1
|
Ritchie DL, Smith C. Pathological spectrum of sporadic Creutzfeldt-Jakob disease. Pathology 2025; 57:196-206. [PMID: 39665904 DOI: 10.1016/j.pathol.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/17/2024] [Indexed: 12/13/2024]
Abstract
Human prion diseases are a rare group of transmissible neurodegenerative conditions which are classified according to their aetiology as sporadic, genetic or acquired forms. Creutzfeldt-Jakob disease (CJD) is the most common form of human prion disease, with the sporadic form accounting for ∼85% of all reported cases. While advances have been made in the development of clinical tools and biomarkers in the diagnosis of prion disease, allowing greater diagnostic certainty for surveillance purposes, definitive diagnosis requires neuropathological examination of the brain at postmortem. Since the 1990s, efforts have been made to develop a classification system for sporadic CJD (sCJD) based on observed differences in the clinical features and the pathological phenotype (the nature and degree of spongiform vacuolation, neuronal loss, astrogliosis and misfolded prion protein accumulation in the brain), also referred to as the 'histotype'. Six major clinicopathological subtypes of sCJD are internationally recognised, largely correlating with the combination of the two distinct types of the protease-resistant prion protein (PrPres type 1 or 2) and the methionine (M)/valine (V) polymorphism at codon 129 of the prion protein gene (PRNP): MM1/MV1, MM2-cortical, MM2-thalamic, MV2, VV1 and VV2. This classification system has been extended to recognise sCJD cases demonstrating both mixed PrPres types or mixed histotypes in the brain of the same individual, as well as including atypical or novel pathological phenotypes. In this review, we will provide an up-to-date overview of the current classification of sCJD based on the prominent neuropathological features. In addition, with levels of infectivity at their highest in the brain, we will also discuss the additional precautions that are recommended when handling and examining postmortem tissues from patients with suspected prion disease.
Collapse
Affiliation(s)
- Diane L Ritchie
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Chancellor's Building, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom.
| | - Colin Smith
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Chancellor's Building, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom; Academic Department of Neuropathology, Centre for Clinical Brain Sciences, Chancellor's Building, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Giri RK. Molecular signatures in prion disease: altered death receptor pathways in a mouse model. J Transl Med 2024; 22:503. [PMID: 38802941 PMCID: PMC11129387 DOI: 10.1186/s12967-024-05121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/20/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Prion diseases are transmissible and fatal neurodegenerative diseases characterized by accumulation of misfolded prion protein isoform (PrPSc), astrocytosis, microgliosis, spongiosis, and neurodegeneration. Elevated levels of cell membrane associated PrPSc protein and inflammatory cytokines hint towards the activation of death receptor (DR) pathway/s in prion diseases. Activation of DRs regulate, either cell survival or apoptosis, autophagy and necroptosis based on the adaptors they interact. Very little is known about the DR pathways activation in prion disease. DR3 and DR5 that are expressed in normal mouse brain were never studied in prion disease, so also their ligands and any DR adaptors. This research gap is notable and investigated in the present study. METHODS C57BL/6J mice were infected with Rocky Mountain Laboratory scrapie mouse prion strain. The progression of prion disease was examined by observing morphological and behavioural abnormalities. The levels of PrP isoforms and GFAP were measured as the marker of PrPSc accumulation and astrocytosis respectively using antibody-based techniques that detect proteins on blot and brain section. The levels of DRs, their glycosylation and ectodomain shedding, and associated factors warrant their examination at protein level, hence western blot analysis was employed in this study. RESULTS Prion-infected mice developed motor deficits and neuropathology like PrPSc accumulation and astrocytosis similar to other prion diseases. Results from this research show higher expression of all DR ligands, TNFR1, Fas and p75NTR but decreased levels DR3 and DR5. The levels of DR adaptor proteins like TRADD and TRAF2 (primarily regulate pro-survival pathways) are reduced. FADD, which primarily regulate cell death, its level remains unchanged. RIPK1, which regulate pro-survival, apoptosis and necroptosis, its expression and proteolysis (inhibits necroptosis but activates apoptosis) are increased. CONCLUSIONS The findings from the present study provide evidence towards the involvement of DR3, DR5, DR6, TL1A, TRAIL, TRADD, TRAF2, FADD and RIPK1 for the first time in prion diseases. The knowledge obtained from this research discuss the possible impacts of these 16 differentially expressed DR factors on our understanding towards the multifaceted neuropathology of prion diseases and towards future explorations into potential targeted therapeutic interventions for prion disease specific neuropathology.
Collapse
Affiliation(s)
- Ranjit Kumar Giri
- Molecular and Cellular Neuroscience Division, National Brain Research Centre, Manesar, Gurgaon, Haryana, 122052, India.
| |
Collapse
|
3
|
Bayazid R, Orru' C, Aslam R, Cohen Y, Silva-Rohwer A, Lee SK, Occhipinti R, Kong Q, Shetty S, Cohen ML, Caughey B, Schonberger LB, Appleby BS, Cali I. A novel subtype of sporadic Creutzfeldt-Jakob disease with PRNP codon 129MM genotype and PrP plaques. Acta Neuropathol 2023; 146:121-143. [PMID: 37156880 PMCID: PMC10166463 DOI: 10.1007/s00401-023-02581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
The presence of amyloid kuru plaques is a pathological hallmark of sporadic Creutzfeldt-Jakob disease (sCJD) of the MV2K subtype. Recently, PrP plaques (p) have been described in the white matter of a small group of CJD (p-CJD) cases with the 129MM genotype and carrying resPrPD type 1 (T1). Despite the different histopathological phenotype, the gel mobility and molecular features of p-CJD resPrPD T1 mimic those of sCJDMM1, the most common human prion disease. Here, we describe the clinical features, histopathology, and molecular properties of two distinct PrP plaque phenotypes affecting the gray matter (pGM) or the white matter (pWM) of sCJD cases with the PrP 129MM genotype (sCJDMM). Prevalence of pGM- and pWM-CJD proved comparable and was estimated to be ~ 0.6% among sporadic prion diseases and ~ 1.1% among the sCJDMM group. Mean age at onset (61 and 68 years) and disease duration (~ 7 months) of pWM- and pGM-CJD did not differ significantly. PrP plaques were mostly confined to the cerebellar cortex in pGM-CJD, but were ubiquitous in pWM-CJD. Typing of resPrPD T1 showed an unglycosylated fragment of ~ 20 kDa (T120) in pGM-CJD and sCJDMM1 patients, while a doublet of ~ 21-20 kDa (T121-20) was a molecular signature of pWM-CJD in subcortical regions. In addition, conformational characteristics of pWM-CJD resPrPD T1 differed from those of pGM-CJD and sCJDMM1. Inoculation of pWM-CJD and sCJDMM1 brain extracts to transgenic mice expressing human PrP reproduced the histotype with PrP plaques only in mice challenged with pWM-CJD. Furthermore, T120 of pWM-CJD, but not T121, was propagated in mice. These data suggest that T121 and T120 of pWM-CJD, and T120 of sCJDMM1 are distinct prion strains. Further studies are required to shed light on the etiology of p-CJD cases, particularly those of T120 of the novel pGM-CJD subtype.
Collapse
Affiliation(s)
- Rabeah Bayazid
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Christina Orru'
- Laboratory of Persistent Viral Diseases, NIH, Hamilton, MT, USA
| | - Rabail Aslam
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yvonne Cohen
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Amelia Silva-Rohwer
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- National Prion Disease Pathology Surveillance Center, Cleveland, OH, USA
| | - Seong-Ki Lee
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Rossana Occhipinti
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Qingzhong Kong
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- National Prion Disease Pathology Surveillance Center, Cleveland, OH, USA
| | - Shashirekha Shetty
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- National Prion Disease Pathology Surveillance Center, Cleveland, OH, USA
| | - Mark L Cohen
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- National Prion Disease Pathology Surveillance Center, Cleveland, OH, USA
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, NIH, Hamilton, MT, USA
| | - Lawrence B Schonberger
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Brian S Appleby
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- National Prion Disease Pathology Surveillance Center, Cleveland, OH, USA
| | - Ignazio Cali
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- National Prion Disease Pathology Surveillance Center, Cleveland, OH, USA.
| |
Collapse
|
4
|
Phenotypic diversity of genetic Creutzfeldt-Jakob disease: a histo-molecular-based classification. Acta Neuropathol 2021; 142:707-728. [PMID: 34324063 PMCID: PMC8423680 DOI: 10.1007/s00401-021-02350-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 01/05/2023]
Abstract
The current classification of sporadic Creutzfeldt–Jakob disease (sCJD) includes six major clinicopathological subtypes defined by the physicochemical properties of the protease-resistant core of the pathologic prion protein (PrPSc), defining two major PrPSc types (i.e., 1 and 2), and the methionine (M)/valine (V) polymorphic codon 129 of the prion protein gene (PRNP). How these sCJD subtypes relate to the well-documented phenotypic heterogeneity of genetic CJD (gCJD) is not fully understood. We analyzed molecular and phenotypic features in 208 individuals affected by gCJD, carrying 17 different mutations, and compared them with those of a large series of sCJD cases. We identified six major groups of gCJD based on the combination PrPSc type and codon 129 genotype on PRNP mutated allele, each showing distinctive histopathological characteristics, irrespectively of the PRNP associated mutation. Five gCJD groups, named M1, M2C, M2T, V1, and V2, largely reproduced those previously described in sCJD subtypes. The sixth group shared phenotypic traits with the V2 group and was only detected in patients carrying the E200K-129M haplotype in association with a PrPSc type of intermediate size (“i”) between type 1 and type 2. Additional mutation-specific effects involved the pattern of PrP deposition (e.g., a “thickened” synaptic pattern in E200K carriers, cerebellar “stripe-like linear granular deposits” in those with insertion mutations, and intraneuronal globular dots in E200K-V2 or -M”i”). A few isolated cases linked to rare PRNP haplotypes (e.g., T183A-129M), showed atypical phenotypic features, which prevented their classification into the six major groups. The phenotypic variability of gCJD is mostly consistent with that previously found in sCJD. As in sCJD, the codon 129 genotype and physicochemical properties of PrPSc significantly correlated with the phenotypic variability of gCJD. The most common mutations linked to CJD appear to have a variable and overall less significant effect on the disease phenotype, but they significantly influence disease susceptibility often in a strain-specific manner. The criteria currently used for sCJD subtypes can be expanded and adapted to gCJD to provide an updated classification of the disease with a molecular basis.
Collapse
|
5
|
Jankovska N, Rusina R, Bruzova M, Parobkova E, Olejar T, Matej R. Human Prion Disorders: Review of the Current Literature and a Twenty-Year Experience of the National Surveillance Center in the Czech Republic. Diagnostics (Basel) 2021; 11:1821. [PMID: 34679519 PMCID: PMC8534461 DOI: 10.3390/diagnostics11101821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023] Open
Abstract
Human prion disorders (transmissible spongiform encephalopathies, TSEs) are unique, progressive, and fatal neurodegenerative diseases caused by aggregation of misfolded prion protein in neuronal tissue. Due to the potential transmission, human TSEs are under active surveillance in a majority of countries; in the Czech Republic data are centralized at the National surveillance center (NRL) which has a clinical and a neuropathological subdivision. The aim of our article is to review current knowledge about human TSEs and summarize the experience of active surveillance of human prion diseases in the Czech Republic during the last 20 years. Possible or probable TSEs undergo a mandatory autopsy using a standardized protocol. From 2001 to 2020, 305 cases of sporadic and genetic TSEs including 8 rare cases of Gerstmann-Sträussler-Scheinker syndrome (GSS) were confirmed. Additionally, in the Czech Republic, brain samples from all corneal donors have been tested by the NRL immunology laboratory to increase the safety of corneal transplants since January 2007. All tested 6590 corneal donor brain tissue samples were negative for prion protein deposits. Moreover, the routine use of diagnostic criteria including biomarkers are robust enough, and not even the COVID-19 pandemic has negatively impacted TSEs surveillance in the Czech Republic.
Collapse
Affiliation(s)
- Nikol Jankovska
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, 14059 Prague, Czech Republic; (M.B.); (E.P.); (T.O.); (R.M.)
| | - Robert Rusina
- Department of Neurology, Third Faculty of Medicine, Charles University and Thomayer University Hospital, 14059 Prague, Czech Republic;
| | - Magdalena Bruzova
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, 14059 Prague, Czech Republic; (M.B.); (E.P.); (T.O.); (R.M.)
| | - Eva Parobkova
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, 14059 Prague, Czech Republic; (M.B.); (E.P.); (T.O.); (R.M.)
| | - Tomas Olejar
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, 14059 Prague, Czech Republic; (M.B.); (E.P.); (T.O.); (R.M.)
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, 14059 Prague, Czech Republic; (M.B.); (E.P.); (T.O.); (R.M.)
- Department of Pathology, First Faculty of Medicine, Charles University, and General University Hospital, 12800 Prague, Czech Republic
- Department of Pathology, Third Faculty of Medicine, Charles University, and University Hospital Kralovske Vinohrady, 10034 Prague, Czech Republic
| |
Collapse
|
6
|
Gambetti P. Autobiography Series: A Life of Anecdotes. J Neuropathol Exp Neurol 2021. [DOI: 10.1093/jnen/nlab021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Yakubu UM, Catumbela CSG, Morales R, Morano KA. Understanding and exploiting interactions between cellular proteostasis pathways and infectious prion proteins for therapeutic benefit. Open Biol 2020; 10:200282. [PMID: 33234071 PMCID: PMC7729027 DOI: 10.1098/rsob.200282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Several neurodegenerative diseases of humans and animals are caused by the misfolded prion protein (PrPSc), a self-propagating protein infectious agent that aggregates into oligomeric, fibrillar structures and leads to cell death by incompletely understood mechanisms. Work in multiple biological model systems, from simple baker's yeast to transgenic mouse lines, as well as in vitro studies, has illuminated molecular and cellular modifiers of prion disease. In this review, we focus on intersections between PrP and the proteostasis network, including unfolded protein stress response pathways and roles played by the powerful regulators of protein folding known as protein chaperones. We close with analysis of promising therapeutic avenues for treatment enabled by these studies.
Collapse
Affiliation(s)
- Unekwu M Yakubu
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX USA.,MD Anderson UTHealth Graduate School at UTHealth, Houston, TX USA
| | - Celso S G Catumbela
- MD Anderson UTHealth Graduate School at UTHealth, Houston, TX USA.,Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School at UTHealth, Houston, TX USA
| | - Rodrigo Morales
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School at UTHealth, Houston, TX USA.,Centro integrativo de biología y química aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Kevin A Morano
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX USA
| |
Collapse
|
8
|
Hamaguchi T, Sanjo N, Ae R, Nakamura Y, Sakai K, Takao M, Murayama S, Iwasaki Y, Satoh K, Murai H, Harada M, Tsukamoto T, Mizusawa H, Yamada M. MM2-type sporadic Creutzfeldt-Jakob disease: new diagnostic criteria for MM2-cortical type. J Neurol Neurosurg Psychiatry 2020; 91:1158-1165. [PMID: 32839349 DOI: 10.1136/jnnp-2020-323231] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/05/2020] [Accepted: 07/08/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To clinically diagnose MM2-cortical (MM2C) and MM2-thalamic (MM2T)-type sporadic Creutzfeldt-Jakob disease (sCJD) at early stage with high sensitivity and specificity. METHODS We reviewed the results of Creutzfeldt-Jakob disease Surveillance Study in Japan between April 1999 and September 2019, which included 254 patients with pathologically confirmed prion diseases, including 9 with MM2C-type sCJD (MM2C-sCJD) and 10 with MM2T-type sCJD (MM2T-sCJD), and 607 with non-prion diseases. RESULTS According to the conventional criteria of sCJD, 4 of 9 patients with MM2C- and 7 of 10 patients with MM2T-sCJD could not be diagnosed with probable sCJD until their death. Compared with other types of sCJD, patients with MM2C-sCJD showed slower progression of the disease and cortical distribution of hyperintensity lesions on diffusion-weighted images of brain MRI. Patients with MM2T-sCJD also showed relatively slow progression and negative results for most of currently established investigations for diagnosis of sCJD. To clinically diagnose MM2C-sCJD, we propose the new criteria; diagnostic sensitivity and specificity to distinguish 'probable' MM2C-sCJD from other subtypes of sCJD, genetic or acquired prion diseases and non-prion disease controls were 77.8% and 98.5%, respectively. As for MM2T-sCJD, clinical and laboratory features are not characterised enough to develop its diagnostic criteria. CONCLUSIONS MM2C-sCJD can be diagnosed at earlier stage using the new criteria with high sensitivity and specificity, although it is still difficult to diagnose MM2T-sCJD clinically.
Collapse
Affiliation(s)
- Tsuyoshi Hamaguchi
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Nobuo Sanjo
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Ryusuke Ae
- Department of Public Health, Jichi Medical University, Shimotsuke, Japan
| | - Yosikazu Nakamura
- Department of Public Health, Jichi Medical University, Shimotsuke, Japan
| | - Kenji Sakai
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Masaki Takao
- Department of Neurology and Cerebrovascular Medicine, Saitama International Medical Center, Saitama Medical University, Hidaka, Japan
| | - Shigeo Murayama
- Department of Neurology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Aichi Medical University, Nagakute, Japan
| | - Katsuya Satoh
- Department of Locomotive Rehabilitation Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroyuki Murai
- Department of Neurology, International University of Health and Welfare, Narita, Japan
| | - Masafumi Harada
- Department of Radiology, Tokushima University Graduate School, Tokushima, Japan
| | - Tadashi Tsukamoto
- Department of Neurology, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Hidehiro Mizusawa
- Department of Neurology, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
9
|
Takeuchi A, Mohri S, Kai H, Tamaoka A, Kobayashi A, Mizusawa H, Iwasaki Y, Yoshida M, Shimizu H, Murayama S, Kuroda S, Morita M, Parchi P, Kitamoto T. Two distinct prions in fatal familial insomnia and its sporadic form. Brain Commun 2019; 1:fcz045. [PMID: 32954274 PMCID: PMC7425372 DOI: 10.1093/braincomms/fcz045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 11/12/2022] Open
Abstract
Fatal familial insomnia is a genetic prion disease, which is associated with the aspartic acid to asparagine substitution at codon 178 of the prion protein gene. Although the hallmark pathological feature is thalamic and olivary degeneration, there is a patient with an atypical fatal familial insomnia without the hallmark feature. The cause of the pathological variability is unclear. We analysed a Japanese fatal familial insomnia kindred and compared one atypical clinicopathological fatal familial insomnia phenotype case and typical fatal familial insomnia phenotype cases with transmission studies using multiple lines of knock-in mice and with protein misfolding cyclic amplification. We also analysed the transmissibility and the amplification properties of sporadic fatal insomnia. Transmission studies revealed that the typical fatal familial insomnia with thalamic and olivary degeneration showed successful transmission only using knock-in mice expressing human-mouse chimeric prion protein gene. The atypical fatal familial insomnia with spongiform changes showed successful transmission only using knock-in mice expressing bank vole prion protein gene. Two sporadic fatal insomnia cases with thalamic and olivary degeneration showed the same transmissibility as the typical fatal familial insomnia phenotype. Interestingly, one sporadic fatal insomnia case with thalamic/olivary degeneration and spongiform changes showed transmissibility of both the typical and atypical fatal familial insomnia phenotypes. Protein misfolding cyclic amplification could amplify both typical fatal familial insomnia cases and sporadic fatal insomnia cases but not the atypical fatal familial insomnia phenotype or other sporadic Creutzfeldt-Jakob disease subtypes. In addition to clinical findings and neuropathological features, the transmission properties and the amplification properties were different between the typical and atypical fatal familial insomnia phenotypes. It is suggested that two distinct prions were associated with the diversity in the fatal familial insomnia phenotype, and these two prions could also be detected in sporadic fatal insomnia.
Collapse
Affiliation(s)
- Atsuko Takeuchi
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Shirou Mohri
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hideaki Kai
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Akira Tamaoka
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8576, Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Hidehiro Mizusawa
- The National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 102-0076, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Hiroshi Shimizu
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata 951-8585, Japan
| | - Shigeo Murayama
- Department of Neurology and Neuropathology (The Brain Bank for Aging Research), Tokyo 173-0015, Japan
| | | | - Masanori Morita
- Research and Development Division, Japan Blood Products Organization, Kobe 650-0047, Japan
| | - Piero Parchi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna 40126, Italy.,IRCCS Istituto delle Scienze Neurologiche, Bologna 40123, Italy
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
10
|
Qin K, Zhao L, Solanki A, Busch C, Mastrianni J. Anle138b prevents PrP plaque accumulation in Tg(PrP-A116V) mice but does not mitigate clinical disease. J Gen Virol 2019; 100:1027-1037. [PMID: 31045489 DOI: 10.1099/jgv.0.001262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anle138b is an anti-aggregating compound previously shown to delay the onset of scrapie, a transmissible prion disease, although its in vivo efficacy against other prion disease subtypes has not been fully assessed. TgGSS mice that model Gerstmann-Sträussler-Scheinker disease (GSS) via expression of mouse PrPA116V accumulate PrP amyloid plaques in their brains and develop progressive ataxia leading to death in ~160 days. When allowed to feed on food pellets containing anle138b from weaning until death, the brains of TgGSS mice displayed significant reductions in PrP plaque burden, insoluble PrP, and proteinase K-resistant PrPSc at end stage, compared with TgGSS mice allowed to feed on placebo food pellets. Despite these effects on biological markers of disease, there was no difference in the onset of symptoms or the age at death between the two treatment groups. In contrast, scrapie-inoculated wild-type mice treated with anle138b survived nearly twice as long (254 days) as scrapie-inoculated mice fed placebo (~136 days). They also displayed greater reductions in insoluble and PK-resistant PrPSc than TgGSS mice. Although these results support an anti-aggregating effect of anle138b, the discordance in clinical efficacy noted between the two prion disease models tested underscores the pathophysiological differences between them and highlights the need to consider differences in susceptibilities among prion subtypes when assessing potential therapies for prion diseases.
Collapse
Affiliation(s)
- Kefeng Qin
- 1 Department of Neurology, The University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| | - Lili Zhao
- 1 Department of Neurology, The University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| | - Ani Solanki
- 1 Department of Neurology, The University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| | - Crystal Busch
- 1 Department of Neurology, The University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| | - James Mastrianni
- 1 Department of Neurology, The University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| |
Collapse
|
11
|
Rossi M, Baiardi S, Parchi P. Understanding Prion Strains: Evidence from Studies of the Disease Forms Affecting Humans. Viruses 2019; 11:E309. [PMID: 30934971 PMCID: PMC6520670 DOI: 10.3390/v11040309] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Prion diseases are a unique group of rare neurodegenerative disorders characterized by tissue deposition of heterogeneous aggregates of abnormally folded protease-resistant prion protein (PrPSc), a broad spectrum of disease phenotypes and a variable efficiency of disease propagation in vivo. The dominant clinicopathological phenotypes of human prion disease include Creutzfeldt⁻Jakob disease, fatal insomnia, variably protease-sensitive prionopathy, and Gerstmann⁻Sträussler⁻Scheinker disease. Prion disease propagation into susceptible hosts led to the isolation and characterization of prion strains, initially operatively defined as "isolates" causing diseases with distinctive characteristics, such as the incubation period, the pattern of PrPSc distribution, and the regional severity of neuropathological changes after injection into syngeneic hosts. More recently, the structural basis of prion strains has been linked to amyloid polymorphs (i.e., variant amyloid protein conformations) and the concept extended to all protein amyloids showing polymorphic structures and some evidence of in vivo or in vitro propagation by seeding. Despite the significant advances, however, the link between amyloid structure and disease is not understood in many instances. Here we reviewed the most significant contributions of human prion disease studies to current knowledge of the molecular basis of phenotypic variability and the prion strain phenomenon and underlined the unsolved issues from the human disease perspective.
Collapse
Affiliation(s)
- Marcello Rossi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna 40138, Italy.
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy.
| | - Simone Baiardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy.
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna 40138, Italy.
| |
Collapse
|
12
|
Baldelli L, Provini F. Fatal familial insomnia and Agrypnia Excitata: Autonomic dysfunctions and pathophysiological implications. Auton Neurosci 2019; 218:68-86. [PMID: 30890351 DOI: 10.1016/j.autneu.2019.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/23/2019] [Accepted: 02/24/2019] [Indexed: 01/26/2023]
Abstract
Fatal Familial Insomnia (FFI) is a hereditary prion disease caused by a mutation at codon 178 of the prion-protein gene leading to a D178N substitution in the protein determining severe and selective atrophy of mediodorsal and anteroventral thalamic nuclei. FFI is characterized by physiological sleep loss, which polygraphically appears to be a slow wave sleep loss, autonomic and motor hyperactivation with peculiar episodes of oneiric stupor. Alteration of autonomic functions is a great burden for FFI patients consisting in sympathetic overactivation, dysregulation of its physiological responses and disruption of circadian rhythms. The cardiovascular system is the most frequently and severely affected confirming the increased sympathetic drive with preserved parasympathetic responses. Sleep loss, autonomic and motor hyperactivation define Agrypnia Excitata (AE), which is not exclusive to FFI, but it has been canonically described also in Morvan Syndrome and Delirium Tremens. These three conditions present different pathophysiological mechanisms but share the same thalamo-limbic impairment of which AE is one of the possible clinical presentations. FFI, and consequently also AE, is a model for the investigation of the essential role of the thalamus in the organization of body homeostasis, integrating both sleep and autonomic function control.
Collapse
Affiliation(s)
- Luca Baldelli
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy
| | - Federica Provini
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.
| |
Collapse
|
13
|
Baiardi S, Rossi M, Capellari S, Parchi P. Recent advances in the histo-molecular pathology of human prion disease. Brain Pathol 2019; 29:278-300. [PMID: 30588685 DOI: 10.1111/bpa.12695] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Prion diseases are progressive neurodegenerative disorders affecting humans and other mammalian species. The term prion, originally put forward to propose the concept that a protein could be infectious, refers to PrPSc , a misfolded isoform of the cellular prion protein (PrPC ) that represents the pathogenetic hallmark of these disorders. The discovery that other proteins characterized by misfolding and seeded aggregation can spread from cell to cell, similarly to PrPSc , has increased interest in prion diseases. Among neurodegenerative disorders, however, prion diseases distinguish themselves for the broader phenotypic spectrum, the fastest disease progression and the existence of infectious forms that can be transmitted through the exposure to diseased tissues via ingestion, injection or transplantation. The main clinicopathological phenotypes of human prion disease include Creutzfeldt-Jakob disease, by far the most common, fatal insomnia, variably protease-sensitive prionopathy, and Gerstmann-Sträussler-Scheinker disease. However, clinicopathological manifestations extend even beyond those predicted by this classification. Because of their transmissibility, the phenotypic diversity of prion diseases can also be propagated into syngenic hosts as prion strains with distinct characteristics, such as incubation period, pattern of PrPSc distribution and regional severity of histopathological changes in the brain. Increasing evidence indicates that different PrPSc conformers, forming distinct ordered aggregates, encipher the phenotypic variants related to prion strains. In this review, we summarize the most recent advances concerning the histo-molecular pathology of human prion disease focusing on the phenotypic spectrum of the disease including co-pathologies, the characterization of prion strains by experimental transmission and their correlation with the physicochemical properties of PrPSc aggregates.
Collapse
Affiliation(s)
- Simone Baiardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marcello Rossi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Piero Parchi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
14
|
Abu-Rumeileh S, Redaelli V, Baiardi S, Mackenzie G, Windl O, Ritchie DL, Didato G, Hernandez-Vara J, Rossi M, Capellari S, Imperiale D, Rizzone MG, Belotti A, Sorbi S, Rozemuller AJM, Cortelli P, Gelpi E, Will RG, Zerr I, Giaccone G, Parchi P. Sporadic Fatal Insomnia in Europe: Phenotypic Features and Diagnostic Challenges. Ann Neurol 2018; 84:347-360. [PMID: 30048013 DOI: 10.1002/ana.25300] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 06/28/2018] [Accepted: 07/22/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Comprehensively describe the phenotypic spectrum of sporadic fatal insomnia (sFI) to facilitate diagnosis and management of this rare and peculiar prion disorder. METHODS A survey among major prion disease reference centers in Europe identified 13 patients diagnosed with sFI in the past 20 years. We undertook a detailed analysis of clinical and histopathological features and the results of diagnostic investigations. RESULTS Mean age at onset was 43 years, and mean disease duration 30 months. Early clinical findings included psychiatric, sleep, and oculomotor disturbances, followed by cognitive decline and postural instability. In all tested patients, video-polysomnography demonstrated a severe reduction of total sleep time and/or a disorganized sleep. Cerebrospinal fluid (CSF) levels of proteins 14-3-3 and t-tau were unrevealing, the concentration of neurofilament light protein (NfL) was more consistently increased, and the real-time quaking-induced conversion assay (RT-QuIC) revealed a positive prion seeding activity in 60% of cases. Electroencephalography and magnetic resonance imaging showed nonspecific findings, whereas fluorodeoxyglucose positron emission tomography (FDG-PET) demonstrated a profound bilateral thalamic hypometabolism in 71% of cases. Molecular analyses revealed PrPSc type 2 and methionine homozygosity at PRNP codon 129 in all cases. INTERPRETATION sFI is a disease of young or middle-aged adults, which is difficult to reconcile with the hypothesis of a spontaneous etiology related to stochastic, age-related PrP misfolding. The combination of psychiatric and/or sleep-related symptoms with oculomotor abnormalities represents an early peculiar clinical feature of sFI to be valued in the differential diagnosis. Video-polysomnography, FDG-PET, and especially CSF prion RT-QuIC and NfL constitute the most promising supportive diagnostic tests in vivo. Ann Neurol 2018;84:347-360.
Collapse
Affiliation(s)
- Samir Abu-Rumeileh
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Veronica Redaelli
- Neurology and Neuropathology Unit, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Simone Baiardi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Graeme Mackenzie
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - Otto Windl
- Center for Neuropathology and Prion Research, Ludwig Maximilian University, Munich, Germany
| | - Diane L Ritchie
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - Giuseppe Didato
- Clinical and Experimental Epileptology, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | | | - Marcello Rossi
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | | | | | | | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research, and Child Health, University of Florence, Florence, Italy.,IRCCS Don Gnocchi, Florence, Italy
| | | | - Pietro Cortelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobanc, - Hospital Clínic - Institut d'Investigacions Biomédiques, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain.,Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Robert G Will
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | - Inga Zerr
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Giorgio Giaccone
- Neurology and Neuropathology Unit, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Piero Parchi
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy.,Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
Cali I, Mikhail F, Qin K, Gregory C, Solanki A, Martinez MC, Zhao L, Appleby B, Gambetti P, Norstrom E, Mastrianni JA. Impaired transmissibility of atypical prions from genetic CJD G114V. Neurol Genet 2018; 4:e253. [PMID: 30109268 PMCID: PMC6089695 DOI: 10.1212/nxg.0000000000000253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/14/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To describe the clinicopathologic, molecular, and transmissible characteristics of genetic prion disease in a young man carrying the PRNP-G114V variant. METHODS We performed genetic, histologic, and molecular studies, combined with in vivo transmission studies and in vitro replication studies, to characterize this genetic prion disease. RESULTS A 24-year-old American man of Polish descent developed progressive dementia, aphasia, and ataxia, leading to his death 5 years later. Histologic features included widespread spongiform degeneration, gliosis, and infrequent PrP plaque-like deposits within the cerebellum and putamen, best classifying this as a Creutzfeldt-Jakob disease (CJD) subtype. Molecular typing of proteinase K-resistant PrP (resPrPSc) revealed a mixture of type 1 (∼21 kDa) and type 2 (∼19 kDa) conformations with only 2, rather than the usual 3, PrPSc glycoforms. Brain homogenates from the proband failed to transmit prion disease to transgenic Tg(HuPrP) mice that overexpress human PrP and are typically susceptible to sporadic and genetic forms of CJD. When subjected to protein misfolding cyclic amplification, the PrPSc type 2 (∼19 kDa) was selectively amplified. CONCLUSIONS The features of genetic CJDG114V suggest that residue 114 within the highly conserved palindromic region (113-AGAAAAGA-120) plays an important role in prion conformation and propagation.
Collapse
Affiliation(s)
- Ignazio Cali
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Fadi Mikhail
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Kefeng Qin
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Crystal Gregory
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Ani Solanki
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Manuel Camacho Martinez
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Lili Zhao
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Brian Appleby
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Pierluigi Gambetti
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - Eric Norstrom
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| | - James A Mastrianni
- Department of Pathology (I.C., M.C.M., P.G.), Case Western University, Cleveland, OH; Department of Neurology (K.Q., F.M., C.G., A.S., L.Z., J.A.M.), University of Chicago; and Department of Biological Sciences (E.N.), DePaul University, Chicago, IL
| |
Collapse
|
16
|
Abstract
Infections of the nervous system are potential life-threatening and are caused by pathogens such as bacteria, viruses, and fungi. Prompt recognition and treatment of a central nervous system (CNS) infection is crucial for patient survival, as these infections have a high morbidity and mortality. CNS infections include meningitis, encephalitis, and brain abscesses. This article seeks to detail the etiology, clinical course, diagnostic challenges, and treatment of CNS infections organized by infectious agent.
Collapse
Affiliation(s)
- Richard A Giovane
- Department of Family, Internal and Rural Medicine, The University of Alabama, 850 Peter Bryce Boulevard, Box 870377, Tuscaloosa, AL 35401, USA
| | - Paul Drake Lavender
- Department of Family, Internal and Rural Medicine, The University of Alabama, 850 Peter Bryce Boulevard, Box 870377, Tuscaloosa, AL 35401, USA.
| |
Collapse
|
17
|
Asher DM, Gregori L. Human transmissible spongiform encephalopathies: historic view. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:1-17. [PMID: 29887130 DOI: 10.1016/b978-0-444-63945-5.00001-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The first of several pivotal moments leading to current understanding of human transmissible spongiform encephalopathies (TSEs) occurred in 1959 when veterinary pathologist W.J. Hadlow first recognized several similarities between scrapie-a slow infection of sheep caused by an unusual infectious agent-and kuru, a fatal exotic neurodegenerative disease affecting only people of a single language group in the remote mountainous interior of New Guinea, described two years earlier by D.C. Gajdusek and V. Zigas. Based on the knowledge of scrapie, Gajdusek, C.J. Gibbs, Jr., and M.P. Alpers soon initiated efforts to transmit kuru by inoculating kuru brain tissue into non-human primates, that-although requiring several years-ultimately proved successful. In the same year that Hadlow first proposed that kuru and scrapie might have similar etiology, I. Klatzo noted that kuru's histopathology resembled that of Creutzfeldt-Jakob disease (CJD), another progressive fatal neurodegenerative disease of unknown etiology that A.M. Jakob had first described in 1921. Gajdusek and colleagues went on to demonstrate that not only the more common sporadic form of CJD but also familial CJD and a generally similar familial brain disease (Gerstmann-Sträussler-Scheinker syndrome) were also transmissible, first to non-human primates and later to other animals. (Other investigators later transmitted an even rarer brain disease, fatal familial insomnia, to animals.) Iatrogenic CJD (spread by human pituitary-derived hormones and tissue grafts) was also transmitted to animals. Much later, in 1996, a new variant of CJD was attributed to human infection with the agent of bovine spongiform encephalopathy; vCJD itself caused an iatrogenic TSE spread by blood transfusion (and probably by a human-plasma-derived clotting factor). Starting in the 1930s, the scrapie agent was found to have a unique constellation of physical properties (marked resistance to inactivation by chemicals, heat and radiation), eventually interpreted as suggesting that it might be an unconventional self-replicating pathogen based on protein and containing no nucleic acid. The work of S.B. Prusiner led to the recognition in the early 1980s that a misfolded form of a ubiquitous normal host protein was usually if not always detectable in tissues containing TSE agents, greatly facilitating the diagnosis and TSEs and understanding their pathogenesis. Prusiner proposed that the TSE agent was likely to be composed partly if not entirely of the abnormal protein, for which he coined the term "prion" protein and "prion" for the agent. Expression of the prion protein by animals-while not essential for life-was later found to be obligatory to infect them with TSEs, and a variety of mutations in the protein clearly tracked with TSEs in families, explaining the autosomal dominant pattern of disease and confirming a central role for the protein in pathogenesis. Prusiner's terminology and the prion hypothesis came to be widely though not universally accepted. A popular corollary proposal, that prions arise by spontaneous misfolding of normal prion protein leading to sporadic cases of CJD, BSE, and scrapie, is more problematic and may serve to discourage continued search for environmental sources of exposure to TSE agents.
Collapse
Affiliation(s)
- David M Asher
- Laboratory of Bacterial and Transmissible Spongiform Encephalopathy Agents, Division of Emerging and Transfusion-Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States.
| | - Luisa Gregori
- Laboratory of Bacterial and Transmissible Spongiform Encephalopathy Agents, Division of Emerging and Transfusion-Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
18
|
Abstract
Fatal familial insomnia (FFI) and sporadic fatal insomnia (sFI), or thalamic form of sporadic Creutzfeldt-Jakob disease MM2 (sCJDMM2T), are prion diseases originally named and characterized in 1992 and 1999, respectively. FFI is genetically determined and linked to a D178N mutation coupled with the M129 genotype in the prion protein gene (PRNP) at chromosome 20. sFI is a phenocopy of FFI and likely its sporadic form. Both diseases are primarily characterized by progressive sleep impairment, disturbances of autonomic nervous system, and motor signs associated with severe loss of nerve cells in medial thalamic nuclei. Both diseases harbor an abnormal disease-associated prion protein isoform, resistant to proteases with relative mass of 19 kDa identified as resPrPTSE type 2. To date at least 70 kindreds affected by FFI with 198 members and 18 unrelated carriers along with 25 typical cases of sFI have been published. The D178N-129M mutation is thought to cause FFI by destabilizing the mutated prion protein and facilitating its conversion to PrPTSE. The thalamus is the brain region first affected. A similar mechanism triggered spontaneously may underlie sFI.
Collapse
|
19
|
Bistaffa E, Rossi M, De Luca CMG, Moda F. Biosafety of Prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:455-485. [PMID: 28838674 DOI: 10.1016/bs.pmbts.2017.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prions are the infectious agents that cause devastating and untreatable disorders known as Transmissible Spongiform Encephalopathies (TSEs). The pathologic events and the infectious nature of these transmissible agents are not completely understood yet. Due to the difficulties in inactivating prions, working with them requires specific recommendations and precautions. Moreover, with the advent of innovative technologies, such as the Protein Misfolding Cyclic Amplification (PMCA) and the Real Time Quaking-Induced Conversion (RT-QuIC), prions could be amplified in vitro and the infectious features of the amplified products need to be carefully assessed.
Collapse
Affiliation(s)
- Edoardo Bistaffa
- IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy; Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Martina Rossi
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Chiara M G De Luca
- IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy; Università degli Studi di Pavia, Pavia, Italy
| | - Fabio Moda
- IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy.
| |
Collapse
|
20
|
Redaelli V, Tagliavini F, Moda F. Clinical features, pathophysiology and management of fatal familial insomnia. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1311251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Abstract
The misfolding of the cellular prion protein (PrPC) causes fatal neurodegenerative diseases. Yet PrPC is highly conserved in mammals, suggesting that it exerts beneficial functions preventing its evolutionary elimination. Ablation of PrPC in mice results in well-defined structural and functional alterations in the peripheral nervous system. Many additional phenotypes were ascribed to the lack of PrPC, but some of these were found to arise from genetic artifacts of the underlying mouse models. Here, we revisit the proposed physiological roles of PrPC in the central and peripheral nervous systems and highlight the need for their critical reassessment using new, rigorously controlled animal models.
Collapse
Affiliation(s)
- Marie-Angela Wulf
- Institute of Neuropathology, University of Zurich, Rämistrasse 100, CH-8091, Zürich, Switzerland
| | - Assunta Senatore
- Institute of Neuropathology, University of Zurich, Rämistrasse 100, CH-8091, Zürich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Rämistrasse 100, CH-8091, Zürich, Switzerland.
| |
Collapse
|
22
|
Brandner S, Jaunmuktane Z. Prion disease: experimental models and reality. Acta Neuropathol 2017; 133:197-222. [PMID: 28084518 PMCID: PMC5250673 DOI: 10.1007/s00401-017-1670-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 01/04/2023]
Abstract
The understanding of the pathogenesis and mechanisms of diseases requires a multidisciplinary approach, involving clinical observation, correlation to pathological processes, and modelling of disease mechanisms. It is an inherent challenge, and arguably impossible to generate model systems that can faithfully recapitulate all aspects of human disease. It is, therefore, important to be aware of the potentials and also the limitations of specific model systems. Model systems are usually designed to recapitulate only specific aspects of the disease, such as a pathological phenotype, a pathomechanism, or to test a hypothesis. Here, we evaluate and discuss model systems that were generated to understand clinical, pathological, genetic, biochemical, and epidemiological aspects of prion diseases. Whilst clinical research and studies on human tissue are an essential component of prion research, much of the understanding of the mechanisms governing transmission, replication, and toxicity comes from in vitro and in vivo studies. As with other neurodegenerative diseases caused by protein misfolding, the pathogenesis of prion disease is complex, full of conundra and contradictions. We will give here a historical overview of the use of models of prion disease, how they have evolved alongside the scientific questions, and how advancements in technologies have pushed the boundaries of our understanding of prion biology.
Collapse
Affiliation(s)
- Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG UK
| | - Zane Jaunmuktane
- Department of Neurodegenerative Disease, UCL Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG UK
| |
Collapse
|
23
|
Chokroverty S, Provini F. Sleep, Breathing, and Neurologic Disorders. SLEEP DISORDERS MEDICINE 2017:787-890. [DOI: 10.1007/978-1-4939-6578-6_41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Hayashi Y, Iwasaki Y, Takekoshi A, Yoshikura N, Asano T, Mimuro M, Kimura A, Satoh K, Kitamoto T, Yoshida M, Inuzuka T. An autopsy-verified case of FTLD-TDP type A with upper motor neuron-predominant motor neuron disease mimicking MM2-thalamic-type sporadic Creutzfeldt-Jakob disease. Prion 2016; 10:492-501. [PMID: 27929803 DOI: 10.1080/19336896.2016.1243192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Here we report an autopsy-verified case of frontotemporal lobar degeneration (FTLD)-transactivation responsive region (TAR) DNA binding protein (TDP) type A with upper motor neuron-predominant motor neuron disease mimicking MM2-thalamic-type sporadic Creutzfeldt-Jakob disease (sCJD). A 69-year-old woman presented with an 11-month history of progressive dementia, irritability, insomnia, and gait disturbance without a family history of dementia or prion disease. Neurological examination revealed severe dementia, frontal signs, and exaggerated bilateral tendon reflexes. Periodic sharp-wave complexes were not observed on the electroencephalogram. Brain diffusion MRI did not reveal abnormal changes. An easy Z score (eZIS) analysis for 99mTc-ECD-single photon emission computed tomography (99mTc-ECD-SPECT) revealed a bilateral decrease in thalamic regional cerebral blood flow (rCBF). PRNP gene analysis demonstrated methionine homozygosity at codon 129 without mutation. Cerebrospinal fluid (CSF) analysis showed normal levels of both 14-3-3 and total tau proteins. Conversely, prion protein was slowly amplified in the CSF by a real-time quaking-induced conversion assay. Her symptoms deteriorated to a state of akinetic mutism, and she died of sudden cardiac arrest, one year after symptom onset. Despite the SPECT results supporting a clinical diagnosis of MM2-thalamic-type sCJD, a postmortem assessment revealed that this was a case of FTLD-TDP type A, and excluded prion disease. Thus, this case indicates that whereas a bilateral decreasing thalamic rCBF detected by 99mTc-ECD-SPECT can be useful for diagnosing MM2-thalamic-type sCJD, it is not sufficiently specific. Postmortem diagnosis remains the gold standard for the diagnosis of this condition.
Collapse
Affiliation(s)
- Yuichi Hayashi
- a Department of Neurology and Geriatrics , Gifu University Graduate School of Medicine , Gifu , Japan
| | - Yasushi Iwasaki
- b Department of Neuropathology , Institute for Medical Science of Aging, Aichi Medical University , Nagakute , Japan
| | - Akira Takekoshi
- a Department of Neurology and Geriatrics , Gifu University Graduate School of Medicine , Gifu , Japan
| | - Nobuaki Yoshikura
- a Department of Neurology and Geriatrics , Gifu University Graduate School of Medicine , Gifu , Japan
| | - Takahiko Asano
- c Department of Radiology , Gifu University Graduate School of Medicine , Gifu , Japan
| | - Maya Mimuro
- b Department of Neuropathology , Institute for Medical Science of Aging, Aichi Medical University , Nagakute , Japan
| | - Akio Kimura
- a Department of Neurology and Geriatrics , Gifu University Graduate School of Medicine , Gifu , Japan
| | - Katsuya Satoh
- d Department of Locomotive Rehabilitation Sciences . Nagasaki University Graduate School of Medicine , Nagasaki , Japan
| | - Tetsuyuki Kitamoto
- e Division of CJD Science and Technology, Department of Prion Research , Center for Translational and Advanced Animal Research on Human Diseases, Tohoku University School of Medicine , Sendai , Japan
| | - Mari Yoshida
- b Department of Neuropathology , Institute for Medical Science of Aging, Aichi Medical University , Nagakute , Japan
| | - Takashi Inuzuka
- a Department of Neurology and Geriatrics , Gifu University Graduate School of Medicine , Gifu , Japan
| |
Collapse
|
25
|
Watts JC, Giles K, Bourkas MEC, Patel S, Oehler A, Gavidia M, Bhardwaj S, Lee J, Prusiner SB. Towards authentic transgenic mouse models of heritable PrP prion diseases. Acta Neuropathol 2016; 132:593-610. [PMID: 27350609 DOI: 10.1007/s00401-016-1585-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 11/27/2022]
Abstract
Attempts to model inherited human prion disorders such as familial Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker (GSS) disease, and fatal familial insomnia (FFI) using genetically modified mice have produced disappointing results. We recently demonstrated that transgenic (Tg) mice expressing wild-type bank vole prion protein (BVPrP) containing isoleucine at polymorphic codon 109 develop a spontaneous neurodegenerative disorder that exhibits many of the hallmarks of prion disease. To determine if mutations causing inherited human prion disease alter this phenotype, we generated Tg mice expressing BVPrP containing the D178N mutation, which causes FFI; the E200K mutation, which causes familial CJD; or an anchorless PrP mutation similar to mutations that cause GSS. Modest expression levels of mutant BVPrP resulted in highly penetrant spontaneous disease in Tg mice, with mean ages of disease onset ranging from ~120 to ~560 days. The brains of spontaneously ill mice exhibited prominent features of prion disease-specific neuropathology that were unique to each mutation and distinct from Tg mice expressing wild-type BVPrP. An ~8-kDa proteinase K-resistant PrP fragment was found in the brains of spontaneously ill Tg mice expressing either wild-type or mutant BVPrP. The spontaneously formed mutant BVPrP prions were transmissible to Tg mice expressing wild-type or mutant BVPrP as well as to Tg mice expressing mouse PrP. Thus, Tg mice expressing mutant BVPrP exhibit many of the hallmarks of heritable prion disorders in humans including spontaneous disease, protease-resistant PrP, and prion infectivity.
Collapse
Affiliation(s)
- Joel C Watts
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Biochemistry, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Kurt Giles
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Matthew E C Bourkas
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Biochemistry, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Smita Patel
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
| | - Abby Oehler
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
| | - Marta Gavidia
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
| | - Sumita Bhardwaj
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
| | - Joanne Lee
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
26
|
Nakatani E, Kanatani Y, Kaneda H, Nagai Y, Teramukai S, Nishimura T, Zhou B, Kojima S, Kono H, Fukushima M, Kitamoto T, Mizusawa H. Specific clinical signs and symptoms are predictive of clinical course in sporadic Creutzfeldt-Jakob disease. Eur J Neurol 2016; 23:1455-62. [PMID: 27222346 PMCID: PMC5089667 DOI: 10.1111/ene.13057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/21/2016] [Indexed: 12/01/2022]
Abstract
Background and purpose Akinetic mutism is thought to be an appropriate therapeutic end‐point in patients with sporadic Creutzfeldt−Jakob disease (sCJD). However, prognostic factors for akinetic mutism are unclear and clinical signs or symptoms that precede this condition have not been defined. The goal of this study was to identify prognostic factors for akinetic mutism and to clarify the order of clinical sign and symptom development prior to its onset. Methods The cumulative incidence of akinetic mutism and other clinical signs and symptoms was estimated based on Japanese CJD surveillance data (455 cases) collected from 2003 to 2008. A proportional hazards model was used to identify prognostic factors for the time to onset of akinetic mutism and other clinical signs and symptoms. Results Periodic synchronous discharges on electroencephalography were present in the majority of cases (93.5%). The presence of psychiatric symptoms or cerebellar disturbance at sCJD diagnosis was associated with the development of akinetic mutism [hazard ratio (HR) 1.50, 95% confidence interval (CI) 1.14–1.99, and HR 2.15, 95% CI1.61–2.87, respectively]. The clinical course from cerebellar disturbance to myoclonus or akinetic mutism was classified into three types: (i) direct path, (ii) path via pyramidal or extrapyramidal dysfunction and (iii) path via psychiatric symptoms or visual disturbance. Conclusions The presence of psychiatric symptoms or cerebellar disturbance increased the risk of akinetic mutism of sCJD cases with probable MM/MV subtypes. Also, there appear to be sequential associations in the development of certain clinical signs and symptoms of this disease.
Collapse
Affiliation(s)
- E Nakatani
- Translational Research Informatics Center, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Y Kanatani
- Department of Health Crisis Management, National Institute of Public Health, Saitama, Japan
| | - H Kaneda
- Translational Research Informatics Center, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Y Nagai
- Translational Research Informatics Center, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - S Teramukai
- Department of Biostatistics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - T Nishimura
- Translational Research Informatics Center, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - B Zhou
- Translational Research Informatics Center, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - S Kojima
- Translational Research Informatics Center, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - H Kono
- Translational Research Informatics Center, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - M Fukushima
- Translational Research Informatics Center, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - T Kitamoto
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - H Mizusawa
- National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW The present review discusses recent clinical data on diagnosis, new forms, and treatment of human prion diseases, and briefly summarizes research suggesting prion-like mechanisms in other neurodegenerative diseases. RECENT FINDINGS When proper sequences are performed, MRI has high diagnostic utility in prion disease, but there are issues with interpretation of images. The spectrum of MRI's utility for diagnosis and understanding human prion disease is still being explored. Two recent diffusion tensor imaging studies quantified changes in the gray and white matter in sporadic Jakob-Creutzfeldt disease, with unexpected results. The diagnostic utility of cerebrospinal fluid biomarkers has been controversial. A few studies showed that amplification methods can detect prions in either cerebrospinal fluid, olfactory epithelium, blood and/or urine in various human prion diseases. Additional cases of variably protease-sensitive prionopathy have led to a broader understanding of this novel sporadic prion disease. A few new mutations causing genetic prion disease, one with a very atypical presentation, have been identified. Although recent human prion disease treatment trials did not show benefit, they have improved our understanding, and led to better quantification, of the progression of these disorders. Lastly, we briefly summarize the increasing evidence that many nonprion neurodegenerative proteinopathies might spread in the brain by a prion-like mechanism. SUMMARY New prion detection methods appear promising, but need to be replicated with larger sample sizes. Identification of novel forms of human prion disease might better elucidate the full spectrum of prion diseases and expand our understanding of their pathogenesis.
Collapse
|
28
|
Hayashi Y, Iwasaki Y, Yoshikura N, Asano T, Hatano T, Tatsumi S, Satoh K, Kimura A, Kitamoto T, Yoshida M, Inuzuka T. Decreased regional cerebral blood flow in the bilateral thalami and medulla oblongata determined by an easy Z-score (eZIS) analysis of 99mTc-ECD-SPECT images in a case of MM2-thalamic-type sporadic Creutzfeldt–Jakob disease. J Neurol Sci 2015; 358:447-52. [DOI: 10.1016/j.jns.2015.09.356] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 09/16/2015] [Accepted: 09/21/2015] [Indexed: 12/12/2022]
|
29
|
Noble GP, Walsh DJ, Miller MB, Jackson WS, Supattapone S. Requirements for mutant and wild-type prion protein misfolding in vitro. Biochemistry 2015; 54:1180-7. [PMID: 25584902 DOI: 10.1021/bi501495j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Misfolding of the prion protein (PrP) plays a central role in the pathogenesis of infectious, sporadic, and inherited prion diseases. Here we use a chemically defined prion propagation system to study misfolding of the pathogenic PrP mutant D177N in vitro. This mutation causes PrP to misfold spontaneously in the absence of cofactor molecules in a process dependent on time, temperature, pH, and intermittent sonication. Spontaneously misfolded mutant PrP is able to template its unique conformation onto wild-type PrP substrate in a process that requires a phospholipid activity distinct from that required for the propagation of infectious prions. Similar results were obtained with a second pathogenic PrP mutant, E199K, but not with the polymorphic substitution M128V. Moreover, wild-type PrP inhibits mutant PrP misfolding in a dose-dependent manner, and cofactor molecules can antagonize this effect. These studies suggest that interactions between mutant PrP, wild-type PrP, and other cellular factors may control the rate of PrP misfolding in inherited prion diseases.
Collapse
Affiliation(s)
- Geoffrey P Noble
- Department of Biochemistry, The Geisel School of Medicine at Dartmouth , Vail Building Room 311, Hanover, New Hampshire 03755, United States
| | | | | | | | | |
Collapse
|
30
|
Prion protein misfolding, strains, and neurotoxicity: an update from studies on Mammalian prions. Int J Cell Biol 2013; 2013:910314. [PMID: 24454379 PMCID: PMC3884631 DOI: 10.1155/2013/910314] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 11/10/2013] [Accepted: 11/11/2013] [Indexed: 11/17/2022] Open
Abstract
Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of fatal neurodegenerative disorders affecting humans and other mammalian species. The central event in TSE pathogenesis is the conformational conversion of the cellular prion protein, PrPC, into the aggregate, β-sheet rich, amyloidogenic form, PrPSc. Increasing evidence indicates that distinct PrPSc conformers, forming distinct ordered aggregates, can encipher the phenotypic TSE variants related to prion strains. Prion strains are TSE isolates that, after inoculation into syngenic hosts, cause disease with distinct characteristics, such as incubation period, pattern of PrPSc distribution, and regional severity of histopathological changes in the brain. In analogy with other amyloid forming proteins, PrPSc toxicity is thought to derive from the existence of various intermediate structures prior to the amyloid fiber formation and/or their specific interaction with membranes. The latter appears particularly relevant for the pathogenesis of TSEs associated with GPI-anchored PrPSc, which involves major cellular membrane distortions in neurons. In this review, we update the current knowledge on the molecular mechanisms underlying three fundamental aspects of the basic biology of prions such as the putative mechanism of prion protein conversion to the pathogenic form PrPSc and its propagation, the molecular basis of prion strains, and the mechanism of induced neurotoxicity by PrPSc aggregates.
Collapse
|
31
|
Small-molecule theranostic probes: a promising future in neurodegenerative diseases. Int J Cell Biol 2013; 2013:150952. [PMID: 24324497 PMCID: PMC3845517 DOI: 10.1155/2013/150952] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/03/2013] [Indexed: 12/15/2022] Open
Abstract
Prion diseases are fatal neurodegenerative illnesses, which include Creutzfeldt-Jakob disease in humans and scrapie, chronic wasting disease, and bovine spongiform encephalopathy in animals. They are caused by unconventional infectious agents consisting primarily of misfolded, aggregated, β -sheet-rich isoforms, denoted prions, of the physiological cellular prion protein (PrP(C)). Many lines of evidence suggest that prions (PrP(Sc)) act both as a template for this conversion and as a neurotoxic agent causing neuronal dysfunction and cell death. As such, PrP(Sc) may be considered as both a neuropathological hallmark of the disease and a therapeutic target. Several diagnostic imaging probes have been developed to monitor cerebral amyloid lesions in patients with neurodegenerative disorders (such as Alzheimer's disease, Parkinson's disease, and prion disease). Examples of these probes are Congo red, thioflavin T, and their derivatives. We synthesized a series of styryl derivatives, denoted theranostics, and studied their therapeutic and/or diagnostic potentials. Here we review the salient traits of these small molecules that are able to detect and modulate aggregated forms of several proteins involved in protein misfolding diseases. We then highlight the importance of further studies for their practical implications in therapy and diagnostics.
Collapse
|
32
|
Marques IB, Teotónio R, Cunha C, Bento C, Sales F. Anti-NMDA receptor encephalitis presenting with total insomnia--a case report. J Neurol Sci 2013; 336:276-80. [PMID: 24210076 DOI: 10.1016/j.jns.2013.10.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/07/2013] [Accepted: 10/21/2013] [Indexed: 12/17/2022]
Abstract
Fatal insomnia (FI) is the first diagnosis to be considered by most neurologists when approaching a patient presenting with total insomnia followed by personality and cognitive changes, disturbance of alertness, autonomic hyperactivation and movement abnormalities. We report the case of a 30 year-old male patient who presented with total insomnia followed by episodes of psychomotor restlessness resembling anxiety attacks. Twenty days later, he developed refractory convulsive status epilepticus with admission to Intensive Care Unit. He progressed to a state of reduced alertness and responsiveness, presenting periods of agitation with abnormal dyskinetic movements, periods of autonomic instability and central hypoventilation. Workup revealed antibodies against N-methyl-d-aspartate receptor (NMDAR). Immunotherapy treatment led to a very significant improvement with the patient presenting only slight frontal lobe dysfunction after one year of recovery. To the best of our knowledge this is the first report of a patient with anti-NMDAR encephalitis first presenting with total insomnia. Our aim is to alert that anti-NMDAR encephalitis must be considered in the differential diagnosis of FI, especially in sporadic cases. Distinguishing the two conditions is very important as, contrarily to the fatal disclosure of FI, anti-NMDAR encephalitis is potentially reversible with adequate treatment even after severe and prolonged disease.
Collapse
Affiliation(s)
- Inês Brás Marques
- Department of Neurology, Coimbra University Hospital, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal.
| | - Rute Teotónio
- Department of Neurology, Coimbra University Hospital, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal
| | - Catarina Cunha
- Department of Neurology, Coimbra University Hospital, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal
| | - Conceição Bento
- Department of Neurology, Coimbra University Hospital, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal
| | - Francisco Sales
- Department of Neurology, Coimbra University Hospital, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal
| |
Collapse
|
33
|
Saverioni D, Notari S, Capellari S, Poggiolini I, Giese A, Kretzschmar HA, Parchi P. Analyses of protease resistance and aggregation state of abnormal prion protein across the spectrum of human prions. J Biol Chem 2013; 288:27972-85. [PMID: 23897825 DOI: 10.1074/jbc.m113.477547] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prion diseases are characterized by tissue accumulation of a misfolded, β-sheet-enriched isoform (scrapie prion protein (PrP(Sc))) of the cellular prion protein (PrP(C)). At variance with PrP(C), PrP(Sc) shows a partial resistance to protease digestion and forms highly aggregated and detergent-insoluble polymers, two properties that have been consistently used to distinguish the two proteins. In recent years, however, the idea that PrP(Sc) itself comprises heterogeneous species has grown. Most importantly, a putative proteinase K (PK)-sensitive form of PrP(Sc) (sPrP(Sc)) is being increasingly investigated for its possible role in prion infectivity, neurotoxicity, and strain variability. The study of sPrP(Sc), however, remains technically challenging because of the need of separating it from PrP(C) without using proteases. In this study, we have systematically analyzed both PK resistance and the aggregation state of purified PrP(Sc) across the whole spectrum of the currently characterized human prion strains. The results show that PrP(Sc) isolates manifest significant strain-specific differences in their PK digestion profile that are only partially explained by differences in the size of aggregates, suggesting that other factors, likely acting on PrP(Sc) aggregate stability, determine its resistance to proteolysis. Fully protease-sensitive low molecular weight aggregates were detected in all isolates but in a limited proportion of the overall PrP(Sc) (i.e. <10%), arguing against a significant role of slowly sedimenting PK-sensitive PrP(Sc) in the biogenesis of prion strains. Finally, we highlight the limitations of current operational definitions of sPrP(Sc) and of the quantitative analytical measurements that are not based on the isolation of a fully PK-sensitive PrP(Sc) form.
Collapse
Affiliation(s)
- Daniela Saverioni
- From the Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Pirisinu L, Nonno R, Esposito E, Benestad SL, Gambetti P, Agrimi U, Zou WQ. Small ruminant nor98 prions share biochemical features with human gerstmann-sträussler-scheinker disease and variably protease-sensitive prionopathy. PLoS One 2013; 8:e66405. [PMID: 23826096 PMCID: PMC3691246 DOI: 10.1371/journal.pone.0066405] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/06/2013] [Indexed: 01/08/2023] Open
Abstract
Prion diseases are classically characterized by the accumulation of pathological prion protein (PrPSc) with the protease resistant C-terminal fragment (PrPres) of 27–30 kDa. However, in both humans and animals, prion diseases with atypical biochemical features, characterized by PK-resistant PrP internal fragments (PrPres) cleaved at both the N and C termini, have been described. In this study we performed a detailed comparison of the biochemical features of PrPSc from atypical prion diseases including human Gerstmann-Sträussler-Scheinker disease (GSS) and variably protease-sensitive prionopathy (VPSPr) and in small ruminant Nor98 or atypical scrapie. The kinetics of PrPres production and its cleavage sites after PK digestion were analyzed, along with the PrPSc conformational stability, using a new method able to characterize both protease-resistant and protease-sensitive PrPSc components. All these PrPSc types shared common and distinctive biochemical features compared to PrPSc from classical prion diseases such as sporadic Creutzfeldt-Jakob disease and scrapie. Notwithstanding, distinct biochemical signatures based on PrPres cleavage sites and PrPSc conformational stability were identified in GSS A117V, GSS F198S, GSS P102L and VPSPr, which allowed their specific identification. Importantly, the biochemical properties of PrPSc from Nor98 and GSS P102L largely overlapped, but were distinct from the other human prions investigated. Finally, our study paves the way towards more refined comparative approaches to the characterization of prions at the animal–human interface.
Collapse
Affiliation(s)
- Laura Pirisinu
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
- * E-mail: (LP); (WQZ)
| | - Romolo Nonno
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Esposito
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | | | - Pierluigi Gambetti
- Department of Pathology, National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Umberto Agrimi
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Wen-Quan Zou
- Department of Pathology, National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail: (LP); (WQZ)
| |
Collapse
|
35
|
Parchi P, de Boni L, Saverioni D, Cohen ML, Ferrer I, Gambetti P, Gelpi E, Giaccone G, Hauw JJ, Höftberger R, Ironside JW, Jansen C, Kovacs GG, Rozemuller A, Seilhean D, Tagliavini F, Giese A, Kretzschmar HA. Consensus classification of human prion disease histotypes allows reliable identification of molecular subtypes: an inter-rater study among surveillance centres in Europe and USA. Acta Neuropathol 2012; 124:517-29. [PMID: 22744790 DOI: 10.1007/s00401-012-1002-8] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/30/2012] [Accepted: 06/02/2012] [Indexed: 12/27/2022]
Abstract
The current classification of human sporadic prion diseases recognizes six major phenotypic subtypes with distinctive clinicopathological features, which largely correlate at the molecular level with the genotype at the polymorphic codon 129 (methionine, M, or valine, V) in the prion protein gene and with the size of the protease-resistant core of the abnormal prion protein, PrP(Sc) (i.e. type 1 migrating at 21 kDa and type 2 at 19 kDa). We previously demonstrated that PrP(Sc) typing by Western blotting is a reliable means of strain typing and disease classification. Limitations of this approach, however, particularly in the interlaboratory setting, are the association of PrP(Sc) types 1 or 2 with more than one clinicopathological phenotype, which precludes definitive case classification if not supported by further analysis, and the difficulty of fully recognizing cases with mixed phenotypic features. In this study, we tested the inter-rater reliability of disease classification based only on histopathological criteria. Slides from 21 cases covering the whole phenotypic spectrum of human sporadic prion diseases, and also including two cases of variant Creutzfeldt-Jakob disease (CJD), were distributed blindly to 13 assessors for classification according to given instructions. The results showed good-to-excellent agreement between assessors in the classification of cases. In particular, there was full agreement (100 %) for the two most common sporadic CJD subtypes and variant CJD, and very high concordance in general for all pure phenotypes and the most common subtype with mixed phenotypic features. The present data fully support the basis for the current classification of sporadic human prion diseases and indicate that, besides molecular PrP(Sc) typing, histopathological analysis permits reliable disease classification with high interlaboratory accuracy.
Collapse
|
36
|
Head MW, Ironside JW. Review: Creutzfeldt-Jakob disease: prion protein type, disease phenotype and agent strain. Neuropathol Appl Neurobiol 2012; 38:296-310. [PMID: 22394291 DOI: 10.1111/j.1365-2990.2012.01265.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The human transmissible spongiform encephalopathies or human prion diseases are one of the most intensively investigated groups of rare human neurodegenerative conditions. They are generally held to be unique in terms of their complex epidemiology and phenotypic variability, but they may also serve as a paradigm with which other more common protein misfolding disorders might be compared and contrasted. The clinico-pathological phenotype of human prion diseases appears to depend on a complex interaction between the prion protein genotype of the affected individual and the physico-chemical properties of the neurotoxic and transmissible agent, thought to comprise of misfolded prion protein. A major focus of research in recent years has been to define the phenotypic heterogeneity of the recognized human prion diseases, correlate this with molecular-genetic features and then determine whether this molecular-genetic classification of human prion disease defines the biological properties of the agent as determined by animal transmission studies. This review seeks to survey the field as it currently stands, summarize what has been learned, and explore what remains to be investigated in order to obtain a more complete scientific understanding of prion diseases and to protect public health.
Collapse
Affiliation(s)
- M W Head
- National CJD Research & Surveillance Unit, School of Molecular & Clinical Medicine, University of Edinburgh, Edinburgh, UK.
| | | |
Collapse
|
37
|
Luo JJ, Truant AL, Kong Q, Zou WQ. Sporadic fatal insomnia with clinical, laboratory, and genetic findings. J Clin Neurosci 2012; 19:1188-92. [PMID: 22717776 DOI: 10.1016/j.jocn.2011.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 11/18/2011] [Indexed: 10/28/2022]
Abstract
A 75-year-old man presented with a three-year history of progressively worsening insomnia and dementia. His mother and older sister had similar disorders. On initial examination, he was awake, apathetic, and disoriented but had no focal neurological deficits. Electroencephalography showed diffuse background slowing with neither periodic discharge nor sleeping activity. A single-photon emission CT scan showed significantly reduced cerebral perfusion in bilateral thalami, basal ganglia, and limbic cortices. In the late stage of his illness, he developed sphincter dysfunction. Laboratory studies showed increased T-lymphocytes and B-lymphocytes and reduced cortisol level. Cerebrospinal fluid 14-3-3 protein was absent. Genetic evaluations failed to show the aspartate to asparagine point mutation at codon 178 but disclosed an asparagine to serine substitution at codon 171 in one allele and a deletion of 24 base pairs in the other allele in the human prion protein gene. These findings led to a diagnosis of sporadic fatal insomnia, which is a recently described prion disease.
Collapse
Affiliation(s)
- Jin Jun Luo
- Department of Neurology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | |
Collapse
|
38
|
Giles K, De Nicola GF, Patel S, Glidden DV, Korth C, Oehler A, DeArmond SJ, Prusiner SB. Identification of I137M and other mutations that modulate incubation periods for two human prion strains. J Virol 2012; 86:6033-41. [PMID: 22438549 PMCID: PMC3372217 DOI: 10.1128/jvi.07027-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/06/2012] [Indexed: 11/20/2022] Open
Abstract
We report here the transmission of human prions to 18 new transgenic (Tg) mouse lines expressing 8 unique chimeric human/mouse prion proteins (PrP). Extracts from brains of two patients, who died of sporadic Creutzfeldt-Jakob disease (sCJD), contained either sCJD(MM1) or sCJD(VV2) prion strains and were used for inocula. Mice expressing chimeric PrP showed a direct correlation between expression level and incubation period for sCJD(MM1) prions irrespective of whether the transgene encoded methionine (M) or valine (V) at polymorphic residue 129. Tg mice expressing chimeric transgenes encoding V129 were unexpectedly resistant to infection with sCJD(VV2) prions, and when transmission did occur, it was accompanied by a change in strain type. The transmission of sCJD(MM1) prions was modulated by single amino acid reversions of each human PrP residue in the chimeric sequence. Reverting human residue 137 in the chimeric transgene from I to M prolonged the incubation time for sCJD(MM1) prions by more than 100 days; structural analyses suggest a profound change in the orientation of amino acid side chains with the I→M mutation. These findings argue that changing the surface charge in this region of PrP greatly altered the interaction between PrP isoforms during prion replication. Our studies contend that strain-specified replication of prions is modulated by PrP sequence-specific interactions between the prion precursor PrP(C) and the infectious product PrP(Sc).
Collapse
Affiliation(s)
- Kurt Giles
- Institute for Neurodegenerative Diseases
- Departments of Neurology
| | | | | | | | | | - Abby Oehler
- Pathology, University of California San Francisco, San Francisco, California, USA
| | - Stephen J. DeArmond
- Institute for Neurodegenerative Diseases
- Pathology, University of California San Francisco, San Francisco, California, USA
| | | |
Collapse
|
39
|
Head MW, Ironside JW. The contribution of different prion protein types and host polymorphisms to clinicopathological variations in Creutzfeldt-Jakob disease. Rev Med Virol 2012; 22:214-29. [DOI: 10.1002/rmv.725] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/21/2011] [Accepted: 10/21/2011] [Indexed: 01/22/2023]
Affiliation(s)
- Mark W. Head
- The National CJD Research & Surveillance Unit, School of Molecular & Clinical Medicine; University of Edinburgh; Edinburgh UK
| | - James W. Ironside
- The National CJD Research & Surveillance Unit, School of Molecular & Clinical Medicine; University of Edinburgh; Edinburgh UK
| |
Collapse
|
40
|
Moda F, Suardi S, Di Fede G, Indaco A, Limido L, Vimercati C, Ruggerone M, Campagnani I, Langeveld J, Terruzzi A, Brambilla A, Zerbi P, Fociani P, Bishop MT, Will RG, Manson JC, Giaccone G, Tagliavini F. MM2-thalamic Creutzfeldt-Jakob disease: neuropathological, biochemical and transmission studies identify a distinctive prion strain. Brain Pathol 2012; 22:662-9. [PMID: 22288561 PMCID: PMC8057639 DOI: 10.1111/j.1750-3639.2012.00572.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In Creutzfeldt-Jakob disease (CJD), molecular typing based on the size of the protease resistant core of the disease-associated prion protein (PrP(Sc) ) and the M/V polymorphism at codon 129 of the PRNP gene correlates with the clinico-pathologic subtypes. Approximately 95% of the sporadic 129MM CJD patients are characterized by cerebral deposition of type 1 PrP(Sc) and correspond to the classic clinical CJD phenotype. The rare 129MM CJD patients with type 2 PrP(Sc) are further subdivided in a cortical and a thalamic form also indicated as sporadic fatal insomnia. We observed two young patients with MM2-thalamic CJD. Main neuropathological features were diffuse, synaptic PrP immunoreactivity in the cerebral cortex and severe neuronal loss and gliosis in the thalamus and olivary nucleus. Western blot analysis showed the presence of type 2A PrP(Sc) . Challenge of transgenic mice expressing 129MM human PrP showed that MM2-thalamic sporadic CJD (sCJD) was able to transmit the disease, at variance with MM2-cortical sCJD. The affected mice showed deposition of type 2A PrP(Sc) , a scenario that is unprecedented in this mouse line. These data indicate that MM2-thalamic sCJD is caused by a prion strain distinct from the other sCJD subtypes including the MM2-cortical form.
Collapse
Affiliation(s)
- Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Suardi
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Antonio Indaco
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Lucia Limido
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | | | | | - Jan Langeveld
- Central Veterinary Institute, Wageningen UR, Lelystad, The Netherlands
| | | | | | - Pietro Zerbi
- Ospedale Luigi Sacco, Università di Milano, Milan, Italy
| | - Paolo Fociani
- Ospedale Luigi Sacco, Università di Milano, Milan, Italy
| | - Matthew T. Bishop
- National Creutzfeldt‐Jakob Disease Surveillance Unit, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Robert G. Will
- National Creutzfeldt‐Jakob Disease Surveillance Unit, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Jean C. Manson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
41
|
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases are the names given to the group of fatal neurodegenerative disorders that includes kuru, Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker disease (GSS), fatal and sporadic familial insomnia and the novel prion disease variable protease-sensitive prionopathy (PSPr) in humans. Kuru was restricted to natives of the Foré linguistic group in Papua New Guinea and spread by ritualistic endocannibalism. CJD appears as sporadic, familial (genetic or hereditary) and infectious (iatrogenic) forms. Variant CJD is a zoonotic CJD type and of major public health importance, which resulted from transmission from bovine spongiform encephalopathy (BSE) through ingestion of contaminated meat products. GSS is a slowly progressive hereditary autosomal dominant disease and the first human TSE in which a mutation in a gene encoding for prion protein (PrP) was discovered. The rarest human prion disease is fatal insomnia, which may occur, in genetic and sporadic form. More recently a novel prion disease variable protease-sensitive prionopathy (PSPr) was described in humans.TSEs are caused by a still incompletely defined infectious agent known as a "prion" which is widely regarded to be an aggregate of a misfolded isoform (PrP(Sc)) of a normal cellular glycoprotein (PrP(c)). The conversion mechanism of PrP(c) into PrP(Sc) is still not certain.
Collapse
Affiliation(s)
- Beata Sikorska
- Department of Molecular Pathology and Neuropathology, Chair of Oncology, Medical University of Lodz, Czechoslowacka st. 8/10, 92-216, Lodz, Poland,
| | | |
Collapse
|
42
|
Sikorska B, Knight R, Ironside JW, Liberski PP. Creutzfeldt-Jakob disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 724:76-90. [PMID: 22411235 DOI: 10.1007/978-1-4614-0653-2_6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Creutzfeldt-Jakob disease (CJD), a neurodegenerative disorder that is the commonest form of human prion disease or transmissible spongiform encephalopathies (TSEs). Four types of CJD are known: Sporadic (sCJD), familial or genetic (gCJD); iatrogenic (iCJD) and variant CJD (vCJD). The latter results from transmission of bovine spongiform encephalopathy (BSE) from cattle to humans. The combination of PrP(Sc) peptide (either 21 kDa or 19 kDa) and the status of the codon 129 of the gene (PRNP) encoding for PrP (either Methionine or Valine) is used to classify sCJD into 6 types: MM1 and MV1, the most common; VV2; MV2 (Brownell/Oppenheimer syndrome); MM2; VV1 and sporadic fatal insomnia, in that order of prevalence. Genetic CJD is caused by diverse mutations in the PRNP gene. The neuropathology of CJD consists of spongiform change, astro- and microgliosis and poorly defined neuronal loss. In a proportion of cases, amyloid plaques, like those of kuru, are seen. PrP immunohistochemistry reveals different types of PrP(Sc) deposits - the most common is the synaptic-type, but perivacuolar, perineuronal and plaque-like deposits may be also detected.
Collapse
Affiliation(s)
- Beata Sikorska
- Department of Molecular Pathology and Neuropathology, Medical University Lodz, Lodz, Poland
| | | | | | | |
Collapse
|
43
|
Imran M, Mahmood S. An overview of human prion diseases. Virol J 2011; 8:559. [PMID: 22196171 PMCID: PMC3296552 DOI: 10.1186/1743-422x-8-559] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 12/24/2011] [Indexed: 11/24/2022] Open
Abstract
Prion diseases are transmissible, progressive and invariably fatal neurodegenerative conditions associated with misfolding and aggregation of a host-encoded cellular prion protein, PrPC. They have occurred in a wide range of mammalian species including human. Human prion diseases can arise sporadically, be hereditary or be acquired. Sporadic human prion diseases include Cruetzfeldt-Jacob disease (CJD), fatal insomnia and variably protease-sensitive prionopathy. Genetic or familial prion diseases are caused by autosomal dominantly inherited mutations in the gene encoding for PrPC and include familial or genetic CJD, fatal familial insomnia and Gerstmann-Sträussler-Scheinker syndrome. Acquired human prion diseases account for only 5% of cases of human prion disease. They include kuru, iatrogenic CJD and a new variant form of CJD that was transmitted to humans from affected cattle via meat consumption especially brain. This review presents information on the epidemiology, etiology, clinical assessment, neuropathology and public health concerns of human prion diseases. The role of the PrP encoding gene (PRNP) in conferring susceptibility to human prion diseases is also discussed.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Human Genetics and Molecular Biology, University of Health Sciences (UHS), Khayaban-e-Jamia Punjab, Lahore 54600, Pakistan
| | | |
Collapse
|
44
|
Moody KM, Schonberger LB, Maddox RA, Zou WQ, Cracco L, Cali I. Sporadic fatal insomnia in a young woman: a diagnostic challenge: case report. BMC Neurol 2011; 11:136. [PMID: 22040318 PMCID: PMC3214133 DOI: 10.1186/1471-2377-11-136] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 10/31/2011] [Indexed: 11/17/2022] Open
Abstract
Background Sporadic fatal insomnia (sFI) and fatal familial insomnia (FFI) are rare human prion diseases. Case Presentation We report a case of a 33-year-old female who died of a prion disease for whom the diagnosis of sFI or FFI was not considered clinically. Following death of this patient, an interview with a close family member indicated the patient's illness included a major change in her sleep pattern, corroborating the reported autopsy diagnosis of sFI. Genetic tests identified no prion protein (PrP) gene mutation, but neuropathological examination and molecular study showed protease-resistant PrP (PrPres) in several brain regions and severe atrophy of the anterior-ventral and medial-dorsal thalamic nuclei similar to that described in FFI. Conclusions In patients with suspected prion disease, a characteristic change in sleep pattern can be an important clinical clue for identifying sFI or FFI; polysomnography (PSG), genetic analysis, and nuclear imaging may aid in diagnosis.
Collapse
Affiliation(s)
- Karen M Moody
- Texas Department of State Health Services, Austin, TX 78756-3199, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Here we review the known strain profiles of various prion diseases of animals and humans, and how transgenic mouse models are being used to elucidate basic molecular mechanisms of prion propagation and strain variation and for assessing the zoonotic potential of various animal prion strains.
Collapse
Affiliation(s)
- Glenn C Telling
- Sanders Brown Center on Aging, University of Kentucky Medical Center, Lexington, KY 40506, USA.
| |
Collapse
|
46
|
Abstract
Prion diseases in humans and animals are characterized by progressive neurodegeneration and the formation of infectious particles called prions. Both features are intimately linked to a conformational transition of the cellular prion protein (PrP(C)) into aberrantly folded conformers with neurotoxic and self-replicating activities. Interestingly, there is increasing evidence that the infectious and neurotoxic properties of PrP conformers are not necessarily coupled. Transgenic mouse models revealed that some PrP mutants interfere with neuronal function in the absence of infectious prions. Vice versa, propagation of prions can occur without causing neurotoxicity. Consequently, it appears plausible that two partially independent pathways exist, one pathway leading to the propagation of infectious prions and another one that mediates neurotoxic signaling. In this review we will summarize current knowledge of neurotoxic PrP conformers and discuss the role of PrP(C) as a mediator of both stress-protective and neurotoxic signaling cascades.
Collapse
|
47
|
Montagna P. Fatal familial insomnia and the role of the thalamus in sleep regulation. HANDBOOK OF CLINICAL NEUROLOGY 2011; 99:981-996. [PMID: 21056239 DOI: 10.1016/b978-0-444-52007-4.00018-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- Pasquale Montagna
- Department of Neurological Sciences, University of Bologna Medical School, Bologna, Italy.
| |
Collapse
|
48
|
Parchi P, Strammiello R, Giese A, Kretzschmar H. Phenotypic variability of sporadic human prion disease and its molecular basis: past, present, and future. Acta Neuropathol 2011; 121:91-112. [PMID: 21107851 DOI: 10.1007/s00401-010-0779-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 11/05/2010] [Accepted: 11/06/2010] [Indexed: 11/28/2022]
Abstract
Human prion diseases are rare neurodegenerative disorders related to prion protein misfolding that can occur as sporadic, familial or acquired forms. In comparison to other more common neurodegenerative disorders, prion diseases show a wider range of phenotypic variation and largely transmit to experimental animals, a feature that led to the isolation and characterization of different strains of the transmissible agent or prion with distinct biological properties. Biochemically distinct PrP(Sc) types have been demonstrated which differ in their size after proteinase cleavage, glycosylation pattern, and possibly other features related to their conformation. These PrP(Sc) types, possibly enciphering the prion strains, together with the naturally occurring polymorphism at codon 129 in the prion protein gene have a major influence on the disease phenotype. In the sporadic form, the most common but perhaps least understood form of human prion disease, there are at least six major combinations of codon 129 genotype and prion protein isotype, which are significantly related to distinctive clinical-pathological subgroups of the disease. In this review, we provide an update on the current knowledge and classification of the disease subtypes of the sporadic human prion diseases as defined by molecular features and pathological changes. Furthermore, we discuss the molecular basis of phenotypic variability taking into account the results of recent transmission studies that shed light on the extent of prion strain variation in humans.
Collapse
Affiliation(s)
- Piero Parchi
- Dipartimento di Scienze Neurologiche, Università di Bologna, Bologna, Italy
| | | | | | | |
Collapse
|
49
|
Capellari S, Strammiello R, Saverioni D, Kretzschmar H, Parchi P. Genetic Creutzfeldt-Jakob disease and fatal familial insomnia: insights into phenotypic variability and disease pathogenesis. Acta Neuropathol 2011; 121:21-37. [PMID: 20978903 DOI: 10.1007/s00401-010-0760-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/17/2010] [Accepted: 10/11/2010] [Indexed: 01/18/2023]
Abstract
Human prion diseases are a group of rare neurodegenerative disorders characterized by the conversion of the constitutively expressed prion protein, PrP(C), into an abnormally aggregated isoform, called PrP(Sc). While most people who develop a prion disease have no identifiable cause and a few acquire the disease through an identified source of infection, about 10-15% of patients are affected by a genetic form and carry either a point mutation or an insertion of octapeptide repeats in the prion protein gene. Prion diseases show the highest extent of phenotypic heterogeneity among neurodegenerative disorders and comprise three major disease entities with variable though overlapping phenotypic features: Creutzfeldt-Jakob disease (CJD), fatal insomnia and the Gerstmann-Sträussler-Scheinker syndrome. Both CJD and fatal insomnia are fully transmissible diseases, a feature that led to the isolation and characterization of different strains of the agent or prion showing distinctive clinical and neuropathological features after transmission to syngenic animals. Here, we review the current knowledge of the effects of the pathogenic mutations linked to genetic CJD and fatal familial insomnia on the prion protein metabolism and physicochemical properties, the disease phenotype and the strain characteristics. The data derived from studies in vitro and from those using cell and animal models are compared with those obtained from the analyses of the naturally occurring disease. The extent of phenotypic variation in genetic prion disease is analyzed in comparison to that of the sporadic disease, which has recently been the topic of a systematic and detailed characterization.
Collapse
|
50
|
Abstract
The prion diseases are a family of rare neurodegenerative disorders that result from the accumulation of a misfolded isoform of the prion protein (PrP), a normal constituent of the neuronal membrane. Five subtypes constitute the known human prion diseases; kuru, Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), fatal insomnia (FI), and variant CJD (vCJD). These subtypes are distinguished, in part, by their clinical phenotype, but primarily by their associated brain histopathology. Evidence suggests these phenotypes are defined by differences in the pathogenic conformation of misfolded PrP. Although the vast majority of cases are sporadic, 10% to 15% result from an autosomal dominant mutation of the PrP gene (PRNP). General phenotype-genotype correlations can be made for the major subtypes of CJD, GSS, and FI. This paper will review some of the general background related to prion biology and detail the clinical and pathologic features of the major prion diseases, with a particular focus on the genetic aspects that result in prion disease or modification of its risk or phenotype.
Collapse
Affiliation(s)
- Khalilah Brown
- Center for Comprehensive Care and Research on Memory Disorders, Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|