DOI: 10.1111/nyas.14100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 12/18/2022]
Abstract
Neuropeptides function as neuromodulators in the brain, whereby they are released in a paracrine manner and activate G protein-coupled receptors (GPCRs) in adjacent cells. Because neuropeptides are made in, and secreted from, cancer cells, then bind to cell surface receptors, they function in an autocrine manner. Bombesin (BB)-like peptides synthesized by neuroendocrine tumor small cell lung cancer (SCLC) bind to BB receptors (BBRs), causing phosphatidylinositol turnover and phosphorylation of extracellular signal-regulated kinase (ERK). Phosphorylated ERK enters the nucleus and alters gene expression of SCLC cells, stimulating growth. Vasoactive intestinal peptide (VIP) addition to SCLC cells increases their release rate of BB-like peptides via activation of VIP receptors (VIPR), leading to activation of adenylyl cyclase and subsequent elevation of cAMP. Protein kinase A is then stimulated, leading to phosphorylation of cyclic AMP response element binding protein (CREB), which alters gene expression and stimulates proliferation. The growth of SCLC is inhibited by BBR and VIPR antagonists. This review will focus on how GPCRs for VIP and BB are molecular targets for early detection and treatment of cancer.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human Services, Center for Cancer Training, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
11
|
Charron CL, Hickey JL, Nsiama TK, Cruickshank DR, Turnbull WL, Luyt LG. Molecular imaging probes derived from natural peptides. Nat Prod Rep 2017; 33:761-800. [PMID: 26911790 DOI: 10.1039/c5np00083a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: up to the end of 2015.Peptides are naturally occurring compounds that play an important role in all living systems and are responsible for a range of essential functions. Peptide receptors have been implicated in disease states such as oncology, metabolic disorders and cardiovascular disease. Therefore, natural peptides have been exploited as diagnostic and therapeutic agents due to the unique target specificity for their endogenous receptors. This review discusses a variety of natural peptides highlighting their discovery, endogenous receptors, as well as their derivatization to create molecular imaging agents, with an emphasis on the design of radiolabelled peptides. This review also highlights methods for discovering new and novel peptides when knowledge of specific targets and endogenous ligands are not available.
Collapse
Affiliation(s)
- C L Charron
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - J L Hickey
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - T K Nsiama
- London Regional Cancer Program, Lawson Health Research Institute, London, Canada
| | - D R Cruickshank
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - W L Turnbull
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - L G Luyt
- Department of Chemistry, The University of Western Ontario, London, Canada. and Departments of Oncology and Medical Imaging, The University of Western Ontario, London, Canada and London Regional Cancer Program, Lawson Health Research Institute, London, Canada
| |
Collapse
|
12
|
Abstract
Insulinomas are rare neuroendocrine tumors which occur predominantly in the pancreas. Although majority of the insulinomas are benign, over-secretion of insulin by the tumor leads to debilitating hypoglycemic symptoms. The diagnosis is based on clinical and biochemical findings. After the diagnosis is made, the principal challenge lies in locating the tumor because most tumors are solitary and small in size. Locating the tumor is of paramount importance as complete surgical excision is the only curative treatment, and incomplete resection leads to persistence of symptoms. Different preoperative and intraoperative imaging techniques have been used with varying success rates for the insulinoma imaging. Besides localizing the tumor, imaging also helps to guide biopsy, detect metastatic lesions, and perform image-guided therapeutic procedures. This review will discuss the role of different Cross sectional and nuclear medicine imaging modalities in insulinomas.
Collapse
|
13
|
Tabacchi E, Nanni C, Bossert I, Maffione AM, Fanti S. Diagnostic Applications of Nuclear Medicine: Pancreatic Cancer. NUCLEAR ONCOLOGY 2017:749-775. [DOI: 10.1007/978-3-319-26236-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Neuroendocrine Differentiation of a Primary BRAF Mutant Colon Cancer in a Patient With a History of Hairy Cell Leukemia. Clin Colorectal Cancer 2016; 15:e235-e239. [PMID: 27117521 DOI: 10.1016/j.clcc.2016.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/16/2016] [Accepted: 03/22/2016] [Indexed: 11/24/2022]
|
15
|
Li J, Wang F, Sun D, Wang R. A review of the ligands and related targeting strategies for active targeting of paclitaxel to tumours. J Drug Target 2016; 24:590-602. [PMID: 26878228 DOI: 10.3109/1061186x.2016.1154561] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It has been 30 years since the discovery of the anti-tumour property of paclitaxel (PTX), which has been successfully applied in clinic for the treatment of carcinomas of the lungs, breast and ovarian. However, PTX is poorly soluble in water and has no targeting and selectivity to tumour tissue. Recent advances in active tumour targeting of PTX delivery vehicles have addressed some of the issues related to lack of solubility in water and non-specific toxicities associated with PTX. These PTX delivery vehicles are designed for active targeting to specific cancer cells by the addition of ligands for recognition by specific receptors/antigens on cancer cells. This article will focus on various ligands and related targeting strategies serving as potential tools for active targeting of PTX to tumour tissues, illustrating their use in different tumour models. This review also highlights the need of further studies on the discovery of receptors in different cells of specific organ and ligands with binding efficiency to these specific receptors.
Collapse
Affiliation(s)
- Juan Li
- a Department of Pharmacy , The Second Hospital of Shandong University , Jinan , PR China
| | - Fengshan Wang
- b Key Laboratory of Chemical Biology of Natural Products (Ministry of Education) , Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University , Jinan , China ;,c National Glycoengineering Research Center , Shandong University , Jinan , China
| | - Deqing Sun
- a Department of Pharmacy , The Second Hospital of Shandong University , Jinan , PR China
| | - Rongmei Wang
- a Department of Pharmacy , The Second Hospital of Shandong University , Jinan , PR China
| |
Collapse
|
16
|
Moody TW, Nuche-Berenguer B, Jensen RT. Vasoactive intestinal peptide/pituitary adenylate cyclase activating polypeptide, and their receptors and cancer. Curr Opin Endocrinol Diabetes Obes 2016; 23:38-47. [PMID: 26702849 PMCID: PMC4844466 DOI: 10.1097/med.0000000000000218] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW To summarize the roles of vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase activating polypeptide (PACAP) and their receptors (VPAC1, VPAC2, PAC1) in human tumors as well as their role in potential novel treatments. RECENT FINDINGS Considerable progress has been made in understanding of the effects of VIP/PACAP on growth of various tumors as well as in the signaling cascades involved, especially in the role of transactivation of the epidermal growth factor family. The overexpression of VPAC1/2 and PAC1 on a number of common neoplasms (breast, lung, prostate, central nervous system and neuroblastoma) is receiving increased attention both as a means of tumor imaging the location and extent of these tumors, as well as for targeted directed treatment, by coupling cytotoxic agents to VIP/PACAP analogues. SUMMARY VIP/PACAP has prominent growth effects on a number of common neoplasms, which frequently overexpressed the three subtypes of their receptors. The increased understanding of their signaling cascades, effect on tumor growth/differentiation and the use of the overexpression of these receptors for localization/targeted cytotoxic delivery are all suggesting possible novel tumor treatments.
Collapse
Affiliation(s)
- Terry W Moody
- aDepartment of Health and Human Services, National Cancer Institute, Center for Cancer Research, Office of the Director bNational Institutes of Health, National Institute of Diabetes, Digestive and Kidney Disease, Digestive Diseases Branch, Bethesda, Maryland, USA
| | | | | |
Collapse
|
17
|
Moody TW, Moreno P, Jensen RT. Neuropeptides as lung cancer growth factors. Peptides 2015; 72:106-11. [PMID: 25836991 DOI: 10.1016/j.peptides.2015.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 03/20/2015] [Accepted: 03/20/2015] [Indexed: 12/28/2022]
Abstract
This manuscript is written in honor of the Festschrift for Abba Kastin. I met Abba at a Society for Neuroscience meeting and learned that he was Editor-in-Chief of the Journal Peptides. I submitted manuscripts to the journal on "Neuropeptides as Growth Factors in Cancer" and subsequently was named to the Editorial Advisory Board. Over the past 30 years I have published dozens of manuscripts in Peptides and reviewed hundreds of submitted manuscripts. It was always rewarding to interact with Abba, a consummate professional. When I attended meetings in New Orleans I would sometimes go out to dinner with him at the restaurant "Commanders Palace". When I chaired the Summer Neuropeptide Conference we were honored to have him receive the Fleur Strand Award one year in Israel. I think that his biggest editorial contribution has been the "Handbook of Biologically Active Peptides." I served as a Section Editor on "Cancer/Anticancer Peptides" and again found that it was a pleasure working with him. This review focuses on the mechanisms by which bombesin-like peptides, neurotensin and vasoactive intestinal peptide regulate the growth of lung cancer.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human Services, National Cancer Institute, Center for Cancer Research, Office of the Director, Bethesda, MD 20892, USA.
| | - Paola Moreno
- National Institute of Diabetes, Digestive, and Kidney Disease, Digestive Diseases Branch, Bethesda, MD 20892, USA
| | - Robert T Jensen
- National Institute of Diabetes, Digestive, and Kidney Disease, Digestive Diseases Branch, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Dagar A, Kuzmis A, Rubinstein I, Sekosan M, Onyuksel H. VIP-targeted Cytotoxic Nanomedicine for Breast Cancer. Drug Deliv Transl Res 2015; 2:454-62. [PMID: 23336096 DOI: 10.1007/s13346-012-0107-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cancer chemotherapy is hampered by serious toxicity to healthy tissues. Conceivably, encapsulation of cytotoxic drugs in actively-targeted, biocompatible nanocarriers could overcome this problem. Accordingly, we used sterically stabilized mixed micelles (SSMM) composed of biocompatible and biodegradable phospholipids to solubilize paclitaxel (P), a hydrophobic model cytotoxic drug, and deliver it to breast cancer in rats. To achieve active targeting, the surface of SSMM was grafted with a ligand, human vasoactive intestinal peptide (VIP) that selectively interacts with its cognate receptors overexpressed on breast cancer cells. We found that even in vitro cytotoxicity of P-SSMM-VIP was 2-fold higher that that of free paclitaxel (p<0.05). Given the unique attributes of P-SSMM and P-SSMM-VIP, most notable small hydrodynamic diameter (~15nm) and stealth properties, biodistribution of paclitaxel was significantly altered. Accumulation of paclitaxel in breast tumor was highest for P-SSMM-VIP, followed by P-SSMM and Cremophor based paclitaxel (PTX). Importantly, bone marrow accumulation of paclitaxel encapsulated in both SSMM-VIP and SSMM was significantly less than that of PTX. Administration of clinically-relevant dose of paclitaxel (5mg/kg) as P-SSMM-VIP and P-SSMM eradicated carcinogen-induced orthotopic breast cancer in rats, whereas PTX decreased tumor size by only 45%. In addition, a 5-fold lower dose (1mg/kg) of paclitaxel in actively targeted P-SSMM-VIP was associated with ~80% reduction in tumor size while the response to PTX and P-SSMM was significantly less. Hypotension was not observed when VIP was grafted onto SSMM. Based on our findings, we propose further development of effective and safe VIP-grafted phospholipid micelle nanomedicines of anti-cancer drugs for targeted treatment of solid tumors in humans.
Collapse
Affiliation(s)
- Aparna Dagar
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago
| | | | | | | | | |
Collapse
|
19
|
Schulz S, Mann A, Novakhov B, Piggins HD, Lupp A. VPAC2 receptor expression in human normal and neoplastic tissues: evaluation of the novel MAB SP235. Endocr Connect 2015; 4:18-26. [PMID: 25504760 PMCID: PMC4285768 DOI: 10.1530/ec-14-0051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The vasoactive intestinal peptide receptor 2 (VPAC2) is widely distributed throughout the body and is also overexpressed in a variety of human neoplastic tissues. However, little is known about its precise tissue distribution, regulation and function, which is in part be due to the lack of specific monoclonal anti-VPAC2 antibodies. In this study, we extensively characterised the novel rabbit monoclonal anti-VPAC2 antibody (clone SP235) using transfected cells and mouse, rat and human tissues. SP235 was then subjected to a comparative immunohistochemical study on a series of 167 histological specimens from formalin-fixed, paraffin-embedded human tumours and adjacent normal tissues. SP235 detected a broad band migrating at a molecular weight of 50-70 kDa in western blotting analyses of various mouse tissues as well as VPAC2- but not VPAC1-transfected human embryonic kidney 293 cells. SP235 yielded an efficient immunostaining of distinct cell populations in human tissue samples with a predominance of plasma membrane staining, which was completely abolished by preadsorption with its immunising peptide. SP235 immunohistochemistry detected VPAC2 receptors in lymphocytes present in spleen, tonsils, lymph nodes and Peyer's patches, chief cells of gastric mucosa, exocrine and endocrine pancreas, kidney tubules and blood vessels. In addition, VPAC2 was observed in thyroid, gastric and lung carcinomas, pancreatic adenocarcinomas, sarcomas and neuroendocrine tumours. SP235 may prove of great value in the identification of VPAC2 receptors during routine histopathological examination. VPAC2 visualisation with this simple and rapid immunohistochemical method will facilitate identification of candidate tumours for vasoactive intestinal peptide (VIP)-based diagnostics or therapeutic interventions.
Collapse
Affiliation(s)
- Stefan Schulz
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich Schiller University Jena, Drackendorfer Straße 1, D-07747 Jena, GermanyFaculty of Life SciencesUniversity of Manchester, Manchester M13 9PT, UK
| | - Anika Mann
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich Schiller University Jena, Drackendorfer Straße 1, D-07747 Jena, GermanyFaculty of Life SciencesUniversity of Manchester, Manchester M13 9PT, UK
| | - Benjamin Novakhov
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich Schiller University Jena, Drackendorfer Straße 1, D-07747 Jena, GermanyFaculty of Life SciencesUniversity of Manchester, Manchester M13 9PT, UK
| | - Hugh D Piggins
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich Schiller University Jena, Drackendorfer Straße 1, D-07747 Jena, GermanyFaculty of Life SciencesUniversity of Manchester, Manchester M13 9PT, UK
| | - Amelie Lupp
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich Schiller University Jena, Drackendorfer Straße 1, D-07747 Jena, GermanyFaculty of Life SciencesUniversity of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
20
|
Vasoactive Intestinal Peptide (VIP) Nanoparticles for Diagnostics and for Controlled and Targeted Drug Delivery. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 98:145-68. [DOI: 10.1016/bs.apcsb.2014.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Dupuis J, Harel F, Nguyen QT. Molecular imaging of the pulmonary circulation in health and disease. Clin Transl Imaging 2014; 2:415-426. [PMID: 25360422 PMCID: PMC4209091 DOI: 10.1007/s40336-014-0076-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/15/2014] [Indexed: 11/29/2022]
Abstract
The pulmonary circulation, at the unique crossroads between the left and the right heart, is submitted to large physiologic hemodynamic variations and possesses numerous important metabolic functions mediated through its vast endothelial surface. There are many pathologic conditions that can directly or indirectly affect the pulmonary vasculature and modify its physiology and functions. Pulmonary hypertension, the end result of many of these affections, is unfortunately diagnosed too late in the disease process, meaning that there is a crying need for earlier diagnosis and surrogate markers of disease progression and regression. By targeting endothelial, medial and adventitial targets of the pulmonary vasculature, novel molecular imaging agents could provide early detection of physiologic and biologic perturbation in the pulmonary circulation. This review provides the rationale for the development of molecular imaging agents for the diagnosis and follow-up of disorders of the pulmonary circulation and discusses promising targets for SPECT and positron emission tomographic imaging.
Collapse
Affiliation(s)
- Jocelyn Dupuis
- Research Center, Montreal Heart Institute, 5000 Belanger Street, Montreal, QC H1T 1C8 Canada ; Department of Medicine, Université de Montréal, Montreal, QC Canada
| | - François Harel
- Research Center, Montreal Heart Institute, 5000 Belanger Street, Montreal, QC H1T 1C8 Canada ; Department of Radiology, Radio-Oncology and Nuclear Medicine Université de Montréal, Montreal, QC Canada
| | - Quang T Nguyen
- Research Center, Montreal Heart Institute, 5000 Belanger Street, Montreal, QC H1T 1C8 Canada
| |
Collapse
|
22
|
Radiolabeled biomolecules for specific imaging of cancers of the breast, prostate and lungs. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
de Herder WW. GEP-NETS update: functional localisation and scintigraphy in neuroendocrine tumours of the gastrointestinal tract and pancreas (GEP-NETs). Eur J Endocrinol 2014; 170:R173-83. [PMID: 24723670 DOI: 10.1530/eje-14-0077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For patients with neuroendocrine tumours (NETs) of the gastrointestinal tract and pancreas (GEP) (GEP-NETs), excellent care should ideally be provided by a multidisciplinary team of skilled health care professionals. In these patients, a combination of nuclear medicine imaging and conventional radiological imaging techniques is usually mandatory for primary tumour visualisation, tumour staging and evaluation of treatment. In specific cases, as in patients with occult insulinomas, sampling procedures can provide a clue as to where to localise the insulin-hypersecreting pancreatic NETs. Recent developments in these fields have led to an increase in the detection rate of primary GEP-NETs and their metastatic deposits. Radiopharmaceuticals targeted at specific tumour cell properties and processes can be used to provide sensitive and specific whole-body imaging. Functional imaging also allows for patient selection for receptor-based therapies and prediction of the efficacy of such therapies. Positron emission tomography/computed tomography (CT) and single-photon emission CT/CT are used to map functional images with anatomical localisations. As a result, tumour imaging and tumour follow-up strategies can be optimised for every individual GEP-NET patient. In some cases, functional imaging might give indications with regard to future tumour behaviour and prognosis.
Collapse
Affiliation(s)
- Wouter W de Herder
- Section of Endocrinology, Department of Internal Medicine, Erasmus MC, 's Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| |
Collapse
|
24
|
Tang B, Yong X, Xie R, Li QW, Yang SM. Vasoactive intestinal peptide receptor-based imaging and treatment of tumors (Review). Int J Oncol 2014; 44:1023-31. [PMID: 24481544 DOI: 10.3892/ijo.2014.2276] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/22/2013] [Indexed: 11/06/2022] Open
Abstract
Vasoactive intestinal peptide receptors (VIPRs) are members of the G-protein-coupled receptor superfamily. These receptors are overexpressed in many common malignant tumors and play a major role in the progression and angiogenesis of a number of malignancies. Therefore, VIPRs may be a valuable target for the molecular imaging of tumors and therapeutic interventions. The specific natural ligand or its analogs can be labeled with a radionuclide and used for tumor receptor imaging, which could be used to visualize VIPR-related surface protein expression in vivo and to monitor the in vivo effects of molecular drugs on tumors. Moreover, the involvement of VIPRs in malignant transformation and angiogenesis renders them potential therapeutic targets for cancer treatment. A variety of VIP antagonists and cytotoxic VIP conjugates have been synthesized and evaluated for VIPR-targeted molecular therapy. The importance of VIPRs in tumor biology and the ability to predict responses to targeted therapy and monitor drug interventions suggest that VIP receptor-based imaging and treatment will be critical for the early diagnosis and management of cancer. Here, we review the current literature regarding VIPRs and their natural ligands and the involvement of VIPRs in tumor growth and angiogenesis, with an emphasis on the present use of VIPRs for the molecular imaging of tumors and therapies targeting VIPRs.
Collapse
Affiliation(s)
- Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Xin Yong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Rui Xie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Qian-Wei Li
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
25
|
F-18 labeled vasoactive intestinal peptide analogue in the PET imaging of colon carcinoma in nude mice. BIOMED RESEARCH INTERNATIONAL 2013; 2013:420480. [PMID: 24459669 PMCID: PMC3888718 DOI: 10.1155/2013/420480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 11/29/2013] [Accepted: 11/29/2013] [Indexed: 11/17/2022]
Abstract
As large amount of vasoactive intestinal peptide (VIP) receptors are expressed in various tumors and VIP-related diseases, radiolabeled VIP provides a potential PET imaging agent for VIP receptor. However, structural modification of VIP is required before being radiolabeled and used for VIP receptor imaging due to its poor in vivo stability. As a VIP analogue, [R(8, 15, 21), L(17)]-VIP exhibited improved stability and receptor specificity in preliminary studies. In this study, F-18 labeled [R(8,15,21), L(17)]-VIP was produced with the radiochemical yield being as high as 33.6% ± 3% (decay-for-corrected, n = 5) achieved within 100 min, a specific activity of 255 GBq/ μmol, and a radiochemical purity as high as 99% as characterized by radioactive HPLC, TLC, and SDS-Page radioautography. A biodistribution study in normal mice also demonstrated fast elimination of F-18 labeled [R(8,15,21), L(17)]-VIP in the blood, liver, and gastrointestinal tracts. A further micro-PET imaging study in C26 colon carcinoma bearing mice confirmed the high tumor specificity, with the tumor/muscle radioactivity uptake ratio being as high as 3.03 at 60 min following injection, and no apparent radioactivity concentration in the intestinal tracts. In addition, blocking experiment and Western Blot test further confirmed its potential in PET imaging of VIP receptor-positive tumor.
Collapse
|
26
|
Antihistaminergics and inverse agonism: potential therapeutic applications. Eur J Pharmacol 2013; 715:26-32. [PMID: 23831018 DOI: 10.1016/j.ejphar.2013.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/07/2013] [Accepted: 06/21/2013] [Indexed: 12/19/2022]
Abstract
The accurate characterization of the molecular mechanisms involved in the action of receptor ligands is important for their appropriate therapeutic use and safety. It is well established that ligands acting at the histamine system currently used in the clinic exert their actions by specifically antagonizing G-protein coupled H1 and H2 receptors. However, most of these ligands, assumed to be neutral antagonists, behave as inverse agonists displaying negative efficacy in experimental systems. This suggests that their therapeutic actions may involve not only receptor blockade, but also the decrease of spontaneous receptor activity. The mechanisms whereby inverse agonists achieve negative efficacy are diverse. Theoretical models predict at least three possible mechanisms, all of which are supported by experimental observations. Depending on the mechanism of action engaged, the inverse agonist could interfere specifically with signaling events triggered by unrelated receptors. This possibility opens up new venues to explain the therapeutic actions of inverse agonists of the histamine receptor and perhaps new therapeutic applications.
Collapse
|
27
|
Accardo A, Salsano G, Morisco A, Aurilio M, Parisi A, Maione F, Cicala C, Tesauro D, Aloj L, De Rosa G, Morelli G. Peptide-modified liposomes for selective targeting of bombesin receptors overexpressed by cancer cells: a potential theranostic agent. Int J Nanomedicine 2012; 7:2007-17. [PMID: 22619538 PMCID: PMC3356180 DOI: 10.2147/ijn.s29242] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Objectives Drug delivery systems consisting of liposomes displaying a cell surface receptor-targeting peptide are being developed to specifically deliver chemotherapeutic drugs to tumors overexpressing a target receptor. This study addresses novel liposome composition approaches to specifically target tissues overexpressing bombesin (BN) receptors. Methods A new amphiphilic peptide derivative (MonY-BN) containing the BN(7–14) peptide, the DTPA (diethylenetriaminepentaacetate) chelating agent, a hydrophobic moiety with two C18 alkyl chains, and polyethylene glycol spacers, has been synthesized by solid-phase methods. Liposomes have been generated by co-aggregation of MonY-BN with 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). The structural and biological properties of these new target-selective drug-delivery systems have been characterized. Results Liposomes with a DSPC/MonY-BN (97/3 molar ratio) composition showed a diameter of 145.5 ± 31.5 nm and a polydispersity index of 0.20 ± 0.05. High doxorubicin (Dox) loading was obtained with the remote pH gradient method using citrate as the inner buffer. Specific binding to PC-3 cells of DSPC/MonY-BN liposomes was obtained (2.7% ± 0.3%, at 37°C), compared with peptide-free DSPC liposomes (1.4% ± 0.2% at 37°C). Incubation of cells with DSPC/ MonY-BN/Dox showed significantly lower cell survival compared with DSPC/Dox-treated cells, in the presence of 100 ng/mL and 300 ng/mL drug amounts, in cytotoxicity experiments. Intravenous treatment of PC-3 xenograft-bearing mice with DSPC/MonY-BN/Dox at 10 mg/kg Dox dose produced higher tumour growth inhibition (60%) compared with nonspecific DSPC/ Dox liposomes (36%) relative to control animals. Conclusion The structural and loading properties of DSPC/MonY-BN liposomes along with the observed in-vitro and in-vivo activity are encouraging for further development of this approach for target-specific cancer chemotherapy.
Collapse
Affiliation(s)
- Antonella Accardo
- CIRPeB, Department of Biological Sciences and IBB CNR, University of Naples Federico II, Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Harikrishnan LS, Srivastava N, Kayser LE, Nirschl DS, K K, Roy A, Gupta A, Karmakar S, Karatt T, Mathur A, Burford NT, Chen J, Kong Y, Cvijic M, Cooper CB, Poss MA, Trainor GL, Wong TW. Identification and optimization of small molecule antagonists of vasoactive intestinal peptide receptor-1 (VIPR1). Bioorg Med Chem Lett 2012; 22:2287-90. [DOI: 10.1016/j.bmcl.2012.01.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 01/17/2012] [Accepted: 01/20/2012] [Indexed: 10/14/2022]
|
29
|
Prasad V, Ambrosini V, Alavi A, Fanti S, Baum RP. PET/CT in Neuroendocrine Tumors: Evaluation of Receptor Status and Metabolism. PET Clin 2011; 2:351-75. [PMID: 27158016 DOI: 10.1016/j.cpet.2008.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In-111 Octreoscan is considered the gold standard for imaging of neuroendocrine tumors (NET). However, in the absence of morphologic imaging correlation, the exact localisation of the tumor is often difficult. Also the sensitivity of PET imaging is more than Gamma camera (SPECT) imaging. Ga-68 labelled somatostatin analogs (SMS-R) are interesting radiopharmaceuticals for PET receptor imaging of NET. Some other radiopharmaceuticals e.g. F-18 DOPA can also be used to assess metabolism and functional status of NET. The importance of these radiopharmaceuticals, especially SMS-R increases in the absence of any specific biochemical marker or clinical parameter for follow-up of patients after therapy (eg peptide receptor radionuclide therapy, surgery, chemoembolisation, etc). New criteria based on molecular, metabolic and morphologic imaging needs to be developed for correct assessment of response to therapy for these slow-growing, solid tumors.
Collapse
Affiliation(s)
- Vikas Prasad
- Department of Nuclear Medicine and Center for PET/CT, Zentralklinik Bad Berka GmbH, Robert Koch Allee-9, 99437 Bad Berka, Germany
| | - Valentina Ambrosini
- Department of Nuclear Medicine, University of Bologna, Policlinico S. Orsola-Malpighi, via Massarenti 9, 40138 Bologna, Italy
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, 110 Donner Building, Philadelphia, PA 19104, USA
| | - Stefano Fanti
- Department of Nuclear Medicine, University of Bologna, Policlinico S. Orsola-Malpighi, via Massarenti 9, 40138 Bologna, Italy
| | - Richard P Baum
- Department of Nuclear Medicine and Center for PET/CT, Zentralklinik Bad Berka GmbH, Robert Koch Allee-9, 99437 Bad Berka, Germany.
| |
Collapse
|
30
|
Morisco A, Accardo A, Tesauro D, Palumbo R, Benedetti E, Morelli G. Peptide-labeled supramolecular aggregates as selective doxorubicin carriers for delivery to tumor cells. Biopolymers 2011; 96:88-96. [DOI: 10.1002/bip.21491] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Prasse A, Zissel G, Lützen N, Schupp J, Schmiedlin R, Gonzalez-Rey E, Rensing-Ehl A, Bacher G, Cavalli V, Bevec D, Delgado M, Müller-Quernheim J. Inhaled vasoactive intestinal peptide exerts immunoregulatory effects in sarcoidosis. Am J Respir Crit Care Med 2010; 182:540-8. [PMID: 20442436 DOI: 10.1164/rccm.200909-1451oc] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RATIONALE Previous studies suggest an important immunoregulatory role of vasoactive intestinal peptide (VIP) in experimental models of chronic noninfectious inflammation. Sarcoidosis is characterized by noncaseating epitheloid cell granulomas, where excessive tumor necrosis factor-alpha production by pulmonary macrophages plays a critical role in granuloma formation and disease progression, which may lead to fatal organ dysfunction. OBJECTIVES To test whether inhaled VIP has an immunoregulatory role. Sarcoid alveolitis was used as a prototype of immune-mediated chronic lung inflammation. METHODS In an open clinical phase II study, we treated 20 patients with histologically proved sarcoidosis and active disease with nebulized VIP for 4 weeks. MEASUREMENTS AND MAIN RESULTS VIP inhalation was safe, well-tolerated, and significantly reduced the production of tumor necrosis factor-alpha by cells isolated from bronchoalveolar lavage fluids of these patients. VIP treatment significantly increased the numbers of bronchoalveolar lavage CD4(+)CD127(-)CD25(+) T cells, which showed regulatory activities on conventional effector T cells. In vitro experiments demonstrated the capacity of VIP to convert naive CD4(+)CD25(-) T cells into CD4(+)CD25(+)FoxP3(+) regulatory T cells, suggesting the generation of peripheral regulatory T cells by VIP treatment. CONCLUSIONS This study is the first to show the immunoregulatory effect of VIP in humans, and supports the notion of inhaled VIP as an attractive future therapy to dampen exaggerated immune responses in lung disorders. Thus, the inhalation of neuropeptides may be developed into a new therapeutic principle for chronic inflammatory lung disorders in humans.
Collapse
Affiliation(s)
- Antje Prasse
- Department of Pneumology, University Hospital, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Heute D, Kostron H, von Guggenberg E, Ingorokva S, Gabriel M, Dobrozemsky G, Stockhammer G, Virgolini IJ. Response of recurrent high-grade glioma to treatment with (90)Y-DOTATOC. J Nucl Med 2010; 51:397-400. [PMID: 20150267 DOI: 10.2967/jnumed.109.072819] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The treatment of patients with high-grade malignant glioma still represents an unsolved clinical problem. We report the treatment of 3 patients who had World Health Organization grade IV recurrent glioblastoma: a 23-y-old woman and 2 men aged 61 and 62 y. METHODS All 3 patients were treated with the somatostatin receptor radiopharmaceutical (90)Y-labeled [1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid(0)-d-Phe(1),Tyr(3)]octreotide (DOTATOC). A cumulated dose of 1.7-2.2 GBq given in 3 or 4 cycles was locally injected into a previously implanted catheter system. RESULTS Treatment was successful in all 3 patients, with only minor side effects reported. After treatment, MRI and PET showed complete remission in one patient and partial remission in the other patients. These findings correlated well with clinical improvement and improved quality of life. CONCLUSION Receptor-mediated radionuclide therapy by locally injected (90)Y-DOTATOC is feasible and well tolerated. This approach represents an attractive strategy for the treatment of locally recurring or progressing glioblastoma.
Collapse
Affiliation(s)
- Dirk Heute
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Virgolini IJ, Gabriel M, von Guggenberg E, Putzer D, Kendler D, Decristoforo C. Role of radiopharmaceuticals in the diagnosis and treatment of neuroendocrine tumours. Eur J Cancer 2010; 45 Suppl 1:274-91. [PMID: 19775625 DOI: 10.1016/s0959-8049(09)70042-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Irene J Virgolini
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
34
|
Waisberg DR, Fava AS, Martins LC, Matos LL, Franco MIF, Waisberg J. Colonic carcinoid tumors: a clinicopathologic study of 23 patients from a single institution. ARQUIVOS DE GASTROENTEROLOGIA 2009; 46:288-93. [PMID: 20232008 DOI: 10.1590/s0004-28032009000400008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 04/13/2009] [Indexed: 11/22/2022]
Abstract
CONTEXT: Colonic carcinoids, excluding those arising in the appendix, have proved to be extremely rare. Due to their rarity, the characteristics and behavior of this unusual malignancy remain unclear. OBJECTIVE: To review the clinicopathologic features of patients operated on carcinoid tumors of the colon. METHODS: Twenty-three patients (12 males and 11 females) were operated on colonic carcinoids. The mean age of the patients was 63.0 ± 12.9 years (42 to 85 years). The clinical and histopathological data of patients who were pathologically diagnosed as having carcinoid tumors and submitted to surgical treatment over a 30-year period (1977-2007) were gathered. Actuarial patient survival was estimated using the Kaplan-Meier method, with carcinoid-specific death as the outcome. RESULTS: The mean time elapsed between onset of symptoms and surgical treatment was 8.3 months (1.5 to 20 months). The most frequent symptoms or signs encountered were abdominal pain followed by anorexia or weight loss, diarrhea, abdominal tenderness, palpable abdominal mass, and rectal bleeding. No carcinoid syndrome was noted. The lesion was located in the cecum in 16 (69.6%) patients, in the sigmoid in 3 patients (13.0%), in the ascending colon in 3 patients (13.0%), and in the transverse colon in one patient (4.3%). Twenty-one (91.3%) patients were operated on curative intent. Spreading of the disease to the liver and peritoneum was found in two (8.7%) patients who submitted to intestinal bypass. The mean size of the largest mass was 3.7 ± 1.2 cm (1.5 to 6.2 cm). There were multiple (two or more) lesions in three cases (13.0%). In the resected cases, the lymph nodes were compromised in 10 patients (47.6%) and disease-free in 11 (52.4%). Venous invasion and neural infiltration were both present in five (23.8%) patients. The tumors had penetrated the muscularis propria in all resected cases. Four (17.4%) patients had a second non-carcinoid primary tumor. Three (13.0%) patients died due to postoperative complications and five (21.7%) patients died from metachronous metastases or local recurrence. Fifteen patients (65.2%) remain alive without evidence of active disease. The mean follow-up period was 12 years (1.2 to 18 years), whereas the mean global survival was 50.7 ± 34.2 months and the crude survival rate at 5 years was 62.7%. CONCLUSIONS: Carcinoid tumors of the colon are frequently right-sided and may be clinically occult until an advanced stage is reached. Based on the relatively poor survival rates reported, it is recommended that, in addition to standard surgical resection, vigorous surveillance for metastatic disease must be performed, particularly during the first 2 years after surgery. In addition, these patients require evaluation of the entire gastrointestinal tract for evidence of coexisting malignancy, along with an extended period of follow-up, because tumor recurrences after 5 years are not uncommon.
Collapse
|
35
|
Imaging in targeted delivery of therapy to cancer. Target Oncol 2009; 4:201-17. [PMID: 19838639 DOI: 10.1007/s11523-009-0119-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 09/08/2009] [Indexed: 12/15/2022]
Abstract
We review the current status of imaging as applied to targeted therapy with particular focus on antibody-based therapeutics. Antibodies have high tumor specificity and can be engineered to optimize delivery to, and retention within, the tumor. Whole antibodies can activate natural immune effector mechanisms and can be conjugated to beta- and alpha-emitting radionuclides, toxins, enzymes, and nanoparticles for enhanced therapeutic effect. Imaging is central to the development of these agents and is used for patient selection, performing dosimetry and assessment of response. gamma- and positron-emitting radionuclides may be used to image the distribution of antibody-targeted therapeutics While some radionuclides such as iodine-131 emit both beta and gamma radiation and are therefore suitable for both imaging and therapy, others are more suited to imaging or therapy alone. Hence for radionuclide therapy of neuroendocrine tumors, patients can be selected for therapy on the basis of gamma-emitting indium-111-octreotide imaging and treated with beta-emitting yttrium-90-octreotate. Positron-emitting radionuclides can give greater sensitivity that gamma-emitters but only a single radionuclide can be imaged at one time and the range of radionuclides is more limited. The multiple options for antibody-based therapeutic molecules, imaging technologies and therapeutic scenarios mean that very large amounts of diverse data are being acquired. This can be most effectively shared and progress accelerated by use of common data standards for imaging, biological, and clinical data.
Collapse
|
36
|
Storch D, Schmitt JS, Waldherr C, Waser B, Reubi JC, Maecke HR. Preclinical evaluation of somatostatin analogs bearing two macrocyclic chelators for high specific activity labeling with radiometals. RADIOCHIM ACTA 2009. [DOI: 10.1524/ract.2007.95.6.359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Radiometallated analogues of the regulatory peptide somatostatin are of interest in the in vivo localization and targeted radiotherapy of somatostatin receptor-overexpressing tumors. An important aspect of their use in vivo is a fast and efficient labeling (complexation) protocol for radiometals along with a high specific activity.
We describe in this manuscript synthetic methods for the coupling of two chelators (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid=DOTA) to the bioactive peptide [Tyr3, Thr8]-octreotide (TATE) in order to increase the specific activity (radioactivity in Bq per mole peptide). The full chelator-linker-peptide conjugate was assembled on solid support using standard Fmoc chemistry. Two DOTA-chelators were linked to the peptide using lysine or N,N′-bis(3-aminopropyl)-glycine (Apg); in addition, pentasarcosine (Sar5) was used as a spacer between the chelators and the peptide to probe its influence on biology and pharmacology. Complexation rates with In3+ and Y3+ salts and the corresponding radiometals were high, the bis-DOTA-derivatives showed higher complexation rates and gave higher specific activity than DOTA-TATE.
Pharmacological and biological data of the complexed molecules did not show significant differences if compared to the parent peptide [111/natIn-DOTA]-TATE except for [(111/natIn-DOTA)2-Apg]-TATE which showed a lower binding affinity and rate of internalization into tumor cells. The biodistribution of [(111/natIn-DOTA)-Lys(111/natIn-DOTA)]-TATE in the rat tumor model (AR4-2J) showed a high and specific (as shown by a blocking experiment) tracer uptake in somatostatin receptor-positive tissue but a lower tumor uptake compared to [111/natIn-DOTA]-TATE.
Collapse
|
37
|
Reubi JC. CCK receptors in human neuroendocrine tumors: Clinical implications. Scandinavian Journal of Clinical and Laboratory Investigation 2009. [DOI: 10.1080/clb.61.234.101.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
True radiotracers: are we approaching theoretical specific activity with Tc-99m and I-123? Nucl Med Biol 2008; 35:523-7. [PMID: 18589295 DOI: 10.1016/j.nucmedbio.2008.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 03/19/2008] [Accepted: 03/19/2008] [Indexed: 11/21/2022]
|
39
|
Prasad V, Ambrosini V, Alavi A, Fanti S, Baum RP. PET/CT in Neuroendocrine Tumors: Evaluation of Receptor Status and Metabolism. PET Clin 2008; 3:355-79. [DOI: 10.1016/j.cpet.2009.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Baum RP, Prasad V, Hommann M, Hörsch D. Receptor PET/CT imaging of neuroendocrine tumors. Recent Results Cancer Res 2008; 170:225-242. [PMID: 18019630 DOI: 10.1007/978-3-540-31203-1_18] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
- R P Baum
- Zentralklinik Bad Berka GmbH Nuklearmedizinische Klinik, Germany
| | | | | | | |
Collapse
|
41
|
Zhang K, Aruva MR, Shanthly N, Cardi CA, Patel CA, Rattan S, Cesarone G, Wickstrom E, Thakur ML. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating peptide (PACAP) receptor specific peptide analogues for PET imaging of breast cancer: In vitro/in vivo evaluation. ACTA ACUST UNITED AC 2007; 144:91-100. [PMID: 17727979 PMCID: PMC2587158 DOI: 10.1016/j.regpep.2007.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 06/12/2007] [Accepted: 06/15/2007] [Indexed: 12/01/2022]
Abstract
Vasoactive intestinal peptide and pituitary adenylate cyclase activating peptide have high affinity for VPAC1, VPAC2 and PAC1 receptors overexpressed on human cancer cells. Four potent analogues of these peptides, TP3939, TP3982, TP4200 and TP3805 were labeled with (64)Cu and evaluated ex vivo and in vivo to asses their biological activity and receptor specificity. The ultimate goal is to utilize (64)Cu analogues for positron emission tomography (PET) imaging of breast cancers in humans. Radiochemical purity of each analogue was >92%. The muscle relaxivity assay revealed IC(50) to be 5.3x10(-8) M, 4.4x10(-8) M, 8.1x10(-8) M, 8.1x10(-9) M and Kd values determined by receptor specific cell binding assays were 3.3 nM, 0.33 nM, 0.2 nM and 0.72 nM for TP3805, TP3939, TP3982, and TP4200 respectively. The receptor affinity, using human breast cancer tissues, was 10.93 times greater than normal breast tissues. RT-PCR confirmed increased VPAC1 receptor expression on human breast tumor cells over normal cells and corroborated with autoradiography data. The blood clearance was rapid and in vivo translocation of (64)Cu to plasma protein was <15%. Data demonstrate that these analogues are potent, have uncompromised biological activity and are worthy of further evaluation for accurate PET imaging of human breast cancers and in determining malignant and benign lesions.
Collapse
Affiliation(s)
- Kaijun Zhang
- Laboratory of Radiopharmaceuticals and Molecular Imaging, Department of Radiology, Thomas Jefferson University, 1020 Locust Street, Suite 361 JAH, Philadelphia, PA. 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Cheng D, Yin D, Zhang L, Wang M, Li G, Wang Y. Radiosynthesis of 18F-(R8,15,21, L17)-vasoactive intestinal peptide and preliminary evaluation in mice bearing C26 colorectal tumours. Nucl Med Commun 2007; 28:501-6. [PMID: 17460542 DOI: 10.1097/mnm.0b013e328155d111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Radiolabelled vasoactive intestinal peptide (VIP) and its analogues have shown their potential as imaging agents for diagnosing tumours expressing VIP receptor. However, the fast proteolytic degradation in vivo has limited their clinical use. AIM To prepare the 18F-labelled (R8,15,21, L17)-VIP analogue in a convenient way and to evaluate its potential as an imaging agent for VIP receptor-positive tumours. METHODS Radiolabelled (R8,15,21, L17)-VIP was obtained by conjugation with N-succinimidyl 4-([18F]fluoromethyl) benzoate and purified by HPLC. Radiochemical purity and specific radioactivity were measured by analytical HPLC. In-vitro stability of the product was carried out in HSA solution and analysed by HPLC. Biodistribution study was carried out in mice bearing C26 colorectal tumours. RESULTS 18F-(R8,15,21, L17)-VIP was obtained in greater than 99% radiochemical purity within 60 min in decay-for-corrected radiochemical yields of 21.8+/-4.7% (n=5) and a specific activity of 17.76 GBq x mumol(-1) at the end of synthesis (EOS). Results of in-vitro studies demonstrated a high stability in human serum albumin (HSA) solution. Biodistribution data showed a rapid blood clearance and specific binding towards receptor-positive tumours. CONCLUSION 18F-(R8,15,21, L17)-VIP was prepared by a convenient method. Preliminary biodistribution results showed its potential for imaging tumours over-expressing VIP receptors and encouraged further investigation.
Collapse
Affiliation(s)
- Dengfeng Cheng
- Shanghai Institute of Applied Physics (SINAP), Chinese Academy of Sciences, PR China
| | | | | | | | | | | |
Collapse
|
43
|
Kothari K, Prasad S, Korde A, Mukherjee A, Mathur A, Jaggi M, Venkatesh M, Pillai AMR, Mukherjee R, Ramamoorthy N. 99mTc(CO)3-VIP analogues: Preparation and evaluation as tumor imaging agent. Appl Radiat Isot 2007; 65:382-6. [PMID: 17194598 DOI: 10.1016/j.apradiso.2006.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 11/02/2006] [Indexed: 10/01/2022]
Abstract
Vasoactive intestinal peptide (VIP) receptors are expressed abundantly on many types of tumors and, hence, radiolabeled VIP analogues are being explored for tumor imaging and therapy. Here, we report synthesis of three VIP analogues and their radiolabeling with (99m)Tc via a novel tricarbonyl synthon. The radiolabeled product could be prepared in high yields (>95%) and stability. In vitro studies showed significant uptake of (99m)Tc(CO)((3))-VP05 in human colon carcinoma cells. Biodistribution studies in animal tumor model showed 0.4-1%ID/g tumor uptake.
Collapse
Affiliation(s)
- Kanchan Kothari
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cheng D, Yin D, Li G, Wang M, Li S, Zheng M, Cai H, Wang Y. Radiolabeling and in vitro and in vivo characterization of [18F]FB-[R(8,15,21), L17]-VIP as a PET imaging agent for tumor overexpressed VIP receptors. Chem Biol Drug Des 2007; 68:319-25. [PMID: 17177894 DOI: 10.1111/j.1747-0285.2006.00453.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In an effort to develop a peptide-based radiopharmaceutical for the detection of tumors overexpressed vasoactive intestinal peptide receptors with positron emission tomography, we have prepared a novel [R(8,15,21), L17]-VIP peptide for 18F-labeling. This peptide inhibited 125I-VIP binding to rats lung membranes with high affinity [half-maximal inhibitory concentrations (IC50) of 0.12 nm]. Additionally, [R(8,15,21), L17]-VIP showed higher stability than native vasoactive intestinal peptide in vivo of mice. With N-succinimidyl 4-[18F] fluorobenzoate as labeling prosthetic group, [18F]FB-[R(8,15,21), L17]-VIP was obtained in >99% radiochemical purity within 100 min in decay-for-corrected radiochemical yield of 33.6 +/- 3% (n = 5) and a specific radioactivity 255 GBq/micromol at the end of synthesis. Stability of [18F]FB-[R(8,15,21), L17]-VIP in vitro and in vivo were investigated. Biodistribution of this trace was carried out in mice with induced C26 colorectal tumor. Fast clearance of [18F]FB-[R(8,15,21), L17]-VIP from non-target tissues and specific uptakes by tumors realized higher tumor-to-muscle ratio (3.55) and tumor-to-blood ratio (2.37) 60 min postinjection. Clear difference was observed between the blocking and unblocking experiments in biodistribution and whole body radioautography. [18F]FB-[R(8,15,21), L17]-VIP has demonstrated its potential for diagnosing tumors overexpressed vasoactive intestinal peptide receptors both in vitro and in vivo.
Collapse
Affiliation(s)
- Dengfeng Cheng
- Radiopharmaceuticals Centre, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 JiaLuo Road, Shanghai 201800, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Cheng D, Yin D, Zhang L, Wang M, Li G, Wang Y. Preparation of the novel fluorine-18-labeled VIP analog for PET imaging studies using two different synthesis methods. J Fluor Chem 2007. [DOI: 10.1016/j.jfluchem.2006.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Abstract
Neuroendocrine tumors (NETs) are rare neoplasms, which are characterized by the presence of neuroamine uptake mechanisms and/or peptide receptors at the cell membrane and these features constitute the basis of the clinical use of specific radiolabeled ligands, both for imaging and therapy. Radiolabeled metaiodobenzylguanidine (MIBG) was the first radiopharmaceutical used to specifically depict and localize catecholamine-secreting tumors (pheochromocytomas, paragangliomas, and neuroblastomas) and is still regarded as a first-choice imaging technique for diagnosis and follow-up; in patients with malignant disease, MIBG scintigraphy is an essential step to select patients for (131)I-MIBG therapy. Scintigraphy with (111)In- or (99m)Tc-labeled somatostatin analogs has become the main imaging technique for NETs, particularly those expressing a high density of somatostatin receptors, such as gastroenteropancreatic tumors; this procedure is used routinely for localizing the primary tumor, evaluating disease extension, monitoring the effect of treatment and for selecting patients for radioreceptor therapy. Since the recent development of hybrid machines, it has been possible to obtain images that simultaneously hold both anatomic (computed tomography [CT]) and functional (single-photon emission computed tomography [SPECT] or positron emission tomography [PET]) information, with great impact on diagnostic accuracy. Significant improvements have been made during the past few years with the development of highly specific radiopharmaceuticals for PET studies that reflect the different metabolic pathways of NETs, such as glucose metabolism ((18)F-fluorodeoxyglucose), the uptake of hormone precursors ((11)C-5-hydroxytryptophan, (11)C- or (18)F-dihydroxyphenylalanine, (18)F-fluorodopamine), the expression of receptors ((68)Ga-labeled somatostatin analogs), as well as the synthesis, storage, and release of hormones ((11)C-hydroxyephedrine and others). Among these radiopharmaceuticals, (68)Ga-labeled somatostatin analogs are increasingly used in specialized centers in Europe for PET and PET/CT imaging and show very promising results with high diagnostic sensitivity. New somatostatin analogs with different receptor affinity as well as other peptides are currently under investigation and will further improve our diagnostic and therapeutic capabilities in the future.
Collapse
Affiliation(s)
- Vittoria Rufini
- Department of Nuclear Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | |
Collapse
|
47
|
Khan IU, Reppich R, Beck-Sickinger AG. Identification of neuropeptide Y cleavage products in human blood to improve metabolic stability. Biopolymers 2007; 88:182-9. [PMID: 17206650 DOI: 10.1002/bip.20666] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Regulatory, receptor-binding peptides are considered as the agents of choice for diagnostic imaging and therapy of cancers, because their receptors are overexpressed in various human cancer cells. It has been recently indicated that there is a putative role of NPY in breast tumors. The expression of the two best-investigated NPY receptor subtypes, Y1 and Y2, in breast tissue shows predominant occurrence of the Y1 receptor subtype in tumors, whereas Y2 receptors are found in nonproliferative tissue. To investigate the usefulness of NPY analogs for tumor diagnosis and therapy, we investigated the metabolic stability of receptor-selective NPY analogs in human blood plasma. NPY analogs were synthesized by Fmoc/t-Bu solid-phase strategy. Prior to the cleavage of peptides from the resin, they were labeled with 5(6)-carboxyfluorescein (CF) either at the N-terminus or at the side chain of Lys4. For the metabolic stability study, the digestion of peptides was monitored by HPLC and the cleavage products were identified by MALDI-ToF mass spectrometry. The data showed that full-length [Phe7, Pro34]NPY analogs, which show high binding affinity to Y1 receptors are enzymatically more stable than centrally truncated analogs, which show high binding affinity to Y2 receptors. Furthermore, the N-terminally CF-labeled Y1 and Y2 receptor-selective peptides were found to be enzymatically more resistant than their counterparts containing the CF label at Lys4 side chain.
Collapse
Affiliation(s)
- Irfan Ullah Khan
- Institute of Biochemistry, University of Leipzig, Bruederstr 34, 04103 Leipzig, Germany
| | | | | |
Collapse
|
48
|
Rubinstein I. Human VIP-alpha: an emerging biologic response modifier to treat primary pulmonary hypertension. Expert Rev Cardiovasc Ther 2006; 3:565-9. [PMID: 16076268 DOI: 10.1586/14779072.3.4.565] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Primary pulmonary hypertension (PPH) is a rare life-threatening disorder of unknown etiology manifested by chronic elevation of pulmonary arterial pressure. Given that pulmonary vasoconstriction, endothelial and vascular smooth muscle cell proliferation and in situ thrombosis contribute appreciably to the evolution of PPH, treatment with vasodilators, antiproliferative drugs and anticoagulants, alone or in combination, constitute the pharmacologic standard of care. To this end, long-term administration of oral calcium channel blockers, prostacyclin analogs by various routes and oral endothelin-1 receptor antagonists, alone or in combination, is efficacious in treating patients with PPH. Unfortunately, efficacy is hampered by poor stability, delivery and bioavailability, and by systemic toxicity. Hence, there is an ongoing need to develop and test new drugs to treat patients with PPH. To address this issue, a novel, targeted, long-acting, biocompatible and safe sterically stabilized liposomal and micellar formulation of human vasoactive intestinal peptide (VIP) was developed and tested for human use: the 28-amino acid pleiotropic biologic response modifier, human VIP-alpha. The long-lasting salutary effects of phospholipid-associated VIP on vasomotor tone and arterial pressure were expressed at low concentrations solely in diseased animals and were independent of its route of administration. Thus, the author proposes that human VIP-alpha could be developed as a safe long-acting drug to treat patients with PPH.
Collapse
Affiliation(s)
- Israel Rubinstein
- University of Illinois, Department of Medicine, Chicago, IL 60612-7323, USA.
| |
Collapse
|
49
|
Gotthardt M, Béhé MP, Beuter D, Battmann A, Bauhofer A, Schurrat T, Schipper M, Pollum H, Oyen WJG, Behr TM. Improved tumour detection by gastrin receptor scintigraphy in patients with metastasised medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging 2006; 33:1273-9. [PMID: 16832634 DOI: 10.1007/s00259-006-0157-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 03/22/2006] [Accepted: 04/03/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE Radiopeptide imaging is a valuable imaging method in the management of patients with neuroendocrine tumours (NET). To determine the clinical performance of gastrin receptor scintigraphy (GRS), it was compared with somatostatin receptor scintigraphy (SRS), computed tomography (CT) and (18)F-FDG positron emission tomography (PET) in patients with metastasised/recurrent medullary thyroid carcinoma (MTC). METHODS Twenty-seven consecutive patients underwent imaging with GRS, SRS (19 patients), CT and PET (26 patients). GRS and SRS were compared with respect to tumour detection and uptake. CT, PET, magnetic resonance imaging (MRI), ultrasound (US) and follow-up were used for verification of findings. In addition, GRS, CT and PET were directly compared with each other to determine which method performs best. RESULTS Nineteen patients underwent both GRS and SRS. Among these, GRS showed a tumour detection rate of 94.2% as compared to 40.7% for SRS [mean number of tumour sites (+/-SD) and 95% confidence intervals (CI): GRS 4.3+/-3.1/2.8-5.7, SRS 1.8+/-1.6/1.1-2.6]. In 26 patients, GRS, CT and PET were compared. Here, GRS showed a tumour detection rate of 87.3% (CT 76.1%, PET 67.2%; mean number of tumour sites and 95% CI: GRS 4.5+/-4.0/2.9-6.1, CT 3.9+/-3.5/2.5-5.3, PET 3.5+/-3.3/2.1-4.8). If GRS and CT were combined, they were able to detect 96.7% of areas of tumour involvement. CONCLUSION GRS had a higher tumour detection rate than SRS and PET in our study. GRS in combination with CT was most effective in the detection of metastatic MTC.
Collapse
Affiliation(s)
- Martin Gotthardt
- Department of Nuclear Medicine, Radboud University Nijmegen Medical Center, Postbus 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Giblin MF, Sieckman GL, Shelton TD, Hoffman TJ, Forte LR, Volkert WA. In vitro and in vivo evaluation of 177Lu- and 90Y-labeled E. coli heat-stable enterotoxin for specific targeting of uroguanylin receptors on human colon cancers. Nucl Med Biol 2006; 33:481-8. [PMID: 16720239 DOI: 10.1016/j.nucmedbio.2006.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 01/12/2006] [Accepted: 01/25/2006] [Indexed: 10/24/2022]
Abstract
The human E. coli heat-stable enterotoxin (ST(h), amino acid sequence N1SSNYCCELCCNPACTGCY19) binds specifically to the guanylate cyclase C (GC-C) receptor, which is present in high density on the apical surface of normal intestinal epithelial cells as well as on the surface of human colon cancer cells. Analogs of ST(h) are currently being used as vectors targeting human colon cancers. Previous studies in our laboratory have focused on development of 111Indium-labeled ST(h) analogs for in vivo imaging applications. Here, we extend the scope of this work to include targeting of the therapeutic radionuclides 90Y and 177Lu. The peptide DOTA-F19-ST(h)(1-19) was synthesized using conventional Fmoc-based solid-phase techniques and refolded in dilute aqueous solution. The peptide was purified by RP-HPLC and characterized by MALDI-TOF MS and in vitro receptor binding assay. The DOTA-conjugate was metallated with nonradioactive Lu(III)Cl3 and Y(III)Cl3, and IC50 values of 2.6+/-0.1 and 4.2+/-0.9 nM were determined for the Lu- and Y-labeled peptides, respectively. 177Lu(III)Cl3 and 90Y(III)Cl3 labeling yielded tracer preparations that were inseparable by C18 RP-HPLC, indicating that putative differences between Lu-, Y- and In coordination spheres are not observed in the context of labeled ST(h) peptides. In vivo biodistribution studies of the 177Lu-labeled peptide in severe combined immunodeficient (SCID) mice bearing T-84 human cancer tumor xenografts showed rapid clearance from the bloodstream, with >90 %ID in the urine at 1 h pi. Localization of the tracer within tumor xenografts was 1.86+/-0.91 %ID/g at 1 h pi, a value higher than for all other tissues with the exception of kidney (2.74+/-0.24 %ID/g). At 24 h pi, >98 %ID was excreted into the urine, and 0.35+/-0.23 %ID/g remained in tumor, again higher than in all other tissues except kidney (0.91+/-0.46 %ID/g). Biodistribution results at 24 h pi for the 90Y-labeled peptide mirrored those for the 177Lu analog, in agreement with the identical behavior of the labeled analogs by C18 RP-HPLC. These results demonstrate the ability of 177Lu- and 90Y-labeled ST(h) molecules to specifically target GC-C receptors expressed on T-84 human colon cancer cells.
Collapse
Affiliation(s)
- Michael F Giblin
- Research Service, Harry S. Truman Memorial Veterans Administration Hospital, Columbia, MO 65201, USA.
| | | | | | | | | | | |
Collapse
|