1
|
Patel N, Werenski JO, Gonzalez MR, Clunk MJ, McCadden MR, Richard A, Chebib I, Hung YP, Nielsen GP, Lozano-Calderon SA. Tumor necrosis drives prognosis in osteosarcoma: No difference in chemotherapy response and survival between chondroblastic and osteoblastic osteosarcoma. Surg Oncol 2024; 57:102155. [PMID: 39423470 DOI: 10.1016/j.suronc.2024.102155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
INTRODUCTION The percentage of tumor necrosis is a crucial prognostic factor in osteosarcoma. Many studies adopt a 90 % cutoff based on osteoblastic osteosarcoma, but these findings are generalized to all conventional subtypes, including chondroblastic osteosarcoma. We sought to answer these questions: (1) Is tumor necrosis ≥90 % associated with better overall survival (OS) and disease-free survival (DFS) in osteoblastic and chondroblastic osteosarcoma? (2) Does the osteosarcoma subtype impact tumor necrosis? (3) Does the osteosarcoma subtype in "good" responders (tumor necrosis ≥90 %) affect OS and DFS?. MATERIALS AND METHODS We conducted a retrospective study of 156 patients with osteoblastic and chondroblastic osteosarcoma treated at our institution. All patients received a standardized chemotherapy protocol and underwent surgery with the goal of achieving negative margins (R0 resection). Propensity-score matching was performed to adjust for potential confounders. Kaplan-Meier survival analysis and Cox proportional hazards modeling were performed. RESULTS Patients with osteoblastic osteosarcoma and tumor necrosis ≥90 % had higher 5- and 10-year OS and DFS compared to those with necrosis <90 %. In chondroblastic osteosarcoma, a trend towards higher OS and DFS was seen in patients with tumor necrosis ≥90 %; this, however, was not significant. Chondroblastic osteosarcoma was not a risk factor for either tumor necrosis <90 % (p = 0.89) or tumor necrosis <70 % (p = 0.57). Patients with osteoblastic or chondroblastic osteosarcoma that were deemed "good" responders (tumor necrosis ≥90 %) had similar OS and DFS at the 5- and 10-year marks. CONCLUSION Conventional osteosarcoma subtype was not a risk factor for "poor" response. Survival outcomes (OS and DFS) were similar for osteoblastic and chondroblastic osteosarcoma with good response to chemotherapy.
Collapse
Affiliation(s)
- Neel Patel
- Orthopaedic Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Joseph O Werenski
- Orthopaedic Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Marcos R Gonzalez
- Orthopaedic Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Marilee J Clunk
- Orthopaedic Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA; University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.
| | - Meagan R McCadden
- Orthopaedic Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Alexis Richard
- Orthopaedic Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Ivan Chebib
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Yin P Hung
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - G Petur Nielsen
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Santiago A Lozano-Calderon
- Orthopaedic Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
2
|
Mthethwa PG, Marais LC, Ramsuran V, Aldous CM. A Systematic Review of the Heterogenous Gene Expression Patterns Associated with Multidrug Chemoresistance in Conventional Osteosarcoma. Genes (Basel) 2023; 14:genes14040832. [PMID: 37107591 PMCID: PMC10137822 DOI: 10.3390/genes14040832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Multidrug chemoresistance (MDR) remains the most significant obstacle to improving survival in osteosarcoma patients. Heterogeneous genetic alterations characterise the tumour microenvironment, and host molecular markers have been associated with MDR. This systematic review examines the genetic alterations of molecular biomarkers associated with multidrug chemotherapy resistance in genome-wide analysis of central high-grade conventional osteosarcoma (COS). We systematically searched MEDLINE, EMBASE, Web of Science, Wiley online library and Scopus. Only human studies involving genome-wide analysis were included, while candidate gene, in vitro and animal studies were excluded. The risk of bias of the studies was assessed using the Newcastle-Ottawa Quality Assessment Scale. The systematic search identified 1355 records. Following the screening, six studies were included in the qualitative analysis. There were 473 differentially expressed genes (DEGs) associated with chemotherapy response in COS. Fifty-seven of those were associated with MDR in osteosarcoma. The heterogeneous gene expressions were related to the mechanism of MDR in osteosarcoma. The mechanisms include drug-related sensitivity genes, bone remodelling and signal transduction. Complex, variable and heterogenous gene expression patterns underpin MDR in osteosarcoma. Further research is needed to identify the most relevant alterations for prognostication and to guide the development of possible therapeutic targets.
Collapse
Affiliation(s)
- Phakamani Goodman Mthethwa
- Department of Orthopaedic Surgery, Dr. Pixley Ka Isaka Seme Memorial Hospital, University of KwaZulu-Natal, 310 Bhejane Street, KwaMashu, Durban 4360, South Africa
- Correspondence: ; Tel.: +27-031-020-0366
| | - Leonard Charles Marais
- Department of Orthopaedic Surgery, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Durban 4001, South Africa
| | - Veron Ramsuran
- KwaZulu-Natal Research Innovation Platform (KRISP), University of KwaZulu-Natal, 719 Umbilo Road, Durban 4001, South Africa
| | - Collen Michelle Aldous
- Department of Clinical Medicine, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Durban 4001, South Africa
| |
Collapse
|
3
|
Giacomini I, Cortini M, Tinazzi M, Baldini N, Cocetta V, Ragazzi E, Avnet S, Montopoli M. Contribution of Mitochondrial Activity to Doxorubicin-Resistance in Osteosarcoma Cells. Cancers (Basel) 2023; 15:cancers15051370. [PMID: 36900165 PMCID: PMC10000149 DOI: 10.3390/cancers15051370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Osteosarcoma is considered the most common bone tumor affecting children and young adults. The standard of care is chemotherapy; however, the onset of drug resistance still jeopardizes osteosarcoma patients, thus making it necessary to conduct a thorough investigation of the possible mechanisms behind this phenomenon. In the last decades, metabolic rewiring of cancer cells has been proposed as a cause of chemotherapy resistance. Our aim was to compare the mitochondrial phenotype of sensitive osteosarcoma cells (HOS and MG-63) versus their clones when continuously exposed to doxorubicin (resistant cells) and identify alterations exploitable for pharmacological approaches to overcome chemotherapy resistance. Compared with sensitive cells, doxorubicin-resistant clones showed sustained viability with less oxygen-dependent metabolisms, and significantly reduced mitochondrial membrane potential, mitochondrial mass, and ROS production. In addition, we found reduced expression of TFAM gene generally associated with mitochondrial biogenesis. Finally, combined treatment of resistant osteosarcoma cells with doxorubicin and quercetin, a known inducer of mitochondrial biogenesis, re-sensitizes the doxorubicin effect in resistant cells. Despite further investigations being needed, these results pave the way for the use of mitochondrial inducers as a promising strategy to re-sensitize doxorubicin cytotoxicity in patients who do not respond to therapy or reduce doxorubicin side effects.
Collapse
Affiliation(s)
- Isabella Giacomini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padova, Italy
| | - Margherita Cortini
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Mattia Tinazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padova, Italy
| | - Nicola Baldini
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padova, Italy
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padova, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
- Correspondence: (S.A.); (M.M.)
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), 6500 Bellinzona, Switzerland
- Correspondence: (S.A.); (M.M.)
| |
Collapse
|
4
|
Endogenous Extracellular Matrix Regulates the Response of Osteosarcoma 3D Spheroids to Doxorubicin. Cancers (Basel) 2023; 15:cancers15041221. [PMID: 36831562 PMCID: PMC9954237 DOI: 10.3390/cancers15041221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The extracellular matrix (ECM) modulates cell behavior, shape, and viability as well as mechanical properties. In recent years, ECM disregulation and aberrant remodeling has gained considerable attention in cancer targeting and prevention since it may stimulate tumorigenesis and metastasis. Here, we developed an in vitro model that aims at mimicking the in vivo tumor microenvironment by recapitulating the interactions between osteosarcoma (OS) cells and ECM with respect to cancer progression. We long-term cultured 3D OS spheroids made of metastatic or non-metastatic OS cells mixed with mesenchymal stromal cells (MSCs); confirmed the deposition of ECM proteins such as Type I collagen, Type III collagen, and fibronectin by the stromal component at the interface between tumor cells and MSCs; and found that ECM secretion is inhibited by a neutralizing anti-IL-6 antibody, suggesting a new role of this cytokine in OS ECM deposition. Most importantly, we showed that the cytotoxic effect of doxorubicin is reduced by the presence of Type I collagen. We thus conclude that ECM protein deposition is crucial for modelling and studying drug response. Our results also suggest that targeting ECM proteins might improve the outcome of a subset of chemoresistant tumors.
Collapse
|
5
|
Tippett VL, Tattersall L, Ab Latif NB, Shah KM, Lawson MA, Gartland A. The strategy and clinical relevance of in vitro models of MAP resistance in osteosarcoma: a systematic review. Oncogene 2023; 42:259-277. [PMID: 36434179 PMCID: PMC9859755 DOI: 10.1038/s41388-022-02529-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/27/2022]
Abstract
Over the last 40 years osteosarcoma (OS) survival has stagnated with patients commonly resistant to neoadjuvant MAP chemotherapy involving high dose methotrexate, adriamycin (doxorubicin) and platinum (cisplatin). Due to the rarity of OS, the generation of relevant cell models as tools for drug discovery is paramount to tackling this issue. Four literature databases were systematically searched using pre-determined search terms to identify MAP resistant OS cell lines and patients. Drug exposure strategies used to develop cell models of resistance and the impact of these on the differential expression of resistance associated genes, proteins and non-coding RNAs are reported. A comparison to clinical studies in relation to chemotherapy response, relapse and metastasis was then made. The search retrieved 1891 papers of which 52 were relevant. Commonly, cell lines were derived from Caucasian patients with epithelial or fibroblastic subtypes. The strategy for model development varied with most opting for continuous over pulsed chemotherapy exposure. A diverse resistance level was observed between models (2.2-338 fold) with 63% of models exceeding clinically reported resistance levels which may affect the expression of chemoresistance factors. In vitro p-glycoprotein overexpression is a key resistance mechanism; however, from the available literature to date this does not translate to innate resistance in patients. The selection of models with a lower fold resistance may better reflect the clinical situation. A comparison of standardised strategies in models and variants should be performed to determine their impact on resistance markers. Clinical studies are required to determine the impact of resistance markers identified in vitro in poor responders to MAP treatment, specifically with respect to innate and acquired resistance. A shift from seeking disputed and undruggable mechanisms to clinically relevant resistance mechanisms may identify key resistance markers that can be targeted for patient benefit after a 40-year wait.
Collapse
Affiliation(s)
- Victoria L Tippett
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Luke Tattersall
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Norain B Ab Latif
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
- Universiti Kuala Lumpur Royal College of Medicine Perak, No. 3 Jalan Greentown, 30450, Ipoh, Perak, Malaysia
| | - Karan M Shah
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Michelle A Lawson
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Alison Gartland
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
| |
Collapse
|
6
|
Yang C, Li X, Yan Q. Polythionoester Vesicle: An Efficient Polymeric Platform for Tuning H 2S Release. ACS Macro Lett 2022; 11:1230-1237. [PMID: 36223277 DOI: 10.1021/acsmacrolett.2c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogen sulfide (H2S) serves as a key gaseous regulator that not only directs many physiological activities, but also manifests therapeutic benefits to many diseases. Developing H2S vehicle platforms for its local delivery and long-acting release is important to achieve target gas therapy. Most of the known H2S-donating polymers contain labile thioester scaffolds within their structures that suffer from the issue of low gas releasing efficiency. Here we present the use of thionoester, a constitutional isomer of thioester, as the functional unit to build a structural platform of cysteine-triggered H2S donor polymer, polythionoester. Simple exchange of the sulfur and oxygen positions in the carbonyl sulfide scaffold makes the polythionoesters undergo a distinct mechanism of H2S production, which can largely improve the gas-releasing efficiency (>80%). Moreover, the thionoester-containing block copolymers can self-assemble into vesicles in an aqueous media. We discover that control over the size effect can adjust the vesicle disassembly rate and gas-releasing kinetics. A tunable half-life of H2S generation (2.6-9.8 h) can be accessed by tailoring the vesicle dimension. This allows such polymersomes to be potential as a gas nanodelivery system for long-lasting gas therapeutics.
Collapse
Affiliation(s)
- Cuiqin Yang
- State Key Lab of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Xuefeng Li
- State Key Lab of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Qiang Yan
- State Key Lab of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
7
|
CD44 Contributes to the Regulation of MDR1 Protein and Doxorubicin Chemoresistance in Osteosarcoma. Int J Mol Sci 2022; 23:ijms23158616. [PMID: 35955749 PMCID: PMC9368984 DOI: 10.3390/ijms23158616] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma is the most common type of pediatric bone tumor. Despite great advances in chemotherapy during the past decades, the survival rates of osteosarcoma patients remain unsatisfactory. Drug resistance is one of the main reasons, leading to treatment failure and poor prognosis. Previous reports correlated expression of cluster of differentiation 44 (CD44) with drug resistance and poor survival of osteosarcoma patients, however the underlying mechanisms are poorly defined. Here, we investigated the role of CD44 in the regulation of drug chemoresistance, using osteosarcoma cells isolated from mice carrying a mutation of the tumor suppressor neurofibromatosis type 2 (Nf2) gene. CD44 expression was knocked-down in the cells using CRISPR/Cas9 approach. Subsequently, CD44 isoforms and mutants were re-introduced to investigate CD44-dependent processes. Sensitivity to doxorubicin was analyzed in the osteosarcoma cells with modified CD44 expression by immunoblot, colony formation- and WST-1 assay. To dissect the molecular alterations induced by deletion of Cd44, RNA sequencing was performed on Cd44-positive and Cd44-negative primary osteosarcoma tissues isolated from Nf2-mutant mice. Subsequently, expression of candidate genes was evaluated by quantitative reverse transcription PCR (qRT-PCR). Our results indicate that CD44 increases the resistance of osteosarcoma cells to doxorubicin by up-regulating the levels of multidrug resistance (MDR) 1 protein expression, and suggest the role of proteolytically released CD44 intracellular domain, and hyaluronan interactions in this process. Moreover, high throughput sequencing analysis identified differential regulation of several apoptosis-related genes in Cd44-positive and -negative primary osteosarcomas, including p53 apoptosis effector related to PMP-22 (Perp). Deletion of Cd44 in osteosarcoma cells led to doxorubicin-dependent p53 activation and a profound increase in Perp mRNA expression. Overall, our results suggest that CD44 might be an important regulator of drug resistance and suggest that targeting CD44 can sensitize osteosarcoma to standard chemotherapy.
Collapse
|
8
|
FT-IR Spectral Signature of Sensitive and Multidrug-Resistant Osteosarcoma Cell-Derived Extracellular Nanovesicles. Cells 2022; 11:cells11050778. [PMID: 35269400 PMCID: PMC8909163 DOI: 10.3390/cells11050778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone cancer in children and adolescents. Despite aggressive treatment regimens, the outcome is unsatisfactory, and multidrug resistance (MDR) is a pivotal process in OS treatment failure. OS-derived extracellular vesicles (EVs) promote drug resistance to chemotherapy and target therapy through different mechanisms. The aim of this study was to identify subpopulations of osteosarcoma-EVs by Fourier transform infrared spectroscopy (FT-IR) to define a specific spectral signature for sensitive and multidrug-resistant OS-derived EVs. EVs were isolated from sensitive and MDR OS cells as well as from mesenchymal stem cells by differential centrifugation and ultracentrifugation. EVs size, morphology and protein expression were characterized. FT-IR/ATR of EVs spectra were acquired in the region of 400–4000 cm−1 (resolution 4 cm−1, 128 scans). The FT-IR spectra obtained were consistently different in the EVs compared to cells from which they originate. A specific spectral signature, characterized by a shift and a new band (1601 cm−1), permitted to clearly distinguish EVs isolated by sensitive and multidrug-resistant OS cells. Our data suggest that FT-IR spectroscopy allows to characterize and define a specific spectral signature for sensitive and MDR OS-derived EVs.
Collapse
|
9
|
Hu X, Wen Y, Tan LY, Wang J, Tang F, Wang YT, Zheng CX, Zhang YQ, Gong TJ, Min L. Exosomal Long Non-Coding RNA ANCR Mediates Drug Resistance in Osteosarcoma. Front Oncol 2022; 11:735254. [PMID: 35096563 PMCID: PMC8789737 DOI: 10.3389/fonc.2021.735254] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/20/2021] [Indexed: 02/05/2023] Open
Abstract
Osteosarcoma (OS) is rare cancer with bimodal age distribution with peaks observed in children and young adults. Typically, OS is treated with pre-surgery neoadjuvant therapy, surgical excision, and post-surgery chemotherapy. However, the efficacy of treatment on disease prognosis and objective response is not currently optimal, often resulting in drug resistance; in turn, highlighting the need to understand mechanisms driving resistance to therapy in OS patients. Using Doxycycline (Dox)-sensitive and resistant variants of OS cells lines KHOS and U2OS, we found that the resistant variants KHOS-DR and U2OS-DR have significantly higher in vitro proliferation. Treating the Dox-sensitive KHOS/U2OS cells with exosomes isolated from KHOS-DR/U2OS-DR made them resistant to treatment with Dox in vitro and in vivo and enhanced tumor growth and progression, while decreasing overall survival. Expression of the long non-coding RNA (lncRNA) ANCR was significantly higher in the KHOS-DR and U2OS-DR variants. SiRNA-mediated knockdown of ANCR decreased in vitro proliferation, while increasing sensitivity to Dox treatment in the KHOS-DR/U2OS-DR cells. Expression of the exosomal lncRNA ANCR was critical for drug resistance and OS tumor progression in xenografts and was correlated to resistance to Adriamycin and overall survival is patients with OS. These results establish lncRNA ANCR as a critical mediator of resistance to therapy in OS patients, highlighting it as a potential therapeutic target in OS patients.
Collapse
Affiliation(s)
- Xin Hu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wen
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Lin-Yun Tan
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Wang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Tang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-Tian Wang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Chuan-Xi Zheng
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Yu-Qi Zhang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Tao-Jun Gong
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Li Min
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Santos A, Domingues C, Jarak I, Veiga F, Figueiras A. Osteosarcoma from the unknown to the use of exosomes as a versatile and dynamic therapeutic approach. Eur J Pharm Biopharm 2021; 170:91-111. [PMID: 34896571 DOI: 10.1016/j.ejpb.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 12/18/2022]
Abstract
The most common primary malignant tumor of bone in children is osteosarcoma (OS). Nowadays, the prognosis and the introduction of chemotherapy in OS have improved survival rates of patients. Nevertheless, the results are still unsatisfactory, especially, in patients with recurrent disease or metastatic. OS chemotherapy has two main challenges related to treatment toxicity and multiple drug resistance. In this way, nanotechnology has developed nanosystems capable of releasing the drug directly at the OS cells and decreasing the drug's toxicity. Exosomes (Exo), a cell-derived nano-sized and a phospholipid vehicle, have been recognized as important drug delivery systems in several cancers. They are involved in a variety of biological processes and are an important mediator of long-distance intercellular communication. Exo can reduce inflammation and show low toxicity in healthy cells. Furthermore, the incorporation of specific proteins or peptides on the Exo surface improves their targeting capability in several clinical applications. Due to their unique structure and relevant characteristics, Exo is a promising nanocarrier for OS treatment. This review intends to describe the properties that turn Exo into an efficient, as well as safe nanovesicle for drug delivery and treatment of OS.
Collapse
Affiliation(s)
- Ana Santos
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal
| | - Cátia Domingues
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, Portugal; Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal
| | - Ivana Jarak
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal
| | - Francisco Veiga
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, Portugal
| | - Ana Figueiras
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, Portugal.
| |
Collapse
|
11
|
Casanova JM, Almeida JS, Reith JD, Sousa LM, Fonseca R, Freitas-Tavares P, Santos-Rosa M, Rodrigues-Santos P. Tumor-Infiltrating Lymphocytes and Cancer Markers in Osteosarcoma: Influence on Patient Survival. Cancers (Basel) 2021; 13:cancers13236075. [PMID: 34885185 PMCID: PMC8656728 DOI: 10.3390/cancers13236075] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Osteosarcoma (OST) is the most common type of high-grade primary bone tumor, which mainly affects young adults. Despite the efforts that have been made to address the importance of immune-related factors in OST, there is still a lot to understand. The purpose of the current study was to evaluate the tumor-infiltrating lymphocytes (TIL), the expression of proteins involved in tumor biology, and their impact on the clinical outcome of OST patients. Our results suggest that the presence of tumor-infiltrating CD4+ cells provides protection to patients, and that CD8+ cells have a significant impact on the patient’s overall survival (OS) and progression-free survival (PFS). In addition, a strong association of tumor-infiltrating CD4+ cells and the presence of CD44s expression in tumor samples was observed. These findings reinforce the idea that TIL and the expression of tumor markers should be taken into consideration in order to improve OST treatment and management. Abstract Osteosarcoma (OST) is the most common type of high-grade primary bone tumor, which mainly affects young adults. The current standard of care for OST combines surgical resection with chemotherapy. The clinical outcomes and the current options to treat OST patients are unsatisfactory and novel treatment strategies are needed. The crosstalk between tumor cells and immune cells is essential to the OST microenvironment. Despite the efforts that have been made to address the importance of immune-related factors in OST, there is still a lot to understand. The purpose of the current study was to evaluate the tumor-infiltrating lymphocytes (TIL), the expression of proteins involved in tumor biology, and their impact on the clinical outcome of OST patients. We studied 93 samples of OST patients using immunohistochemistry and histomorphometry. We looked for the infiltration of CD3+, CD4+, CD8+, TIA1+ and CD20+ cells and for the expression of CD44 standard (CD44s) and variant 6 (CD44v6), CD95/Fas, Fas-L, p53 and p-glycoprotein. All the parameters were analyzed for the influence on the occurrence of death and metastasis, plus patient overall survival (OS) and progression-free survival (PFS). The effect of sex, age, tumor location (distal femur or proximal tibia) and the combination with neoadjuvant chemotherapy was also assessed. Our results suggest that the presence of tumor-infiltrating CD4+ cells provides protection to OST patients, and that CD8+ cells have a significant impact on the patient’s overall survival (OS) and progression-free survival (PFS), which is more evident in male patients. In addition, a strong association between tumor-infiltrating CD4+ cells and the presence of CD44s expression in tumor samples was observed. Analysis of TIL and tumor markers related to tumor biology could be useful to stratify patients and monitor the response to therapy, as well as to assist with the development of immunotherapy strategies to improve the effects of cytotoxic TIL to eradicate the tumor cells.
Collapse
Affiliation(s)
- José Manuel Casanova
- Tumor Unit of the Locomotor Apparatus (UTAL), University Clinic of Orthopedics, Orthopedics Service, Coimbra Hospital and Universitary Centre (CHUC), 3000-075 Coimbra, Portugal; (J.M.C.); (R.F.); (P.F.-T.)
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.-S.A.); (M.S.-R.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-075 Coimbra, Portugal
- Department of Pathology, Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Jani-Sofia Almeida
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.-S.A.); (M.S.-R.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-075 Coimbra, Portugal
- Department of Pathology, Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
- Laboratory of Immunology and Oncology, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal;
| | - John David Reith
- Department of Pathology, Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Luana Madalena Sousa
- Laboratory of Immunology and Oncology, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Ruben Fonseca
- Tumor Unit of the Locomotor Apparatus (UTAL), University Clinic of Orthopedics, Orthopedics Service, Coimbra Hospital and Universitary Centre (CHUC), 3000-075 Coimbra, Portugal; (J.M.C.); (R.F.); (P.F.-T.)
- Clinical Academic Centre of Coimbra (CACC), 3000-075 Coimbra, Portugal
| | - Paulo Freitas-Tavares
- Tumor Unit of the Locomotor Apparatus (UTAL), University Clinic of Orthopedics, Orthopedics Service, Coimbra Hospital and Universitary Centre (CHUC), 3000-075 Coimbra, Portugal; (J.M.C.); (R.F.); (P.F.-T.)
- Clinical Academic Centre of Coimbra (CACC), 3000-075 Coimbra, Portugal
| | - Manuel Santos-Rosa
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.-S.A.); (M.S.-R.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-075 Coimbra, Portugal
- Institute of Immunology, Faculty of Medicine (FMUC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (J.-S.A.); (M.S.-R.)
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-075 Coimbra, Portugal
- Institute of Immunology, Faculty of Medicine (FMUC), University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239-85-77-77 (ext. 24-28-44)
| |
Collapse
|
12
|
Serra M, Hattinger CM, Pasello M, Casotti C, Fantoni L, Riganti C, Manara MC. Impact of ABC Transporters in Osteosarcoma and Ewing's Sarcoma: Which Are Involved in Chemoresistance and Which Are Not? Cells 2021; 10:cells10092461. [PMID: 34572110 PMCID: PMC8467338 DOI: 10.3390/cells10092461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
The ATP-binding cassette (ABC) transporter superfamily consists of several proteins with a wide repertoire of functions. Under physiological conditions, ABC transporters are involved in cellular trafficking of hormones, lipids, ions, xenobiotics, and several other molecules, including a broad spectrum of chemical substrates and chemotherapeutic drugs. In cancers, ABC transporters have been intensely studied over the past decades, mostly for their involvement in the multidrug resistance (MDR) phenotype. This review provides an overview of ABC transporters, both related and unrelated to MDR, which have been studied in osteosarcoma and Ewing's sarcoma. Since different backbone drugs used in first-line or rescue chemotherapy for these two rare bone sarcomas are substrates of ABC transporters, this review particularly focused on studies that have provided findings that have been either translated to clinical practice or have indicated new candidate therapeutic targets; however, findings obtained from ABC transporters that were not directly involved in drug resistance were also discussed, in order to provide a more complete overview of the biological impacts of these molecules in osteosarcoma and Ewing's sarcoma. Finally, therapeutic strategies and agents aimed to circumvent ABC-mediated chemoresistance were discussed to provide future perspectives about possible treatment improvements of these neoplasms.
Collapse
Affiliation(s)
- Massimo Serra
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.M.H.); (M.P.); (C.C.); (L.F.); (M.C.M.)
- Correspondence: ; Tel.: +39-051-6366762
| | - Claudia Maria Hattinger
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.M.H.); (M.P.); (C.C.); (L.F.); (M.C.M.)
| | - Michela Pasello
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.M.H.); (M.P.); (C.C.); (L.F.); (M.C.M.)
| | - Chiara Casotti
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.M.H.); (M.P.); (C.C.); (L.F.); (M.C.M.)
| | - Leonardo Fantoni
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.M.H.); (M.P.); (C.C.); (L.F.); (M.C.M.)
| | - Chiara Riganti
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126 Torino, Italy;
| | - Maria Cristina Manara
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (C.M.H.); (M.P.); (C.C.); (L.F.); (M.C.M.)
| |
Collapse
|
13
|
Zou T, Zeng C, Qu J, Yan X, Lin Z. Rutaecarpine Increases Anticancer Drug Sensitivity in Drug-Resistant Cells through MARCH8-Dependent ABCB1 Degradation. Biomedicines 2021; 9:1143. [PMID: 34572328 PMCID: PMC8466742 DOI: 10.3390/biomedicines9091143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
The overexpression of adenosine triphosphate (ATP)-binding cassette (ABC) subfamily B member 1 (ABCB1; P-glycoprotein; MDR1) in some types of cancer cells is one of the mechanisms responsible for the development of multidrug resistance (MDR), which leads to the failure of chemotherapy. Therefore, it is important to inhibit the activity or reduce the expression level of ABCB1 to maintain an effective intracellular level of chemotherapeutic drugs. In this study, we found that rutaecarpine, a bioactive alkaloid isolated from Evodia Rutaecarpa, has the capacity to reverse ABCB1-mediated MDR. Our data indicated that the reversal effect of rutaecarpine was related to the attenuation of the protein level of ABCB1. Mechanistically, we demonstrated that ABCB1 is a newly discovered substrate of E3 ubiquitin ligase membrane-associated RING-CH 8 (MARCH8). MARCH8 can interact with ABCB1 and promote its ubiquitination and degradation. In short, rutaecarpine increased the degradation of ABCB1 protein by upregulating the protein level of MARCH8, thereby antagonizing ABCB1-mediated MDR. Notably, the treatment of rutaecarpine combined with other anticancer drugs exhibits a therapeutic effect on transplanted tumors. Therefore, our study provides a potential chemotherapeutic strategy of co-administrating rutaecarpine with other conventional chemotherapeutic agents to overcome MDR and improve therapeutic effect.
Collapse
Affiliation(s)
- Tingting Zou
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (T.Z.); (C.Z.); (J.Q.)
| | - Cheng Zeng
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (T.Z.); (C.Z.); (J.Q.)
| | - Junyan Qu
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (T.Z.); (C.Z.); (J.Q.)
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (T.Z.); (C.Z.); (J.Q.)
| |
Collapse
|
14
|
Sugiu K, Tazawa H, Hasei J, Yamakawa Y, Omori T, Komatsubara T, Mochizuki Y, Kondo H, Osaki S, Fujiwara T, Yoshida A, Kunisada T, Ueda K, Urata Y, Kagawa S, Ozaki T, Fujiwara T. Oncolytic virotherapy reverses chemoresistance in osteosarcoma by suppressing MDR1 expression. Cancer Chemother Pharmacol 2021; 88:513-524. [PMID: 34114067 DOI: 10.1007/s00280-021-04310-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/31/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Osteosarcoma (OS) is a malignant bone tumor primarily affecting children and adolescents. The prognosis of chemotherapy-refractory OS patients is poor. We developed a tumor suppressor p53-expressing oncolytic adenovirus (OBP-702) that exhibits antitumor effects against human OS cells. Here, we demonstrate the chemosensitizing effect of OBP-702 in human OS cells. MATERIALS AND METHODS The in vitro and in vivo antitumor activities of doxorubicin (DOX) and OBP-702 were assessed using parental and DOX-resistant OS cells (U2OS, MNNG/HOS) and a DOX-resistant MNNG/HOS xenograft tumor model. RESULTS DOX-resistant OS cells exhibited high multidrug resistant 1 (MDR1) expression, which was suppressed by OBP-702 or MDR1 siRNA, resulting in enhanced DOX-induced apoptosis. Compared to monotherapy, OBP-702 and DOX combination therapy significantly suppressed tumor growth in the DOX-resistant MNNG/HOS xenograft tumor model. CONCLUSION Our results suggest that MDR1 is an attractive therapeutic target for chemoresistant OS. Tumor-specific virotherapy is thus a promising strategy for reversing chemoresistance in OS patients via suppression of MDR1 expression.
Collapse
Affiliation(s)
- Kazuhisa Sugiu
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan.
- Center for Innovative Clinical Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Joe Hasei
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Yasuaki Yamakawa
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Toshinori Omori
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Tadashi Komatsubara
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Yusuke Mochizuki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Hiroya Kondo
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Shuhei Osaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Tomohiro Fujiwara
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Aki Yoshida
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Toshiyuki Kunisada
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
- Department of Medical Materials for Musculoskeletal Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Koji Ueda
- Project for Personalized Cancer Medicine, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Yasuo Urata
- Oncolys BioPharma, Inc., Tokyo, 105-0001, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
- Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, 700-8558, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| |
Collapse
|
15
|
Drug Resistance in Osteosarcoma: Emerging Biomarkers, Therapeutic Targets and Treatment Strategies. Cancers (Basel) 2021; 13:cancers13122878. [PMID: 34207685 PMCID: PMC8228414 DOI: 10.3390/cancers13122878] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/05/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Despite the adoption of aggressive, multimodal treatment schedules, the cure rate of high-grade osteosarcoma (HGOS) has not significantly improved in the last 30 years. The most relevant problem preventing improvement in HGOS prognosis is drug resistance. Therefore, validated novel biomarkers that help to identify those patients who could benefit from innovative treatment options and the development of drugs enabling personalized therapeutic protocols are necessary. The aim of this review was to give an overview on the most relevant emerging drug resistance-related biomarkers, therapeutic targets and new agents or novel candidate treatment strategies, which have been highlighted and suggested for HGOS to improve the success rate of clinical trials. Abstract High-grade osteosarcoma (HGOS), the most common primary malignant tumor of bone, is a highly aggressive neoplasm with a cure rate of approximately 40–50% in unselected patient populations. The major clinical problems opposing the cure of HGOS are the presence of inherent or acquired drug resistance and the development of metastasis. Since the drugs used in first-line chemotherapy protocols for HGOS and clinical outcome have not significantly evolved in the past three decades, there is an urgent need for new therapeutic biomarkers and targeted treatment strategies, which may increase the currently available spectrum of cure modalities. Unresponsive or chemoresistant (refractory) HGOS patients usually encounter a dismal prognosis, mostly because therapeutic options and drugs effective for rescue treatments are scarce. Tailored treatments for different subgroups of HGOS patients stratified according to drug resistance-related biomarkers thus appear as an option that may improve this situation. This review explores drug resistance-related biomarkers, therapeutic targets and new candidate treatment strategies, which have emerged in HGOS. In addition to consolidated biomarkers, specific attention has been paid to the role of non-coding RNAs, tumor-derived extracellular vesicles, and cancer stem cells as contributors to drug resistance in HGOS, in order to highlight new candidate markers and therapeutic targets. The possible use of new non-conventional drugs to overcome the main mechanisms of drug resistance in HGOS are finally discussed.
Collapse
|
16
|
Li J, Qin B, Huang M, Ma Y, Li D, Li W, Guo Z. Tumor-Associated Antigens (TAAs) for the Serological Diagnosis of Osteosarcoma. Front Immunol 2021; 12:665106. [PMID: 33995397 PMCID: PMC8119874 DOI: 10.3389/fimmu.2021.665106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/08/2021] [Indexed: 01/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common form of malignant bone tumor found in childhood and adolescence. Although its incidence rate is low among cancers, the prognosis of OS is usually poor. Although some biomarkers, such as p53, have been identified in OS, the association between the biomarkers and clinical outcome is not well understood. Thus, it is necessary to establish a method to identify patients diagnosed with OS at an early stage. It is becoming obvious that anti-tumor-associated antigens (TAAs) autoantibodies (TAAbs) in sera could be used as serological biomarkers in the detection of many different types of cancers. This notion indicates that TAAbs are considered as immunological “sentinels” associated with tumorigenesis underlying molecular events. It provides new insights into the molecular and cellular biology of the differential diagnosis of cancers. What’s more, it is reported that a customized TAA array could significantly increase the sensitivity/specificity. TAA arrays also have great application prospects in detecting cancer at an early stage, monitoring cancer progression, discovering new therapeutic targets, and designing personalized treatment. In this review, we provide an overview of the TAAs identified in OS as well as the possibility that TAAs and TAAbs system be used as biomarkers in the immunodiagnosis and prognosis of OS.
Collapse
Affiliation(s)
- Jitian Li
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Institute of Orthopedic and Traumatology, Luoyang, China
| | - Bo Qin
- Transitional Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Manyu Huang
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Institute of Orthopedic and Traumatology, Luoyang, China
| | - Yan Ma
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Institute of Orthopedic and Traumatology, Luoyang, China
| | - Dongsheng Li
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Institute of Orthopedic and Traumatology, Luoyang, China
| | - Wuyin Li
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Institute of Orthopedic and Traumatology, Luoyang, China
| | - Zhiping Guo
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Institute of Orthopedic and Traumatology, Luoyang, China
| |
Collapse
|
17
|
Insights of Tris(2-pyridylmethyl)amine as anti-tumor agent for osteosarcoma: experimental and in silico studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Mechanisms of Resistance to Conventional Therapies for Osteosarcoma. Cancers (Basel) 2021; 13:cancers13040683. [PMID: 33567616 PMCID: PMC7915189 DOI: 10.3390/cancers13040683] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor, mainly occurring in children and adolescents. Current standard therapy includes tumor resection associated with multidrug chemotherapy. However, patient survival has not evolved for the past decades. Since the 1970s, the 5-year survival rate is around 75% for patients with localized OS but dramatically drops to 20% for bad responders to chemotherapy or patients with metastases. Resistance is one of the biological processes at the origin of therapeutic failure. Therefore, it is necessary to better understand and decipher molecular mechanisms of resistance to conventional chemotherapy in order to develop new strategies and to adapt treatments for patients, thus improving the survival rate. This review will describe most of the molecular mechanisms involved in OS chemoresistance, such as a decrease in intracellular accumulation of drugs, inactivation of drugs, improved DNA repair, modulations of signaling pathways, resistance linked to autophagy, disruption in genes expression linked to the cell cycle, or even implication of the micro-environment. We will also give an overview of potential therapeutic strategies to circumvent resistance development.
Collapse
|
19
|
Grünewald TGP, Alonso M, Avnet S, Banito A, Burdach S, Cidre‐Aranaz F, Di Pompo G, Distel M, Dorado‐Garcia H, Garcia‐Castro J, González‐González L, Grigoriadis AE, Kasan M, Koelsche C, Krumbholz M, Lecanda F, Lemma S, Longo DL, Madrigal‐Esquivel C, Morales‐Molina Á, Musa J, Ohmura S, Ory B, Pereira‐Silva M, Perut F, Rodriguez R, Seeling C, Al Shaaili N, Shaabani S, Shiavone K, Sinha S, Tomazou EM, Trautmann M, Vela M, Versleijen‐Jonkers YMH, Visgauss J, Zalacain M, Schober SJ, Lissat A, English WR, Baldini N, Heymann D. Sarcoma treatment in the era of molecular medicine. EMBO Mol Med 2020; 12:e11131. [PMID: 33047515 PMCID: PMC7645378 DOI: 10.15252/emmm.201911131] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Sarcomas are heterogeneous and clinically challenging soft tissue and bone cancers. Although constituting only 1% of all human malignancies, sarcomas represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. More than 100 histological subtypes have been characterized to date, and many more are being discovered due to molecular profiling. Owing to their mostly aggressive biological behavior, relative rarity, and occurrence at virtually every anatomical site, many sarcoma subtypes are in particular difficult-to-treat categories. Current multimodal treatment concepts combine surgery, polychemotherapy (with/without local hyperthermia), irradiation, immunotherapy, and/or targeted therapeutics. Recent scientific advancements have enabled a more precise molecular characterization of sarcoma subtypes and revealed novel therapeutic targets and prognostic/predictive biomarkers. This review aims at providing a comprehensive overview of the latest advances in the molecular biology of sarcomas and their effects on clinical oncology; it is meant for a broad readership ranging from novices to experts in the field of sarcoma.
Collapse
Affiliation(s)
- Thomas GP Grünewald
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
- Division of Translational Pediatric Sarcoma ResearchGerman Cancer Research Center (DKFZ), Hopp Children's Cancer Center (KiTZ), German Cancer Consortium (DKTK)HeidelbergGermany
- Institute of PathologyHeidelberg University HospitalHeidelbergGermany
| | - Marta Alonso
- Program in Solid Tumors and BiomarkersFoundation for the Applied Medical ResearchUniversity of Navarra PamplonaPamplonaSpain
| | - Sofia Avnet
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Ana Banito
- Pediatric Soft Tissue Sarcoma Research GroupGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Stefan Burdach
- Department of Pediatrics and Children's Cancer Research Center (CCRC)Technische Universität MünchenMunichGermany
| | - Florencia Cidre‐Aranaz
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | - Gemma Di Pompo
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | | | | | | | | | | | - Merve Kasan
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | | | | | - Fernando Lecanda
- Division of OncologyAdhesion and Metastasis LaboratoryCenter for Applied Medical ResearchUniversity of NavarraPamplonaSpain
| | - Silvia Lemma
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Dario L Longo
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TurinItaly
| | | | | | - Julian Musa
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
| | - Shunya Ohmura
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | | | - Miguel Pereira‐Silva
- Department of Pharmaceutical TechnologyFaculty of PharmacyUniversity of CoimbraCoimbraPortugal
| | - Francesca Perut
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Rene Rodriguez
- Instituto de Investigación Sanitaria del Principado de AsturiasOviedoSpain
- CIBER en oncología (CIBERONC)MadridSpain
| | | | - Nada Al Shaaili
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Shabnam Shaabani
- Department of Drug DesignUniversity of GroningenGroningenThe Netherlands
| | - Kristina Shiavone
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Snehadri Sinha
- Department of Oral and Maxillofacial DiseasesUniversity of HelsinkiHelsinkiFinland
| | | | - Marcel Trautmann
- Division of Translational PathologyGerhard‐Domagk‐Institute of PathologyMünster University HospitalMünsterGermany
| | - Maria Vela
- Hospital La Paz Institute for Health Research (IdiPAZ)MadridSpain
| | | | | | - Marta Zalacain
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TurinItaly
| | - Sebastian J Schober
- Department of Pediatrics and Children's Cancer Research Center (CCRC)Technische Universität MünchenMunichGermany
| | - Andrej Lissat
- University Children′s Hospital Zurich – Eleonoren FoundationKanton ZürichZürichSwitzerland
| | - William R English
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Nicola Baldini
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Dominique Heymann
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
- Université de NantesInstitut de Cancérologie de l'OuestTumor Heterogeneity and Precision MedicineSaint‐HerblainFrance
| |
Collapse
|
20
|
Zhang Q, Yin X, Zhang Y. MicroRNA-221 Promotes Cell Proliferation and Inhibits Apoptosis in Osteosarcoma Cells by Directly Targeting FBXW11 and Regulating Wnt Signaling. Arch Med Res 2020; 52:191-199. [PMID: 33131925 DOI: 10.1016/j.arcmed.2020.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/09/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND OBJECTIVES MicroRNAs play a crucial role in the progression of various cancers, and microRNA-221 (miR-221) has been observed to be significantly overexpressed in osteosarcoma (OS) cells. FBXW11, a vital F-box protein of the ubiquitin-proteasome system, mediates the proliferation and survival of cancer cells by targeting multiple substrates for degradation. FBXW11 inhibits OS growth and metastasis by antagonizing the β-catenin/Wnt signaling pathway. Therefore, we hypothesized that miR-221 targets FBXW11 to mediate Wnt signaling and promote OS proliferation. METHODS In this study, we demonstrated the increased expression of miR-221 and FBXW11 in OS tissues and cell lines by real-time polymerase chain reaction (RT-PCR). Moreover, to elucidate the regulatory mechanism(s) of miR-221 and FBXW11 in progression, cell viability and apoptosis were analyzed by the MTT assay and flow cytometry, respectively. RESULTS The results showed that the overexpression of miR-221 in OS cells dramatically promoted cell growth and cell cycle progression, and inhibited apoptosis, whereas miR-221 inhibitors conversely inhibited proliferation and promoted apoptosis in OS cells. The data also showed that FBXW11 directly targeted miR-221 and miR-221 regulated OS cell proliferation and apoptosis by binding to FBXW11. We further confirmed that miR-221 targeted FBXW11 to promote proliferation and inhibit apoptosis in OS cell lines by inhibiting Wnt signaling. INTERPRETATION AND CONCLUSIONS Overall, our study revealed a functional mechanism for miR-221 in OS. Further studies will elucidate its role in the progression of OS and inhibiting miR-221 may represent a useful treatment strategy.
Collapse
Affiliation(s)
- Qingzhu Zhang
- Department of Orthopedics, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Xuelian Yin
- Department of Stomatology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yi Zhang
- Department of Orthopedic Trauma, Affiliated Hospital of Chengde Medical University, Chengde, China.
| |
Collapse
|
21
|
Lilienthal I, Herold N. Targeting Molecular Mechanisms Underlying Treatment Efficacy and Resistance in Osteosarcoma: A Review of Current and Future Strategies. Int J Mol Sci 2020; 21:ijms21186885. [PMID: 32961800 PMCID: PMC7555161 DOI: 10.3390/ijms21186885] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumour in children and adolescents. Due to micrometastatic spread, radical surgery alone rarely results in cure. Introduction of combination chemotherapy in the 1970s, however, dramatically increased overall survival rates from 20% to approximately 70%. Unfortunately, large clinical trials aiming to intensify treatment in the past decades have failed to achieve higher cure rates. In this review, we revisit how the heterogenous nature of osteosarcoma as well as acquired and intrinsic resistance to chemotherapy can account for stagnation in therapy improvement. We summarise current osteosarcoma treatment strategies focusing on molecular determinants of treatment susceptibility and resistance. Understanding therapy susceptibility and resistance provides a basis for rational therapy betterment for both identifying patients that might be cured with less toxic interventions and targeting resistance mechanisms to sensitise resistant osteosarcoma to conventional therapies.
Collapse
Affiliation(s)
- Ingrid Lilienthal
- Division of Paediatric Oncology, Department of Women’s and Children’s Health, Karolinska Institutet, SE-171 76 Stockholm, Sweden
- Correspondence: (I.L.); (N.H.); Tel.: +46-(0)8-52483204 (I.L. & N.H.)
| | - Nikolas Herold
- Division of Paediatric Oncology, Department of Women’s and Children’s Health, Karolinska Institutet, SE-171 76 Stockholm, Sweden
- Paediatric Oncology, Astrid Lindgren’s Children Hospital, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
- Correspondence: (I.L.); (N.H.); Tel.: +46-(0)8-52483204 (I.L. & N.H.)
| |
Collapse
|
22
|
Kadioglu O, Saeed MEM, Munder M, Spuller A, Greten HJ, Efferth T. Effect of ABC transporter expression and mutational status on survival rates of cancer patients. Biomed Pharmacother 2020; 131:110718. [PMID: 32932043 DOI: 10.1016/j.biopha.2020.110718] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023] Open
Abstract
ATP-binding cassette (ABC) transporters mediate multidrug resistance in cancer. In contrast to DNA single nucleotide polymorphisms in normal tissues, the role of mutations in tumors is unknown. Furthermore, the significance of their expression for prediction of chemoresistance and survival prognosis is still under debate. We investigated 18 tumors by RNA-sequencing. The mutation rate varied from 27,507 to 300885. In ABCB1, three hotspots with novel mutations were in transmembrane domains 3, 8, and 9. We also mined the cBioPortal database with 11,814 patients from 23 different tumor entities. We performed Kaplan-Meier survival analyses to investigate the effect of ABC transporter expression on survival rates of cancer patients. Novel mutations were also found in ABCA2, ABCA3, ABCB2, ABCB5, ABCC1-6, and ABCG2. Mining the cBioPortal database with 11,814 patients from 23 different tumor entities validated our results. Missense and in-frame mutations led to altered binding of anticancer drugs in molecular docking approaches. The ABCB1 nonsense mutation Q856* led to a truncated P-glycoprotein, which may sensitize tumors to anticancer drugs. The search for ABC transporter nonsense mutations represents a novel approach for precision medicine.. Low ABCB1 mRNA expression correlated with significantly longer survival in ovarian or kidney cancer and thymoma. In cancers of breast, kidney or lung, ABC transporter expression correlated with different tumor stages and human populations as further parameters to refine strategies for more individualized chemotherapy.
Collapse
Affiliation(s)
- Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Markus Munder
- Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Henry Johannes Greten
- Abel Salazar Biomedical Sciences Institute, University of Porto, Portugal; Heidelberg School of Chinese Medicine, Heidelberg, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
23
|
Godel M, Morena D, Ananthanarayanan P, Buondonno I, Ferrero G, Hattinger CM, Di Nicolantonio F, Serra M, Taulli R, Cordero F, Riganti C, Kopecka J. Small Nucleolar RNAs Determine Resistance to Doxorubicin in Human Osteosarcoma. Int J Mol Sci 2020; 21:ijms21124500. [PMID: 32599901 PMCID: PMC7349977 DOI: 10.3390/ijms21124500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Doxorubicin (Dox) is one of the most important first-line drugs used in osteosarcoma therapy. Multiple and not fully clarified mechanisms, however, determine resistance to Dox. With the aim of identifying new markers associated with Dox-resistance, we found a global up-regulation of small nucleolar RNAs (snoRNAs) in human Dox-resistant osteosarcoma cells. We investigated if and how snoRNAs are linked to resistance. After RT-PCR validation of snoRNAs up-regulated in osteosarcoma cells with different degrees of resistance to Dox, we overexpressed them in Dox-sensitive cells. We then evaluated Dox cytotoxicity and changes in genes relevant for osteosarcoma pathogenesis by PCR arrays. SNORD3A, SNORA13 and SNORA28 reduced Dox-cytotoxicity when over-expressed in Dox-sensitive cells. In these cells, GADD45A and MYC were up-regulated, TOP2A was down-regulated. The same profile was detected in cells with acquired resistance to Dox. GADD45A/MYC-silencing and TOP2A-over-expression counteracted the resistance to Dox induced by snoRNAs. We reported for the first time that snoRNAs induce resistance to Dox in human osteosarcoma, by modulating the expression of genes involved in DNA damaging sensing, DNA repair, ribosome biogenesis, and proliferation. Targeting snoRNAs or down-stream genes may open new treatment perspectives in chemoresistant osteosarcomas.
Collapse
Affiliation(s)
- Martina Godel
- Department of Oncology, University of Torino, 1026 Torino, Italy; (M.G.); (D.M.); (P.A.); (I.B.); (F.D.N.); (R.T.)
| | - Deborah Morena
- Department of Oncology, University of Torino, 1026 Torino, Italy; (M.G.); (D.M.); (P.A.); (I.B.); (F.D.N.); (R.T.)
| | - Preeta Ananthanarayanan
- Department of Oncology, University of Torino, 1026 Torino, Italy; (M.G.); (D.M.); (P.A.); (I.B.); (F.D.N.); (R.T.)
| | - Ilaria Buondonno
- Department of Oncology, University of Torino, 1026 Torino, Italy; (M.G.); (D.M.); (P.A.); (I.B.); (F.D.N.); (R.T.)
| | - Giulio Ferrero
- Department of Computer Science, University of Torino, 10149 Torino, Italy; (G.F.); (F.C.)
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy
| | - Claudia M. Hattinger
- Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (C.M.H.); (M.S.)
| | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, 1026 Torino, Italy; (M.G.); (D.M.); (P.A.); (I.B.); (F.D.N.); (R.T.)
- Candiolo Cancer Institute, FPO–IRCCS, 10060 Candiolo, Italy
| | - Massimo Serra
- Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (C.M.H.); (M.S.)
| | - Riccardo Taulli
- Department of Oncology, University of Torino, 1026 Torino, Italy; (M.G.); (D.M.); (P.A.); (I.B.); (F.D.N.); (R.T.)
| | - Francesca Cordero
- Department of Computer Science, University of Torino, 10149 Torino, Italy; (G.F.); (F.C.)
| | - Chiara Riganti
- Department of Oncology, University of Torino, 1026 Torino, Italy; (M.G.); (D.M.); (P.A.); (I.B.); (F.D.N.); (R.T.)
- Correspondence: (C.R.); (J.K.); Tel.: +39-0116705857 (C.R.); +39-0116705849 (J.K.)
| | - Joanna Kopecka
- Department of Oncology, University of Torino, 1026 Torino, Italy; (M.G.); (D.M.); (P.A.); (I.B.); (F.D.N.); (R.T.)
- Correspondence: (C.R.); (J.K.); Tel.: +39-0116705857 (C.R.); +39-0116705849 (J.K.)
| |
Collapse
|
24
|
Pushpam D, Garg V, Ganguly S, Biswas B. Management of Refractory Pediatric Sarcoma: Current Challenges and Future Prospects. Onco Targets Ther 2020; 13:5093-5112. [PMID: 32606731 PMCID: PMC7293381 DOI: 10.2147/ott.s193363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Paediatric sarcomas are a heterogeneous group of disorders constituting bone sarcoma and various soft tissue sarcomas. Almost one-third of these presents with metastasis at baseline and another one-third recur after initial curative treatment. There is a huge unmet need in this cohort in terms of curative options and/or prolongation of survival. In this review, we have discussed the current treatment options, challenges and future strategies of managing relapsed/refractory paediatric sarcomas. Upfront risk-adapted treatment with multidisciplinary management remains the main strategy to prevent future recurrence or relapse of the disease. In the case of limited local and/or systemic relapse or late relapse, initial multimodality management can be administered. In treatment-refractory cases or where cure is not feasible, the treatment options are limited to novel therapeutics, immunotherapeutic approach, targeted therapies, and metronomic therapies. A better understanding of disease biology, mechanism of treatment refractoriness, identifications of driver mutation, the discovery of novel targeted therapies, cellular vaccine and adapted therapies should be explored in relapsed/refractory cases. Close national and international collaboration for translation research is needed to fulfil the unmet need.
Collapse
Affiliation(s)
| | - Vikas Garg
- Department of Medical Oncology, AIIMS, New Delhi, India
| | - Sandip Ganguly
- Department of Medical Oncology, Tata Medical Center, Kolkata, India
| | - Bivas Biswas
- Department of Medical Oncology, Tata Medical Center, Kolkata, India
| |
Collapse
|
25
|
Belisario DC, Akman M, Godel M, Campani V, Patrizio MP, Scotti L, Hattinger CM, De Rosa G, Donadelli M, Serra M, Kopecka J, Riganti C. ABCA1/ABCB1 Ratio Determines Chemo- and Immune-Sensitivity in Human Osteosarcoma. Cells 2020; 9:cells9030647. [PMID: 32155954 PMCID: PMC7140509 DOI: 10.3390/cells9030647] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
The ATP Binding Cassette transporter B1 (ABCB1) induces chemoresistance in osteosarcoma, because it effluxes doxorubicin, reducing the intracellular accumulation, toxicity, and immunogenic cell death induced by the drug. The ATP Binding Cassette transporter A1 (ABCA1) effluxes isopentenyl pyrophosphate (IPP), a strong activator of anti-tumor Vγ9Vδ2 T-cells. Recruiting this population may represent an alternative strategy to rescue doxorubicin efficacy in ABCB1-expressing osteosarcoma. In this work, we analyzed how ABCA1 and ABCB1 are regulated in osteosarcoma, and if increasing the ABCA1-dependent activation of Vγ9Vδ2 T-cells could be an effective strategy against ABCB1-expressing osteosarcoma. We used 2D-cultured doxorubicin-sensitive human U-2OS and Saos-2 cells, their doxorubicin-resistant sublines (U-2OS/DX580 and Saos-2/DX580), and 3D cultures of U-2OS and Saos-2 cells. DX580-sublines and 3D cultures had higher levels of ABCB1 and higher resistance to doxorubicin than parental cells. Surprisingly, they had reduced ABCA1 levels, IPP efflux, and Vγ9Vδ2 T-cell-induced killing. In these chemo-immune-resistant cells, the Ras/Akt/mTOR axis inhibits the ABCA1-transcription induced by Liver X Receptor α (LXRα); Ras/ERK1/2/HIF-1α axis up-regulates ABCB1. Targeting the farnesylation of Ras with self-assembling nanoparticles encapsulating zoledronic acid (NZ) simultaneously inhibited both axes. In humanized mice, NZ reduced the growth of chemo-immune-resistant osteosarcomas, increased intratumor necro-apoptosis, and ABCA1/ABCB1 ratio and Vγ9Vδ2 T-cell infiltration. We suggest that the ABCB1highABCA1low phenotype is indicative of chemo-immune-resistance. We propose aminobisphosphonates as new chemo-immune-sensitizing tools against drug-resistant osteosarcomas.
Collapse
Affiliation(s)
- Dimas Carolina Belisario
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (M.A.); (M.G.); (J.K.)
| | - Muhlis Akman
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (M.A.); (M.G.); (J.K.)
| | - Martina Godel
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (M.A.); (M.G.); (J.K.)
| | - Virginia Campani
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy; (V.C.); (L.S.)
| | - Maria Pia Patrizio
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, via di Barbiano, 1/10, 40136 Bologna, Italy; (M.P.P.); (C.M.H.); (M.S.)
| | - Lorena Scotti
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy; (V.C.); (L.S.)
| | - Claudia Maria Hattinger
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, via di Barbiano, 1/10, 40136 Bologna, Italy; (M.P.P.); (C.M.H.); (M.S.)
| | - Giuseppe De Rosa
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy; (V.C.); (L.S.)
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy;
| | - Massimo Serra
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, via di Barbiano, 1/10, 40136 Bologna, Italy; (M.P.P.); (C.M.H.); (M.S.)
| | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (M.A.); (M.G.); (J.K.)
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy; (D.C.B.); (M.A.); (M.G.); (J.K.)
- Correspondence: ; Tel.: +39-0116705857
| |
Collapse
|
26
|
Wang X, Qiao D, Chen L, Xu M, Chen S, Huang L, Wang F, Chen Z, Cai J, Fu L. Chemotherapeutic drugs stimulate the release and recycling of extracellular vesicles to assist cancer cells in developing an urgent chemoresistance. Mol Cancer 2019; 18:182. [PMID: 31830995 PMCID: PMC6907227 DOI: 10.1186/s12943-019-1114-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/02/2019] [Indexed: 01/07/2023] Open
Abstract
Background Chemotherapy is a widely used treatment for cancer. However, the development of acquired multidrug resistance (MDR) is a serious issue. Emerging evidence has shown that the extracellular vesicles (EVs) mediate MDR, but the underlying mechanism remains unclear, especially the effects of chemotherapeutic agents on this process. Methods Extracellular vesicles isolation was performed by differential centrifugation. The recipient cells that acquired ATP-binding cassette sub-family B member 1 (ABCB1) proteins were sorted out from co-cultures according to a stringent multi-parameter gating strategy by fluorescence-activated cell sorting (FACS). The transfer rate of ABCB1 was measured by flow cytometry. The xenograft tumor models in mice were established to evaluate the transfer of ABCB1 in vivo. Gene expression was detected by real-time PCR and Western blotting. Results Herein, we show that a transient exposure to chemotherapeutic agents can strikingly increase Rab8B-mediated release of extracellular vesicles (EVs) containing ABCB1 from drug-resistant cells, and accelerate these EVs to circulate back onto plasma membrane of sensitive tumor cells via the down-regulation of Rab5. Therefore, intercellular ABCB1 transfer is significantly enhanced; sensitive recipient cells acquire a rapid but unsustainable resistance to evade the cytotoxicity of chemotherapeutic agents. More fascinatingly, in the xenograft tumor models, chemotherapeutical drugs also locally or distantly increase the transfer of ABCB1 molecules. Furthermore, some Non-small-cell lung carcinoma (NSCLC) patients who are undergoing primary chemotherapy have a rapid increase of ABCB1 protein in their monocytes, and this is obviously associated with poor chemotherapeutic efficacy. Conclusions Chemotherapeutic agents stimulate the secretion and recycling of ABCB1-enriched EVs through the dysregulation of Rab8B and Rab5, leading to a significant increase of ABCB1 intercellular transfer, thus assisting sensitive cancer cells to develop an urgent resistant phenotype. Our findings provide a new molecular mechanism of how chemotherapeutic drugs assist sensitive cancer cells in acquiring an urgent resistance.
Collapse
Affiliation(s)
- Xiaokun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Dongjuan Qiao
- Department of Chemistry, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Likun Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Meng Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shupeng Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Liyan Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhen Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jiye Cai
- Department of Chemistry, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
27
|
Izadpanah S, Shabani P, Aghebati-Maleki A, Baghbanzadeh A, Fotouhi A, Bisadi A, Aghebati-Maleki L, Baradaran B. Prospects for the involvement of cancer stem cells in the pathogenesis of osteosarcoma. J Cell Physiol 2019; 235:4167-4182. [PMID: 31709547 DOI: 10.1002/jcp.29344] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 08/26/2019] [Indexed: 12/31/2022]
Abstract
Osteosarcoma (OS) is one of the most common bone tumors in children and adolescents that cause a high rate of mortality in this age group and tends to be metastatic, in spite of chemotherapy and surgery. The main reason for this can be returned to a small group of malignant cells called cancer stem cells (CSCs). OS-CSCs play a key role in the resistance to treatment and relapse and metastasis through self-renewal and differentiation abilities. In this review, we intend to go through the different aspects of this malignant disease, including the cancer stem cell-phenotype, methods for isolating CSCs, signaling pathways, and molecular markers in this disease, and drugs showing resistance in treatment efforts of OS.
Collapse
Affiliation(s)
- Sama Izadpanah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parastoo Shabani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Bisadi
- Department of Orthopedic Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Mangelinck A, da Costa MEM, Stefanovska B, Bawa O, Polrot M, Gaspar N, Fromigué O. MT2A is an early predictive biomarker of response to chemotherapy and a potential therapeutic target in osteosarcoma. Sci Rep 2019; 9:12301. [PMID: 31444479 PMCID: PMC6707240 DOI: 10.1038/s41598-019-48846-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/02/2019] [Indexed: 12/26/2022] Open
Abstract
Osteosarcoma is the most prevalent primary bone malignancy in children and young adults. Resistance to chemotherapy remains a key challenge for effective treatment of patients with osteosarcoma. The aim of the present study was to investigate the preventive role of metallothionein-2A (MT2A) in response to cytotoxic effects of chemotherapy. A panel of human and murine osteosarcoma cell lines, modified for MT2A were evaluated for cell viability, and motility (wound healing assay). Cell-derived xenograft models were established in mice. FFPE tumour samples were assessed by IHC. In vitro experiments indicated a positive correlation between half-maximal inhibitory concentration (IC50) for drugs in clinical practice, and MT2A mRNA level. This reinforced our previously reported correlation between MT2A mRNA level in tumour samples at diagnosis and overall survival in patients with osteosarcoma. In addition, MT2A/MT2 silencing using shRNA strategy led to a marked reduction of IC50 values and to enhanced cytotoxic effect of chemotherapy on primary tumour. Our results show that MT2A level could be used as a predictive biomarker of resistance to chemotherapy, and provide with preclinical rational for MT2A targeting as a therapeutic strategy for enhancing anti-tumour treatment of innate chemo-resistant osteosarcoma cells.
Collapse
Affiliation(s)
- Adèle Mangelinck
- INSERM, UMR981, Gustave Roussy, Villejuif, F-94805, France.,Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Montpellier, F-34090, France.,Université de Montpellier, Montpellier, F-34090, France
| | - Maria Eugénia Marques da Costa
- CNRS, UMR8203, Gustave Roussy, Villejuif, F-94805, France.,Université Paris Sud, Université Paris Saclay, Orsay, F-91400, France.,CESAM, Department of Biology, University of Aveiro, Aveiro, P-3810, Portugal
| | - Bojana Stefanovska
- INSERM, UMR981, Gustave Roussy, Villejuif, F-94805, France.,Université Paris Sud, Université Paris Saclay, Orsay, F-91400, France
| | - Olivia Bawa
- Plateforme d'évaluation préclinique (PFEP), Gustave Roussy, Villejuif, F-94805, France
| | - Mélanie Polrot
- Plateforme d'évaluation préclinique (PFEP), Gustave Roussy, Villejuif, F-94805, France
| | - Nathalie Gaspar
- CNRS, UMR8203, Gustave Roussy, Villejuif, F-94805, France.,Département de cancérologie de l'enfant et de l'adolescent, Gustave Roussy, Villejuif, F-94805, France
| | - Olivia Fromigué
- INSERM, UMR981, Gustave Roussy, Villejuif, F-94805, France. .,Université Paris Sud, Université Paris Saclay, Orsay, F-91400, France.
| |
Collapse
|
29
|
Fujiwara T, Medellin MR, Sambri A, Tsuda Y, Balko J, Sumathi V, Gregory J, Jeys L, Abudu A. Preoperative surgical risk stratification in osteosarcoma based on the proximity to the major vessels. Bone Joint J 2019; 101-B:1024-1031. [DOI: 10.1302/0301-620x.101b8.bjj-2018-0963.r1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aims The aim of this study was to determine the risk of local recurrence and survival in patients with osteosarcoma based on the proximity of the tumour to the major vessels. Patients and Methods A total of 226 patients with high-grade non-metastatic osteosarcoma in the limbs were investigated. Median age at diagnosis was 15 years (4 to 67) with the ratio of male to female patients being 1.5:1. The most common site of the tumour was the femur (n = 103) followed by tibia (n = 66). The vascular proximity was categorized based on the preoperative MRI after neoadjuvant chemotherapy into four types: type 1 > 5 mm; type 2 ≤ 5 mm, > 0 mm; type 3 attached; type 4 surrounded. Results Limb salvage rate based on the proximity type was 92%, 88%, 51%, and 0% for types 1 to 4, respectively, and the overall survival at five years was 82%, 77%, 57%, and 67%, respectively (p < 0.001). Local recurrence rate in patients with limb-salvage surgery was 7%, 8%, and 22% for the types 1 to 3, respectively (p = 0.041), and local recurrence at the perivascular area was observed in 1% and 4% for type 2 and 3, respectively. The mean microscopic margin to the major vessels was 6.9 mm, 3.0 mm, and 1.4 mm for types 1 to 3, respectively. In type 3, local recurrence-free survival with limb salvage was significantly poorer compared with amputation (p = 0.025), while the latter offered no overall survival benefit. In this group of patients, factors such as good response to chemotherapy or limited vascular attachment to less than half circumference or longitudinal 10 mm reduced the risk of local recurrence. Conclusion The proximity of osteosarcoma to major blood vessels is a poor prognostic factor for local control and survival. Amputation offers better local control for tumours attached to the blood vessels but does not improve survival. Limb salvage surgery offers similar local control if the tumour attachment to blood vessels is limited. Cite this article: Bone Joint J 2019;101-B:1024–1031.
Collapse
Affiliation(s)
- T. Fujiwara
- Department of Orthopaedic Oncology, The Royal Orthopaedic Hospital, Birmingham, UK
- Department of Orthopaedic Surgery, Okayama University Hospital, Okayama, Japan
| | - M. R. Medellin
- Department of Orthopaedic Oncology, The Royal Orthopaedic Hospital, Birmingham, UK
- Oncology Department, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - A. Sambri
- Department of Orthopaedic Oncology, The Royal Orthopaedic Hospital, Birmingham, UK
- Istituto Ortopedico Rizzoli/University of Bologna, Bologna, Italy
| | - Y. Tsuda
- Department of Orthopaedic Oncology, The Royal Orthopaedic Hospital, Birmingham, UK
| | - J. Balko
- Department of Musculoskeletal Pathology, The Royal Orthopaedic Hospital, Birmingham, UK
| | - V. Sumathi
- Department of Musculoskeletal Pathology, The Royal Orthopaedic Hospital, Birmingham, UK
| | - J. Gregory
- Department of Orthopaedic Oncology, The Royal Orthopaedic Hospital, Birmingham, UK
| | - L. Jeys
- Department of Orthopaedic Oncology, The Royal Orthopaedic Hospital, Birmingham, UK
| | - A. Abudu
- Department of Orthopaedic Oncology, The Royal Orthopaedic Hospital, Birmingham, UK
| |
Collapse
|
30
|
ABCG1 and Pgp identify drug resistant, self-renewing osteosarcoma cells. Cancer Lett 2019; 453:142-157. [DOI: 10.1016/j.canlet.2019.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/11/2018] [Accepted: 03/04/2019] [Indexed: 12/20/2022]
|
31
|
Gazzano E, Buondonno I, Marengo A, Rolando B, Chegaev K, Kopecka J, Saponara S, Sorge M, Hattinger CM, Gasco A, Fruttero R, Brancaccio M, Serra M, Stella B, Fattal E, Arpicco S, Riganti C. Hyaluronated liposomes containing H2S-releasing doxorubicin are effective against P-glycoprotein-positive/doxorubicin-resistant osteosarcoma cells and xenografts. Cancer Lett 2019; 456:29-39. [PMID: 31047947 DOI: 10.1016/j.canlet.2019.04.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 04/18/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022]
Abstract
Doxorubicin (dox) is one of the first-line drug in osteosarcoma treatment but its effectiveness is limited by the efflux pump P-glycoprotein (Pgp) and by the onset of cardiotoxicity. We previously demonstrated that synthetic doxs conjugated with a H2S-releasing moiety (Sdox) were less cardiotoxic and more effective than dox against Pgp-overexpressing osteosarcoma cells. In order to increase the active delivery to tumor cells, we produced hyaluronic acid (HA)-conjugated liposomes containing Sdox (HA-Lsdox), exploiting the abundance of the HA receptor CD44 in osteosarcoma. HA-Lsdox showed favorable drug-release profile and higher toxicity in vitro and in vivo than dox or the FDA-approved liposomal dox Caelyx® against Pgp-overexpressing osteosarcoma, displaying the same cardiotoxicity profile of Caelyx®. Differently from dox, HA-Lsdox delivered the drug within the endoplasmic reticulum (ER), inducing protein sulfhydration and ubiquitination, and activating a ER stress pro-apoptotic response mediated by CHOP. HA-Lsdox also sulfhydrated the nascent Pgp in the ER, reducing its activity. We propose HA-Lsdox as an innovative tool noteworthy to be tested in Pgp-overexpressing patients, who are frequently less responsive to standard treatments in which dox is one of the most important drugs.
Collapse
Affiliation(s)
- Elena Gazzano
- Department of Oncology, University of Torino, Torino, Italy
| | | | - Alessandro Marengo
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Barbara Rolando
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Konstantin Chegaev
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Torino, Torino, Italy
| | - Simona Saponara
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Matteo Sorge
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Claudia Maria Hattinger
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | - Alberto Gasco
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Roberta Fruttero
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Massimo Serra
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Bologna, Italy
| | - Barbara Stella
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Elias Fattal
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Torino, Torino, Italy.
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy.
| |
Collapse
|
32
|
Buondonno I, Gazzano E, Tavanti E, Chegaev K, Kopecka J, Fanelli M, Rolando B, Fruttero R, Gasco A, Hattinger C, Serra M, Riganti C. Endoplasmic reticulum-targeting doxorubicin: a new tool effective against doxorubicin-resistant osteosarcoma. Cell Mol Life Sci 2019; 76:609-625. [PMID: 30430199 PMCID: PMC11105372 DOI: 10.1007/s00018-018-2967-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/26/2018] [Accepted: 11/05/2018] [Indexed: 12/29/2022]
Abstract
Doxorubicin is one of the most effective drugs for the first-line treatment of high-grade osteosarcoma. Several studies have demonstrated that the major cause for doxorubicin resistance in osteosarcoma is the increased expression of the drug efflux transporter ABCB1/P-glycoprotein (Pgp). We recently identified a library of H2S-releasing doxorubicins (Sdox) that were more effective than doxorubicin against resistant osteosarcoma cells. Here we investigated the molecular mechanisms of the higher efficacy of Sdox in human osteosarcoma cells with increasing resistance to doxorubicin. Differently from doxorubicin, Sdox preferentially accumulated within the endoplasmic reticulum (ER), and its accumulation was only modestly reduced in Pgp-expressing osteosarcoma cells. The increase in doxorubicin resistance was paralleled by the progressive down-regulation of genes of ER-associated protein degradation/ER-quality control (ERAD/ERQC), two processes that remove misfolded proteins and protect cell from ER stress-triggered apoptosis. Sdox, that sulfhydrated ER-associated proteins and promoted their subsequent ubiquitination, up-regulated ERAD/ERQC genes. This up-regulation, however, was insufficient to protect cells, since Sdox activated ER stress-dependent apoptotic pathways, e.g., the C/EBP-β LIP/CHOP/PUMA/caspases 12-7-3 axis. Sdox also promoted the sulfhydration of Pgp that was subsequently ubiquitinated: this process further enhanced Sdox retention and toxicity in resistant cells. Our work suggests that Sdox overcomes doxorubicin resistance in osteosarcoma cells by at least two mechanisms: it induces the degradation of Pgp following its sulfhydration and produces a huge misfolding of ER-associated proteins, triggering ER-dependent apoptosis. Sdox may represent the prototype of innovative anthracyclines, effective against doxorubicin-resistant/Pgp-expressing osteosarcoma cells by perturbing the ER functions.
Collapse
Affiliation(s)
- Ilaria Buondonno
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126, Torino, Italy
| | - Elena Gazzano
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126, Torino, Italy
| | - Elisa Tavanti
- Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Orthopaedic Rizzoli Institute I.R.C.C.S, Bologna, Italy
| | - Konstantin Chegaev
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126, Torino, Italy
| | - Marilù Fanelli
- Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Orthopaedic Rizzoli Institute I.R.C.C.S, Bologna, Italy
| | - Barbara Rolando
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Roberta Fruttero
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Alberto Gasco
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Claudia Hattinger
- Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Orthopaedic Rizzoli Institute I.R.C.C.S, Bologna, Italy
| | - Massimo Serra
- Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, Orthopaedic Rizzoli Institute I.R.C.C.S, Bologna, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Via Santena 5/bis, 10126, Torino, Italy.
| |
Collapse
|
33
|
Schiano C, Soricelli A, De Nigris F, Napoli C. New challenges in integrated diagnosis by imaging and osteo-immunology in bone lesions. Expert Rev Clin Immunol 2019; 15:289-301. [PMID: 30570412 DOI: 10.1080/1744666x.2019.1561283] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION High-resolution imaging is the gold standard to measure the functional and biological features of bone lesions. Imaging markers have allowed the characterization both of tumour heterogeneity and metabolic data. Besides, ongoing studies are evaluating a combined use of 'imaging markers', such as SUVs, MATV, TLG, ADC from PET and MRI techniques respectively, and several 'biomarkers' spanning from chemokine immune-modulators, such as PD-1, RANK/RANKL, CXCR4/CXCL12 to transcription factors, such as TP53, RB1, MDM2, RUNX family, EZH2, YY1, MAD2. Osteoimmunology may improve diagnosis and prognosis leading to precision medicine in bone lesion treatment. Areas covered: We investigated modalities (molecular and imaging approach) useful to identify bone lesions deriving both from primary bone tumours and from osteotropic tumours, which have a higher incidence, prevalence and prognosis. Here, we summarized the recent advances in imaging techniques and osteoimmunology biomarkers which could play a pivotal role in personalized treatment. Expert commentary: Although imaging and molecular integration could allow both early diagnosis and stratification of cancer prognosis, large scale clinical trials will be necessary to translate pilot studies in the current clinical setting. ABBREVIATIONS ADC: apparent diffusion coefficient; ALCAM: Activated Leukocyte Cell Adhesion Molecule; ALP: Alkaline phosphatases; BC: Breast cancer; BSAP: B-Cell Lineage Specific Activator; BSAP: bone-specific alkaline phosphatase; BSP: bone sialoprotein; CRIP1: cysteine-rich intestinal protein 1; CD44: cluster of differentiation 44; CT: computed tomography; CXCL12: C-X-C motif ligand 12; CXCR4: C-X-C C-X-C chemokine receptor type 4; CTLA-4: Cytotoxic T-lymphocyte antigen 4; CTX-1: C-terminal end of the telopeptide of type I collagen; DC: dendritic cell; DWI: Diffusion-weighted MR image; EMT: mesenchymal transition; ET-1: endothelin-1; FDA: Food and Drug Administration; FDG: 18F-2-fluoro-2-deoxy-D-glucose; FGF: fibroblast growth factor; FOXC2: forkhead box protein C2: HK-2: hexokinase-2; ICTP: carboxyterminal cross-linked telopeptide of type I collagen; IGF-1R: Insulin Like Growth Factor 1 Receptor; ILC: innate lymphocytes cells; LC: lung cancer; IL-1: interleukin-1; LYVE1: lymphatic vessel endothelial hyaluronic acid receptor 1; MAD2: mitotic arrest deficient 2; MATV: metabolically active tumour volume; M-CSF: macrophage colony stimulating factor; MM: multiple myeloma; MIP1a: macrophage inflammatory protein 1a; MSC: mesenchymal stem cell; MRI: magnetic resonance imaging; PC: prostate cancer; NRP2: neuropilin 2; OPG: osteoprotogerin; PDGF: platelet-derived growth factor; PD-1: Programmed Cell Death 1; PET: positron emission tomography; PINP: procollagen type I N propeptide; PROX1: prospero homeobox protein 1; PSA: Prostate-specific antigen; PTH: parathyroid hormone; RANK: Receptor activator of NF-kB ligand; RECK: Reversion-inducing-cysteine-rich protein; SEMAs: semaphorins; SPECT: single photon computed tomography; SUV: standard uptake value; TLG: total lesion glycolysis; TP53: tumour protein 53; VCAM-1: vascular endothelial molecule-1; VOI: volume of interest; YY1: Yin Yang 1.
Collapse
Affiliation(s)
- Concetta Schiano
- a Department of Biochemical and Clinical Diagnostic , IRCCS SDN , Naples , Italy
| | - Andrea Soricelli
- a Department of Biochemical and Clinical Diagnostic , IRCCS SDN , Naples , Italy.,b Department of Motor Sciences and Healthiness , University of Naples Parthenope , Naples , Italy
| | - Filomena De Nigris
- c Department of Precision Medicine , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Claudio Napoli
- a Department of Biochemical and Clinical Diagnostic , IRCCS SDN , Naples , Italy.,d Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences , University of Campania "Luigi Vanvitelli" , Naples , Italy
| |
Collapse
|
34
|
Cheng M, Cai W, Huang W, Chen Y, Wu Z, Luo P, Yan W. Histone deacetylase 6 regulated expression of IL-8 is involved in the doxorubicin (Dox) resistance of osteosarcoma cells via modulating ABCB1 transcription. Eur J Pharmacol 2018; 840:1-8. [PMID: 30273544 DOI: 10.1016/j.ejphar.2018.09.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/13/2018] [Accepted: 09/27/2018] [Indexed: 12/16/2022]
Abstract
Emerging evidence shows that cytokines such as interleukins (ILs) are involved in the progression and chemoresistance of multiple tumors, including osteosarcoma (OS). Our present study established the doxorubicin (Dox) resistant human OS MG-63 and HOS cells and named them MG-63/Dox and HOS/Dox, respectively. The expression of IL-8, while not VEGFA, IL-32, or IL-34, was significantly increased in OS/Dox cells as compared with that in the parental cells. IL-8 neutralization antibody can significantly increase the Dox sensitivity of OS/Dox cells. Further, IL-8 can up regulate ABCB1, which encodes one important ATP-binding cassette (ABC) transporter /P-glycoprotein (P-gp). Mechanically, IL-8 increased the transcription of ABCB1 via up regulating its promoter activity, while had no effect on its protein or mRNA stability. Targeted inhibition of p65 can attenuate IL-8 induced transcription of ABCB1 in OS cells. Treatment OS cells with 5-aza-dC, the inhibitor of DNMT, had no effect on expression of IL-8. Expression of HDAC6 in MG-63/Dox and HOS/Dox cells was significantly greater than that in their parental cells. Knockdown of HDAC6 can suppress the expression of IL-8 in OS cells. Collectively, our data showed that HDAC6 mediated upregulation of IL-8 can regulate the Dox sensitivity of OS cells via transcriptionally regulating the expression of ABCB1. Targeted inhibition of IL-8 might be a potent potential approach for overcome the Dox resistance of OS cells and helpful for clinical therapy of OS patients.
Collapse
Affiliation(s)
- Mo Cheng
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Weiluo Cai
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Wending Huang
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yong Chen
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Zhiqiang Wu
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Peng Luo
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Wangjun Yan
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| |
Collapse
|
35
|
Zhao P, Wang S, Jiang J, Liu H, Zhu X, Zhao N, Li J, Yin Y, Pan X, Yang X, Guo J, Xu W. TIPE2 sensitizes osteosarcoma cells to cis-platin by down-regulating MDR1 via the TAK1- NF-κB and - AP-1 pathways. Mol Immunol 2018; 101:471-478. [PMID: 30114619 DOI: 10.1016/j.molimm.2018.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/06/2018] [Accepted: 08/08/2018] [Indexed: 12/16/2022]
Abstract
TIPE2 participates in multiple types of cancer development. However, its mechanism underlying chemoresistance in osteosarcoma has not been elucidated. Herein, we observed the expression of TIPE2 and MDR1 in cis-platin-resistant osteosarcoma tissues and cell lines. Compared to their matched sensitive cell lines and tissues, TIPE2 was downregulated while MDR1 expression was increased. Further investigation showed that overexpression of TIPE2 effectively inhibited MDR1 expression and greatly sensitized osteosarcoma cells to cis-platin, both in vivo and in vitro. Mechanistically, TIPE2 inhibited the transcription of the MDR1 promoter by interfering with the TAK1-NF-κB and -AP-1 pathways. Overall, our results elucidated for the first time that TIPE2 sensitizes osteosarcoma cells to cis-platin through downregulation of MDR1 and may be a novel target in osteosarcoma therapy.
Collapse
Affiliation(s)
- Peiqing Zhao
- Department of Gynecologic Oncology, the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China; Center of Translational Medicine, Zibo Central Hospital, Zibo, China.
| | - Sujie Wang
- Department of Oncology, Zibo Central Hospital, Zibo, China
| | - Jie Jiang
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, China
| | - Hong Liu
- Center of Translational Medicine, Zibo Central Hospital, Zibo, China
| | - Xiaolan Zhu
- Department of Gynecologic Oncology, the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ning Zhao
- Center of Translational Medicine, Zibo Central Hospital, Zibo, China
| | - Jigang Li
- Center of Translational Medicine, Zibo Central Hospital, Zibo, China
| | - Yingchun Yin
- Center of Translational Medicine, Zibo Central Hospital, Zibo, China
| | - Xiaoyan Pan
- Center of Translational Medicine, Zibo Central Hospital, Zibo, China
| | - Xiuzhen Yang
- Center of Translational Medicine, Zibo Central Hospital, Zibo, China
| | - Jianping Guo
- Center of Translational Medicine, Zibo Central Hospital, Zibo, China
| | - Wenlin Xu
- Department of Gynecologic Oncology, the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
36
|
Avnet S, Lemma S, Cortini M, Pellegrini P, Perut F, Zini N, Kusuzaki K, Chano T, Grisendi G, Dominici M, De Milito A, Baldini N. Altered pH gradient at the plasma membrane of osteosarcoma cells is a key mechanism of drug resistance. Oncotarget 2018; 7:63408-63423. [PMID: 27566564 PMCID: PMC5325373 DOI: 10.18632/oncotarget.11503] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/10/2016] [Indexed: 12/22/2022] Open
Abstract
Current therapy of osteosarcoma (OS), the most common primary bone malignancy, is based on a combination of surgery and chemotherapy. Multidrug resistance mediated by P-glycoprotein (P-gp) overexpression has been previously associated with treatment failure and progression of OS, although other mechanisms may also play a role. We considered the typical acidic extracellular pH (pHe) of sarcomas, and found that doxorubicin (DXR) cytotoxicity is reduced in P-gp negative OS cells cultured at pHe 6.5 compared to standard 7.4. Short-time (24-48 hours) exposure to low pHe significantly increased the number and acidity of lysosomes, and the combination of DXR with omeprazole, a proton pump inhibitor targeting lysosomal acidity, significantly enhanced DXR cytotoxicity. In OS xenografts, the combination treatment of DXR and omeprazole significantly reduced tumor volume and body weight loss. The impaired toxicity of DXR at low pHe was not associated with increased autophagy or lysosomal acidification, but rather, as shown by SNARF staining, with a reversal of the pH gradient at the plasma membrane (ΔpHcm), eventually leading to a reduced DXR intracellular accumulation. Finally, the reversal of ΔpHcm in OS cells promoted resistance not only to DXR, but also to cisplatin and methotrexate, and, to a lesser extent, to vincristine. Altogether, our findings show that, in OS cells, short-term acidosis induces resistance to different chemotherapeutic drugs by a reversal of ΔpHcm, suggesting that buffer therapies or regimens including proton pump inhibitors in combination to low concentrations of conventional anticancer agents may offer novel solutions to overcome drug resistance.
Collapse
Affiliation(s)
- Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Silvia Lemma
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Margherita Cortini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Paola Pellegrini
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Francesca Perut
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicoletta Zini
- CNR - National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy.,Laboratory of Musculoskeletal Cell Biology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Tokuhiro Chano
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Giulia Grisendi
- Department of Medical and Surgical Sciences for Children and Adults, University-hospital of Modena e Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children and Adults, University-hospital of Modena e Reggio Emilia, Modena, Italy
| | - Angelo De Milito
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
37
|
Kuang Y, Wang S, Tang L, Hai J, Yan G, Liao L. Cluster of differentiation 147 mediates chemoresistance in breast cancer by affecting vacuolar H +-ATPase expression and activity. Oncol Lett 2018; 15:7279-7290. [PMID: 29731886 DOI: 10.3892/ol.2018.8199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 02/01/2018] [Indexed: 01/01/2023] Open
Abstract
Vacuolar H+-ATPase (V-ATPase) serves a key role in adjusting and maintaining the intracellular pH, as well as in regulating the drug resistance of tumor cells. In recent years, the expression level of V-ATPase has been considered to be able to predict the sensitivity of breast cancer cells to chemotherapy drugs. Cluster of differentiation 147 (CD147) is known to serve a key role in the development and progression of breast cancer. The present study aimed to identify the role CD147 and V-ATPase in chemoresistance in breast cancer, and to characterize the regulation of CD147 on V-ATPase. Firstly, the expression levels of CD147 and V-ATPase were detected in chemotherapy-resistance breast cancer samples. It was demonstrated that V-ATPase was highly expressed in chemotherapy-resistance breast cancer samples, and that its expression was correlated with CD147 expression. Subsequently, MCF-7 and MDA-MB-231 cells were used to study the regulatory effect of CD147 on the expression and function of V-ATPase. Gene transfection or small interfering RNA transfection were used to control the expression of CD147 in the two cell lines. The results revealed that the overexpression of CD147 increased the expression of V-ATPase in MCF-7 cells, whereas CD147 knockdown decreased V-ATPase expression in MDA-MB-231 cells. It was also observed that CD147 affected the V-ATPase activity, regulating the transmembrane pH gradient of cancer cells. These results demonstrated that CD147 was associated with the sensitivity of chemotherapeutic drugs of epirubicin and docetaxel, while pantoprazole was able to partially reverse the CD147-mediated chemoresistance in breast cancer. Therefore, the current study provided a possible mechanism for further examination of drug resistance in breast cancer.
Collapse
Affiliation(s)
- Yehong Kuang
- Department of Dermatology, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shouman Wang
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lili Tang
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jian Hai
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Guojiao Yan
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Liqiu Liao
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
38
|
Fujiwara T, Uotani K, Yoshida A, Morita T, Nezu Y, Kobayashi E, Yoshida A, Uehara T, Omori T, Sugiu K, Komatsubara T, Takeda K, Kunisada T, Kawamura M, Kawai A, Ochiya T, Ozaki T. Clinical significance of circulating miR-25-3p as a novel diagnostic and prognostic biomarker in osteosarcoma. Oncotarget 2018; 8:33375-33392. [PMID: 28380419 PMCID: PMC5464875 DOI: 10.18632/oncotarget.16498] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 02/27/2017] [Indexed: 02/06/2023] Open
Abstract
Background Emerging evidence has suggested that circulating microRNAs (miRNAs) in body fluids have novel diagnostic and prognostic significance for patients with malignant diseases. The lack of useful biomarkers is a crucial problem of bone and soft tissue sarcomas; therefore, we investigated the circulating miRNA signature and its clinical relevance in osteosarcoma. Methods Global miRNA profiling was performed using patient serum collected from a discovery cohort of osteosarcoma patients and controls and cell culture media. The secretion of the detected miRNAs from osteosarcoma cells and clinical relevance of serum miRNA levels were evaluated using in vitro and in vivo models and a validation patient cohort. Results Discovery screening identified 236 serum miRNAs that were highly expressed in osteosarcoma patients compared with controls, and eight among these were also identified in the cell culture media. Upregulated expression levels of miR-17-5p and miR-25-3p were identified in osteosarcoma cells, and these were abundantly secreted into the culture media in tumor-derived exosomes. Serum miR-25-3p levels were significantly higher in osteosarcoma patients than in control individuals in the validation cohort, with favorable sensitivity and specificity compared with serum alkaline phosphatase. Furthermore, serum miR-25-3p levels at diagnosis were correlated with patient prognosis and reflected tumor burden in both in vivo models and patients; these associations were more sensitive than those of serum alkaline phosphatase. Conclusions Serum-based circulating miR-25-3p may serve as a non-invasive blood-based biomarker for tumor monitoring and prognostic prediction in osteosarcoma patients.
Collapse
Affiliation(s)
- Tomohiro Fujiwara
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Center of Innovative Medicine, Okayama University Hospital, Okayama, Japan.,Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Koji Uotani
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Aki Yoshida
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takuya Morita
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yutaka Nezu
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Eisuke Kobayashi
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Akihiko Yoshida
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Takenori Uehara
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshinori Omori
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhisa Sugiu
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Tadashi Komatsubara
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ken Takeda
- Department of Intelligent Orthopaedic System, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyuki Kunisada
- Department of Medical Materials for Musculoskeletal Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | | | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Toshifumi Ozaki
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
39
|
Liu T, Li Z, Zhang Q, De Amorim Bernstein K, Lozano-Calderon S, Choy E, Hornicek FJ, Duan Z. Targeting ABCB1 (MDR1) in multi-drug resistant osteosarcoma cells using the CRISPR-Cas9 system to reverse drug resistance. Oncotarget 2018; 7:83502-83513. [PMID: 27835872 PMCID: PMC5347784 DOI: 10.18632/oncotarget.13148] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/16/2016] [Indexed: 12/14/2022] Open
Abstract
Background Multi-drug resistance (MDR) remains a significant obstacle to successful chemotherapy treatment for osteosarcoma patients. One of the central causes of MDR is the overexpression of the membrane bound drug transporter protein P-glycoprotein (P-gp), which is the protein product of the MDR gene ABCB1. Though several methods have been reported to reverse MDR in vitro and in vivo when combined with anticancer drugs, they have yet to be proven useful in the clinical setting. Results The meta-analysis demonstrated that a high level of P-gp may predict poor survival in patients with osteosarcoma. The expression of P-gp can be efficiently blocked by the clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas9 system (CRISPR-Cas9). Inhibition of ABCB1 was associated with reversing drug resistance in osteosarcoma MDR cell lines (KHOSR2 and U-2OSR2) to doxorubicin. Materials and Methods We performed a meta-analysis to investigate the relationship between P-gp expression and survival in patients with osteosarcoma. Then we adopted the CRISPR-Cas9, a robust and highly efficient novel genome editing tool, to determine its effect on reversing drug resistance by targeting endogenous ABCB1 gene at the DNA level in osteosarcoma MDR cell lines. Conclusion These results suggest that the CRISPR-Cas9 system is a useful tool for the modification of ABCB1 gene, and may be useful in extending the long-term efficacy of chemotherapy by overcoming P-gp-mediated MDR in the clinical setting.
Collapse
Affiliation(s)
- Tang Liu
- Department of Orthopaedics, The 2nd Xiangya Hospital of Central South University, Changsha, Hunan, 410011, P.R. China.,Sarcoma Biology Laboratory, Department of Orthopaedic surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Zhihong Li
- Department of Orthopaedics, The 2nd Xiangya Hospital of Central South University, Changsha, Hunan, 410011, P.R. China
| | - Qing Zhang
- Department of Orthopaedics, The 2nd Xiangya Hospital of Central South University, Changsha, Hunan, 410011, P.R. China
| | - Karen De Amorim Bernstein
- Sarcoma Biology Laboratory, Department of Orthopaedic surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Santiago Lozano-Calderon
- Sarcoma Biology Laboratory, Department of Orthopaedic surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Edwin Choy
- Sarcoma Biology Laboratory, Department of Orthopaedic surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
40
|
Yuan WQ, Zhang RR, Wang J, Ma Y, Li WX, Jiang RW, Cai SH. Asclepiasterol, a novel C21 steroidal glycoside derived from Asclepias curassavica, reverses tumor multidrug resistance by down-regulating P-glycoprotein expression. Oncotarget 2017; 7:31466-83. [PMID: 27129170 PMCID: PMC5058771 DOI: 10.18632/oncotarget.8965] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/02/2016] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) is a major cause of cancer therapy failure. In this study, we identified a novel C21 steroidal glycoside, asclepiasterol, capable of reversing P-gp-mediated MDR. Asclepiasterol (2.5 and 5.0μM) enhanced the cytotoxity of P-gp substrate anticancer drugs in MCF-7/ADR and HepG-2/ADM cells. MDR cells were more responsive to paclitaxel in the presence of asclepiasterol, and colony formation of MDR cells was only reduced upon treatment with a combination of asclepiasterol and doxorubicin. Consistent with these findings, asclepiasterol treatment increased the intracellular accumulation of doxorubicin and rhodamine 123 (Rh123) in MDR cells. Asclepiasterol decreased expression of P-gp protein without stimulating or suppressing MDR1 mRNA levels. Asclepiasterol-mediated P-gp suppression caused inhibition of ERK1/2 phosphorylation in two MDR cell types, and EGF, an activator of the MAPK/ERK pathway, reversed the P-gp down-regulation, implicating the MAPK/ERK pathway in asclepiasterol-mediated P-gp down-regulation. These results suggest that asclepiasterol could be developed as a modulator for reversing P-gp-mediated MDR in P-gp-overexpressing cancer variants.
Collapse
Affiliation(s)
- Wei-Qi Yuan
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.,Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, 511430, P. R. China
| | - Rong-Rong Zhang
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Jun Wang
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Yan Ma
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, 511430, P. R. China
| | - Wen-Xue Li
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, 511430, P. R. China
| | - Ren-Wang Jiang
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Shao-Hui Cai
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
41
|
Vittorio O, Le Grand M, Makharza SA, Curcio M, Tucci P, Iemma F, Nicoletta FP, Hampel S, Cirillo G. Doxorubicin synergism and resistance reversal in human neuroblastoma BE(2)C cell lines: An in vitro study with dextran-catechin nanohybrids. Eur J Pharm Biopharm 2017; 122:176-185. [PMID: 29129733 DOI: 10.1016/j.ejpb.2017.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 11/28/2022]
Abstract
Hybrid nanocarrier consisting in nanographene oxide coated by a dextran-catechin conjugate was proposed in the efforts to find more efficient Neuroblastoma treatment with Doxorubicin chemotherapy. The dextran-catechin conjugate was prepared by immobilized laccase catalysis and its peculiar reducing ability exploited for the synthesis of the hybrid carrier. Raman spectra and DSC thermograms were recorded to check the physicochemical properties of the nanohybrid, while DLS measurements, SEM, TEM, and AFM microscopy allowed the determination of its morphological and dimensional features. A pH dependent Doxorubicin release was observed, with 30 and 75% doxorubicin released at pH 7.4 and 5.0, respectively. Viability assays on parental BE(2)C and resistant BE(2)C/ADR cell lines proved that the high anticancer activity of dextran-catechin conjugate (IC50 19.9 ± 0.6 and 18.4 ± 0.7 µg mL-1) was retained upon formation of the nanohybrids (IC50 24.8 ± 0.7 and 22.9 ± 1 µg mL-1). Combination therapy showed a synergistic activity between doxorubicin and either bioconjugate or nanocarrier on BE(2)C. More interestingly, on BE(2)C/ADR we recorded both the reversion of doxorubicin resistance mechanism as a consequence of decreased P-gp expression (Western Blot analysis) and a synergistic effect on cell viability, confirming the proposed nanohybrid as a very promising starting point for further research in neuroblastoma treatment.
Collapse
Affiliation(s)
- Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia; Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, NSW, Sydney, Australia
| | - Marion Le Grand
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia; Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, NSW, Sydney, Australia
| | - Sami A Makharza
- College of Pharmacy and Medical Sciences, Hebron University, Hebron, Palestine
| | - Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy
| | - Paola Tucci
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01171 Dresden, Germany
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy.
| |
Collapse
|
42
|
Zhou XW, Xia YZ, Zhang YL, Luo JG, Han C, Zhang H, Zhang C, Yang L, Kong LY. Tomentodione M sensitizes multidrug resistant cancer cells by decreasing P-glycoprotein via inhibition of p38 MAPK signaling. Oncotarget 2017; 8:101965-101983. [PMID: 29254218 PMCID: PMC5731928 DOI: 10.18632/oncotarget.21949] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022] Open
Abstract
In this study, we investigated the mechanism by which tomentodione M (TTM), a novel natural syncarpic acid-conjugated monoterpene, reversed multi-drug resistance (MDR) in cancer cells. TTM increased the cytotoxicity of chemotherapeutic drugs such as docetaxel and doxorubicin in MCF-7/MDR and K562/MDR cells in a dose- and time-dependent manner. TTM reduced colony formation and enhanced apoptosis in docetaxel-treated MCF-7/MDR and K562/MDR cells, and it enhanced intracellular accumulation of doxorubicin and rhodamine 123 in MDR cancer cells by reducing drug efflux mediated by P-gp. TTM decreased expression of both P-gp mRNA and protein by inhibiting p38 MAPK signaling. Similarly, the p38 MAPK inhibitor SB203580 reversed MDR in cancer cells by decreasing P-gp expression. Conversely, p38 MAPK-overexpressing MCF-7 and K562 cells showed higher P-gp expression than controls. These observations indicate that TTM reverses MDR in cancer cells by decreasing P-gp expression via p38 MAPK inhibition.
Collapse
Affiliation(s)
- Xu-Wei Zhou
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan-Zheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ya-Long Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jian-Guang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Chao Han
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
43
|
Cortini M, Avnet S, Baldini N. Mesenchymal stroma: Role in osteosarcoma progression. Cancer Lett 2017; 405:90-99. [PMID: 28774797 DOI: 10.1016/j.canlet.2017.07.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/19/2017] [Accepted: 07/23/2017] [Indexed: 12/21/2022]
Abstract
The initiation and progression of malignant tumors are supported by their microenvironment: cancer cells per se cannot explain growth and formation of the primary or metastasis, and a combination of proliferating tumor cells, cancer stem cells, immune cells mesenchymal stromal cells and/or cancer-associated fibroblasts all contribute to the tumor bulk. The interaction between these multiple players, under different microenvironmental conditions of biochemical and physical stimuli (i.e. oxygen tension, pH, matrix mechanics), regulates the production and biological activity of several soluble factors, extracellular matrix components, and extracellular vesicles that are needed for growth, maintenance, chemoresistance and metastatization of cancer. In osteosarcoma, a very aggressive cancer of young adults characterized by the extensive need for more effective therapies, this aspect has been only recently explored. In this view, we will discuss the role of stroma, with a particular focus on the mesenchymal stroma, contributing to osteosarcoma progression through inherent features for homing, neovascularization, paracrine cross-feeding, microvesicle secretion, and immune modulation, and also by responding to the changes of the microenvironment that are induced by tumor cells. The most recent advances in the molecular cues triggered by cytokines, soluble factors, and metabolites that are partially beginning to unravel the axis between stromal elements of mesenchymal origin and osteosarcoma cells, will be reviewed providing insights likely to be used for novel therapeutic approaches against sarcomas.
Collapse
Affiliation(s)
- Margherita Cortini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
44
|
ΔNp73 regulates the expression of the multidrug-resistance genes ABCB1 and ABCB5 in breast cancer and melanoma cells - a short report. Cell Oncol (Dordr) 2017; 40:631-638. [PMID: 28677036 PMCID: PMC5705756 DOI: 10.1007/s13402-017-0340-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2017] [Indexed: 10/27/2022] Open
Abstract
PURPOSE Multidrug resistance (MDR) is a major cause of treatment failure. In cancer cells, MDR is often caused by an increased efflux of therapeutic drugs mediated by an up-regulation of ATP binding cassette (ABC) transporters. It has previously been shown that oncogenic ΔNp73 plays an important role in chemo-resistance. Here we aimed at unraveling the role of ΔNp73 in regulating multidrug resistance in breast cancer and melanoma cells. METHODS KEGG pathway analysis was used to identify pathways enriched in breast cancer samples with a high ΔNp73 expression. We found that the ABC transporter pathway was most enriched. The expression of selected ABC transporters was analyzed using qRT-PCR upon siRNA/shRNA-mediated knockdown or exogenous overexpression of ΔNp73 in the breast cancer-derived cell lines MCF7 and MDA-MB-231, as well as in primary melanoma samples and in the melanoma-derived cell line SK-MEL-28. The ability to efflux doxorubicin and the concomitant effects on cell proliferation were assessed using flow cytometry and WST-1 assays. RESULTS We found that high ΔNp73 levels correlate with a general up-regulation of ABC transporters in breast cancer samples. In addition, we found that exogenous expression of ΔNp73 led to an increase in the expression of ABCB1 and ABCB5 in the breast cancer-derived cell lines tested, while knocking down of ΔNp73 resulted in a reduction in ABCB1 and ABCB5 expression. In addition, we found that ΔNp73 reduction leads to an intracellular retention of doxorubicin in MDA-MB-231 and MCF7 cells and a concomitant decrease in cell proliferation. The effect of ΔNp73 on ABCB5 expression was further confirmed in metastases from melanoma patients and in the melanoma-derived cell line SK-MEL-28. CONCLUSIONS Our data support a role for ΔNp73 in the multidrug-resistance of breast cancer and melanoma cells.
Collapse
|
45
|
Avnet S, Di Pompo G, Chano T, Errani C, Ibrahim-Hashim A, Gillies RJ, Donati DM, Baldini N. Cancer-associated mesenchymal stroma fosters the stemness of osteosarcoma cells in response to intratumoral acidosis via NF-κB activation. Int J Cancer 2017; 140:1331-1345. [PMID: 27888521 DOI: 10.1002/ijc.30540] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/09/2016] [Indexed: 12/12/2022]
Abstract
The role of mesenchymal stem cells (MSC) in osteosarcoma (OS), the most common primary tumor of bone, has not been extensively elucidated. We have recently shown that OS is characterized by interstitial acidosis, a microenvironmental condition that is similar to a wound setting, in which mesenchymal reactive cells are activated to release mitogenic and chemotactic factors. We therefore intended to test the hypothesis that, in OS, acid-activated MSC influence tumor cell behavior. Conditioned media or co-culture with normal MSC previously incubated with short-term acidosis (pH 6.8 for 10 hr, H+ -MSC) enhanced OS clonogenicity and invasion. This effect was mediated by NF-κB pathway activation. In fact, deep-sequencing analysis, confirmed by Real-Time PCR and ELISA, demonstrated that H+ -MSC differentially induced a tissue remodeling phenotype with increased expression of RelA, RelB and NF-κB1, and downstream, of CSF2/GM-CSF, CSF3/G-CSF and BMP2 colony-promoting factors, and of chemokines (CCL5, CXCL5 and CXCL1), and cytokines (IL6 and IL8), with an increased expression of CXCR4. An increased expression of IL6 and IL8 were found only in normal stromal cells, but not in OS cells, and this was confirmed in tumor-associated stromal cells isolated from OS tissue. Finally, H+ -MSC conditioned medium differentially promoted OS stemness (sarcosphere number, stem-associated gene expression), and chemoresistance also via IL6 secretion. Our data support the hypothesis that the acidic OS microenvironment is a key factor for MSC activation, in turn promoting the secretion of paracrine factors that influence tumor behavior, a mechanism that holds the potential for future therapeutic interventions aimed to target OS.
Collapse
Affiliation(s)
- Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Gemma Di Pompo
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Tokuhiro Chano
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Costantino Errani
- Orthopaedic Oncology Surgical Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Arig Ibrahim-Hashim
- Department of Imaging Research, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Robert J Gillies
- Department of Imaging Research, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Davide Maria Donati
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Orthopaedic Oncology Surgical Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
46
|
Lee YH, Yang HW, Yang LC, Lu MY, Tsai LL, Yang SF, Huang YF, Chou MY, Yu CC, Hu FW. DHFR and MDR1 upregulation is associated with chemoresistance in osteosarcoma stem-like cells. Oncol Lett 2017; 14:171-179. [PMID: 28693150 PMCID: PMC5494897 DOI: 10.3892/ol.2017.6132] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/01/2016] [Indexed: 01/08/2023] Open
Abstract
Tumor-initiating cells (TICs) are defined as a specialized subset of cells with tumor-initiating capacity that can initiate tumor growth, tumor relapse and metastasis. In the present study, osteosarcoma TICs (OS-TICs) were isolated and enriched from the osteosarcoma U2OS and MG-63 cell lines using sphere formation assays and serum-depleted media. These enriched OS-TICs showed the expression of several typical cancer stemness markers, including octamer-binding transcription factor 4, Nanog homeobox, cluster of differentiation (CD)117, Nestin and CD133, and the expression of ATP binding cassette subfamily G member 2, multidrug resistance protein 1 (MDR1) and dihydrofolate reductase (DHFR). Notably, in vitro and in vivo tumorigenic properties were enhanced in these OS-TICs. Additionally, methotrexate and doxorubicin are the most widely used anticancer agents against osteosarcoma, and the observed enhanced chemoresistance of OS-TICs to these two agents could be associated with the upregulation of DHFR and MDR1. These findings suggest that the upregulation of DHFR and MDR1 is associated with the development of chemoresistance of OS-TICs.
Collapse
Affiliation(s)
- Yu-Hsien Lee
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan, R.O.C
| | - Hui-Wen Yang
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan, R.O.C
| | - Li-Chiu Yang
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan, R.O.C
| | - Ming-Yi Lu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan, R.O.C
| | - Lo-Lin Tsai
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan, R.O.C
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Yu-Feng Huang
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan, R.O.C
| | - Ming-Yung Chou
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan, R.O.C.,Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan, R.O.C.,Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Fang-Wei Hu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan, R.O.C
| |
Collapse
|
47
|
miR-125b and miR-100 Are Predictive Biomarkers of Response to Induction Chemotherapy in Osteosarcoma. Sarcoma 2016; 2016:1390571. [PMID: 27990096 PMCID: PMC5136640 DOI: 10.1155/2016/1390571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/04/2016] [Accepted: 10/18/2016] [Indexed: 11/18/2022] Open
Abstract
Osteosarcoma is the most common primary malignancy in bone. Patients who respond poorly to induction chemotherapy are at higher risk of adverse prognosis. The molecular basis for such poor prognosis remains unclear. We investigated miRNA expression in eight open biopsy samples to identify miRNAs predictive of response to induction chemotherapy and thus maybe used for risk stratification therapy. The samples were obtained from four patients with inferior necrosis (Huvos I/II) and four patients with superior necrosis (Huvos III/IV) following induction chemotherapy. We found six miRNAs, including miR-125b and miR-100, that were differentially expressed > 2-fold (p < 0.05) in patients who respond poorly to treatment. The association between poor prognosis and the abundance of miR-125b and miR-100 was confirmed by quantitative reverse transcriptase-polymerase chain reaction in 20 additional osteosarcoma patients. Accordingly, overexpression of miR-125b and miR-100 in three osteosarcoma cell lines enhanced cell proliferation, invasiveness, and resistance to chemotherapeutic drugs such as methotrexate, doxorubicin, and cisplatin. In addition, overexpression of miR-125b blocked the ability of these chemotherapy agents to induce apoptosis. As open biopsy is routinely performed to diagnose osteosarcoma, levels of miR-125b and miR-100 in these samples may be used as basis for risk stratification therapy.
Collapse
|
48
|
Wang W, Yang J, Wang Y, Wang D, Han G, Jia J, Xu M, Bi W. Survival and prognostic factors in Chinese patients with osteosarcoma: 13-year experience in 365 patients treated at a single institution. Pathol Res Pract 2016; 213:119-125. [PMID: 28040328 DOI: 10.1016/j.prp.2016.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 11/05/2016] [Accepted: 11/11/2016] [Indexed: 11/26/2022]
Abstract
This study was designed to retrospectively analyze the survival and prognostic factors in Chinese osteosarcoma patients received neoadjuvant chemotherapy or/and surgery in a single institution. A total of 365 patients with pathological proved osteosarcoma undergoing neoadjuvant chemotherapy or/and surgery in a single institution between December 1999 and December 2012 were retrospectively analyzed for the demographic, tumor-related, and treatment-related variables, prognostic factors for survival rate and chemotherapy response. There were 231 males and 134 females (ratio, 1.72:1). The average age was 21±10years, with peak age between 10 and 20 years old (62%, 226/365). Of 365 patients, 319 (87.4%) suffered from primary tumor only, and 46 (12.6%) had metastases upon initial presentation. The overall 5-year survival rate was 65%. Upon univariate analysis, tumor site (femur 60.3%; other long bone 70.2%; trunk 33.6%; P=0.012), primary metastases (yes 36.7%; no 68.9%; P=0.000), tumor response to preoperative chemotherapy (good 89.8%; poor 47.5%; P=0.001) and recurrence/metastases after treatment (yes 36.2%; no 63.8%; P=0.000) were associated with higher 5-year survival rate. All factors except tumor site maintained their significance in multivariate testing. Male sex and nonconventional subtype of tumor were related to a higher likelihood of poor chemotherapy response.The absence of metastases at initial presentation, negative local recurrence or metastases after treatment, and tumor response to chemotherapy are of independent prognostic value in osteosarcoma. The overall prognostic factors and survival in Chinese patients are similar to those patients reported in western countries.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopaedics, The General Hospital of Chinese People's Liberation Army, NO28 Fuxing Road, Beijing 100853, China
| | - Jing Yang
- Department of Anesthesiology, The General Hospital of Chinese People's Liberation Army, NO28 Fuxing Road, Beijing 100853, China
| | - Yun Wang
- Department of Pathology, The General Hospital of Chinese People's Liberation Army, NO28 Fuxing Road, Beijing 100853, China
| | - Dianjun Wang
- Department of Pathology, The General Hospital of Chinese People's Liberation Army, NO28 Fuxing Road, Beijing 100853, China
| | - Gang Han
- Department of Orthopaedics, The General Hospital of Chinese People's Liberation Army, NO28 Fuxing Road, Beijing 100853, China
| | - Jinpeng Jia
- Department of Orthopaedics, The General Hospital of Chinese People's Liberation Army, NO28 Fuxing Road, Beijing 100853, China
| | - Meng Xu
- Department of Orthopaedics, The General Hospital of Chinese People's Liberation Army, NO28 Fuxing Road, Beijing 100853, China
| | - Wenzhi Bi
- Department of Orthopaedics, The General Hospital of Chinese People's Liberation Army, NO28 Fuxing Road, Beijing 100853, China.
| |
Collapse
|
49
|
Gao Y, Liao Y, Shen JK, Feng Y, Choy E, Cote G, Harmon D, Mankin HJ, Hornicek FJ, Duan Z. Evaluation of P-glycoprotein (Pgp) expression in human osteosarcoma by high-throughput tissue microarray. J Orthop Res 2016; 34:1606-12. [PMID: 26790551 DOI: 10.1002/jor.23173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/15/2016] [Indexed: 02/04/2023]
Abstract
Survival of osteosarcoma patients is currently limited by the development of metastases and multidrug resistance (MDR). A well-established cause of MDR involves overexpression of P-glycoprotein (Pgp) in tumor cells. However, some discrepancies still exist as to the clinical significance of Pgp in osteosarcoma. We sought to elucidate further whether the Pgp expression correlated with clinical behavior in a series of patients with osteosarcoma via high-throughput tissue microarray (TMA) analysis. Immunohistochemical analysis of Pgp expression in a TMA of 114 specimens with a retrospective review of 70 osteosarcoma patients admitted to the Massachusetts General Hospital (MGH) was performed. High Pgp expression was correlated with metastasis development and poor response to pre-operative chemotherapy in osteosarcoma patients. Eighteen of the fifty-seven patients initially admitted with primary osteosarcoma showed high Pgp expression. Among these 18 patients with high Pgp expression, 13 of 18 (72%) patients eventually developed metastases. There was no significant clinical relevance between Pgp expression and osteosarcoma survival. These results support that high expression of Pgp is important, but cannot be assigned as, an individual predictor in the development of human osteosarcoma. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1606-1612, 2016.
Collapse
Affiliation(s)
- Yan Gao
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114.,Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Yunfei Liao
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114
| | - Jacson K Shen
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114
| | - Yong Feng
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114
| | - Edwin Choy
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114
| | - Gregory Cote
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114
| | - David Harmon
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114
| | - Henry J Mankin
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114
| |
Collapse
|
50
|
Sæter G, Wiebe T, Wiklund T, Monge O, Wahlqvist Y, Engström K, Forestier E, Holmström T, Stenwig AE, Willén H, Brosjö O, Follerås G, Alvegård TA, Strander H. Chemotherapy in osteosarcoma. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/17453674.1999.11744828] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|