1
|
Stone GL, Toresdahl BG, Asif IM. Avian Flu 2024: Considerations for the Competitive Athlete. Sports Health 2024; 16:685-686. [PMID: 39177490 PMCID: PMC11346229 DOI: 10.1177/19417381241270260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
|
2
|
El Sahly HM, Yildirim I, Frey SE, Winokur P, Jackson LA, Bernstein DI, Creech CB, Chen WH, Rupp RE, Whitaker JA, Phadke V, Hoft DF, Ince D, Brady RC, Edwards KM, Ortiz JR, Berman MA, Weiss J, Wegel A. Safety and Immunogenicity of a Delayed Heterologous Avian Influenza A(H7N9) Vaccine Boost Following Different Priming Regimens: A Randomized Clinical Trial. J Infect Dis 2024; 229:327-340. [PMID: 37466221 PMCID: PMC10873179 DOI: 10.1093/infdis/jiad276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Influenza A (H7N9) has caused multiple disease waves with evidence of strain diversification. Optimal influenza A (H7N9) prime-boost vaccine strategies are unknown. METHODS We recruited participants who had received monovalent inactivated A/Shanghai/2/2013 (H7N9) vaccine (MIV) approximately 5 years earlier, as follows: MIV with MF59 (MF59 × 2 group), MIV with AS03 (AS03 × 2 group), unadjuvanted MIV (No Adj group), MIV with MF59 or AS03 followed by unadjuvanted MIV (Adjx1 group), and A/H7-naive (unprimed group). Participants were randomized to receive 1 dose of AS03-adjuvanted or unadjuvanted A/Hong Kong/125/2017 (H7N9) MIV and were followed for safety and immunogenicity using hemagglutination inhibition (HAI) and neutralizing antibody assays. RESULTS We enrolled 304 participants: 153 received the adjuvanted boost and 151 received the unadjuvanted boost. At 21 days postvaccination, the proportion of participants with HAI antibody titers against the boosting vaccine strain of ≥40 in the adjuvanted and unadjuvanted arms, respectively, were 88% and 49% in MF59 × 2 group, 89% and 75% in AS03 × 2 group, 59% and 20% in No Adj group, 94% and 55% in Adjx1group, and 9% and 11% in unprimed group. CONCLUSIONS Serologic responses to a heterologous A(H7N9) MIV boost were highest in participants primed and boosted with adjuvant-containing regimens. CLINICAL TRIALS REGISTRATION NCT03738241.
Collapse
Affiliation(s)
- Hana M El Sahly
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Inci Yildirim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sharon E Frey
- Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Patricia Winokur
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Lisa A Jackson
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | - David I Bernstein
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - C Buddy Creech
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Wilbur H Chen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Richard E Rupp
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jennifer A Whitaker
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Varun Phadke
- The Hope Clinic of Emory University, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Daniel F Hoft
- Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Dilek Ince
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Rebecca C Brady
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kathryn M Edwards
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin R Ortiz
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Megan A Berman
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | |
Collapse
|
3
|
Chepkwony S, Parys A, Vandoorn E, Chiers K, Van Reeth K. Efficacy of Heterologous Prime-Boost Vaccination with H3N2 Influenza Viruses in Pre-Immune Individuals: Studies in the Pig Model. Viruses 2020; 12:v12090968. [PMID: 32882956 PMCID: PMC7552030 DOI: 10.3390/v12090968] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 12/25/2022] Open
Abstract
In a previous study in influenza-naïve pigs, heterologous prime-boost vaccination with monovalent, adjuvanted whole inactivated vaccines (WIV) based on the European swine influenza A virus (SwIAV) strain, A/swine/Gent/172/2008 (G08), followed by the US SwIAV strain, A/swine/Pennsylvania/A01076777/2010 (PA10), was shown to induce broadly cross-reactive hemagglutination inhibition (HI) antibodies against 12 out of 15 antigenically distinct H3N2 influenza strains. Here, we used the pig model to examine the efficacy of that particular heterologous prime-boost vaccination regimen, in individuals with pre-existing infection-immunity. Pigs were first inoculated intranasally with the human H3N2 strain, A/Nanchang/933/1995. Seven weeks later, they were vaccinated intramuscularly with G08 followed by PA10 or vice versa. We examined serum antibody responses against the hemagglutinin and neuraminidase, and antibody-secreting cell (ASC) responses in peripheral blood, draining lymph nodes, and nasal mucosa (NMC), in ELISPOT assays. Vaccination induced up to 10-fold higher HI antibody titers than in naïve pigs, with broader cross-reactivity, and protection against challenge with an antigenically distant H3N2 strain. It also boosted ASC responses in lymph nodes and NMC. Our results show that intramuscular administration of WIV can lead to enhanced antibody responses and cross-reactivity in pre-immune subjects, and recall of ASC responses in lymph nodes and NMC.
Collapse
Affiliation(s)
- Sharon Chepkwony
- Laboratory of Virology, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, 9820 Merelbeke, Belgium; (S.C.); (A.P.); (E.V.)
| | - Anna Parys
- Laboratory of Virology, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, 9820 Merelbeke, Belgium; (S.C.); (A.P.); (E.V.)
| | - Elien Vandoorn
- Laboratory of Virology, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, 9820 Merelbeke, Belgium; (S.C.); (A.P.); (E.V.)
| | - Koen Chiers
- Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Kristien Van Reeth
- Laboratory of Virology, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, 9820 Merelbeke, Belgium; (S.C.); (A.P.); (E.V.)
- Correspondence: ; Tel.: +32-92647369
| |
Collapse
|
4
|
Spearman P, Tomaras GD, Montefiori DC, Huang Y, Elizaga ML, Ferrari G, Alam SM, Isaacs A, Ahmed H, Hural J, McElrath MJ, Ouedraogo L, Pensiero M, Butler C, Kalams SA, Overton ET, Barnett SW. Rapid Boosting of HIV-1 Neutralizing Antibody Responses in Humans Following a Prolonged Immunologic Rest Period. J Infect Dis 2019; 219:1755-1765. [PMID: 30615119 PMCID: PMC6775047 DOI: 10.1093/infdis/jiz008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 01/04/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The durability and breadth of human immunodeficiency virus type 1 (HIV-1)-specific immune responses elicited through vaccination are important considerations in the development of an effective HIV-1 vaccine. Responses to HIV-1 envelope subunit protein (Env) immunization in humans are often described as short-lived. METHODS We enrolled 16 healthy volunteers who had received priming with an HIV-1 subtype B Env vaccine given with MF59 adjuvant 5-17 years previously and 20 healthy unprimed volunteers. Three booster immunizations with a heterologous subtype C trimeric gp140 protein vaccine were administered to the primed group, and the same subtype C gp140 protein vaccination regimen was administered to the unprimed subjects. RESULTS Binding antibodies and neutralizing antibodies to tier 1 viral isolates were detected in the majority of previously primed subjects. Remarkably, a single dose of protein boosted binding and neutralizing antibody titers in 100% of primed subjects following this prolonged immunologic rest period, and CD4+ T-cell responses were boosted in 75% of primed individuals. CONCLUSIONS These results demonstrate that HIV-1 protein immunogens can elicit durable memory T- and B-cell responses and that strong tier 1 virus neutralizing responses can be elicited by a single booster dose of protein following a long immunologic rest period. However, we found no evidence that cross-clade boosting led to a significantly broadened neutralizing antibody response.
Collapse
Affiliation(s)
- Paul Spearman
- Department of Pediatrics, Cincinnati Children’s Hospital, Ohio
| | - Georgia D Tomaras
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Ying Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Marnie L Elizaga
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - S Munir Alam
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Abby Isaacs
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Hasan Ahmed
- Department of Biology, Emory University, Atlanta, Georgia
| | - John Hural
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Laissa Ouedraogo
- Division of AIDS, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Michael Pensiero
- Division of AIDS, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Chris Butler
- Division of AIDS, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Spyros A Kalams
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Edgar Turner Overton
- Department of Medicine, University of Alabama at Birmingham, Cambridge, Massachusetts
| | | | | |
Collapse
|
5
|
Frey SE, Shakib S, Chanthavanich P, Richmond P, Smith T, Tantawichien T, Kittel C, Jaehnig P, Mojares Z, Verma B, Kanesa-Thasan N, Hohenboken M. Safety and Immunogenicity of MF59-Adjuvanted Cell Culture-Derived A/H5N1 Subunit Influenza Virus Vaccine: Dose-Finding Clinical Trials in Adults and the Elderly. Open Forum Infect Dis 2019; 6:ofz107. [PMID: 30968056 PMCID: PMC6446137 DOI: 10.1093/ofid/ofz107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/26/2019] [Indexed: 01/29/2023] Open
Abstract
Background A/H5N1 influenza viruses have high pandemic potential; consequently, vaccines need to be produced rapidly. MF59® adjuvant reduces the antigen required per dose, allowing for dose sparing and more rapid vaccine availability. Methods Two multicenter, phase II trials were conducted to evaluate the safety and immunogenicity of an MF59-adjuvanted, cell culture–derived, A/H5N1 vaccine (aH5N1c) among 979 adult (18–64 years old) and 1393 elderly (≥65 years old) subjects. Participants were equally randomized to receive 2 full-dose (7.5 μg of hemagglutinin antigen per dose) or 2 half-dose aH5N1c vaccinations 3 weeks apart. Outcomes were based on Center for Biologics Evaluation Research and Review (CBER) and Committee for Medicinal Products for Human Use (CHMP) licensure criteria (titers ≥1:40 and seroconversions on day 43). Solicited reactions and adverse events were assessed (www.clinicaltrials.gov: NCT01776541 and NCT01766921). Results CBER and CHMP criteria were met by both age groups. CBER criteria for hemagglutination titers were met for the full-dose formulation. Solicited reaction frequencies tended to be higher in the full-dose group and were of mild to moderate intensity. No vaccine-related serious adverse events occurred. Conclusions In adult and elderly participants, the full-dose aH5N1c vaccine formulation was well tolerated and met US and European licensure criteria for pandemic vaccines.
Collapse
Affiliation(s)
- Sharon E Frey
- School of Medicine, Saint Louis University, St. Louis, Missouri
| | - Sepehr Shakib
- CMAX Clinical Research Pty Ltd., Adelaide, SA, Australia
| | - Pornthep Chanthavanich
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Peter Richmond
- Division of Paediatrics, School of Medicine, University of Western Australia, and Vaccine Trials Group, Telethon Kids Institute, Subiaco, WA, Australia
| | | | - Terapong Tantawichien
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and Queen Saovabha Memorial Institute, Bangkok, Thailand
| | | | | | | | - Bikash Verma
- GlaxoSmithKline Vaccines LLC, Rockville, Maryland
| | | | | |
Collapse
|
6
|
Safety and immunogenicity of influenza A(H5N1) vaccine stored up to twelve years in the National Pre-Pandemic Influenza Vaccine Stockpile (NPIVS). Vaccine 2018; 37:435-443. [PMID: 30553570 DOI: 10.1016/j.vaccine.2018.11.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND As part of the U.S. Department of Health and Human Services (HHS) Pandemic Influenza Plan preparedness and response strategy, the National Pre-Pandemic Influenza Vaccine Stockpile (NPIVS) program was established by the Biomedical Advanced Research and Development Authority (BARDA) in 2005 with the goal of building and maintaining a stockpile of vaccines for influenza viruses with pandemic potential to vaccinate 20 million people in the critical workforce in the event of a pandemic. The NPIVS program continuously monitors the integrity of influenza vaccine antigens and adjuvants stored within the stockpile. In addition to monitoring physical and chemical properties in stability studies, it is important to regularly assess the safety and immunogenicity of stockpiled vaccines and adjuvants to maintain preparedness for use in the event of an influenza pandemic. METHODS BARDA conducted a randomized, double-blinded Phase 2 clinical study with the oldest stockpiled influenza A(H5N1) antigen, stored over the previous 10-12 years administered with or without MF59® adjuvant, stored over the previous 2-7 years at the time of vaccination. RESULTS Stockpiled vaccines were well-tolerated, adverse events were generally mild, and there was no drop in immunogenicity to the oldest stockpiled A(H5N1) vaccine. Compared to unadjuvanted vaccine, greater peak antibody responses were observed in subjects who were vaccinated with MF59-adjuvanted vaccines, regardless of antigen dose. Vaccination with the A(H5N1) vaccine antigen also results in cross-reactive antibody responses to contemporary circulating strains of A(H5) influenza viruses. CONCLUSIONS The frequency, type, and severity of AEs observed during this study are similar to historical clinical study data with A(H5N1) vaccines and MF59 adjuvant indicating that a stockpiled A(H5N1) vaccine appears to remain safe and tolerable. The vaccines were immunogenic when administered as a two-dose vaccine regimen in healthy adults, despite extended storage of HA antigen or MF59 adjuvant within the NPIVS. TRIAL REGISTRATION ClinicalTrials.gov: NCT02680002.
Collapse
|
7
|
Comparison of Adjuvanted-Whole Inactivated Virus and Live-Attenuated Virus Vaccines against Challenge with Contemporary, Antigenically Distinct H3N2 Influenza A Viruses. J Virol 2018; 92:JVI.01323-18. [PMID: 30185589 DOI: 10.1128/jvi.01323-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/31/2018] [Indexed: 12/25/2022] Open
Abstract
Influenza A viruses in swine (IAV-S) circulating in the United States of America are phylogenetically and antigenically distinct. A human H3 hemagglutinin (HA) was introduced into the IAV-S gene pool in the late 1990s, sustained continued circulation, and evolved into five monophyletic genetic clades, H3 clades IV-A to -E, after 2009. Across these phylogenetic clades, distinct antigenic clusters were identified, with three clusters (cyan, red, and green antigenic cluster) among the most frequently detected antigenic phenotypes (Abente EJ, Santos J, Lewis NS, Gauger PC, Stratton J, et al. J Virol 90:8266-8280, 2016, https://doi.org/10.1128/JVI.01002-16). Although it was demonstrated that antigenic diversity of H3N2 IAV-S was associated with changes at a few amino acid positions in the head of the HA, the implications of this diversity for vaccine efficacy were not tested. Using antigenically representative H3N2 viruses, we compared whole inactivated virus (WIV) and live-attenuated influenza virus (LAIV) vaccines for protection against challenge with antigenically distinct H3N2 viruses in pigs. WIV provided partial protection against antigenically distinct viruses but did not prevent virus replication in the upper respiratory tract. In contrast, LAIV provided complete protection from disease and virus was not detected after challenge with antigenically distinct viruses.IMPORTANCE Due to the rapid evolution of the influenza A virus, vaccines require continuous strain updates. Additionally, the platform used to deliver the vaccine can have an impact on the breadth of protection. Currently, there are various vaccine platforms available to prevent influenza A virus infection in swine, and we experimentally tested two: adjuvanted-whole inactivated virus and live-attenuated virus. When challenged with an antigenically distinct virus, adjuvanted-whole inactivated virus provided partial protection, while live-attenuated virus provided effective protection. Additional strategies are required to broaden the protective properties of inactivated virus vaccines, given the dynamic antigenic landscape of cocirculating strains in North America, whereas live-attenuated vaccines may require less frequent strain updates, based on demonstrated cross-protection. Enhancing vaccine efficacy to control influenza infections in swine will help reduce the impact they have on swine production and reduce the risk of swine-to-human transmission.
Collapse
|
8
|
Wang J, Hilchey SP, DeDiego M, Perry S, Hyrien O, Nogales A, Garigen J, Amanat F, Huertas N, Krammer F, Martinez-Sobrido L, Topham DJ, Treanor JJ, Sangster MY, Zand MS. Broad cross-reactive IgG responses elicited by adjuvanted vaccination with recombinant influenza hemagglutinin (rHA) in ferrets and mice. PLoS One 2018; 13:e0193680. [PMID: 29641537 PMCID: PMC5894995 DOI: 10.1371/journal.pone.0193680] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/15/2018] [Indexed: 12/17/2022] Open
Abstract
Annual immunization against influenza virus is a large international public health effort. Accumulating evidence suggests that antibody mediated cross-reactive immunity against influenza hemagglutinin (HA) strongly correlates with long-lasting cross-protection against influenza virus strains that differ from the primary infection or vaccination strain. However, the optimal strategies for achieving highly cross-reactive antibodies to the influenza virus HA have not yet to be defined. In the current study, using Luminex-based mPlex-Flu assay, developed by our laboratory, to quantitatively measure influenza specific IgG antibody mediated cross-reactivity, we found that prime-boost-boost vaccination of ferrets with rHA proteins admixed with adjuvant elicited higher magnitude and broader cross-reactive antibody responses than that induced by actual influenza viral infection, and this cross-reactive response likely correlated with increased anti-stalk reactive antibodies. We observed a similar phenomenon in mice receiving three sequential vaccinations with rHA proteins from either A/California/07/2009 (H1N1) or A/Hong Kong/1/1968 (H3N2) viruses admixed with Addavax, an MF59-like adjuvant. Using this same mouse vaccination model, we determined that Addavax plays a more significant role in the initial priming event than in subsequent boosts. We also characterized the generation of cross-reactive antibody secreting cells (ASCs) and memory B cells (MBCs) when comparing vaccination to viral infection. We have also found that adjuvant plays a critical role in the generation of long-lived ASCs and MBCs cross-reactive to influenza viruses as a result of vaccination with rHA of influenza virus, and the observed increase in stalk-reactive antibodies likely contributes to this IgG mediated broad cross-reactivity.
Collapse
Affiliation(s)
- Jiong Wang
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Shannon P. Hilchey
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Marta DeDiego
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Sheldon Perry
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Ollivier Hyrien
- Biostatistics, Bioinformatics, and Epidemiology Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Aitor Nogales
- Biostatistics, Bioinformatics, and Epidemiology Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jessica Garigen
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Fatima Amanat
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Nelson Huertas
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Luis Martinez-Sobrido
- Biostatistics, Bioinformatics, and Epidemiology Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - David J. Topham
- Biostatistics, Bioinformatics, and Epidemiology Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - John J. Treanor
- Division of Infectious Disease, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Mark Y. Sangster
- Biostatistics, Bioinformatics, and Epidemiology Program, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Martin S. Zand
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- Rochester Center for Health Informatics, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
9
|
Van Reeth K, Gracia JCM, Trus I, Sys L, Claes G, Versnaeyen H, Cox E, Krammer F, Qiu Y. Heterologous prime-boost vaccination with H3N2 influenza viruses of swine favors cross-clade antibody responses and protection. NPJ Vaccines 2017; 2. [PMID: 29250437 PMCID: PMC5604745 DOI: 10.1038/s41541-017-0012-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The emergence of multiple novel lineages of H1 and H3 influenza A viruses in swine has confounded control by inactivated vaccines. Because of substantial genetic and geographic heterogeneity among circulating swine influenza viruses, one vaccine strain per subtype cannot be efficacious against all of the current lineages. We have performed vaccination-challenge studies in pigs to examine whether priming and booster vaccinations with antigenically distinct H3N2 swine influenza viruses could broaden antibody responses and protection. We prepared monovalent whole inactivated, adjuvanted vaccines based on a European and a North American H3N2 swine influenza virus, which showed 81.5% aa homology in the HA1 region of the hemagglutinin and 83.4% in the neuraminidase. Our data show that (i) Priming with European and boosting with North American H3N2 swine influenza virus induces antibodies and protection against both vaccine strains, unlike prime-boost vaccination with a single virus or a single administration of bivalent vaccine. (ii) The heterologous prime-boost vaccination enhances hemagglutination inhibiting, virus neutralizing and neuraminidase inhibiting antibody responses against H3N2 viruses that are antigenically distinct from both vaccine strains. Antibody titers to the most divergent viruses were higher than after two administrations of bivalent vaccine. (iii) However, it does not induce antibodies to the conserved hemagglutinin stalk or to other hemagglutinin subtypes. We conclude that heterologous prime-boost vaccination might broaden protection to H3N2 swine influenza viruses and reduce the total amount of vaccine needed. This strategy holds potential for vaccination against influenza viruses from both humans and swine and for a better control of (reverse) zoonotic transmission of influenza viruses.
Collapse
Affiliation(s)
- Kristien Van Reeth
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| | | | - Ivan Trus
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| | - Lieve Sys
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| | - Gerwin Claes
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| | - Han Versnaeyen
- Laboratory of Pathology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Gent, Belgium
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yu Qiu
- OIE Sub-Regional Representation for South-East Asia, Bangkok, Thailand
| |
Collapse
|
10
|
Abstract
Nasal delivery offers many benefits over traditional approaches to vaccine administration. These include ease of administration without needles that reduces issues associated with needlestick injuries and disposal. Additionally, this route offers easy access to a key part of the immune system that can stimulate other mucosal sites throughout the body. Increased acceptance of nasal vaccine products in both adults and children has led to a burgeoning pipeline of nasal delivery technology. Key challenges and opportunities for the future will include translating in vivo data to clinical outcomes. Particular focus should be brought to designing delivery strategies that take into account the broad range of diseases, populations and healthcare delivery settings that stand to benefit from this unique mucosal route.
Collapse
Affiliation(s)
- Helmy Yusuf
- a School of Pharmacy, Queen's University of Belfast , Belfast , Antrim , UK
| | - Vicky Kett
- b School of Pharmacy, Queen's University of Belfast , Belfast , Antrim , UK
| |
Collapse
|
11
|
Cox F, Juraszek J, Stoop EJM, Goudsmit J. Universal influenza vaccine design: directing the antibody repertoire. Future Virol 2016. [DOI: 10.2217/fvl-2016-0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Influenza infections are responsible for a large health and economic burden. Vaccination is the best strategy to reduce influenza-related disease burden, but current vaccines have limited breadth and need near-annual reformulation. Developing new influenza vaccines that provide broad and long-lasting protection is an important goal. This review represents an overview of the current knowledge of the universal vaccine approach that focuses on the induction of broadly neutralizing antibodies targeting the hemagglutinin (HA) stem of influenza viruses. Adjuvation of existing influenza vaccines has so far had limited effect on the induction of broadly neutralizing antibodies. HA stem-based immunogens that lack the immunodominant HA head have shown promising results in preclinical models, providing evidence that a universal influenza vaccine is within reach.
Collapse
Affiliation(s)
- Freek Cox
- Infectious Diseases & Vaccines Therapeutic Area, Janssen Research & Development, Archimedesweg 4-6, 2301 CA Leiden, The Netherlands
| | - Jarek Juraszek
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 4-6, 2301 CA Leiden, The Netherlands
| | - Esther JM Stoop
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 4-6, 2301 CA Leiden, The Netherlands
| | - Jaap Goudsmit
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 4-6, 2301 CA Leiden, The Netherlands
| |
Collapse
|
12
|
Czako R, Subbarao K. Refining the approach to vaccines against influenza A viruses with pandemic potential. Future Virol 2015; 10:1033-1047. [PMID: 26587050 DOI: 10.2217/fvl.15.69] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vaccination is the most effective strategy for prevention and control of influenza. Timely production and deployment of seasonal influenza vaccines is based on an understanding of the epidemiology of influenza and on global disease and virologic surveillance. Experience with seasonal influenza vaccines guided the initial development of pandemic influenza vaccines. A large investment in pandemic influenza vaccines in the last decade has resulted in much progress and a body of information that can now be applied to refine the established paradigm. Critical and complementary considerations for pandemic influenza vaccines include improved assessment of the pandemic potential of animal influenza viruses, proactive development and deployment of pandemic influenza vaccines, and application of novel platforms and strategies for vaccine production and administration.
Collapse
Affiliation(s)
- Rita Czako
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD, USA
| |
Collapse
|
13
|
Cox RJ, Major D, Pedersen G, Pathirana RD, Hoschler K, Guilfoyle K, Roseby S, Bredholt G, Assmus J, Breakwell L, Campitelli L, Sjursen H. Matrix M H5N1 Vaccine Induces Cross-H5 Clade Humoral Immune Responses in a Randomized Clinical Trial and Provides Protection from Highly Pathogenic Influenza Challenge in Ferrets. PLoS One 2015; 10:e0131652. [PMID: 26147369 PMCID: PMC4493055 DOI: 10.1371/journal.pone.0131652] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/20/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND METHODS Highly pathogenic avian influenza (HPAI) viruses constitute a pandemic threat and the development of effective vaccines is a global priority. Sixty adults were recruited into a randomized clinical trial and were intramuscularly immunized with two virosomal vaccine H5N1 (NIBRG-14) doses (21 days apart) of 30 μg HA alone or 1.5, 7.5 or 30 μg HA adjuvanted with Matrix M. The kinetics and longevity of the serological responses against NIBRG-14 were determined by haemagglutination inhibition (HI), single radial haemolysis (SRH), microneutralization (MN) and ELISA assays. The cross-H5 clade responses in sera were determined by HI and the antibody-secreting (ASC) cell ELISPOT assays. The protective efficacy of the vaccine against homologous HPAI challenge was evaluated in ferrets. RESULTS The serological responses against the homologous and cross-reactive strains generally peaked one week after the second dose, and formulation with Matrix M augmented the responses. The NIBRG-14-specific seroprotection rates fell significantly by six months and were low against cross-reactive strains although the adjuvant appeared to prolong the longevity of the protective responses in some subjects. By 12 months post-vaccination, nearly all vaccinees had NIBRG-14-specific antibody titres below the protective thresholds. The Matrix M adjuvant was shown to greatly improve ASC and serum IgG responses following vaccination. In a HPAI ferret challenge model, the vaccine protected the animals from febrile responses, severe weight loss and local and systemic spread of the virus. CONCLUSION Our findings show that the Matrix M-adjuvanted virosomal H5N1 vaccine is a promising pre-pandemic vaccine candidate. TRIAL REGISTRATION ClinicalTrials.gov NCT00868218.
Collapse
Affiliation(s)
- Rebecca J. Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Research and Development, Haukeland University Hospital, Bergen, Norway
- Jebsen Centre for Influenza Vaccine Research, University of Bergen, Bergen, Norway
- * E-mail:
| | - Diane Major
- National Institute for Biological Standards and Control (NIBSC), Potters Bar, United Kingdom
| | - Gabriel Pedersen
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Rishi D. Pathirana
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Research and Development, Haukeland University Hospital, Bergen, Norway
- Jebsen Centre for Influenza Vaccine Research, University of Bergen, Bergen, Norway
| | - Katja Hoschler
- Respiratory Unit, Public Health England (PHE) Colindale, London, United Kingdom
| | - Kate Guilfoyle
- National Institute for Biological Standards and Control (NIBSC), Potters Bar, United Kingdom
| | - Sarah Roseby
- National Institute for Biological Standards and Control (NIBSC), Potters Bar, United Kingdom
| | - Geir Bredholt
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Research and Development, Haukeland University Hospital, Bergen, Norway
- Jebsen Centre for Influenza Vaccine Research, University of Bergen, Bergen, Norway
| | - Jörg Assmus
- Department of Research and Development, Haukeland University Hospital, Bergen, Norway
| | - Lucy Breakwell
- Respiratory Unit, Public Health England (PHE) Colindale, London, United Kingdom
| | | | - Haakon Sjursen
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section for Infectious Diseases, Medical Department, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
14
|
van der Most RG, Roman FP, Innis B, Hanon E, Vaughn DW, Gillard P, Walravens K, Wettendorff M. Seeking help: B cells adapting to flu variability. Sci Transl Med 2015; 6:246ps8. [PMID: 25101885 DOI: 10.1126/scitranslmed.3008409] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The study of influenza vaccines has revealed potential interactions between preexisting immunological memory and antigenic context and/or adjuvantation. In the face of antigenic diversity, the process of generating B cell adaptability is driven by cross-reactive CD4 memory cells, such as T follicular helper cells from previous infections or vaccinations. Although such "helped" B cells are capable of adapting to variant antigens, lack of CD4 help could lead to a suboptimal antibody response. Collectively, this indicates an interplay between CD4 T cells, adjuvant, and B cell adaptability.
Collapse
Affiliation(s)
| | - François P Roman
- GlaxoSmithKline Vaccines, Rue de l'Institut 89, 1330 Rixensart, Belgium
| | - Bruce Innis
- GlaxoSmithKline Vaccines, King of Prussia, PA 19406-2772, USA
| | - Emmanuel Hanon
- GlaxoSmithKline Vaccines, Rue de l'Institut 89, 1330 Rixensart, Belgium
| | - David W Vaughn
- GlaxoSmithKline Vaccines, Rue de l'Institut 89, 1330 Rixensart, Belgium
| | - Paul Gillard
- GlaxoSmithKline Vaccines, Rue de l'Institut 89, 1330 Rixensart, Belgium
| | - Karl Walravens
- GlaxoSmithKline Vaccines, Rue de l'Institut 89, 1330 Rixensart, Belgium
| | | |
Collapse
|
15
|
Rudenko L, Naykhin A, Donina S, Korenkov D, Petukhova G, Isakova-Sivak I, Losev I, Stukova M, Erofeeva M, Nikiforova A, Power M, Flores J. Assessment of immune responses to H5N1 inactivated influenza vaccine among individuals previously primed with H5N2 live attenuated influenza vaccine. Hum Vaccin Immunother 2015; 11:2839-48. [PMID: 26697973 PMCID: PMC5054797 DOI: 10.1080/21645515.2015.1069931] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/16/2015] [Accepted: 07/02/2015] [Indexed: 11/25/2022] Open
Abstract
During the past decade, a number of H5 subtype influenza vaccines have been developed and tested in clinical trials, but most of them induced poor serum antibody responses prompting the evaluation of novel vaccination approaches. One of the most promising ones is a "prime-boost" strategy, which could result in the induction of prompt and robust immune responses to a booster influenza vaccine following priming with homologous or heterologous vaccine strains. In our study we evaluated immunogenicity of an adjuvanted A(H5N1) inactivated influenza vaccine (IIV) in healthy adult subjects who received A(H5N2) live attenuated influenza vaccine (LAIV) 1.5 years earlier and compared this with a group of naïve subjects. We found that priming with A(H5N2) LAIV induced a long-lasting B-cell immunological memory against influenza A(H5N1) virus, which was brought on by more prompt and vigorous antibody production to a single dose of A(H5N1) IIV in the primed group, compared to the naïve controls. Thus, by day 28 after the first booster dose, the hemagglutination inhibition and neutralizing (MN) antibody titer rises were 17.2 and 30.8 in the primed group, compared to 2.3 and 8.0 in the control group, respectively. The majority (79%) of the primed individuals achieved seroprotective MN antibody titers at 7 days after the first dose of the IIV. All LAIV-primed volunteers had MN titers ≥ 1:40 by Day 28 after one dose of IIV, whereas only 58% subjects from the naïve control group developed similar immune responses at this time point. The second A(H5N1) IIV dose did not increase the immune response in the LAIV-primed group, whereas 2 doses of IIV were required for naïve volunteers to develop significant immune responses. These findings were of special significance since Russian-based LAIV technology has been licensed to WHO, through whom the vaccine has been provided to vaccine manufacturers in India, China and Thailand - countries particularly vulnerable to a pandemic influenza. The results of our study will be useful to inform the development of vaccination strategies in these countries in the event of a pandemic.
Collapse
Affiliation(s)
- Larisa Rudenko
- Institute of Experimental Medicine; Saint Petersburg, Russia
| | - Anatoly Naykhin
- Institute of Experimental Medicine; Saint Petersburg, Russia
| | - Svetlana Donina
- Institute of Experimental Medicine; Saint Petersburg, Russia
| | - Daniil Korenkov
- Institute of Experimental Medicine; Saint Petersburg, Russia
| | | | | | - Igor Losev
- Institute of Experimental Medicine; Saint Petersburg, Russia
| | - Marina Stukova
- Research Institute of Influenza; Saint Petersburg, Russia
| | | | | | | | - Jorge Flores
- Institute of Experimental Medicine; Saint Petersburg, Russia
- PATH; Seattle, WA USA
| |
Collapse
|
16
|
Langley JM, Frenette L, Jeanfreau R, Halperin SA, Kyle M, Chu L, McNeil S, Dramé M, Moris P, Fries L, Vaughn DW. Immunogenicity of heterologous H5N1 influenza booster vaccination 6 or 18 months after primary vaccination in adults: a randomized controlled clinical trial. Vaccine 2014; 33:559-67. [PMID: 25448092 DOI: 10.1016/j.vaccine.2014.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 10/31/2014] [Accepted: 11/12/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Highly pathogenic avian influenza A/H5N1 viruses continue to circulate in birds and infect humans causing serious illness and death. METHODS In this randomized, observer-blinded study, adults ≥18 years of age (n=841) received 3.75 or 7.5 μg hemagglutinin antigen (HA) of an AS03-adjuvanted (AS03A or AS03B) A/Indonesia/5/2005 H5N1 (subclade 2.1) vaccine (priming), followed by the same HA dose of AS03-adjuvanted A/turkey/Turkey/1/05 H5N1 (clade 2.2) influenza vaccine as a booster 6 or 18 months after priming; an unprimed group received placebo at Day 0, and 3.75 μg HA of AS03A-adjuvanted booster vaccine at 6 and 18 months. Antibody responses were assessed by hemagglutination-inhibition assay (HI). Microneutralization (MN) antibody and cellular immunoassays were assessed in a subset of participants. RESULTS Geometric mean titers (GMTs) and seroconversion rates (SCRs) were higher in primed vs. unprimed subjects against the booster strain 10 days following booster vaccination at month 6 and month 18. After the booster at 18 months, the lower limit of the 97.5% confidence interval for the difference in SCR and GMT ratios between primed and unprimed subjects was >15% and >2.0, respectively, fulfilling the primary endpoint criteria for superiority against the booster strain. MN and cellular immune responses corresponded with the immunogenicity seen in HI measures. CONCLUSIONS Adults primed with a dose-sparing oil-in-water adjuvanted H5N1 subclade vaccine had rapid and durable antibody responses to a heterologous subclade boosting vaccine given 6 or 18 months later.
Collapse
Affiliation(s)
- Joanne M Langley
- Canadian Center for Vaccinology, 5850 University Avenue, Dalhousie University, IWK Health Centre and Capital Health District, Halifax, B3K 6R8 Canada.
| | - Louise Frenette
- QT Research, 2185 King Ouest Suite 101, Sherbrooke, J1J Canada
| | - Robert Jeanfreau
- Benchmark Research, 3800 Houma Blvd., Suite 205, Metairie, LA 70006, USA
| | - Scott A Halperin
- Canadian Center for Vaccinology, 5850 University Avenue, Dalhousie University, IWK Health Centre and Capital Health District, Halifax, B3K 6R8 Canada
| | - Michael Kyle
- Pfizer Inc, 235 E 42nd St., New York, NY, 10017, USA
| | - Laurence Chu
- Benchmark Research, 1015 E 32nd Suite 309, Austin, TX 78705-2701, USA
| | - Shelly McNeil
- Canadian Center for Vaccinology, 5850 University Avenue, Dalhousie University, IWK Health Centre and Capital Health District, Halifax, B3K 6R8 Canada
| | - Mamadou Dramé
- GlaxoSmithKline Vaccines, 2301 Renaissance Blvd, King of Prussia, PA 19406-2772, USA
| | - Philippe Moris
- GlaxoSmithKline Vaccines, Rue de l'Institut, 89 BE-1330 Rixensart, Belgium
| | - Louis Fries
- Novavax Inc., 9920 Belward Campus Drive, Rockville, MD 20850, USA
| | - David W Vaughn
- GlaxoSmithKline Vaccines, Rue de l'Institut, 89 BE-1330 Rixensart, Belgium
| |
Collapse
|
17
|
Nayak JL, Richards KA, Yang H, Treanor JJ, Sant AJ. Effect of influenza A(H5N1) vaccine prepandemic priming on CD4+ T-cell responses. J Infect Dis 2014; 211:1408-17. [PMID: 25378637 PMCID: PMC4425838 DOI: 10.1093/infdis/jiu616] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/27/2014] [Indexed: 01/19/2023] Open
Abstract
Introduction. Previous priming with avian influenza vaccines results in more rapid and more robust neutralizing antibody responses upon revaccination, but the role CD4+ T cells play in this process is not currently known. Methods. Human subjects previously enrolled in trials of inactivated influenza A(H5N1) vaccines and naive subjects were immunized with an inactivated subunit influenza A/Indonesia/5/05(H5N1) vaccine. Neutralizing antibody responses were measured by a microneutralization assay, and hemagglutinin (HA)-specific and nucleoprotein (NP)-specific CD4+ T-cell responses were quantified using interferon γ enzyme-linked immunosorbent spot assays. Results. While vaccination induced barely detectable CD4+ T-cell responses specific for HA in the previously unprimed group, primed subjects had readily detectable HA-specific memory CD4+ T cells at baseline and mounted a more robust response to HA-specific epitopes after vaccination. There were no differences between groups when conserved NP-specific CD4+ T-cell responses were examined. Interestingly, neutralizing antibody responses following revaccination were significantly higher in individuals who mounted a CD4+ T-cell response to the H5 HA protein, a correlation not observed for NP-specific responses. Conclusions. These findings suggest that prepandemic vaccination results in an enriched population of HA-specific CD4+ T cells that are recruited on rechallenge with a drifted vaccine variant and contribute to more robust and more rapid neutralizing antibody responses.
Collapse
Affiliation(s)
| | - Katherine A Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| | - Hongmei Yang
- Department of Biostatistics and Computational Biology
| | - John J Treanor
- Division of Infectious Diseases, Department of Medicine, University of Rochester Medical Center, New York
| | - Andrea J Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| |
Collapse
|
18
|
Dormitzer P, Tsai T, Del Giudice G. New technologies for influenza vaccines. Hum Vaccin Immunother 2014; 8:45-58. [DOI: 10.4161/hv.8.1.18859] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
19
|
Vesikari T, Forstén A, Borkowski A, Gaitatzis N, Banzhoff A, Clemens R. Homologous and heterologous antibody responses to a one-year booster dose of an MF59®: Adjuvanted A/H5N1 pre-pandemic influenza vaccine in pediatric subjects. Hum Vaccin Immunother 2014; 8:921-8. [DOI: 10.4161/hv.20248] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
20
|
Heterologous prime-boost vaccination with MF59-adjuvanted H5 vaccines promotes antibody affinity maturation towards the hemagglutinin HA1 domain and broad H5N1 cross-clade neutralization. PLoS One 2014; 9:e95496. [PMID: 24755693 PMCID: PMC3995799 DOI: 10.1371/journal.pone.0095496] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/27/2014] [Indexed: 11/19/2022] Open
Abstract
In an open label clinical study (2007), MF59-adjuvanted hemagglutinin (HA) vaccine from H5N1-A/Vietnam/1194/2004 (clade 1) was administered to subjects previously vaccinated (primed) with clade 0 H5N3 (A/duck/Singapore/97) vaccine at least 6 years earlier (in 1999 or 2001). The primed individuals responded rapidly and generated high neutralizing antibody titers against the H5N1-Vietnam strain within 7 days of a single booster vaccination. Furthermore, significant cross-neutralization titers were measured against H5N1 clade 0, 1, and 2 viruses. In the current study, the impact of MF59 adjuvant during heterologous priming on the quality of humoral polyclonal immune response in different vaccine arms were further evaluated using real time kinetics assay by surface plasmon resonance (SPR). Total anti-H5N1 HA1 polyclonal sera antibody binding from the heterologous prime-boost groups after a single MF59-H5N1 boost was significantly higher compared with sera from unprimed individuals that received two MF59-H5N1 vaccinations. The antigen-antibody complex dissociation rates (surrogate for antibody affinity) of the polyclonal sera against HA1 of H5N1-A/Vietnam/1194/2004 from the MF59-H5N3 primed groups were significantly higher compared to sera from unadjuvanted primed groups or unprimed individuals that received two MF59-H5N1 vaccines. Furthermore, strong inverse correlations were observed between the antibody dissociation off-rates of the immune sera against HA1 (but not HA2) and the virus neutralization titers against H5 vaccine strains and heterologous H5N1 strains. These findings supports the use of oil-in-water-adjuvanted pandemic influenza vaccines to elicit long term memory B cells with high affinity BCR capable of responding to potential variant pandemic viruses likely to emerge and adapt to human transmissions.
Collapse
|
21
|
Murugappan S, Patil HP, Frijlink HW, Huckriede A, Hinrichs WLJ. Simplifying influenza vaccination during pandemics: sublingual priming and intramuscular boosting of immune responses with heterologous whole inactivated influenza vaccine. AAPS JOURNAL 2014; 16:342-9. [PMID: 24482005 DOI: 10.1208/s12248-014-9565-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/06/2014] [Indexed: 11/30/2022]
Abstract
The best approach to control the spread of influenza virus during a pandemic is vaccination. Yet, an appropriate vaccine is not available early in the pandemic since vaccine production is time consuming. For influenza strains with a high pandemic potential like H5N1, stockpiling of vaccines has been considered but is hampered by rapid antigenic drift of the virus. It has, however, been shown that immunization with a given H5N1 strain can prime the immune system for a later booster with a drifted variant. Here, we investigated whether whole inactivated virus (WIV) vaccine can be processed to tablets suitable for sublingual (s.l.) use and whether s.l. vaccine administration can prime the immune system for a later intramuscular (i.m.) boost with a heterologous vaccine. In vitro results demonstrate that freeze-drying and tableting of WIV did not affect the integrity of the viral proteins or the hemagglutinating properties of the viral particles. Immunization experiments revealed that s.l. priming with WIV (prepared from the H5N1 vaccine strain NIBRG-14) 4 weeks prior to i.m. booster immunization with the same virus strongly enhanced hemagglutination-inhibition (HI) titers against NIBRG-14 and the drifted variant NIBRG-23. Moreover, s.l. (and i.m.) immunization with NIBRG-14 also primed for a subsequent heterologous i.m. booster immunization with NIBRG-23 vaccine. In addition to HI serum antibodies, s.l. priming enhanced lung and nose IgA responses, while i.m. priming enhanced lung IgA but not nose IgA levels. Our results identify s.l. vaccination as a user-friendly method to prime for influenza-specific immune responses toward homologous and drifted variants.
Collapse
Affiliation(s)
- Senthil Murugappan
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands,
| | | | | | | | | |
Collapse
|
22
|
Dey AK, Srivastava IK. Novel adjuvants and delivery systems for enhancing immune responses induced by immunogens. Expert Rev Vaccines 2014; 10:227-51. [DOI: 10.1586/erv.10.142] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Diaz RS, Tenore SB, da Silva MMG, da Cunha CA. A Phase III, randomized study to evaluate the immunogenicity and safety of an MF59®-adjuvanted A/H1N1 pandemic influenza vaccine in HIV-positive adults. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.trivac.2014.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Del Giudice G, Rappuoli R. Inactivated and adjuvanted influenza vaccines. Curr Top Microbiol Immunol 2014; 386:151-80. [PMID: 25038938 DOI: 10.1007/82_2014_406] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inactivated influenza vaccines are produced every year to fight against the seasonal epidemics of influenza. Despite the nonoptimal coverage, even in subjects at risk like the elderly, pregnant women, etc., these vaccines significantly reduce the burden of mortality and morbidity linked to the influenza infection. Importantly, these vaccines have also contributed to reduce the impact of the last pandemics. Nevertheless, the performance of these vaccines can be improved mainly in those age groups, like children and the elderly, in which their efficacy is suboptimal. The use of adjuvants has proven effective to this scope. Oil-in-water adjuvants like MF59 and AS03 have been licensed and widely used, and shown efficacious in preventing influenza infection in the last pandemic. MF59-adjuvanted inactivated vaccine was more efficacious than non-adjuvanted vaccine in preventing influenza infection in young children and in reducing hospitalization due to the influenza infection in the elderly. Other adjuvants are now at different stages of development and some are being tested in clinical trials. The perspective remains to improve the way inactivated vaccines are prepared and to accelerate their availability, mainly in the case of influenza pandemics, and to enhance their efficacy/effectiveness for a more successful impact at the public health level.
Collapse
Affiliation(s)
- Giuseppe Del Giudice
- Research and Development, Novartis Vaccines, Via Fiorentina 1, 53100, Siena, Italy,
| | | |
Collapse
|
25
|
Baz M, Luke CJ, Cheng X, Jin H, Subbarao K. H5N1 vaccines in humans. Virus Res 2013; 178:78-98. [PMID: 23726847 PMCID: PMC3795810 DOI: 10.1016/j.virusres.2013.05.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 04/04/2013] [Accepted: 05/20/2013] [Indexed: 11/28/2022]
Abstract
The spread of highly pathogenic avian H5N1 influenza viruses since 1997 and their virulence for poultry and humans has raised concerns about their potential to cause an influenza pandemic. Vaccines offer the most viable means to combat a pandemic threat. However, it will be a challenge to produce, distribute and implement a new vaccine if a pandemic spreads rapidly. Therefore, efforts are being undertaken to develop pandemic vaccines that use less antigen and induce cross-protective and long-lasting responses, that can be administered as soon as a pandemic is declared or possibly even before, in order to prime the population and allow for a rapid and protective antibody response. In the last few years, several vaccine manufacturers have developed candidate pandemic and pre-pandemic vaccines, based on reverse genetics and have improved the immunogenicity by formulating these vaccines with different adjuvants. Some of the important and consistent observations from clinical studies with H5N1 vaccines are as follows: two doses of inactivated vaccine are generally necessary to elicit the level of immunity required to meet licensure criteria, less antigen can be used if an oil-in-water adjuvant is included, in general antibody titers decline rapidly but can be boosted with additional doses of vaccine and if high titers of antibody are elicited, cross-reactivity against other clades is observed. Prime-boost strategies elicit a more robust immune response. In this review, we discuss data from clinical trials with a variety of H5N1 influenza vaccines. We also describe studies conducted in animal models to explore the possibility of reassortment between pandemic live attenuated vaccine candidates and seasonal influenza viruses, since this is an important consideration for the use of live vaccines in a pandemic setting.
Collapse
Affiliation(s)
- Mariana Baz
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Catherine J Luke
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | | | - Hong Jin
- MedImmune, Mountain View, California
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Vemula SV, Ahi YS, Swaim AM, Katz JM, Donis R, Sambhara S, Mittal SK. Broadly protective adenovirus-based multivalent vaccines against highly pathogenic avian influenza viruses for pandemic preparedness. PLoS One 2013; 8:e62496. [PMID: 23638099 PMCID: PMC3640067 DOI: 10.1371/journal.pone.0062496] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/22/2013] [Indexed: 11/19/2022] Open
Abstract
Recurrent outbreaks of H5, H7 and H9 avian influenza viruses in domestic poultry accompanied by their occasional transmission to humans have highlighted the public health threat posed by these viruses. Newer vaccine approaches for pandemic preparedness against these viruses are needed, given the limitations of vaccines currently approved for H5N1 viruses in terms of their production timelines and the ability to induce protective immune responses in the absence of adjuvants. In this study, we evaluated the feasibility of an adenovirus (AdV)-based multivalent vaccine approach for pandemic preparedness against H5, H7 and H9 avian influenza viruses in a mouse model. Replication-defective AdV vectors expressing hemagglutinin (HA) from different subtypes and nucleoprotein (NP) from one subtype induced high levels of humoral and cellular immune responses and conferred protection against virus replication following challenge with H5, H7 and H9 avian influenza virus subtypes. Inclusion of HA from the 2009 H1N1 pandemic virus in the vaccine formulation further broadened the vaccine coverage. Significantly high levels of HA stalk-specific antibodies were observed following immunization with the multivalent vaccine. Inclusion of NP into the multivalent HA vaccine formulation resulted in the induction of CD8 T cell responses. These results suggest that a multivalent vaccine strategy may provide reasonable protection in the event of a pandemic caused by H5, H7, or H9 avian influenza virus before a strain-matched vaccine can be produced.
Collapse
Affiliation(s)
- Sai V. Vemula
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Yadvinder S. Ahi
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Anne-Marie Swaim
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Jacqueline M. Katz
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ruben Donis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail: (SM); (SS)
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (SM); (SS)
| |
Collapse
|
27
|
Neuzil KM, Tsvetnitsky V, Nyari LJ, Bright RA, Boslego JW. PATH Influenza Vaccine Project: accelerating the development of new influenza vaccines for low-resource countries. Expert Rev Vaccines 2013; 11:939-47. [PMID: 23002975 DOI: 10.1586/erv.12.76] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The 2009 influenza A/H1N1 pandemic demonstrated that a pandemic influenza virus has the potential to spread more rapidly in today's highly interconnected world than in the past. While pandemic morbidity and mortality are likely to be greatest in low-resource countries, manufacturing capacity and access to influenza vaccines predominantly exist in countries with greater resources and infrastructure. Even with recently expanded manufacturing capacity, the number of doses available within a 6-month timeframe would be inadequate to fully immunize the global population if the decision to implement a global vaccination program were made today. Improved, affordable vaccines are needed to limit the consequences of a global influenza outbreak and protect low-resource populations. PATH's Influenza Vaccine Project is supporting a range of activities in collaboration with private- and public-sector partners to advance the development of promising influenza vaccines that can be accessible and affordable for people in low-resource countries.
Collapse
Affiliation(s)
- Kathleen M Neuzil
- PATH, Seattle, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Del Giudice G, Fragapane E, Della Cioppa G, Rappuoli R. Aflunov®: a vaccine tailored for pre-pandemic and pandemic approaches against influenza. Expert Opin Biol Ther 2012. [PMID: 23189937 DOI: 10.1517/14712598.2013.748030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Aflunov is an egg-derived, subunit vaccine from Novartis Vaccines and Diagnostics containing 7.5 μg of hemagglutinin (HA) from the avian A/H5N1 virus and the oil-in-water adjuvant MF59. AREAS COVERED Aflunov behaves as a pre-pandemic vaccine. It has a good safety profile at all ages. At all ages, it induces high and persisting antibody titers and activation of HA-specific Th0/Th1 CD4(+) T cells, the levels of which correlate with the neutralizing antibody titers after a booster dose 6 months later. Aflunov triggers strong immunological memory, which persists for at least 6 - 8 years and can be rapidly boosted with a heterovariant vaccine strain, inducing very high neutralizing antibody titers within one week. These antibodies broadly and strongly cross-react with drifted H5N1 virus strains from various clades. Finally, the MF59 changes the pattern of HA recognition by antibodies that react with the HA1 more than with the HA2 region. EXPERT OPINION The available data show that Aflunov is a pre-pandemic vaccine suitable not only for stockpiling in case of a pandemic, but also before a pandemic is declared, with the ultimate objective of preventing the onset of an influenza pandemic.
Collapse
|
29
|
Assessment of antigen-specific and cross-reactive antibody responses to an MF59-adjuvanted A/H5N1 prepandemic influenza vaccine in adult and elderly subjects. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1943-8. [PMID: 23081815 DOI: 10.1128/cvi.00373-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Preparedness against an A/H5N1 influenza pandemic requires well-tolerated, effective vaccines which provide both vaccine strain-specific and heterologous, cross-clade protection. This study was conducted to assess the immunogenicity and safety profile of an MF59-adjuvanted, prepandemic influenza vaccine containing A/turkey/Turkey/01/2005 (H5N1) strain viral antigen. A total of 343 participants, 194 adults (18 to 60 years) and 149 elderly individuals (≥61 years), received two doses of the investigational vaccine given 3 weeks apart. Homologous and heterologous antibody responses were analyzed by hemagglutination inhibition (HI), single radial hemolysis (SRH), and microneutralization (MN) assays 3 weeks after administration of the first vaccine dose and 3 weeks and 6 months after the second dose. Immunogenicity was assessed according to European licensure criteria for pandemic influenza vaccines. After two vaccine doses, all three European licensure criteria were met for adult and elderly subjects against the homologous vaccine strain, A/turkey/Turkey/1/2005, when analyzed by HI and SRH assays. Cross-reactive antibody responses were observed by HI and SRH analyses against the heterologous H5N1 strains, A/Indonesia/5/2005 and A/Vietnam/1194/2004, in adult and elderly subjects. Solicited local and systemic reactions were mostly mild to moderate in severity and occurred less frequently in the elderly than in adult vaccinees. In both adult and elderly subjects, MF59-adjuvanted vaccine containing 7.5 μg of A/Turkey strain influenza virus antigen was highly immunogenic, well tolerated, and able to elicit cross-clade, heterologous antibody responses against A/Indonesia and A/Vietnam strains 6 weeks after the first vaccination.
Collapse
|
30
|
La Gruta N, Kelso A, Brown LE, Chen W, Jackson DC, Turner SJ. Role of CD8(+) T-cell immunity in influenza infection: potential use in future vaccine development. Expert Rev Respir Med 2012; 3:523-37. [PMID: 20477341 DOI: 10.1586/ers.09.44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Continued circulation of the highly pathogenic avian H5N1 influenza A virus has many people worried that an influenza pandemic is imminent. Compounding this is the realization that H5N1 vaccines based on current influenza vaccine technology (designed to generate protective antibody responses) may be suboptimal at providing protection. As a consequence, there is recent interest in vaccine strategies that elicit cellular immunity, particularly the cytotoxic T lymphocyte response, in an effort to provide protection against a potential pandemic. A major issue is the lack of information about the precise role that these 'hitmen' of the immune system have in protecting against both pandemic and seasonal influenza. We need to know more about how the induction and maintenance of cytotoxic T lymphocytes after influenza infection can impact protection from further infection. The challenge is then to use this information in the design of vaccines that will protect against pandemic influenza and will help optimize CD8(+) killer T-cell responses in other infections.
Collapse
Affiliation(s)
- Nicole La Gruta
- Department of Microbiology and Immunology, The University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
31
|
To KK, Ng KH, Que TL, Chan JM, Tsang KY, Tsang AK, Chen H, Yuen KY. Avian influenza A H5N1 virus: a continuous threat to humans. Emerg Microbes Infect 2012; 1:e25. [PMID: 26038430 PMCID: PMC3636560 DOI: 10.1038/emi.2012.24] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/11/2012] [Accepted: 07/16/2012] [Indexed: 01/11/2023]
Abstract
We report the first case of severe pneumonia due to co-infection with the emerging avian influenza A (H5N1) virus subclade 2.3.2.1 and Mycoplasma pneumoniae. The patient was a returning traveller who had visited a poultry market in South China. We then review the epidemiology, virology, interspecies barrier limiting poultry-to-human transmission, clinical manifestation, laboratory diagnosis, treatment and control measures of H5N1 clades that can be transmitted to humans. The recent controversy regarding the experiments involving aerosol transmission of recombinant H5N1 virus between ferrets is discussed. We also review the relative contribution of the poor response to antiviral treatment and the virus-induced hyperinflammatory damage to the pathogenesis and the high mortality of this infection. The factors related to the host, virus or medical intervention leading to the difference in disease mortality of different countries remain unknown. Because most developing countries have difficulty in instituting effective biosecurity measures, poultry vaccination becomes an important control measure. The rapid evolution of the virus would adversely affect the efficacy of poultry vaccination unless a correctly matched vaccine was chosen, manufactured and administered in a timely manner. Vigilant surveillance must continue to allow better preparedness for another poultry or human pandemic due to new viral mutants.
Collapse
Affiliation(s)
- Kelvin Kw To
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong , Hong Kong Special Administrative Region, China ; Research Centre of Infection and Immunology, The University of Hong Kong , Hong Kong Special Administrative Region, China ; Department of Microbiology, The University of Hong Kong , Hong Kong Special Administrative Region, China
| | - Kenneth Hl Ng
- Department of Pathology, Tuen Mun Hospital , Hong Kong Special Administrative Region, China
| | - Tak-Lun Que
- Department of Pathology, Tuen Mun Hospital , Hong Kong Special Administrative Region, China
| | - Jacky Mc Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital , Hong Kong Special Administrative Region, China
| | - Kay-Yan Tsang
- Department of Medicine and Geriatrics, Princess Margaret Hospital , Hong Kong Special Administrative Region, China
| | - Alan Kl Tsang
- Research Centre of Infection and Immunology, The University of Hong Kong , Hong Kong Special Administrative Region, China ; Department of Microbiology, The University of Hong Kong , Hong Kong Special Administrative Region, China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong , Hong Kong Special Administrative Region, China ; Research Centre of Infection and Immunology, The University of Hong Kong , Hong Kong Special Administrative Region, China ; Department of Microbiology, The University of Hong Kong , Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong , Hong Kong Special Administrative Region, China ; Research Centre of Infection and Immunology, The University of Hong Kong , Hong Kong Special Administrative Region, China ; Department of Microbiology, The University of Hong Kong , Hong Kong Special Administrative Region, China
| |
Collapse
|
32
|
Dose-range study of MF59-adjuvanted versus nonadjuvanted monovalent A/H1N1 pandemic influenza vaccine in six- to less than thirty-six-month-old children. Pediatr Infect Dis J 2012; 31:e92-8. [PMID: 22481427 DOI: 10.1097/inf.0b013e318257644f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The successful vaccination of children 6 to 36 months of age against 2009 A/H1N1 influenza was essential to help reduce the burden of pandemic disease in both the pediatric and adult populations. OBJECTIVES We compared the immunogenicity and safety of 4 alternative monovalent vaccine formulations to identify which provided optimal levels of seroprotection according to the US and European Union (EU) licensure criteria. SUBJECTS AND METHODS A total of 654 healthy subjects (6 to <36 months old) were given 2 vaccine doses 3 weeks apart. Participants were assigned to 1 of the 4 immunization groups, receiving MF59-adjuvanted (Novartis Vaccines, Marburg, Germany) vaccine either containing 3.75 μg or 7.5 μg of A/H1N1 California/7/2009 antigen, or nonadjuvanted vaccine containing 7.5 μg or 15 μg of antigen. Antibody titers were assessed by hemagglutination inhibition assay 3 weeks, 3 months and 1 year after immunization. Vaccine safety was monitored throughout the study. RESULTS After 1 dose, both adjuvanted formulations met the US and EU criteria for seroconversion; the 15 μg nonadjuvanted vaccine met the EU criterion for seroconversion alone. The US and EU criteria for seroprotection were only met by adjuvanted groups. MF59-adjuvanted formulations alone resulted in clinically significant persisting antibody titers after 12 months. All vaccines were well tolerated. CONCLUSIONS A single dose of MF59-adjuvanted vaccine containing 3.75 μg A/H1N1 antigen was highly immunogenic, met both the US and EU licensure criteria and was well tolerated. These data support the suitability of this monovalent vaccine formulation for pandemic use in children 6 to <36 months of age.
Collapse
|
33
|
Gasparini R, Amicizia D, Lai PL, Panatto D. Aflunov(®): a prepandemic influenza vaccine. Expert Rev Vaccines 2012; 11:145-57. [PMID: 22309663 DOI: 10.1586/erv.11.170] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Influenza viruses are adept in human populations. Indeed, they have the capacity to evade the immune system through mechanisms of mutations (antigenic drift) and major variations in surface protein expression (antigenic shift). When a major change occurs, the risk of a human pandemic arises. Three influenza pandemics occurred during the 20th century, the most serious being the Spanish influenza. The last pandemic of the past century occurred in 1968, and the responsible virus infected an estimated 1-3 million people throughout the world. The first pandemic of the present century occurred in 2009 and was sustained by a H1N1 strain (A/California/07/09). In 1997, a novel avian influenza virus, H5N1, first infected humans in China. Since its emergence, the H5N1 virus has spread from Asia to Europe and Africa, resulting in the infection of millions of poultry and wild birds. So far, 522 human cases and 322 deaths have been reported by the WHO. Many studies have therefore been performed to obtain efficacious and safe H5N1 vaccines. One of these is Aflunov(®). Aflunov is a prepandemic monovalent A/H5N1 influenza vaccine adjuvanted with MF59 produced by Novartis Vaccines and Diagnostics. In nonclinical studies conducted in rabbits, Aflunov proved to be well-tolerated, did not cause maternal or embryo-fetal toxicity, was not teratogenic, and had no effects on postnatal development. In clinical studies, Aflunov proved safe and well-tolerated in infants, children, adolescents, adults and the elderly. In the same subjects, the vaccine elicited robust immunogenicity against both homologous (A/Vietnam/1194/2004 clade 1) and heterologous viral strains (for instance, A/Indonesia/05/2005 or A/Turkey/15/2006) and induced immunologic memory. Thus, in 2010, the CHMP issued a positive opinion on Aflunov and in January 2011 Aflunov was given marketing authorization. This vaccine could be very useful in the event of adaptation of the H5N1 virus to humans, which could cause a new pandemic.
Collapse
Affiliation(s)
- Roberto Gasparini
- Department of Health Science, University of Genoa (Italy), Via Pastore, 1-16132, Genoa, Italy.
| | | | | | | |
Collapse
|
34
|
Hatz C, Cramer JP, Vertruyen A, Schwarz TF, von Sonnenburg F, Borkowski A, Lattanzi M, Hilbert AK, Cioppa GD, Leroux-Roels G. A randomised, single-blind, dose-range study to assess the immunogenicity and safety of a cell-culture-derived A/H1N1 influenza vaccine in adult and elderly populations. Vaccine 2012; 30:4820-7. [PMID: 22626675 DOI: 10.1016/j.vaccine.2012.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 05/04/2012] [Accepted: 05/09/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND Modern cell-culture production techniques and the use of adjuvants helps to ensure that the global demand for pandemic influenza vaccine can be met. This study aimed to assess the immunogenicty and safety profiles of various cell-culture-derived A/H1N1 pandemic vaccine formulations in healthy adult and elderly subjects. METHODS Adult (18-60 years) subjects (n=544) received vaccine either containing 3.75 μg of antigen with half the standard dose of MF59 (Novartis Vaccines and Diagnostics) adjuvant, 7.5 μg antigen with a full dose of MF59, or a non-adjuvanted vaccine containing 15 μg of antigen. Elderly (≥ 61 years) subjects (n=268) received either the 3.75 μg or 7.5 μg adjuvanted formulations. Two priming vaccine doses were administered 3 weeks apart, followed by a single booster dose of seasonal influenza vaccine 1 year later. Immunogenicity was assessed 3 weeks after each vaccination. The safety profile of each formulation was evaluated throughout the study. RESULTS A single primary dose of each A/H1N1 vaccine formulation was sufficient to meet all three European (CHMP) licensure criteria for pandemic influenza vaccines in adult subjects. Two licensure criteria were met after one vaccine dose in elderly subjects; two primary doses were required to meet all three criteria in this age group. The highest antibody titres were observed in response to the 7.5 μg vaccine containing a full dose of MF59 adjuvant. All subjects rapidly generated seroprotective antibody titres in response to booster vaccination. CONCLUSION This study identified one 3.75 μg vaccine dose containing half the standard dose of MF59 adjuvant as optimal for adults, two doses were optimal for elderly subjects. The antigen-sparing properties of MF59, and rapid, modern, cell-culture production techniques represent significant steps towards meeting the global demand for influenza vaccine.
Collapse
Affiliation(s)
- Christoph Hatz
- Division of Communicable Diseases, Institute for Social and Preventive Medicine, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Assessment of the immunogenicity and safety of varying doses of an MF59®-adjuvanted cell culture-derived A/H1N1 pandemic influenza vaccine in Japanese paediatric, adult and elderly subjects. Vaccine 2012; 30:5030-7. [PMID: 22472791 DOI: 10.1016/j.vaccine.2012.03.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 03/10/2012] [Accepted: 03/21/2012] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Effective vaccination strategies are required to combat future influenza pandemics. Here we report the results of three independent clinical trials performed in Japan to assess the immunogenicity, tolerability and safety of varying doses of a cell culture-derived MF59(®)-adjuvanted A/H1N1 pandemic vaccine in healthy Japanese paediatric, adult and elderly subjects. METHODS One hundred and twenty-three children (6 months-18 years), and 200 adults (19-60 years) were randomly assigned in a 1:1 ratio to receive two doses of vaccine containing either 7.5 μg antigen with a full (9.75 mg) adjuvant dose, or 3.75 μg antigen with a half (4.875 mg) adjuvant dose. One hundred elderly (≥ 61 years) subjects received only the low antigen/adjuvant vaccine formulation. Immunogenicity was assessed by haemagglutination inhibition assay at baseline and three weeks after the first and second vaccine doses on Days 22 and 43, respectively. Solicited and unsolicited adverse reactions were recorded for seven and 21 days post-immunization, respectively. RESULTS In adult and elderly subjects, a single low antigen/adjuvant dose vaccination was sufficient to meet all of the three European licensure criteria established for influenza vaccines. One high, or two low antigen/adjuvant dose vaccinations were required to meet the licensure criteria in paediatric subjects. Both vaccine formulations were well tolerated, with the majority of adverse reactions mild to moderate in severity. None of the five serious adverse events reported throughout the three trials were considered to be vaccine-related by the investigators. CONCLUSION The use of MF59 adjuvant allows for much reduced vaccine antigen content, and a single dose administration schedule in adults and the elderly. The production of pandemic vaccine using modern cell culture techniques is highly advantageous in terms of the quantity, quality, and rapidity of antigen production; these benefits, in combination with the use of MF59, maximize manufacturing capacity and global vaccine supply. These data support the suitability of the investigational vaccine for use in the Japanese paediatric, adult, and elderly populations.
Collapse
|
36
|
Hatz C, von Sonnenburg F, Casula D, Lattanzi M, Leroux-Roels G. A randomized clinical trial to identify the optimal antigen and MF59(®) adjuvant dose of a monovalent A/H1N1 pandemic influenza vaccine in healthy adult and elderly subjects. Vaccine 2012; 30:3470-7. [PMID: 22446638 DOI: 10.1016/j.vaccine.2012.03.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 03/05/2012] [Accepted: 03/08/2012] [Indexed: 11/17/2022]
Abstract
BACKGROUND Vaccines against pandemic A/H1N1 influenza are required to protect the entire population. This dose range study aimed to identify priming antigen and adjuvant doses resulting in optimal levels of antibody-mediated protection after primary and one-year booster immunizations. METHODS This randomised trial enrolled 410 healthy adult (18-60 years) and 251 healthy elderly (>60 years) participants. Subjects received vaccine containing either 3.75 μg or 7.5 μg antigen, adjuvanted with half the standard dose, or a standard dose of MF59(®) (Novartis Vaccines) adjuvant, respectively. An additional adult cohort received non-adjuvanted vaccine containing 15 μg antigen. Two doses of investigational vaccine were administered three weeks apart, followed by a single booster dose of adjuvanted seasonal influenza vaccine one year after priming. Immunogenicity was assessed by haemagglutination inhibition and microneutralization assays pre- and post-immunization, the safety profile of each vaccine was also evaluated. RESULTS All of the vaccine formulations investigated were highly immunogenic and well tolerated in both adult and elderly subjects. The 7.5 μg formulation induced the highest antibody titres after primary and booster immunizations, and resulted in better long-term antibody persistence, in both age groups. Assessment according to European licensure criteria for influenza vaccines concluded that single adjuvanted priming doses containing 3.75 μg and 7.5 μg antigen were optimal for the adult and elderly populations, respectively. CONCLUSIONS These data demonstrate that one priming dose of MF59-adjuvanted A/H1N1 vaccine provided healthy adult (3.75 μg or 7.5 μg formulations) and healthy elderly (7.5 μg formulation) individuals with adequate levels of seroprotection. Booster administration after two priming doses of either vaccine formulation resulted in the rapid development of seroprotective antibody titres. TRIAL REGISTRATION www.clinicaltrials.gov (NCT00971906).
Collapse
Affiliation(s)
- Christoph Hatz
- Division of Communicable Diseases, Institute for Social and Preventive Medicine, University of Zurich, 8001 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
37
|
Vesikari T, Forstén A, Herbinger KH, Cioppa GD, Beygo J, Borkowski A, Groth N, Bennati M, von Sonnenburg F. Safety and immunogenicity of an MF59®-adjuvanted A/H5N1 pre-pandemic influenza vaccine in adults and the elderly. Vaccine 2012; 30:1388-96. [DOI: 10.1016/j.vaccine.2011.12.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/29/2011] [Accepted: 12/03/2011] [Indexed: 12/11/2022]
|
38
|
|
39
|
Trivalent and quadrivalent MF59®-adjuvanted influenza vaccine in young children: A dose- and schedule-finding study. Vaccine 2011; 29:8696-704. [DOI: 10.1016/j.vaccine.2011.08.111] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 08/20/2011] [Accepted: 08/25/2011] [Indexed: 11/23/2022]
|
40
|
Khurana S, Verma N, Yewdell JW, Hilbert AK, Castellino F, Lattanzi M, Del Giudice G, Rappuoli R, Golding H. MF59 adjuvant enhances diversity and affinity of antibody-mediated immune response to pandemic influenza vaccines. Sci Transl Med 2011; 3:85ra48. [PMID: 21632986 DOI: 10.1126/scitranslmed.3002336] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oil-in-water adjuvants have been shown to improve immune responses against pandemic influenza vaccines as well as reduce the effective vaccine dose, increasing the number of doses available to meet global vaccine demand. Here, we use genome fragment phage display libraries and surface plasmon resonance to elucidate the effects of MF59 on the quantity, diversity, specificity, and affinity maturation of human antibody responses to the swine-origin H1N1 vaccine in different age groups. In adults and children, MF59 selectively enhanced antibody responses to the hemagglutinin 1 (HA1) globular head relative to the more conserved HA2 domain in terms of increased antibody titers as well as a more diverse antibody epitope repertoire. Antibody affinity, as inferred by greatly diminished (≥10-fold) off-rate constants, was significantly increased in toddlers and children who received the MF59-adjuvanted vaccine. Moreover, MF59 also improved antibody affinity maturation after each sequential vaccination against avian H5N1 in adults. For both pandemic influenza vaccines, there was a close correlation between serum antibody affinity and virus-neutralizing capacity. Thus, MF59 quantitatively and qualitatively enhances functional antibody responses to HA-based vaccines by improving both epitope breadth and binding affinity, demonstrating the added value of such adjuvants for influenza vaccines.
Collapse
Affiliation(s)
- Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
O'Hagan DT, Rappuoli R, De Gregorio E, Tsai T, Del Giudice G. MF59 adjuvant: the best insurance against influenza strain diversity. Expert Rev Vaccines 2011; 10:447-62. [PMID: 21506643 DOI: 10.1586/erv.11.23] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
MF59 is a well-established, safe and potent vaccine adjuvant that has been licensed for more than 13 years for use in an influenza vaccine focused on elderly subjects (Fluad®), Novartis, Cambridge, MA, USA). Recently, MF59 was shown to be safe in a seasonal influenza vaccine for young children and was able to increase vaccine efficacy from 43 to 89%. A key and consistent feature of MF59 is the ability of the emulsion to induce fast priming of influenza antigen-specific CD4(+) T-cell responses, to induce strong and long-lasting memory T- and B-cell responses and to broaden the immune response beyond the influenza strains actually included in the vaccine. The enhanced breadth of response is valuable in the seasonal setting, but is particularly valuable in a (pre-) pandemic setting, when it is difficult to predict which strain will emerge to cause the pandemic. We have shown that the ability of MF59 to increase the breadth of immune response against influenza vaccines is mainly due to the spreading of the repertoire of the B-cell epitopes recognized on the hemagglutinin and neuraminidase of the influenza virus.
Collapse
|
42
|
Risi G, Frenette L, Langley JM, Li P, Riff D, Sheldon E, Vaughn DW, Fries L. Immunological priming induced by a two-dose series of H5N1 influenza antigen, administered alone or in combination with two different formulations of AS03 adjuvant in adults: Results of a randomised single heterologous booster dose study at 15 months. Vaccine 2011; 29:6408-18. [DOI: 10.1016/j.vaccine.2011.04.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
|
43
|
Dormitzer PR, Galli G, Castellino F, Golding H, Khurana S, Del Giudice G, Rappuoli R. Influenza vaccine immunology. Immunol Rev 2011; 239:167-77. [PMID: 21198671 DOI: 10.1111/j.1600-065x.2010.00974.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studying the spread of influenza in human populations and protection by influenza vaccines provides important insights into immunity against influenza. The 2009 H1N1 pandemic has taught the most recent lessons. Neutralizing and receptor-blocking antibodies against hemagglutinin are the primary means of protection from the spread of pandemic and seasonal strains. Anti-neuraminidase antibodies seem to play a secondary role. More broadly cross-reactive forms of immunity may lessen disease severity but are insufficient to prevent epidemic spread. Priming by prior exposure to related influenza strains through infection or immunization permits rapid, potent antibody responses to immunization. Priming is of greater importance to the design of immunization strategies than the immunologically fascinating phenomenon of dominant recall responses to previously encountered strains (original antigenic sin). Comparisons between non-adjuvanted inactivated vaccines and live attenuated vaccines demonstrate that both can protect, with some advantage of live attenuated vaccines in children and some advantage of inactivated vaccines in those with multiple prior exposures to influenza antigens. The addition of oil-in-water emulsion adjuvants to inactivated vaccines provides enhanced functional antibody titers, greater breadth of antibody cross-reactivity, and antigen dose sparing. The MF59 adjuvant broadens the distribution of B-cell epitopes recognized on HA and NA following immunization.
Collapse
|
44
|
Suguitan AL, Cheng X, Wang W, Wang S, Jin H, Lu S. Influenza H5 hemagglutinin DNA primes the antibody response elicited by the live attenuated influenza A/Vietnam/1203/2004 vaccine in ferrets. PLoS One 2011; 6:e21942. [PMID: 21760928 PMCID: PMC3132217 DOI: 10.1371/journal.pone.0021942] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/13/2011] [Indexed: 01/27/2023] Open
Abstract
Priming immunization plays a key role in protecting individuals or populations to influenza viruses that are novel to humans. To identify the most promising vaccine priming strategy, we have evaluated different prime-boost regimens using inactivated, DNA and live attenuated vaccines in ferrets. Live attenuated influenza A/Vietnam/1203/2004 (H5N1) candidate vaccine (LAIV, VN04 ca) primed ferrets efficiently while inactivated H5N1 vaccine could not prime the immune response in seronegative ferrets unless an adjuvant was used. However, the H5 HA DNA vaccine alone was as successful as an adjuvanted inactivated VN04 vaccine in priming the immune response to VN04 ca virus. The serum antibody titers of ferrets primed with H5 HA DNA followed by intranasal vaccination of VN04 ca virus were comparable to that induced by two doses of VN04 ca virus. Both LAIV-LAIV and DNA-LAIV vaccine regimens could induce antibody responses that cross-neutralized antigenically distinct H5N1 virus isolates including A/HongKong/213/2003 (HK03) and prevented nasal infection of HK03 vaccine virus. Thus, H5 HA DNA vaccination may offer an alternative option for pandemic preparedness.
Collapse
Affiliation(s)
| | - Xing Cheng
- MedImmune, Mountain View, California, United States of America
| | - Weijia Wang
- MedImmune, Mountain View, California, United States of America
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Hong Jin
- MedImmune, Mountain View, California, United States of America
- * E-mail:
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
45
|
Beran J, Abdel-Messih IA, Raupachova J, Hobzova L, Fragapane E. A phase III, randomized, open-label study to assess the tolerability and immunogenicity of an H5N1 influenza vaccine administered to healthy adults with a 1-, 2-, 3-, or 6-week interval between first and second doses. Clin Ther 2011; 32:2186-97. [PMID: 21316535 DOI: 10.1016/s0149-2918(11)00024-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2010] [Indexed: 11/28/2022]
Abstract
BACKGROUND Preparedness for an H5N1 influenza pre-pandemic requires effective and well-tolerated emergency vaccination strategies that provide both pandemic strain-specific and heterologous protection. OBJECTIVES This was a pivotal study for the regulatory approval process for a candidate MF59-adjuvanted H5N1 vaccine. Its goals were to identify the preferred primary 2-dose vaccination schedule in adults and to assess whether the vaccine met European Committee for Medicinal Products for Human Use (CHMP) licensure criteria. METHODS Healthy volunteers aged 18 to 60 years received 1 of 4 randomized schedules in which the 2 doses of vaccine were separated by a 1-, 2-, 3-, or 6-week interval. Three blood samples (~20 mL(-1)) were obtained from each subject: the first sample, immediately before administration of the first dose of vaccine; the second, immediately before administration of the second dose; and the third, 21 days after administration of the second dose. Hemagglutination inhibition (HI), microneutralization (MN), and single radial hemolysis (SRH) were assayed after each dose. Immunogenicity was assessed based on the CHMP licensure criteria for annual influenza vaccines (number of seroconversions or significant increase in HI titer >40%; mean geometric increase >2.5; and proportion of subjects achieving an HI titer ≥40 or SRH titer >25 mm(2) should be >70% [seroprotection]). Subjects recorded all adverse events occurring within 7 days of vaccine administration; information on any serious adverse events was collected throughout the study (duration, 202 days). RESULTS All study participants (N = 240) were white, with a mean age of 33 years and a mean body mass index of 24.6 kg/m(2). Equal numbers of men and women were assigned to each vaccination schedule. The CHMP criterion for seroprotection was achieved when the 2 doses of vaccine were separated by 2 (76%), 3 (72%), and 6 (79%) weeks; similar results were obtained on MN and SRH analysis. On the SRH analysis, the candidate vaccine showed a heterologous immune response to the H5N1/turkey/Turkey/1/05 (NIBRG-23; clade 2) influenza antigen. The vaccine met 2 of the 3 European licensure criteria, with seroconversion rates of 69% and 65% in the groups assigned to a 2- and 3-week interval between doses, respectively, and geometric mean ratios of 4.3 and 4.5. There were no serious adverse events related to vaccination. The most common adverse events reported within 7 days of the first and second doses of vaccine were mild to moderate injection-site pain (63%-73% and 34%-48%, respectively) and fatigue (25%-30% and 13%-24%). CONCLUSIONS Two 7.5-μg doses of MF59-adjuvanted H5N1 influenza vaccine given 2, 3, or 6 weeks apart afforded H5N1-specific immunity and met the CHMP licensure criterion for seroprotection in these healthy volunteers. Clinically relevant levels of heterologous immunity were observed when the 2 doses of vaccine were administered either 2 or 3 weeks apart; however, the licensure criterion for seroprotection was not met in this case.
Collapse
Affiliation(s)
- Jiri Beran
- Vaccination and Travel Medicine Center, Poliklinika II, Hradec Králové, Czech Republic
| | | | | | | | | |
Collapse
|
46
|
Schuchat A, Bell BP, Redd SC. The science behind preparing and responding to pandemic influenza: the lessons and limits of science. Clin Infect Dis 2011; 52 Suppl 1:S8-12. [PMID: 21342904 DOI: 10.1093/cid/ciq007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A strong evidence base provides the foundation for planning and response strategies. Investments in pandemic preparedness included support for research that aided early detection, response, and control of the 2009 influenza A (H1N1) (pH1N1) pandemic. Scientific investigations conducted during the pandemic guided understanding of the virus, disease severity, and epidemiologic risk factors. Field investigations also produced information that strengthened guidance for the use of antivirals, identification of target populations for monovalent pH1N1 vaccine, and refinement of recommendations for social distancing measures. Communication of this evolving evidence base was important to sustaining credibility of public health. Areas where substantial controversy emerged, such as the optimal approach to respiratory protection of healthcare workers, often suffered from gaps in the evidence base. Many aspects of the 2009-2010 pandemic influenza experience provide ongoing opportunities for additional study, which will strengthen plans for future pandemic response as well as control of seasonal influenza.
Collapse
Affiliation(s)
- Anne Schuchat
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
| | | | | |
Collapse
|
47
|
Lu H, Khurana S, Verma N, Manischewitz J, King L, Beigel JH, Golding H. A rapid Flp-In system for expression of secreted H5N1 influenza hemagglutinin vaccine immunogen in mammalian cells. PLoS One 2011; 6:e17297. [PMID: 21386997 PMCID: PMC3046144 DOI: 10.1371/journal.pone.0017297] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/28/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Continuing transmissions of highly pathogenic H5N1 viruses in poultry and humans underscores the need for a rapid response to potential pandemic in the form of vaccine. Recombinant technologies for production of immunogenic hemagglutinin (HA) could provide an advantage over the traditional inactivated vaccine manufacturing process. Generation of stably transfected mammalian cells secreting properly folded HA proteins is important for scalable controlled manufacturing. METHODOLOGY/PRINCIPAL FINDINGS We have developed a Flp-In based 293 stable cell lines through targeted site-specific recombination for expression of secreted hemagglutinin (HA) proteins and evaluated their immunogenicity. H5N1 globular domain HA1(1-330) and HA0(1-500) proteins were purified from the supernatants of 293 Flp-In stable cell lines. Both proteins were properly folded as confirmed by binding to H5N1-neutralizing conformation-dependent human monoclonal antibodies. The HA0 (with unmodified cleavage site) was monomeric, while the HA1 contained oligomeric forms. Upon rabbit immunization, both HA proteins elicited neutralizing antibodies against the homologous virus (A/Vietnam/1203/2004, clade 1) as well as cross-neutralizing antibodies against heterologous H5N1 clade 2 strains, including A/Indonesia/5/2005. These results exceeded the human antibody responses against the inactivated sub-virion H5N1 vaccine. CONCLUSIONS/SIGNIFICANCE Our data suggest that the 293 Flp-In system could serve as a platform for rapid expression of HA immunogens in mammalian cells from emerging influenza strains.
Collapse
Affiliation(s)
- Hanxin Lu
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Bethesda, Maryland, United States of America
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Bethesda, Maryland, United States of America
| | - Nitin Verma
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Bethesda, Maryland, United States of America
| | - Jody Manischewitz
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Bethesda, Maryland, United States of America
| | - Lisa King
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Bethesda, Maryland, United States of America
| | - John H. Beigel
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, SAIC-Frederick, NCI-Frederick, Frederick, Maryland, United States of America
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Bethesda, Maryland, United States of America
| |
Collapse
|
48
|
Moris P, van der Most R, Leroux-Roels I, Clement F, Dramé M, Hanon E, Leroux-Roels GG, Van Mechelen M. H5N1 influenza vaccine formulated with AS03 A induces strong cross-reactive and polyfunctional CD4 T-cell responses. J Clin Immunol 2010; 31:443-54. [PMID: 21174144 PMCID: PMC3132412 DOI: 10.1007/s10875-010-9490-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 11/16/2010] [Indexed: 12/28/2022]
Abstract
Objective Adjuvantation of an H5N1 split-virion influenza vaccine with AS03A substantially reduces the antigen dose required to produce a putatively protective humoral response and promotes cross-clade neutralizing responses. We determined the effect of adjuvantation on antibody persistence and B- and T-cell-mediated immune responses. Methods Two vaccinations with a split-virion A/Vietnam/1194/2004 (H5N1, clade 1) vaccine containing 3.75–30 μg hemagglutinin and formulated with or without adjuvant were administered to groups of 50 volunteers aged 18–60 years. Results Adjuvantation of the vaccine led to better persistence of neutralizing and hemagglutination-inhibiting antibodies and higher frequencies of antigen-specific memory B cells. Cross-reactive and polyfunctional H5N1-specific CD4 T cells were detected at baseline and were amplified by vaccination. Expansion of CD4 T cells was enhanced by adjuvantation. Conclusion Formulation of the H5N1 vaccine with AS03A enhances antibody persistence and induces stronger T- and B-cell responses. The cross-clade T-cell immunity indicates that the adjuvanted vaccine primes individuals to respond to either infection and/or subsequent vaccination with strains drifted from the primary vaccine strain.
Collapse
|
49
|
Leroux-Roels G. Unmet needs in modern vaccinology: adjuvants to improve the immune response. Vaccine 2010; 28 Suppl 3:C25-36. [PMID: 20713254 DOI: 10.1016/j.vaccine.2010.07.021] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The key objective of vaccination is the induction of an effective pathogen-specific immune response that leads to protection against infection and/or disease caused by that pathogen, and that may ultimately result in its eradication from humanity. The concept that the immune response to pathogen antigens can be improved by the addition of certain compounds into the vaccine formulation was demonstrated about one hundred years ago when aluminium salts were introduced. New vaccine technology has led to vaccines containing highly purified antigens with improved tolerability and safety profiles, but the immune response they induce is suboptimal without the help of adjuvants. In parallel, the development of effective vaccines has been facing more and more important challenges linked to complicated pathogens (e.g. malaria, TB, HIV, etc.) and/or to subjects with conditions that jeopardize the induction or persistence of a protective immune response. A greater understanding of innate and adaptive immunity and their close interaction at the molecular level is yielding insights into the possibility of selectively stimulating immunological pathways to obtain the desired immune response. The better understanding of the mechanism of 'immunogenicity' and 'adjuvanticity' has prompted the research of new vaccine design based on new technologies, such as naked DNA or live vector vaccines and the new adjuvant approaches. Adjuvants can be used to enhance the magnitude and affect the type of the antigen-specific immune response, and the combination of antigens with more than one adjuvant, the so called adjuvant system approach, has been shown to allow the development of vaccines with the ability to generate effective immune responses adapted to both the pathogen and the target population. This review focuses on the adjuvants and adjuvant systems currently in use in vaccines, future applications, and the remaining challenges the field is facing.
Collapse
|
50
|
[Evaluation of alum-adjuvanted whole virus influenza vaccine and future aspects of influenza A (H1N1) 2009 vaccine]. Uirusu 2010; 60:69-78. [PMID: 20848866 DOI: 10.2222/jsv.60.69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
For preparedness of H5N1 pandemic, several types of influenza prototype vaccine have been developed in several countries. Alum-adjuvanted whole virus influenza vaccine, which has been developed in Japan, had excellent priming effect after two doses, and the third shot of the heterologous strain to the subjects primed two years previously elicited strong and broad cross immunity. Moreover, solicited local and general reactions were acceptable. However, influenza A (H1N1) 2009 virus, which had much different antigenicity from A Russia lineage, was detected in April 2009 and developed pandemic. According to clinical studies of (H1N1) 2009 monovalent vaccine in adults, split vaccine could induce appropriate secondary immune responses after one dose. These results suggested that adults had immune memory to (H1N1) 2009 virus, and that vaccination strategy to this virus was efficient by using seasonal influenza vaccination strategy. Additionally, since WHO speculates (H1N1) 2009 virus could be endemic in near future, the (H1N1) 2009 virus-derived strain is included in the 2010/11 seasonal influenza vaccine.
Collapse
|